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ABSTRACT
We improve on previous recommender systems by taking
advantage of the layered structure of software. We use a
random-walk approach, mimicking the more focused behav-
ior of a developer, who browses the caller-callee links in the
callgraph of a large program, seeking routines that are likely
to be related to a function of interest. Inspired by Klein-
berg’s work[10], we approximate the steady-state of an infi-
nite random walk on a subset of a callgraph in order to rank
the functions by their steady-state probabilities. Surpris-
ingly, this purely structural approach works quite well. Our
approach, like that of Robillard’s“Suade”algorithm[15], and
earlier data mining approaches [13] relies solely on the al-
ways available current state of the code, rather than other
sources such as comments, documentation or revision infor-
mation. Using the Apache API documentation as an oracle,
we perform a quantitative evaluation of our method, find-
ing that our algorithm dramatically improves upon Suade
in this setting. We also find that the performance of tra-
ditional data mining approaches is complementary to ours;
this leads naturally to an evidence-based combination of the
two, which shows excellent performance on this task.

Categories and Subject Descriptors: D.2.7 [Distribu-
tion, Maintenance and Enhancement]: Documentation

General Terms: Design, Documentation

Keywords: recommender systems, graph theory

1. INTRODUCTION
Software Maintainers spend a lot of time trying to un-

derstand the software under maintenance. This problem is
especially acute in large software systems [4]. Even well-
designed large systems impose steep learning curves on de-
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velopers. Over the years, tool builders have sought different
approaches to ease this learning task. We are particularly in-
terested here in large, complex, specialized, application pro-
grammer interfaces (APIs), which constitute the basic sub-
strate, or platform, upon which large software systems are
typically built. Carefully architected, long-lived, expensive
systems have extensive collections of APIs, which provide
common services specialized for application needs, such as
storage, synchronization, communication, security and con-
currency. While a developer may be conceptually aware of
these services, she still has to learn how a particular service
is manifest in a specific large system. Documentation for
such APIs may be lacking, and more experienced develop-
ers may be too busy to answer questions. In the Apache
HTTPD web server, for example, there over 300 distinct
portability layer API functions that form a“virtual machine”
layer to simplify portability. We are concerned with a com-
mon discovery task: given a particular function, find related
functions. For example, a developer may have found the
function apr_file_seek, guessed that it is associated with
file operations and wish to find other related functions. In
the absence of documentation, the programmer would have
to explore the source code directly, seeking other functions
invoked along with apr_file_seek that may be related. Our
goal is to automatically find and recommend the related API
calls to a given call.

This problem of mining related API calls has attracted
a lot of interest, and a variety of different approaches have
been reported [12, 13, 15, 18, 19]. We now summarize the
contributions of this paper.
Task Setting: Given a function, we find the other related
functions. We do this using exclusively the structural infor-
mation in the call graph; we don’t use version histories, name
similarities or natural language (e.g., API documentation)
mining. This is a clear advantage; structural information is
always available (and reliable) if the source code is available,
but other types of information may not always be available
and/or reliable.
New random-walk algorithm: We introduce a fast, simple,
accurate algorithm, called FRAN (Finding with RANdom
walks) that is based on the steady state of a random walk
on the callgraph neighborhood (inspired by [10]). This ap-
proach conceptually generalizes the previous purely struc-
tural approach proposed in Robillard’s Suade [15]. The al-
gorithm works by considering a larger set of related items
compared to previous algorithms (often too large to explore



manually), but then ranks them using the random-walk al-
gorithm. The larger set increases our likelihood of finding
relevant functions; our ranking algorithm increases our abil-
ity to narrow in on the most relevant functions in this larger
group.
Evaluation: We evaluate this approach on the Apache (C-
language) project source code; fortunately, Apache has a
large number of well-documented portability layer APIs that
can be used for testing. Finding that FRAN returns more
answers in more cases, we first conduct case studies to ex-
amine whether the greater number of answers returned by
our algorithm are relevant. Next, using the Apache doc-
umentation as a yardstick to judge correctness of relevant
API calls returned by our purely structural approach, we
pursue a quantitative comparison of FRAN with a standard
mining algorithm and with our own re-implementation of
Robillard’s Suade, based faithfully on the description in the
published paper. We show first that our algorithm’s rank-
ing, in a significant number of cases, is statistically better
than a naive approach which simply returns the random
set of nodes from the callgraph-neighborhood of the original
call. This indicates that our approach effectively narrows
the scope of code that a developer must browse to find re-
lated API calls; next, we also show that our approach sub-
stantially outperforms both Suade in most cases and (less
dramatically, but still in a majority of cases) the traditional
mining approach on the traditional F1 measure. Finally,
we empirically determine when the mining approach beats
FRAN, and present and evaluate an evidence-based combi-
nation of the two approaches.

2. MOTIVATION
Programming tasks in large systems are usually contex-

tual. Given any artifact or task, a programmer often needs
to know the related tasks or artifacts. Given a specific task,
or artifact, a recommender system can suggest related items
for the programmer’s consideration. The intent is that the
recommendations provided will a) save the programmer time
b) ensure that related items are considered, thus potentially
avoiding defects c) over time, serve as an educational tool,
assisting in learning. There has been quite a large body of
work on this topic, which we discuss further below. First,
we motivate the problem.

Consider a new developer working on the Apache system,
who is writing some multi-threaded code in the server. In
her design, she has created a thread, along with memory
pool resources for use by the thread and used the thread
in her logic. Now she comes to a point in the code where
she finds it necessary to kill off a thread. She finds after
some searching that the method that will kill a thread is
apr_thread_exit. She puts the call in. Just to be on the
safe side, she views the recommendations from a recom-
mender tool to examine what the related calls are. In this
case, the top 5 recommendations returned by our algorithm,
FRAN, are: apr_pool_destroy, apr_pool_clear, destroy_and-
_exit_process, start_connect and clean_child_exit. Notic-
ing that the destruction of the memory pool was so promi-
nent, she looks at the apr_pool functions, and after examin-
ing the code, she realizes that the apr_thread_exit call has
the side effect of de-allocating and clearing out pool mem-
ory. She realizes that she had naively made an incorrect
assumption that the pool data could be shared with other
threads and goes about fixing her code. This example is far

from contrived; the relationship between threads and mem-
ory pools in Apache is not trivial and has been the subject
of debate.1

In Apache, as in many large systems, there are a great
many such internal library calls, and it is quite a challenge
for a newcomer to master their proper use. Apache itself now
has good documentation and is reasonably well commented.
Using these documents and comments as textual cues, it
may, with some effort, be possible to find related code.

Sadly, many large systems do not have good documenta-
tion, nor do they have good comments in the code. Even if
they did have comments and documents, these may not nec-
essarily reflect the reality of the code, since comments and
code often get out of sync. However, any system that has
code has internal structure, reflecting dependence between
modules; this structure can be mined from the code. This
internal structure in a way constitutes an implicit“documen-
tation” of the relationships that exist between the parts of
the system. When the code of one module invokes another
module, it is an explicit indication of a relevance. If two
modules are invoked by the same module, clearly they are
related. If two different modules invoke the same module,
they are related as well. Some of these relationships may be
accidental or uninteresting; however, considered as a whole,
the “neighborhood” of a function f in a callgraph has a lot
of implicit (but reliable) information about the relevance of
various functions in that neighborhood to f .

Our approach, similar to that of [13, 15], is based on the
assumption that the dependence structure of software is a
reliable, useful way to find related modules. Furthermore,
it is always “real” and “code-related” in a way that com-
ments and documents cannot claim to be. Our algorithm
essentially assigns an equal probability of the “initial rel-
evance likelihood” to each link, and (mathematically, using
linear algebra) does an infinite random walk of an immediate
(closed) neighborhood of a given function in the callgraph;
the stationary probabilities of this infinite random walk in-
dicate relevance scores.

3. RELATED WORK
Finding related code in systems is a long-standing problem

that has attracted a great deal of attention. Space limita-
tions preclude a comprehensive description; we only cover
some representative papers here.

Data Mining approaches use a collection of co-occurrences
of items (e.g., items in shopping baskets) to find when cer-
tain items tend to co-occur, and these frequent itemsets are
inferred to be strongly associated. Michail [13] proposed
the use of this approach to find related calls in reusable li-
braries. Precision/recall results were not reported. Xie [19]
proposes a similar approach, based on sequence mining, us-
ing knowledge of the order in which calls occur; he also
reports promising, qualitative results. Some research has
focused on code changes, judging that method calls added
together are strongly related. Other researchers have mined
version histories [23, 18]. Ying et al. [20] look at co-changes
of files as an indication of close ties between files and use this
for recommendation. A quantitative evaluation is provided.
These approaches work well, but rely on version histories,
which may not always be available, or sufficiently rich in a
way that is relevant to a given query; thus, if certain func-

1 See http://marc.info/?l=apr-dev&m=99525021009667
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tions are not changed frequently enough and/or not strongly
associated, then there may be insufficient data to provide
good answers. Our approach can work with a single version
and provide good results.

Some researchers have used execution trace collections [1,
3] to find patterns of usage. This requires a complete set
of test cases and run-time tracing; the results will be useful
only if sufficient data on the execution of all the different
routines in the different possible ways are available. Static
approaches don’t require this.

There is another line of work [1, 6, 11] that uses frequent
co-occurrence mining to find defects in software. The goal
is to mine patterns of calls that must occur together in the
same procedure or in the same execution trace; when such
calls don’t occur, it’s a heuristic indication of a defect. In
contrast, our goal is to find closely related functions whether
or not they are called from the same function and without
any tracing information.

Concept Location approaches aim to find code modules
relevant to a particular concept (e.g. “bookmark”) in a large
source base. These approaches use information from a va-
riety of sources: email messages, cvs logs, bug databases,
static analysis, dynamic traces, information retrieval tech-
niques, etc. A good survey is available in [17]. Some recent
approaches use sophisticated information retrieval methods
such as latent semantic indexing (LSI). LSI is used on the
source code to find relevant targets. Sometimes, different
kinds of information are combined. Sinafl [22] uses a combi-
nation of keyword-based retrieval and a special type of call-
graph, which preserves control-flow dependencies, to find
relevant code. Poshyvanyk et al [14] use a combination of
information retrieval and function tracing. A related sys-
tem is Hipikat [5], which attempts to find artifacts related
to a specific project artifact. The Hipikat evaluation reports
its performance on helping programmers fix bugs. In con-
trast to this, we are interested in finding functions related
to a specific function rather than ones related to a specific
feature or a reported bug.

Structural Approaches There are variety of approaches
that make holistic use of the structure of the callgraph to
extract useful information. Zhang & Jacobsen [21] use a
random-walk algorithm to find cross-cutting code (aspects)
in Java programs. They use a variant of Google’s pagerank
algorithm on the entire dependency tree to identify poten-
tial aspects. Inoue et al [9] describe how component rank,
a version of pagerank on software dependency graphs, can
be used as a “true measure of reuse” to identify valuable
components.

Robillard’s ACM SIGSOFT distinguished paper on the
Suade method [15], which inspired our own, is also struc-
tural. The Suade algorithm takes as input a query set of
interest I, and returns a suggestion set S. Suade uses two
notions: specificity and reinforcement to rank members of
S from among the neighbors of the query set. A method
m is a better candidate for the answer S if it is specific to
the query set of methods I and is reinforced by it. Method
ms is specific to I if any method mi in I that is called by
ms is called by few other elements except ms, and also if
ms calls few other methods; mr is reinforced by I if most
of the methods called by mr are in I. Robillard presents
a fuzzy-set based algorithm for calculating such elements
y which is quite efficient. This can be viewed in terms of
random walks. Consider a random walker W (e.g., an in-

experienced (or drunk) programmer randomly browsing a
program by traversing call graph edges). Suppose ms is spe-
cific to I. Then, if W were to, in his ignorance, randomly
jump forward from ms along a random callgraph edge, he
would probably end up at a method in I; if then he jumps
backward, he would likely end up at ms. Likewise, if mr

is reinforced by I, then if W were to start at the method
m in I, then jump forwards to a method called by m and
then jump backwards, then he is more likely to end up at
mr than other methods that are not reinforced by I. In such
cases, Suade considers ms and mr to be possible candidate
inclusions into I.

We argue that this algorithm can be generalized by con-
sidering the steady state probabilities that a node would be
reached after an infinite random walk by a naive program-
mer in a larger neighborhood. In other words, if we infinitely
iterate over specificity and reinforcement of more relation-
ships, we would get a better result. Interestingly, standard
methods in linear algebra indicate that the probabilities will
converge, and can be calculated quickly.

4. TECHNICAL APPROACH

4.1 The FRAN algorithm
The motivation for the FRAN algorithm comes from the

observation that there are two distinct types of relevance
information readily available in a callgraph. First, if a func-
tion, f , calls another, g, it indicates that the functionality
of f is related to the functionality of g. Second, assuming
some degree of layering, two functions are related if they are
in the same layer with respect to their calls (i.e., they call
and/or are called by the same functions). Layered structure
is quite common; when searching for code related to a tar-
get function f , a human programmer typically would make
this assumption, and focus her search on the modules in the
same layer as f .

Our algorithm consists of two phases, each taking advan-
tage of one type of relevance information. First, based on
the query function, FRAN limits the set of all the functions
in the program to an enriched set of functions from the same
layer as the query function. Next, FRAN ranks this result
using an algorithm that calculates the relevance of each func-
tion based on the link structure (i.e., which functions call
which other functions) of the callgraph. This ranking allows
the programmer to consider the most relevant functions first.

FRAN’s first step identifies the set of functions in the
same layer as the query function by finding two subsets of
the callgraph, called the sibling set and the spouse set. First,
define the parent set for a query function as the set of func-
tions that call the query function, and define the child set
as the set of functions that are called by the query function.
Continuing the family tree metaphor, define the sibling set
as the set of functions that are called by any function in
the parent set and define the spouse set as the set of func-
tions that call any function in the child set. Arguably, the
functions in the sibling set and the spouse set together form
a relevant set of functions in either the same or proximate
functional layer.

Therefore, given a query function, FRAN first narrows its
search to functions contained in the union of the sibling set,
the parent set and the spouse set of the query function. The
parent set is included because each function in this set calls
the query function, indicating the first type of relevance.



Figure 1: An illustration of the various relationships
in the callgraph of the parent set, child set, sibling
set and spouse set to the query function.

Inspired by the web search community, we call this union
set the base set. We’re abusing the term somewhat; our base
set is not the same set of nodes (relative to the query node)
as the base set in Kleinberg’s well-known paper [10]. For
us, the base set is an enriched set of results related to the
query function for the programmer to consider. However,
the base set, itself, is frequently too large for a human to
easily explore. Therefore, it is desirable to rank the functions
in the base set based on their relevance to the query.

In order to rank the results in the base set, we first ob-
serve that software contains functions that aggregate func-
tionality and functions that largely implement functionality
without aggregating, and we note that there is a circular re-
lationship between these two types of functions. Aggregat-
ing functions call implementing functions and implementing
functions are called by aggregators. A similar relationship
exists in the context of world wide web pages where the ag-
gregating pages are called hubs and the implementing pages
are called authorities. The Hypertext Induced Topic Selec-
tion (HITS) algorithm due to Kleinberg takes advantage of
this relationship between hubs and authorities to rank a set
of web pages based on degree of authority. In FRAN, we
use HITS on the subgraph of the callgraph induced by the
base set to assign ranking scores to the nodes in the base
set, allowing us to sort the elements of our base set. HITS
applied to software callgraphs works as follows.

For a collection of functions in a callgraph assign each
function, f , an authority score, x<f>, and a hub score,
y<f>. As noted above, strong hubs (aggregators) call many
strong authorities (implementors). To capture this relation-
ship, define two operations I andO. I updates the authority
weights based on the hub weights, and O updates the hub
weights based on the authority weights.

I : x<f> =
X

{g|g calls f}

y<g> (1)

O : y<f> =
X

{g|f calls g}

y<g> (2)

In HITS, these two rules are applied one after the other
iteratively:

Algorithm 4.1: HITS Algorithm()

repeat
xi+1 ← I(yi), updating the authority scores.
yi+1 ← O(xi+1), updating the hub scores.
Normalize xi+1 and yi+1

until xi − xi+1 < a stopping threshold.

Let A be the adjacency matrix of the graph in question.
If there exist two functions represented by numerical ids f
and g, and if f calls g, then the (f, g)th entry of A is 1;
every other entry of A is 0. Kleinberg gives a proof that
that the sequence lim xi −→ x∗ and lim yi −→ y∗ where
x∗ is the principal eigenvector of AT A and y∗ is the princi-
pal eigenvector of AAT [10]. Therefore, the HITS algorithm
converges and could, in fact, be implemented using any stan-
dard eigenvector finding method.

This convergence result has an interesting interpretation
in the context of Markov chains. The matrices AT A and
AAT can be thought of as reachability matrices. The matrix
AT A has a 1 in position (i, j) if j is in the sibling set of
i. Another way of saying this is that the ith row of AT A
indicates all of the functions reachable from i by traversing
back a function call to a parent, and then, traversing forward
to a sibling. Similarly, the ith row in AAT gives the spouse
set of i.

If the rows of AT A and AAT are normalized to sum to
1, they can be thought of as transition matrices for Markov
chains describing the actions of two programmers randomly
attempting to understand a program, and the eigenvectors
of these matrices indicate the steady-state probabilities of
the Markov chains. Thus, the authority score of a function
represents the probability that the random programmer who
always investigates sibling functions will end up in the func-
tion, and the hub score is the probability that the random
programmer who only considers spouse functions will end
up in that function. The FRAN algorithm simply returns
the top n authorities, where n is selected by the user.

FRAN performs better in this setting than Suade; the
Suade algorithm only returns results that are adjacent to
the query function in the graph. However, if more data are
available, Suade does allow graphs other than the callgraph
to be used as the basis for the search (e.g. the“member refer-
enced by” graph). In the callgraph, only functions called by
or called from the query function are returned. Hence, Suade
only finds the results that a programmer might quickly find
using “grep”, and in addition it only finds results in the lay-
ers above and below the query function rather than finding
the most relevant results, which lie in that layer.

It is also important to note that FRAN is fast. The imple-
mentation for this paper returns query results interactively
with no perceptible wait time.

4.2 The FRIAR algorithm
Our second algorithm, Frequent Itemset Automated Rec-

ommender (FRIAR) is inspired by the data mining practice
Association Rule Mining. Association Rule Mining was de-
veloped to analyze purchasing patterns [7]. Define a trans-
action as a set of items purchased together. Then, given a
set of transactions, association rule mining attempts to dis-
cover rules of the form A =⇒ B, where A and B are small



sets of items, and the =⇒ relation indicates that if A is
seen in a transaction, then B will also (often) be seen.

A problem related to finding association rules is to list
the frequent itemsets. A frequent itemset is a set of items
that appears in at least s transactions for some threshold,
s, and the support of a frequent itemset, F , is defined as the
fraction of transactions in which F appears.

In FRIAR, we used sets of functions that were commonly
called together to predict functions related to a particular
query function. To do this, we defined a transaction as the
set of functions called by a particular function, and then
created a transaction for every function in Apache that calls
at least one function. We found 1919 functions that made at
least one function call; therefore, we had 1919 transactions.

Using these transactions and the arules package [7] in R,2

we found all 56,022 itemsets that have a support of at least
0.001. We found these itemsets so that we could use them
as a representation of which functions are called together
in the Apache callgraph. Typically in data mining, much
higher support thresholds are used. This is because a data
miner is interested in statistically significant data trends.
However, in related function finding, it is not the trend we
are looking for, but, rather, a searchable representation of
the“called with” relationship. Therefore, in order to capture
most of the instances of this relationship, we use a very low
support value, requiring only 2(d1.919e) out of 1919 trans-
actions contain an instance of a itemset.

To make a query for a particular function, we searched for
all of the itemsets that contained that function, returning
the union of all these itemsets as the result set. Then, we
assigned each result function a score based on the maximum
observed support value associated with that function, and
we ranked the result set using these scores. For example,
if apr_file_open was seen in 3 itemsets which had support
values 0.1, 0.3 and 0.2, the value 0.3 would be used to rank
apr_file_open.

4.3 Data Extraction
For the evaluation of our approach, we used a callgraph

of the Apache web server. We have downloaded the entire
source code repository for the 2.0 version of Apache (httpd-
2.0). For our analysis, we checked out the source code from
October 1st, 2003. The motivation for using this version is
that it is near the middle of the life of httpd-2.0 and thus
is fairly mature and stable, but at the time was undergo-
ing continued rapid development. In order to build the web
server, we also checked out matching versions of supporting
libraries such as the Apache Portable Runtime (apr) from
other modules within the repository and built the versions
of tools (e.g. gcc, as, ld) that were used at the time. The
callgraph for this version of the web server source code was
generated by using CodeSurfer, a commercial source code
analysis and inspection tool from GrammaTech.3 Because
CodeSurfer links with gcc at build time and accesses its in-
ternal symbol tables and data structures, we’re very confi-
dent of it’s results. One of the benefits of this tool is that
it uses points-to analysis to determine what functions are
called indirectly through function pointers. The result of
this analysis is a labeled, directed graph, with nodes rep-

2 http://www.r-project.org
3See http://www.grammatech.com/products/codesurfer/
overview.html. We are grateful to GrammaTech for the
use of this tool.

resenting functions and edges representing calls from one
function to another. The functions in the graph represent
all functions calls (including those to stdlib such as strlen,
printf, etc.) and are not limited to just those defined within
the Apache code base.

5. EVALUATION
Papers on recommender systems that find functions re-

lated to a particular function, in the past, have generally
used case studies for evaluation. By contrast, systems that
recommend files to be changed to fix a reported bug [5] or
files whose changes are strongly associated historically with
a given file [20, 23] have been evaluated quantitatively using
historical data. We seek here to evaluate recommenders that
retrieve functions strongly associated with a given function;
case studies are de rigueur in this setting.

The final arbiter of whether a recommendation is relevant
is a human focused on a specific task. As a result, most
influential prior papers on systems that recommend related
functions have focused on case studies, or small-scale human
subject studies, as in Robillard’s recent ACM SIGSOFT Dis-
tinguished paper [16] and other similar works [13, 19]. While
this type of evaluation is quite useful, there are limitations.
First, it is very difficult to scale human experiments to get
quantitative, significant measures of usefulness; this type of
large-scale human study is very rare. Second, comparing
different recommenders using human evaluators would in-
volve carefully designed, time-consuming experiments; this
is also extremely rare. Finally controlling for the factors
that determine which algorithm performs better would be
harder still, since more experimental data would be needed
to get sufficient variance in the predictive factors. Quan-
titative approaches, on the the other hand, can allow tests
of significance, comparison of performance and determining
predictive factors. However, to use quantitative methods, on
a statistically significant scale, we need a sufficiently large
and varied test example, and an oracle to decide which an-
swers are correct. In practice, this is very difficult come by,
which perhaps accounts for the rarity of quantitative eval-
uation. In our work, we have found a specific task where
results can be evaluated quantitatively.

For our evaluation, we use the 330 functions that consti-
tute the Apache portability layer. Each of these functions is
given as a query to FRAN, FRIAR and Suade, and we sim-
ply count the number of answers to see which algorithm gives
more answers. Generally speaking, by this metric we found
that FRAN outperformed both Suade and FRIAR. Thus,
in 239 cases, FRAN retrieves more answers than Suade; in
64 cases, it retrieves exactly the same number; and in 27
cases, Suade retrieves more. When we compared FRIAR
and FRAN, FRAN retrieved more answers 304 times; the
two methods tied 24 times; and FRIAR retrieved more an-
swers 3 times. However, this is a very crude comparison.
Given that FRAN retrieves more answers in a majority of
the cases, we should like to know, are these answers rele-
vant, and how often are they relevant? To do this evalu-
ation, we take a two-pronged approach, first using a case
study approach to evaluate a number of retrieved answers,
by hand. We also then follow with a quantitative approach
evaluating a large number of queries on a specific task. The
quantitative part of our approach focuses on a very specific,
targeted requirement of a recommender: given a function,
find the most closely related functions. We were able to do a

http://www.r-project.org
http://www.grammatech.com/products/codesurfer/overview.html
http://www.grammatech.com/products/codesurfer/overview.html


fairly thorough quantitative comparison of performance, for
this specific task. For the case study part, we focus on a few
cases where FRAN retrieves more answers than the other al-
gorithms and examine whether these recommendations are
relevant to the given functions.

5.1 Case Study
Given the large number of cases where FRAN retrieves

more ersatz related functions than FRIAR, our goal in the
case study is to determine a) Are these extra functions really
related, or are they just random junk? b) Why does FRAN
retrieve more answers? So we focus on cases where where
FRAN retrieves more answers than both Suade and FRIAR
and critically review the answers. Our cases are all drawn
from the Apache portability layer. In each case, we issued
the query to all 3 algorithms and examined the retrieved
set. The answers were examined by 3 of us (Bird, Devanbu,
and Saul). Bird and Devanbu have over the last two years
conducted extensive mining and hypotheses testing on the
Apache repository. Saul has worked professionally as a Unix
systems programmer and has prior experience constructing
a web server, so he is familiar with the design of web servers.
With our prior experience and careful reading of the Apache
documentation, we were able to critically evaluate the an-
swers returned.
Case 1: apr_collapse_spaces is a function in the Apache
Portability layer, in the String Routines module.4 The APR
documentation states that the function will “Strip spaces
from a string.” For this function, FRIAR returns nothing;
Suade returns a function that is called from within the body
of a standard C library: this function is normally invisi-
ble to C programmers, and is of little value to a developer.
FRAN returns several recommendations, ranked by author-
ity scores. Of the top 5, the first is ap_cfg_getline, which is
described5 as“Reads a line from a file, stripping whitespace.”
The second is a simple function read_quoted, which (from the
Apache source code) is readily determined to remove quotes
from strings. The rest of the top 5 are irrelevant. Fur-
ther analysis reveals the reason that FRAN outperforms the
other methods is that FRAN includes the spouse set in the
set of potential results. The function from the body of the C
library is called by apr_collapse_spaces, but it is also called
by ap_cfg_getline and read_quoted. Suade and FRIAR do
not consider the spouse set so they miss this relationship.
Case 2: apr_socket_listen is a function which is described
in the documentation6 as “Listen to a bound socket for
connections.” When this function is given as a query, the
top-ranked responses are apr_socket_opt_set which is used
to set up options for a socket, apr_socket_close (closes a
socket) and apr_socket_bind (binds a socket to an associ-
ated port). All of the above are clearly relevant. The fifth
one, ap_log_perror is an error logging routine that is called
often. For this query, Suade retrieves listen which is a
Unix system call described as “Listen for connections on
a call” in the BSD System Calls manual listing (See lis-

ten(2)). This function is relevant, but clearly belongs in a
lower layer of abstraction, and would normally be abstracted

4See http://docx.itscales.com/group__apr__strings.
html
5See http://httpd.apache.org/dev/apidoc/apidoc_ap_
cfg_getline.html
6See http://docx.itscales.com/group__apr__network_
_io.html

apr_socket_listen

apr_socket_bind

apr_socket_close

apr_socket_opt_set

ap_sock_disable_nagle

ap_log_perror

make_sock

Figure 2: The neighborhood of apr_socket_listen with
the sibling set highlighted in green.

by the Apache Portability Layer to apr_socket_listen; pro-
grammers would normally shun functions in the lower layer
to avoid platform-specificity. Suade also retrieves the func-
tion make_sock, which sets up the server’s socket to listen
for connections; clearly, this function is also relevant. In-
terestingly, comments on this code state that this routine is
“begging and screaming to be in the portability layer.” This
function is also retrieved by FRAN, but it is ranked num-
ber 7, after another function ap_sock_disable_nagle which
is a function to disable a particular network buffering algo-
rithm. FRIAR retrieves nothing in this case. As can be seen
in figure 2, the functions returned by FRAN are all siblings,
and thus in the same layer. Suade only considers the direct
neighbors of a function as possible related functions; since
apr_socket_listen has only one parent, make_sock it finds
nothing else but that.
Case 3: apr_pool_terminate. Like many large systems,
Apache uses a pool-based memory management.7 It al-
locates memory in big hunks, called pools, and uses in-
ternal functions to allocate smaller pieces from this pool.
apr_pool_terminate is a function which will “Tear down all of
the internal structures required to use pools.” The first two
retrieved functions are apr_pool_destroy, which destroys the
pool and frees the memory, and apr_pool_clear, which clears
the memory without de-allocating it. The next function is
destroy_and_exit_process which shuts down the server. This
function actually calls apr_terminate (#5 on the retrieved
list) to tear down the memory pools. The fourth on this list
is start_connect which has no obvious relevance. Suade re-
trieves apr_terminate and apr_pool_destroy, which are both
relevant, but does not retrieve the others. FRIAR retrieves
none.
Case 4: apr_file_eof is one of the Apache File/IO handling
routines.8 It checks“Are we at the end of the file.” FRAN re-
trieves only 3 functions. The first is apr_file_read, which is
clearly related; it also retrieves ap_rputs which9 “Output(s)
a string for the current request” and do_emit_plain which10

7http://apr.apache.org/docs/apr/0.9/group__apr_
_pools.html
8http://docx.itscales.com/group__apr__file__io.
html
9http://docx.itscales.com/group___a_p_a_c_h_e___c_
o_r_e___p_r_o_t_o.html

10From comments in mod_autoindex.c in Apache HTTPD
source code
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“emit(s) a plain file.” Analysis of the callgraph reveals that
do_emit_plain calls the other three. We judged all of these
are quite relevant, since they are useful when reading from
file and writing the contents back to the request. Suede re-
trieves only one item: the parent function, do_emit_plain.
As FRIAR looks at frequent itemsets that occur at least
twice in the code, it won’t ever see apr_file_eof because
this function is called only once.

Admittedly, these are a limited set of samples; our focus
was also on the cases where FRAN retrieves more items, to
check if these extra items were indeed relevant, and to ex-
plain the differences in behaviors between the algorithms.
As discussed earlier, it is laborious and time-consuming to
conduct comparative case studies on a large scale. There-
fore, we devote the rest of our evaluation to a more auto-
mated, comprehensive quantitative evaluation of the perfor-
mance of these algorithms on a more specific (but still very
core) task of recommender algorithms, as we now describe.

5.2 Quantitative Study
To perform this quantitative evaluation, we focus on a

specific task in the Apache system. Apache has a portabil-
ity layer (PL), which consists of 32 separate groupings of
functions, or portability layer modules (PLM). Each PLM
includes a closely related set of functions that perform tasks
such as file operations, socket operations, thread manage-
ment, locking operations and memory pool management.
When a programmer is working on a method that performs
a particular operation on the memory pool e.g., she may
seek related functions that operate on the memory pool.

In Apache, the directory structure naming conventions of
the PL generally allow this task to be done just using file
structuring and“grep”. However, this type of a-priori group-
ing and documentation may not be available to program-
mers, and, worse, potentially misleading exceptions to es-
tablished naming conventions can exist. For example, most
of the function names in the Apache“File I/O”PLM are pre-
fixed with the string “apr_file.” However, some functions
from this PLM such as“apr_temp_dir_get”and“apr_dir_make”
do not follow the naming convention.

However, because the extensive Apache PL documenta-
tion groups the functions into PLMs, we can use these PLMs
as a valuable oracle, quantitatively evaluating the perfor-
mance of FRAN, FRIAR and Suade on one specific task:
Task: Given a query function and a callgraph, retrieve other
functions in the same PL module.

It has been suggested that we could evaluate our algo-
rithm’s performance when a set of query functions is given
as input (rather than a single query function); however, due
to space and time constraints, that task remains for future
work.

Also, it can certainly be argued that there are other ways
to do the current task in Apache than using FRAN, FRIAR
and Suade; in response, we have three rejoinders a) Yes, but
the type of extensive documentation available in Apache is
rare in large systems b) Even when it exists, documentation
is not always in sync with the code, which never lies! c)
Finding related functions in the same API module is a task
that most C programmers have to deal with, since the lan-
guage is not object-oriented, and d) The fact that the docu-
mentation exists makes Apache a useful setting to perform
a thorough, and we believe unprecedented, type of quanti-
tative evaluation. For this portion of the study our goal is

FRAN FRIAR Suede
Top-5 206 144 10
Top-10 232 131 9
Top-15 228 129 8

Table 1: Number of queries (out of 330) for which
the top-k recommendations from each algorithm
pass the 0.05 False Discovery Rate.

to quantitatively evaluate both the statistical significance of
the results, as well as the recall and precision.

5.2.1 Significance of the Recommendation Sets
Our two algorithms FRAN and FRIAR, as well as Suade,

recommend a number of related functions in ranked-order.
Based on the interest and resources of the programmer she
can choose the top-k of the ranked functions on which to
perform her work. We call this top-k set the recommendation
set.

To objectively quantify the ability of our algorithms to
return significant recommendations we tested statistical hy-
potheses that their efficacy is no better than that of the
behavior of a “programmer new to the project” (statisti-
cal null-hypothesis). Such a programmer would look at a
large candidate set of potentially related functions, possibly
as small as some well-defined neighborhood in the callgraph
around the query function (although still potentially consist-
ing of hundreds of functions), or in some cases even as big
as the whole callgraph. Out of those candidate related func-
tions the programmer would uniformly at random choose a
smaller set of recommendations.

Using this null-hypothesis programmer model allows us
to quantitatively evaluate each set of recommendations of
our algorithms as possibly not doing better than chance rec-
ommendations. Rejecting the null-hypothesis at a certain
significance threshold, say 0.05, would let us believe that
the recommendation set would not be guessed by a “pro-
grammer new to the project” 95% of the time.

We compared the significances of the three algorithms at
three recommendation set size cutoffs, top-5, top-10 and top-
15, over all 330 query functions. We used the PL module
documentation as a Rosetta stone (see above). For each rec-
ommendation cutoff k (5,10 and 15), we counted how many
of the top-k recommendations for a given query function
appear in that function’s PL module. The hypergeomet-
ric distribution was used to obtain the chance probability
of observing the number of functions from a module within
each query recommendation set. More specifically, the prob-
ability of observing at least x functions from a PL module
within a recommendation set of size k is given by:

p = 1−
x−1X
i=0

`
f
i

´`
g−f
k−i

´`
g
k

´
where f is the total number of functions within the PL

module and g is the total number of functions in the initial
large candidate set (i.e. the population). This is also known
as the p-value and is equal to 1− the significance.

In order to assess the relative performance of the algo-
rithms in retrieving related functions it is sufficient to choose
a common population set for the functions, for all algorithms
(corresponding to the initial candidate set.) In our case we



p = 0.05 p = 0.1 p = 0.2
Top-5 (out of 272) 13 39 52
Top-10 (out of 228) 35 55 73
Top-15 (out of 209) 50 61 92

Table 2: Number of queries for which the top-k rec-
ommendations from FRAN pass a False Discovery
Rate threshold.

chose the whole call graph, i.e. g = 2308. We submit-
ted each of the 330 unique functions from the PL mod-
ules as queries to the algorithms and using the above sig-
nificance formula counted how many of the recommended
sets were significant at 95%, or have a p-value lower than
0.05. Given that each query is in fact a hypotheses, this
testing procedure amounts to multiple testing of 330 hy-
pothesis. To maintain an overall false positive rate of be-
low 0.05 (i.e. the False Discovery Rate), the individual
p-values during the testings were adjusted (lowered) using
the Benjamini-Hochberg adjustment for multiple hypothe-
sis testing [2]. The results of the relative comparison for all
three algorithms are given in Table 1.

We also performed a statistical significance study to deter-
mine how well FRAN ranks the initial candidate functions.
For the population set here we used the FRAN base set as
described before in Sec. 4.1. The idea is to compare the
performance of FRAN to that of a “programmer new to the
project” (null-hypothesis) who is given the same base set of
functions in the neighborhood of a given query function and
asked to uniformly at random select the top-k as recommen-
dations. Rejecting the null hypothesis at a certain threshold
would give us confidence that FRAN’s performance is not
based solely on the selection of the base set. We ran the
study similarly to the previous one, except we counted how
many FRAN recommendation sets had (multiple hypoth-
esis testing adjusted) p-values lower than p=0.05, p=0.1
and p=0.2. The results are given in Table 2. Since not
all queries returned recommendations, the total numbers of
recommended sets are different from 330 and noted in the
table. Clearly FRAN does more than choose randomly from
the base sets, even at very stringent p-value of 0.05. The
pattern of increasing number of recommendation sets below
a given p-value with the increase of their size has been noted
and is possibly interesting, but its further exploration was
beyond the scope of this paper.

5.2.2 Recall/Precision Comparisons
We sought to compare the effectiveness of the three al-

gorithms in retrieving related functions. In information re-
trieval, three measures of performance are used repeatedly:
precision, recall and the F1-measure. All are defined over
the set of documents retrieved by the algorithm, Retrieved,
and the set of all relevant documents, Relevant. Precision
is defined as p = |Relevant ∩Retrieved|/|Retrieved| and
recall as r = |Relevant ∩Retrieved|/|Relevant|. (Precision
and recall are also defined in the area of classification the-
ory are known as positive-predictive value and sensitivity,
respectively).

The F1-measure (F -measure) is the equally-weighted har-
monic mean of the recall and precision measures, defined as
F = 2pr/(p+r), and is often used as a combined measure of
the recall and precision. Note that all three measures have
a range of [0..1].

As in the significance study above, we used the functions’
partition into PL modules and compared the performance
of the three algorithms at three recommendation set size
cutoffs, top-5, top-10 and top-15. We used the F-measure
as indicator of performance. To calculate it, for each query
function we took the recommended set of functions returned
by an algorithm as the Retrieved set and the set of functions
in the query function’s PL module as the Relevant set.

The results of comparing the FRAN and Suade algorithms
at the top-10 cutoff are given in Fig. 3(a). The query func-
tions on the x axis are sorted in increasing order of their
F-measure values and grouped in three parts, the first when
FRAN was favorable, second when Suade was favorable and
third when they were tied. It is apparent that FRAN is
favorable across the majority of recommendation sets and
significantly so. In the small number of cases when Suade is
favorable the difference is very small, with only a few (five)
FRAN values scoring zeros. The F-measure score compar-
ison for the top-5 and top-15 is omitted here to save space
since the story is essentially the same.

We next compared the FRAN and FRIAR algorithms in
the same way, and the results are given in Fig. 3(b). Here
the situation is more interesting as there are many recom-
mendation sets for which either one is better than the other
and there are some for which the two algorithms are tied.
A statistical test was performed, Wilcoxon-Mann-Whitney
rank sum [8], and we could reject the hypothesis that FRAN
is not favorable to FRIAR in more than 50% of comparisons
in the top-10 and top-15 cases (p-vals of 0.0034 and 0.00034
respectively), but not in the top-5 case (p-val of 0.83). Thus,
statistically, FRAN more often than not does better than
FRIAR.
Factors influencing performance It is clear from the above
results that the two favorable algorithms FRAN and FRIAR
work in complementary way. We suspected that the reasons
for the complementarity lie in the core assumptions, the se-
lection of the base set for FRAN and the construction of the
frequent item sets for FRIAR. Namely, the FRAN base set
choice favors functions called by few other functions, while
FRIAR discourages small item sets, especially in the ex-
treme cases of 0 or 1 callers. Thus FRAN would do better
for small base set sizes than FRIAR would, which would
in turn do better for larger item sets. In trying to explain
the cases when one of the algorithms betters the other and
vice-versa, we looked at how the difference in the F-measure
values (or advantage) between FRAN and FRIAR changes
with the base set size of the query function in the call graph.
The results Fig. 4(a) show that FRAN wins for small base
set sizes while FRIAR wins for large base sets, in support of
our complementarity hypothesis.
Combining Algorithms The quantitative approach we under-
took in this project allows to both assess how well we are
performing with respect to the original task, as well as ob-
tain insight into the factors influencing that performance.
Above we illustrated how one such hypothesis, the effect
of base set size on FRAN’s performance, can be confirmed.
Once there is empirical support for such insight, as well as
intuitive or theoretical explanation for it, the algorithms can
be bettered by including that knowledge in them.

Here we illustrate this point by combining the FRAN and
FRIAR algorithms into an algorithm we call Combined Au-
tomated Recommender based on the base set size, or CAR-
B. Given a query function and a call graph, this algorithms



(a) FRAN compared to Suade (b) FRAN compared to FRIAR

Figure 3: Performance comparisons using the F1 measure and top-10 recommendation sets.

simply looks at the size of that function’s base set as gen-
erated by FRAN from the call graph, and if it is smaller
than 45 (determined from Fig. 4(a) as the switch point) runs
FRAN with that function and call graph as input, otherwise
runs FRIAR. Fig. 4(b) gives the plot of the cumulative F-
measure values for the three previous algorithms and CAR-
B. It is apparent from the plot that both FRAN and FRIAR
dominate Suade, but are complementary to each other. The
advantage of CAR-B is obvious in that it benefits from and
combines the advantages of both FRAN and FRIAR.

Threats to validity There are some potential threats to
the validity of this study. First, our use of the Suade al-
gorithm is restricted. The Suade algorithm is designed to
accept a set of items as the input, but we only pass a set
containing only a single item; this certainly helps account
for the paucity of results returned by Suade. However, we
argue that the problem of finding the set of functions related
to a single function is just as important as the more general
problem, especially to a developer new to the system, who
will not be knowledgeable enough to build a good query set.
Additionally, even with a larger query set Suade will still
only select neighbors of the query set as potential results,
ruling out the important sibling and spouse sets (which are
not necessarily direct neighbors of the query nodes).

Also, the Suade algorithm can use several relations (not
just the “calls” relation) to find related functions. However,
we, assert that the problem of finding related functions given
only the callgraph as input is important. There are numer-
ous available tools to find a program’s callgraph, while other
relations may be more difficult to obtain.

Finally, the task that we have quantitatively evaluated,
that of finding related functions from a given API, is a prob-
lem of limited scope. The case studies that we’ve presented
on the broader problem of finding any related functions are
only qualitative examples. In response, we first note that in
spite of its limited scope, the API recommending problem is
a very important one. Additionally, we contend that evalu-
ating this type of algorithm is a difficult problem and that
we contribute a methodology and an oracle to evaluate it
quantitatively. Realistically, further review of the results of
our algorithms by outside experts on Apache would be ex-

pensive and time consuming, and beyond the scope of this
paper. Such a study is reserved for future work.

6. CONCLUSIONS
In this paper, we propose an approach to finding related

functions, based on a random-walk approach. We find that
this general, and rather brute-force approach, is surprisingly
effective for finding related functions. We evaluated this
purely structural approach using the Apache project, whose
well-documented APIs provide a convenient evaluation tar-
get. The approach generalizes to object-oriented programs,
which have many other types of relationships suitable for
random walking. We hope in the future to build this into
Eclipse.

In conclusion, we encourage readers to download our im-
plementations of the FRAN and FRIAR algorithms and try
them. The source code for our tools, and also the Apache
callgraph data set, are available from http://macbeth.cs.

ucdavis.edu/FRAN/. Also, the Suade algorithm is available
from http://www.cs.mcgill.ca/~swevo/suade/.
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