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Abstract

In this thesis we devise multiuser transmission strategiesas well as multihop relaying commu-

nications for DS-CDMA based cellular network.

The performance of DS-CDMA communication systems is limitedby the interference

caused by other users known as Multiple Access Interference(MAI) and by the channel caused

Inter Symbol Interference (ISI). Receiver based multiuser detection techniques that utilize the

knowledge of the downlink channel by the mobile terminals (MT) have been extensively studied

in the literature, in order to deal with MAI and ISI. However,these techniques result in high MT

receiver complexity. Recently, work has been done on algorithms that transfer the complexity

from the MT to the base station by exploiting the fact that in Time Division Duplex (TDD)

mode the downlink channel can be known to the transmitter.

Algorithms based on the Minimum Mean Squared Error (MMSE) criterion are optimal for

‘ideal’ AWGN channels. However, in the case of multiple access wireless multi-path channels,

wherein MAI and ISI are inherent, MMSE based algorithms do not offer the optimal framework.

Minimum Probability of Error (MPOE) based algorithms have been shown to perform signifi-

cantly better than MMSE based approaches in these scenarios. In order to reduce the complexity

of the MT, we develop two precoding algorithms at the base station to minimize the probability

of error at the MTs receiver. In one algorithm we use a joint prefilter for all users and hence,

jointly minimize the probability of error and in the anotheralgorithm an individual prefilters

are employed for each users. Complete channel knowledge has been assumed in designing the

prefiltering coefficients. Also we employ maximal ratio transmitter (MRT) beamformer at the

transmitter using the available channel knowledge. We further relax the assumption of complete

channel knowledge and design the prefilters and maximal ratio beamformers by using only first

and second order statistics of the channel.

In a cellular network it is desired to let the MTs stay connected as long as possible. But,

this is quite a challenge because of the limited power MTs produce and also the interference
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in the network that must be reduced. A possible way to achievelarge coverage areas and less

interference is to use multihop relaying. Therefore, we introduce multihop relaying in cellular

domain and resolve some of the problems that arise. Relaying systems use several shorter

communication links instead of the conventional point-to-point transmission. This can allow

for a lower power requirement and also frequency re-use may be more efficiently exploited.

The routing of data packets in MCN must be performed to minimize interference at the MT

simultaneously ensuring proper Quality of Service (QoS) constraints. Furthermore, end-to-end

delay and end-to-end throughput are important QoS metric invoice and data communications.

We propose a unified cross layer routing by taking all the essential metrics into consideration.

We also propose an incentive scheme to stimulate the cooperation for relaying. In case of

dynamic call dropping we propose a route resilience scheme to keep the communication intact.

The simultaneous allocation of CDMA code to the mutually audible users affects system

performance through co-channel interference. To attempt to minimize this, a novel schedul-

ing scheme is developed based on the probability of error criterion. The proposed scheduling

scheme is heuristic in nature and has linear complexity withrespect to number of users. Sim-

ulation results show that the proposed scheduling scheme achieves greater spatial reuse and

end-to-end throughput.

In addition, we also determine a lower bound on the transmission range of nodes as a

function of number of nodes in the network in order to keep thenetwork fully connected. With

thus obtained lower bound, we derive an optimal transmission range to increase the spatial reuse

as well to enhance the effective connectivity in the multihop cellular network.

To further increase the throughput performance in multihoprelay networks we design a

OFDM-CDMA based access mechanism. The source to destinationroute path is grouped and

a single CDMA code is assigned to that group. Inside the group the intermediate links are

distinguished using OFDM orthogonal carriers. Hence, the proposed scheme has two level of

demodulation, therefore greater end-to-end performance.

The advantages and the performance of the proposed techniques, along with a variety of

characteristics are demonstrated by means of Monte Carlo simulations.
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Chapter 1

Introduction

Wireless communications were attempted as early as in the 1860’s by Mahlon Loomis in the

United States. However, a clear understanding of the basic principles of radio only emerged

after the theoretical work of the Scottish physicist James Clerk Maxwell in the 1860’s and the

experimental work of the German physicist Heinrich Hertz inthe 1880’s. More than decade

later, Guglielmo Marconi understood Hertz’s work and formed the Wireless Telegraph and Sig-

nal province in 1897 to manufacture and sell radio equipments. The first long range wireless

transmission was established in the early part of twentiethcentury. Marconi and his colleagues

transmitted the three dots of the letter “S” from Cornwall, England in the early afternoon of

December 12, 1901 and the signal was heard several times fading in and out of the background

interference at the receiver station set up by them at Cape Cod,Massachusetts, U.S.A. Thus the

first transatlantic wireless telegraph had been proven possible. But Marconi’s wireless telegraph

transmitted only signals. Voice over the air came into existence only in 1921. Marconi went

on to introduce short wave transmissions in 1922. Since then, due to the continuous efforts of

notable scientists and organizations, wireless communication has become an essential part of

our daily lives today.

In the present age, wireless communication capture the attention of wide variety of re-

searchers around the globe. It is almost impossible to keep track of the technical journals,

magazines, symposiums and articles concerning this subject. It is clear, therefore, that wireless

communication is by any measure, one of the most rapidly growing segments of the telecom-

munications market. A wireless communication system, where at least one terminal moves is

classified as a mobile communication system. Mobile systemsmay have a terrestrial component

1



and/or satellite component. Our focus in this thesis is on the terrestrial component.

The mobile communication revolution that has happened tillnow, can be broadly classi-

fied as first generation, second generation (2G) and third generation (3G) mobile systems.

The first mobile radio systems were introduced by the military and were limited only to

voice communication systems. The handsets provided very poor voice quality, low talk time

and were rather bulky in size. The first public cellular phonesystem known as Advanced Mo-

bile Phone System (AMPS) was introduced in 1979 in the UnitedStates. This was followed

shortly by the introduction of the Nordic Mobile Telephone (NMT) systems in Denmark, Fin-

land, Norway, Sweden and the Total Access Communication System (TACS) and Nippon Mo-

bile Telephone System (NAMTS) in the UK and Japan respectively. These systems were widely

considered as first generation mobile phone systems and theywere based on analog Frequency

Division Multiple Access (FDMA) technique.

By 1987, there were 5 incompatible first generation analog systems operating across Eu-

rope. However, it is obvious that any version of a global mobile communication system needs

international roaming and therefore a common mobile standard. Hence, the network operators,

equipment manufacturers, research establishments and policy makers came together and jointly

launched a Global Standard for Mobile communications otherwise known as GSM. GSM was

designed based on TDMA/FDMA scheme with an operating frequency band of 900 MHz. How-

ever, the 900 MHz frequency band allotted for GSM in Europe was not available in the US and

also there was strong pressure on US researchers and manufacturers to develop a competitive

standard for the US market which could work irrespective of the frequency band. The result was

the development of a narrowband Code Division Multiple Access (CDMA) standard otherwise

known as IS-95 (Interim Standard-95). GSM and IS-95 are classified as 2G systems. These

systems are now commercially successful and deployed in more than 110 countries with the

subscriber numbers reaching in excess of 3 billion. The maximum data rate promised by GSM

is 9.6 kbps [1].

By the late 1990s, the very success of GSM and IS-95 again raised questions about the fu-

ture demand for high date rates, enhanced multimedia services, seamless mobility and flexible
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Figure 1.1: CDMA Illustration

QoS. Though the GSM community has proposed standards like HSCSD (High-Speed Circuit-

Switched Data), GPRS (General Packet Radio Service) and EDGE (Enhanced Data rates for

GSM Evolution), the highest data rate offered was 128 kbps, which was far below than the

demand. So multinational collaboration was again initiated to identify and agree to a suitable

technology that could be used with new spectrum to provide more capacity, high bandwidths

and offer international roaming. Hence, the wireless research community has started working

on global technological and interoperable air interface standard for 3G wireless services in late

1990s and started 3rd Generation Partnership Project (3GPP) and 3GPP2. In Europe 3G has

become UMTS (Universal Mobile Telecommunication System) and in Japan and US the 3G

system often carries the name IMT-2000 (International Mobile Telephony 2000) [2,3].

The 3G mobile communication systems aim to provide enhancedvoice, text and data

services to the user at a minimum transmission rates of 144 kbps in mobile (outdoor) and 2

Mbps in fixed (indoor) environments. Based on these requirements, in 1999 the ITU (Interna-

tional Telecommunication Union) approved five radio interface modes for IMT-2000 standards

(Recommendation 1457). Three of the five approved standards (CDMA2000, TD-SCDMA,

WCDMA) are based on CDMA. Many CDMA techniques have been proposedin literature
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(DS-CDMA, FH-CDMA, TH-CDMA, MC-CDMA, etc.,). Each of them differs in the way the

user signature waveforms are designed. DS-CDMA has been the most popular amongst the

CDMA techniques and is adopted for 3GPP WCDMA standard. Hence, we use DS-CDMA as

the default access technique in the rest of the thesis unlessotherwise stated.

To summarize, mobile communication systems are widely classified as three different gen-

erations i.e first generation analog FDMA based AMPS mobile phone systems, second genera-

tion TDMA based GSM systems and third generation CDMA based 3GPP, 3GPP2 and UMTS

systems.

1.1 CDMA Multiple Access Communication and Multiuser

Transmissions

DS-CDMA is a widely used technique for multiple access communication in wireless systems.

It differs from the classical Time Division Multiple Access(TDMA) and Frequency Division

Multiple Access (FDMA) in the context that all users transmit across the entire frequency band

and many users can transmit simultaneously as shown in Fig 1.1.

DS-CDMA uses linear modulation with wideband pseudonoise (PN) sequences to gen-

erate signals. These sequences, also known as spreading codes, spread the spectrum of the

modulating signal over a large bandwidth, simultaneously reducing the spectral density of the

signal. Various CDMA signals occupy the same bandwidth and appear as interference to each

other. Each user data is assigned with an individual code at the time of call initiation. This

code is used both for spreading the signal at the time of transmission and despreading it at the

time of reception. The principle of DS-CDMA is that the codes are orthogonal between each

other to allow for decoupling at the receiver. On downlink the base station transmits to all users

synchronously and this preserves the orthogonality of various codes assigned to different users.

The orthogonality, however, is not preserved between different components arriving from dif-

ferent paths in multipath propagation. Hence, although thespreading codes are designed to be

orthogonal with each other, there are scenarios under whichthe orthogonality cannot be con-

trolled. This results in interference from user to user. This type of interference is called multiple

access interference (MAI) and imposes a limitation to CDMA systems.
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The detection is done on the basis of a filter matched to the PN sequence of the user. We

refer to this detector as the conventional matched filter detector. Since the conventional matched

filter is designed for orthogonal signature waveforms, it suffers from MAI and Inter Symbol In-

terference (ISI) due to complex multi path time-varying propagation channels and simultaneous

usage of bandwidth by many users. MAI and ISI are often added to the background thermal

noise modeled as Additive White Gaussian Noise (AWGN). Thus, the system performance is

limited by the amount of total interference instead of the background noise exclusively as in

other cases. In other words, the Signal to Interference plusNoise Ratio (SINR) is the limiting

factor for a mobile communication system instead of the Signal to Noise Ratio (SNR). There-

fore, in systems employing CDMA, the two problems of equalization and signal separation

have to be solved simultaneously to increase the SINR and achieve a good performance. In the

state of the art CDMA systems, MAI and ISI are addressed using multiuser signal processing

techniques which offer better performance than the conventional matched filter detector.

1.1.1 Multiuser signal processing

Multiuser signal processing techniques can be broadly classified into two categories:

1. Multi-User Detection (MUD): MUD has been studied extensively and a number of solu-

tions have been proposed. These techniques are all receiverbased, they usually require

channel estimation, knowledge of all the active users’ signature waveforms and have con-

siderable computational cost. While this is feasible for thebase station (for the uplink

scheme), it contrasts with the desire to keep portable units(for the downlink scheme),

like simple and power efficient mobile phones.

2. Multiuser Transmission: An alternative to multiuser detection is to precode the transmit-

ted signal such that the ISI and MAI effects are minimized before transmission in the

downlink [4]. The extra computational cost is transferred to the base station where power

and computational resources are more readily available. These schemes involve some

pre-processing at the transmitter with the aim of keeping the receiver at the mobile hand-

set simple. The low computational burden at the receiver makes them better alternative

for deployment in the downlink.
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1.1.2 Precoding optimization criterion

The main issue in designing the precoding filter is to developa suitable optimization crite-

rion. The fast growth in popularity and customer base of wireless systems has led to a lot of

techniques from the wired world being deployed directly to the wireless scenarios without a

thorough study on the optimality of the algorithms. MinimumMean Squared Error (MMSE)

based demodulation schemes are one such example being used extensively at the physical layer

in wireless systems. The optimality of MMSE based algorithms is well-known for Additive

White Gaussian Noise (AWGN) channels. Wired channels being very close to ideal AWGN

channels, most conventional detectors used the MMSE criterion for demodulation and detec-

tion of digital symbols. The advent of wireless technologies saw these being directly adapted to

the wireless scenarios where they are being used till date. Wireless channels are incomparably

more hostile and different from wired channels and hence, the performance of MMSE based

approaches is severely degraded and stands much below optimal for these systems. Thus there

is a necessity to develop optimal algorithms for demodulation in multi-path, ISI inducing wire-

less channels. Minimum Probability of Error (MPOE) turns out to be a natural choice for the

optimality criterion for digital communication systems.

In this thesis, we present two multiuser transmission schemes based on novel MPOE cri-

terion. We also propose a Maximal Ratio Transmission (MRT) beamforming to further enhance

the prefiltering performance.

1.2 Multihop Relaying

The radio frequency bandwidth used for mobile communications has become a scarce and ex-

pensive medium as the number of mobile users increased to a greater extent of late and there

is a huge demand of high data rate applications. Given the limitation on the spectrum, many

researchers have attempted to increase the amount of data wecan send with complex receiver

structures, modulation schemes, error correction and so on. Probably the greatest single ad-

vance in bandwidth utilization is the cellular concept. This means that bandwidth can be re-

used. CDMA systems promise a frequency re-use-factor of 1. However, its potential is limited

by co-channel interference as CDMA is a interference limitedmultiple access system. Because

all users transmit on the same frequency, internal interference generated by the system is the

most significant factor in determining system capacity and call quality. The transmit power
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for each user must be reduced to limit interference, however, the power should be enough to

maintain the required SNR at the desired receiver for satisfactory call quality. Moreover, mo-

bile users rely on a small battery to power the terminal. It isdesirable to try and achieve the

lowest transmitted power possible by breaking the transmission from a direct link into a series

of smaller hops using other users, or strategically placed relays.

In addition to the above, cellular networks still have some areas where coverage is yet to

be provided. These areas are often referred as dead spots. Dead spots include subway train

platforms, indoor environments and underground areas. Moreover, in dense areas known as hot

spots, such as downtown areas and amusement parks, subscribers tend to experience higher call

blocking.

Multihop relaying has been proven to be effective in increasing the coverage, reducing the

call blocking probability and decreasing the per node transmission power. With relaying, the

only requirement is that users can achieve the required signal strength at the next relay, meaning

that coverage and high data rates should be available to moreusers and to the users even at the

edge of the cell. Furthermore, with a conventional system ifthe user has a poor channel estab-

lished directly to the base station, they may have no choice but to change location to achieve

communication. However, in multihop relaying, mobiles with no good path to any base station

may instead relay their calls through other mobiles with better propagation conditions.

Relaying of wireless communication signals is not a new idea.The principle behind re-

laying traces its roots back to 500 B.C. Darius I, the king of Persia, devised an innovative

communication system that was used to send messages and newsfrom his capital to the remote

provinces of his empire by means of a line of shouting men positioned on tall structures. This

system was more than 25 times faster than normal messengers available at that time. In 1970,

Norman Abramson and his fellow researchers at the University of Hawaii invented the ALOHA

protocol for multiple access systems. The success and novelty of ALOHA triggered widespread

interest in different directions of communications including wireless relay communication sys-

tems. Relaying has also been used in satellite communications, to boost the signal in fixed

microwave links and in Defense Advanced Research Projects Agency (DARPA) using one of

the first implementations of packet based communications [5]. In fact multihop relaying is the
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Figure 1.2: Multihop relaying in cellular network illustration

principal strategy followed in Mobile Adhoc Network (MANET), since in MANET due to the

lack of infrastructure and the limited transmission range of each node, data needs to be routed

to the destination by the nodes in a multihop fashion.

Encouraged by the above facts there have been interests in incorporating multihop relay

communications into cellular networks as shown in Fig 1.2. Such a network is often referred

as Multihop Cellular Network (MCN) which merges the benefits ofboth ad-hoc networks and

centralized cellular networks and at the same time overcomes the drawbacks of both. This is

the concept behind Opportunity Driven Multiple Access (ODMA) proposed in 3GPP [6]. To

Provide a relaying capability service in next-generation ad-hoc GSM (AGSM) is also under

study [7]. For data networks also, multihop cellular networks have been proposed in [8]. Being

an effective solution, MCN heavily depends on the mutual interference between nodes for the

capacity, coverage and power requirements of a network. Thus, it is necessary to understand

the properties of the topology which minimizes the total transmit power in the presence of

interference. Finding a suitable routing strategy is stillan open problem in MCN. This problem
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is computationally intractable and heuristic algorithms are mainly used. Furthermore, suitable

medium access mechanism, link scheduling and optimal selection of transmission power are

some of the issues which need immediate attention. In this thesis we address some of these

important issues in a comprehensive fashion.

1.3 Thesis Contributions and Organization

• In Chapter 2, two prefiltering techniques have been devised using MPOE optimization as-

suming complete knowledge (complete channel state information) of the forward channel

at the base station transmitter. In the first prefiltering model, a common filter is optimized

to minimize the probability of error in the simple handset having matched filter receiver

matched with the CDMA PN code of the user. In the second prefiltering model, an in-

dividual prefilter is employed for each and every user. Performances of the proposed

prefiltering models are compared against the correspondingMMSE based prefiltering

systems.

Since complete channel knowledge is assumed at the transmitter we further utilize this

information by employing the MRT technique at the base station where the MRT weights

are optimized based on the available knowledge of the channel.

• We further relax the assumption of complete channel knowledge and design the MMSE/MPOE

joint as well as individual precoding filter based only on thefirst and second order statis-

tics of the channel (partial channel state information) in Chapter 3. A novel MRT scheme

is proposed to optimize the MRT weights based only on the partial channel state informa-

tion.

• In Chapter 4, a cross layer routing strategy is introduced to find an optimal path from

a given source to destination using multiple path as well as node constraints. In case

of dynamic call dropping, a time effective route resiliencescheme is presented to find

an alternate path without breaking the ongoing communication. The performance of the

proposed routing and route resilience schemes have been compared against existing algo-

rithms.

• Chapter 5 introduces a heuristic cross layer scheduling to reuse the CDMA codes such that

the probability of error in all links in the network is optimized. The proposed algorithm is
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based on both graph theoretic as well as physical interference. It has minimal complexity

and superior performance compared to standard algorithms.

• In Chapter 6, an analytical relationship has been derived between coverage and trans-

mission range, so that the transmission power of the mobile nodes can be controlled

effectively while ensuring connectivity of the nodes. Withthe proposed solution, com-

munication can be established in a more power effective manner between any two nodes

in the cell.

• A group based CDMA-OFDM access mechanism for the effective use of CDMA codes

and OFDM carriers in MCN is proposed in Chapter 7. The proposed scheme has high

potential to increase the user capacity and to ensure higherend-to-end throughput.

• Summary of the work and conclusion of the thesis are given in Chapter 8. Furthermore,

future areas of research and extensions are also presented.
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Chapter 2

MPOE Prefiltering and MRT

Beamforming for DS-CDMA Systems

To reduce the complexity of the mobile receiver, two prefilter models using a linear FIR prefilter

for minimizing the probability of error is proposed in this chapter. A multiuser downlink trans-

mission scenario is considered. The first system model, consists of a single common prefilter

for all users at the base station and the second system model has individual prefilter for each

and every user. Complete knowledge of the channel at the base station is assumed. In order to

fully utilize the knowledge available at the transmitter, the filter weights are computed, condi-

tioned on the transmitted bit vector sequence. This also makes the computation of the prefilter

coefficients linear in the number of users as opposed to the exponential complexity otherwise.

Coefficients of FIR prefilter are computed by minimizing the conditional probability of error

and the mean square error. To further improve the performance of the proposed models, Max-

imum Ratio Transmission (MRT) beamforming is considered at the base station for both the

models. Simulation results illustrate the performance of the proposed system models.

2.1 Introduction

Multiple Access Interference (MAI) and Inter Symbol Interference (ISI) mitigations have been

a challenging research topic since the very beginning studies on DS-CDMA systems. The fre-

quently considered approach of performing multiuser detection at the receiver is quite unattrac-

tive for the downlink because it entails an increase of complexity and power consumption at

the mobile terminals. The solution lies in transferring thework load to the base station trans-
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mitter in the form of prefiltering. This chapter explores a prefiltering scheme at the transmitter

which can allow for considerably simplified receiver structures. It is evident that prefiltering

will only be useful if the channel variation timescales are relatively slower than the time taken

for the channel to be estimated at the transmitter [9]. The downlink channel can be estimated

at the transmitter by using some feedback from the receiver [10–13]. Alternately, for TDD

based systems, estimates of the uplink channel can be used asthe channel parameters for the

downlink channel as well, if the time interval between switching from uplink to downlink is

small enough [14–17]. In this chapter complete knowledge ofthe channel is assumed at the

base station.

Two approaches for prefiltering is considered: the first one considers a common prefilter

for all users as shown in Fig 2.1. Such an approach is termed asjoint prefiltering. Since the

precoding (prefiltering) is done jointly for all users, the performance of joint prefiltering will not

be up to the mark. To improve the performance significantly further, the second case considers

a system which has individual prefilter for each user at the base station transmitter as shown in

Fig 2.2. Such a model is termed as individual prefiltering.

Minimum Mean Squared Error (MMSE) has traditionally been used as the optimization

criterion in the design of most of the prefiltering systems. However, since the symbols are of

significance for a digital communication systems, the optimum prefilter should be the one which

minimizes the probability of symbol error at the receiver [18–22]. Such a system is referred as

the Minimum Probability of Error (MPOE) based system [18–22]. Usually MPOE optimization

tends to be computationally expensive but since ample computational resources are considered

at the base station, using MPOE instead of MMSE as the optimization criterion for prefiltering

can be justified. Moreover, by conditioning the filter weights on the transmitted bits, one can

design a MPOE prefilter with linear complexity [18–25].

The second part of the chapter, considers a MRT beamforming by taking advantage of

the available channel knowledge for improving the Bit Error Rate (BER) performance of the

proposed prefilter models. The strategy to adapt weights in MRT essentially depends on the

knowledge about the propagation channel that is available for prefiltering at the base station. A

standard single user receiver (conventional matched filterdetector) is used for all the proposed

system models [9,16,26–28].

The contributions of this chapter are follows:

• The concept of MPOE based joint and individual prefilters aredeveloped.
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• The use of MRT beamforming to further improve the performance of proposed prefilters

is also explored.

The rest of the chapter is organized as follows: Section 2.2 describes the related work

in the area of prefiltering, MPOE optimization and MRT beamforming. The system model is

introduced in Section 2.3. MPOE and MMSE based joint prefiltering is derived in Section 2.4.

The individual prefiltering with MPOE and MMSE optimizationis discussed in Section 2.5.

Sections 2.6 and 2.7 explain the MRT beamforming for joint and individual prefiltering respec-

tively. Prefiltering system model with rake receiver is considered in Section 2.8. Simulation

results and analysis of the results are provided in Section 2.9. Finally some concluding remarks

are given in Section 2.10.

2.2 Related Work

Significant amount of research work have been carried out in the area of prefiltering over the last

few years. But almost all the research work have been directedtowards the design of MMSE

based prefiltering wherein the optimization criterion is tominimize the mean squared error be-

tween the transmitted and received waveforms [9], [14–16, 29], [26–28, 30–34]. Vojcic and

Jang in [9], Honset al in [30], Reynoldset al in [31], Luna-Riveraet al in [26] considered a

synchronous multiuser CDMA system and designed the prefilterusing MMSE criterion. In all

these work the analyzes were carried out by assuming zero ISI. In [16], a prefilter approach is

proposed where the receiver is matched with both the channeland prefilter coefficients. But this

method requires the receiver to know the precoder coefficients and perfect channel knowledge

which will increase the receiver complexity. Linear/nonlinear precoder is designed by assuming

only the long term channel estimate with MMSE criterion in [32]. Decorrelating prefilter and

jointly optimized sequences algorithm have been proposed in [33], but the optimization crite-

rion is MMSE. Minimum Bit Error Rate (MBER) optimization for linear combiner decision

feedback equalizer receiver was proposed in [35] and adaptive MBER linear multiuser detector

was proposed in [23–25]. Dua and Desai in [18] proposed the MPOE optimization method for

general DS-CDMA system. Later Duaet al in [19], Soodet al in [20], Mohit et al in [21] and

Wanget al in [22] extended it to different scenarios. In [18–22] it wasestablished that MPOE
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Figure 2.1: DS-CDMA system model for a multipath channel withjoint transmitter prefiltering

optimization has better performance than MMSE optimization. Moreover, in [20–22] a linear

computational complexity MPOE filters (with respect to the number of users) were proposed.

In [36] Ding et al proposed a precoder and in [37] Palomaret al derived a transceiver based on

minimum BER method for Zero-Forcing (ZF) equalizer at the receiver. These receivers need

training or both the channel and precoding filter knowledge at the receiver hence, a relatively

complex receiver is required which may not be desirable. Furthermore, the Maximal Ratio

Combiner (MRC) rake receiver used in 3rd generation WCDMA also requires the receiver to

estimate the channel which impairs the purpose of prefiltering [38]. The primary objective of

prefiltering is to simplify the receiver structure hence, wework with a conventional single-user

detector at the receiver. Georgouliset al in [14–16] and Reynoldset al in [28, 31] have used

a simple matched filter receiver by considering a general channel model with ISI while opti-

mizing the filter on the basis of the MMSE criterion. MRT beamforming was first proposed

in [39] and further analyzed in [40–43]. Prefiltering with ZFcriterion and transmit antenna

array is considered in [43], but it does not take advantage ofavailable channel information. To

the best of our knowledge there is no treatment on MPOE based prefiltering. In this chapter,

MPOE based prefiltering with ISI and MAI is proposed in the first part. Also the performance

of the MPOE based prefiltering system is substantially improved using MRT beamforming in

the second part.

2.3 System Model

Consider a DS-CDMA system withU users as shown in Fig 2.1. Assume Binary Phase Shift

Keying (BPSK) constellation for generating the input bits. The uth user transmits BPSK bit
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bu(i) with amplitudeAu in ith bit interval and the length of signaling interval for eachuser is

Tbit [44–46]. Let us assume useru is assigned with a spreading waveformcu(.) whose support

is [0, Tbit] andsu = [su0, su1, . . . , suN−1] denotes the corresponding spreading sequence. Then,

cu(t) =
N−1
∑

k=0

sukrect[t − (k − 1)Tc], u = 1, 2, . . . , U (2.1)

where,rect(t) is a rectangular waveform with unit amplitude in [0, Tc], Tc is the chip period

andN is the processing gain of the system. The baseband signal of theuth user in theith bit

interval can now be expressed as

xu(t) = Aubu(i)cu(t − iTbit), iTbit ≤ t < (i + 1)Tbit (2.2)

By adding up all the users’ signals atith bit interval we get,

x(t) =
U

∑

u=1

xu(t) =
U

∑

u=1

Aubu(i)cu(t − iTbit), iTbit ≤ t < (i + 1)Tbit (2.3)

Assume thatx(t) is sampled atTc (chip rate sampling), then the resulting sequencex[n] is

x[n] =
U

∑

u=1

Aubu(iN)cu(nTc − iTbit)

=
U

∑

u=1

Aubu(iN)
N−1
∑

k=0

sukrect(nTc − iTbit − (k − 1)Tc)

=
U

∑

u=1

Aubu(iN)s̃u[n] (2.4)

where iN = ⌊ i
N
⌋ because of chip rate sampling (note thatNTc = Tbit) and the sequence

s̃u[n] = sun, sun+1, . . . , suN , su0, . . . , sun−1 wheren is the sampling instant. Note that⌊a⌋
denotes the floor operation which rounds the value ofa to the nearest integer towards−∞. For

a fixedi, s̃u[n] will be of lengthN , but when the input data is infinitely long, thens̃u[n] will

cyclicly repeat as [. . . , suN−1, su0, su1, su2, . . . , suN−1, su0, su1, . . .]. The prefilter for a

particular bit periodi is assumed to be a Finite Impulse Response (FIR) filter (z[.][i]) of length

Lz and it will be calculated adaptively at every bit interval. The idea is to compute these filter

coefficients using MPOE and MMSE criteria. The prefiltered signal which will be sent through

the wireless channel is

x[n] ⊗ z[.][n] (2.5)

where⊗ denotes the convolution operation andz[.][n] is the prefilter at time instantn. A general

multipath frequency selective channel is assumed in our system. The multipath wireless channel
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is modeled as a FIR filter and the channel coefficients are assumed to be constant over one bit

period. The channel for theuth user at theith bit interval is denoted ashu[.][i] which is of

lengthLu
h for all i.

The elements of the channel FIR filter (hu[l][n]) are assumed to be complex Gaussian with

both real and imaginary parts following thei.i.d (identical independent distribution) Gaussian

distribution [47]. The noise (ηu[n]) is assumed to bei.i.d zero mean Additive White Gaussian

(AWGN). The signal received at useru is

ru[n] = hu[.][n] ⊗ x[n] ⊗ z[.][n] + ηu[n] (2.6)

wherehu[.][n] is the channel FIR filter at time instantn. Convertingru[n] into a parallel stream

of N samples (number of chips per bit period), we obtain

ru[n] = [ru[iN ], . . . , ru[iN + N − 1]]T (2.7)

where superscriptT denotes transpose. A simple matched filter receiver is assumed. The re-

ceived signal at theuth user after matched filtering is

yu[i] = sT
u ru[i] =

N−1
∑

k=0

sukru[iN + k] (2.8)

From (2.6) and (2.8)

yu[i] =
N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]

(Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2 ]̃sv[iN + k − m − l]

)

+
N−1
∑

k=0

sukηu[iN + k] (2.9)

where

j1 =

⌊

iN + k − m

N

⌋

, j2 =

⌊

iN + k − m − l

N

⌋

(2.10)

are index parameters in the convolution. In (2.9)
∑

m gives the ISI term due to the multipath

channel while
∑

u is the MAI component due to multiple user transmission. Since BPSK con-

stellations are used for input data, the decision statistics is given byℜ(yu[i]) = yR
u [i], where

ℜ(yu[i]) denotes real part ofyu[i]. In the following section the MPOE and MMSE algorithms

for the demodulation at theuth user with the above decision statistic(yR
u [i]) is derived.
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2.3.1 Signal model for MPOE prefiltering

This section compute the conditional probability of error (PE|B[i]) conditioned on transmitted

bit vector sequenceB[i] = b[i],b[i − 1], . . ., whereb[i] = b1[i], b2[i], . . . , bU [i] is the vector of

bits transmitted at time instanti for all the users. The conditional mean (µyR
u |B[i]) of the decision

statistics of the received signal is

µyR
u |B[i][i] = E(yR

u |B[i]) = E

(

ℜ
[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]

(Lz−1
∑

l=0

z[l][j2].

.
U

∑

v=1

Avbv[j2 ]̃sv[iN + k − m − l]

)

])

+E

(

ℜ
[N−1
∑

k=0

sukηu[iN + k]

])

(2.11)

wherej1, j2 are given in (2.10). By using the fact thatE[ℜ(a)] = ℜ(E[a]) for anya, E(ηu[iN +

k]) = 0 and exceptηu[iN + k] all other quantities are deterministic, the above equationcan be

written as

µyR
u |B[i][i] = E(yR

u |B[i]) = ℜ
[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]

(Lz−1
∑

l=0

z[l][j2].

.
U

∑

v=1

Avbv[j2 ]̃sv[iN + k − m − l]

)

]

(2.12)

The conditional variance (σ2
yR

u |B[i]) of the decision statistics is

σ2
yR

u |B[i][i] = var

(

ℜ
[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]

(Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2 ]̃sv[iN + k − m − l]

)

]

+
N−1
∑

k=0

sukηu[iN + k]

)

= var
(

ℜ
N−1
∑

k=0

sukηu[iN + k]
)

= N
σ2

2
(2.13)

For simplicity the variance of the channel noise is assumed to be constant for all users in (2.13).

Now the conditional probability of error is

PE|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σ
√

N/2

)

(2.14)

where

Q(a) =
1√
2π

∫ ∞

a

e
−x2

2 dx (2.15)
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The probability of correct detection is

Q

(

−bu[i]µyR
u |B[i][i]

σ
√

N/2

)

(2.16)

where we have used the fact that1 − Q(x) = Q(−x).

2.4 Proposed Joint Prefiltering Algorithm

2.4.1 MPOE based prefilter

In joint prefiltering, we have one common prefilter and we would like to minimize the joint

conditional probability of error for all users, namely,

PEJ [i] = 1 − P [yR
1 ∈ α1, y

R
2 ∈ α2, . . . , y

R
U ∈ αU ] (2.17)

hereP [yR
u ∈ αu] is the probability of correct demodulation for theuth user,αu is decision

region for symbol detection foruth user andJ denotes joint probability of error. The condi-

tioning markers and indexi in right hand side of the above equation are dropped for notational

ease. Since the noise vectors for all users are independent of each other, the joint conditional

probability of error becomes

PEJ [i] = 1 − P [yR
1 ∈ α1]P [yR

2 ∈ α2] . . . P [yR
U ∈ αU ] (2.18)

The decision region for BPSK constellationαu, for any useru, is given by(0, ∞) whenbu[i] =

+1 and(−∞, 0) whenbu[i] = −1. Using (2.16) and (2.18),PEj can be written in closed form

as

PEJ [i] = 1 −
U

∏

u=1

Q

(

−bu[i]µyR
u |B[i][i]

σ
√

N/2

)

(2.19)

Thus the MPOE optimization problem now becomes

minz[.][i]PEJ [i] (2.20)

i.e., the filter coefficients (z[.][i]) of lengthLz for each bit intervali is calculated by minimizing

the above formulated probability of error. A stochastic gradient descent approach can now

be used to minimize the joint probability of error with respect to the prefilter coefficients. In

gradient descent, the prefilter coefficients are updated according to the rule

z[.][i + 1] = z[.][i] − µ
∂PEJ

∂z[.][i]
(2.21)
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whereµ is an appropriately chosen step-size parameter.µ could be chosen adaptively based on

the received signal energy.

2.4.2 MMSE based prefilter

Let us assume thatyR[i] = yR
1 [i], yR

2 [i], yR
3 [i], . . . , yR

U [i] is a vector of decision statistics of all

users. Therefore, the cost function in case of MMSE based algorithm can be written as

ξ2
J |B[i][i] = E

[

‖(yR[i] − b[i])‖2|B[i]

]

=
U

∑

u=1

E

[

((yR
u )2 + b2

u − 2yR
u bu)|B

]

=
U

∑

u=1

[

(E(yR
u )|B)2 + σ2N

2
+ 1 − 2bu(E(yR

u |B))

]

(2.22)

whereb2
u = 1 as a consequence of BPSK modulation andE(yR

u |B) is given by (2.12).J in

the above equation denotes the joint norm for all the users. Indexi is dropped for notational

simplifications. Now the filter weights are calculated from

minz[.][i]ξ
2
J |B[i][i] (2.23)

An exactly similar optimization framework as of (2.21) is followed to optimize the MMSE

prefilter weights.

2.5 Proposed Individual Prefiltering Model

In this model the data for useru after being spread is prefiltered by a FIR filter of lengthLu
z with

a discrete time impulse responsezu[.][n] as shown in Fig 2.2. The resulting modified signals are

summed to form the final transmitted signal. The prefilterszu[.][n], u = 1, . . . , U are designed

such that the probability of error for that particular user is minimum at the receiver. Each user’s

prefilter is designed individually by taking into account the channel information and the transmit

code of that particular user. The signal for useru at base station is

xu(t) = Aubu(i)cu(t − iTbit), iTbit ≤ t < (i + 1)Tbit (2.24)

This signal is sampled at chip rate as given in (2.4) and will be processed through a prefilter

zu[.][i]. The prefiltered signal corresponding to useru at time instantn is given by

xu[n] ⊗ zu[.][n] (2.25)
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Figure 2.2: DS-CDMA system model for a multipath channel withindividual prefiltering

Now the transmitted signal is given by

U
∑

u=1

xu[n] ⊗ zu[.][n] (2.26)

By analyzing along the similar lines as in (2.6)-(2.9) and using (2.26) in place ofx[n], the

received signal for useru after matched filtering is

yu[i] =

[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]

(Lu
z−1
∑

l=0

U
∑

v=1

zv[l][j2]Avbv[j2 ]̃sv[iN + k − m − l]

)

]

+
N−1
∑

k=0

sukηu[iN + k] (2.27)

wherej1 andj2 are given by (2.10). The decision statistics isℜ(yu[i]) = yR
u [i].

2.5.1 MPOE based prefilter

The probability of error for a useru ( P u
E|B[i][i] ) can be formulated in the same way as given in

(2.14), except the fact that the prefilter is different for each user.

P u
E|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σ
√

N/2

)

(2.28)

whereµyR
u |B[i][i] is conditional mean of decision statistics, which can be found by following the

same procedure of (2.12) and is given by

µyR
u |B[i][i] = E(yR

u |B[i]) = E

(

ℜ
[N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1].

.
(

U
∑

v=1

Lu
z−1
∑

l=0

zv[l][j2]Avbv[j2 ]̃sv[iN + k − m − l]
)

]

)

(2.29)
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Now the filter of lengthLu
z at time instanti+1 for useru is calculated using stochastic gradient

search method as follows

zu[.][i + 1] = zu[.][i] − µ
∂P u

E

∂zu[.][i]
, u ∈ {1, 2, . . . , U} (2.30)

2.5.2 MMSE based prefilter

The function to be optimized for the case of MMSE individual prefiltering can be written as

ξ2
u|B[i][i] = E

[

‖(yR
u [i] − bu[i])‖2|B[i]

]

= E

[

((yR
u )2 + b2

u − 2yR
u bu)|B

]

= (E(yR
u )|B)2 + σ2N

2
+ 1 − 2buE(yR

u |B) (2.31)

whereE(yR
u [i]|B) is given in (2.29). Indexi is dropped for notational simplifications. Now

the individual MMSE prefilter coefficients are calculated using gradient search by minimizing

ξ2
u|B[i][i] as follows

minzu[.][i]ξ
2
u|B[i][i] (2.32)

The similar procedure of (2.30) is followed to optimize the MMSE prefilter.

2.6 MRT Beamforming for Joint Prefilter

In MRT beamforming each user data will be transmitted through M antennas withM different

weights as shown in Fig 2.3. Note that in Fig 2.3 prefilter (z[.][.]) is common for all users and

all antennas. By following the same procedure in (2.4) the signal transmitted from base station

for useru after chip rate sampling can be written as

xu[n] = Aubu[nN ]s̃u[n] (2.33)

Theuth user data atmth path will be multiplied by MRT weightwum. The weightswum will be

calculated at every bit interval and assumed to be constant over one bit interval because channel

is constant over one bit interval. Now the signal transmitted for useru atmth MRT path is

x′
um[n] = Aubu[nN ]s̃u[n]wum[n] (2.34)
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Figure 2.3: DS-CDMA system model with joint transmitter prefiltering and MRT beamforming

The MRT weights for useru is concatenated in vector format as

wu[i] =
[

wu1[i], wu2[i], . . . , wuM [i]
]T

(2.35)

Assume that the wireless channel betweenM MRT transmitter antennas and a mobile receiver

antenna for useru is hu[i] which can be represented as

hu[i] =
[

hu1[i], hu2[i], . . . , huM [i]
]T

(2.36)

wherehum[i], (u = 1, . . . , U, m = 1, . . . ,M ) is the channel coefficient betweenmth MRT

path ofuth user and receiver antenna atith bit interval. The channel is assumed to be a single

coefficient (Lu
h = 1) FIR filter with the coefficient being complex Gaussian [38].Hence the

channel is flat fading in MRT model. Note that though channel is flat fading, the prefilter

(Lz > 1) at the transmitter to mitigate MAI, itself is a source of ISI, hence still ISI is the factor

of concern. Flat fading is assumed to simplify the MRT weightcalculation. MRT can be applied

even when the channel is frequency selective. In case of frequency selective channel we can

employ MC-CDMA (or CDMA-OFDM) access mechanism to convert a frequency selective

channel to a set of flat fading channels and then use MRT [32]. However, such an analysis is

out of scope of this work.

Assume that the transmit beamforming vector isw, where the time index is dropped for

notational convenience. The instantaneous SNR at the receiver is given bywH(hhH)w, where
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the superscriptH denotes Hermitian transpose. Now, among all possible unit-norm transmit

beamforming vectorsw, the one which maximizes the instantaneous received SNR is the dom-

inant eigenvector ofhhH . SincehhH is a rank 1 matrix the dominant eigen vector computation

of hhH would be rather simple (in fact dominant eigen vector would be proportional toh it-

self) [32]. Once the weight vectorw is computed, the next step is to determine the prefilter

coefficients (z[.][i]). The total signal transmitted for allU users after prefiltering is

x′[n] =

[ U
∑

u=1

M
∑

m=1

Aubu[nN ]s̃u[n]wum[n]

]

⊗z[.][n] (2.37)

By using the linearity property of convolution the above equation can be written as

x′[n] =
U

∑

u=1

(

Aubu[nN ]s̃u[n]wu1[n] ⊗ z[.][n]
)

+
U

∑

u=1

(

Aubu[nN ]s̃u[n]wu2[n] ⊗ z[.][n]
)

+ . . .

+
U

∑

u=1

(

Aubu[nN ]s̃u[n]wuM [n] ⊗ z[.][n]
)

(2.38)

Now the signal transmitted from MRT antennam is

x′′
m[n] =

U
∑

u=1

(

Aubu[nN ]s̃u[n]wum[n] ⊗ z[.][n]
)

(2.39)

The x[n] in (2.6) can be replaced with (2.37) and the similar steps of (2.8) and (2.9) can be

followed to find the received signal at the receiver ofuth user (yu[i])

yu[i] =
N−1
∑

k=0

suk

Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

M
∑

m=1

Avbv[j2]s̃v[iN + k − l]wvm[j2]hum[j1]

+
N−1
∑

k=0

sukηu[iN + k] (2.40)

sinceLu
h = 1, j1 andj2 are given by

j1 =

⌊

iN + k

N

⌋

, j2 =

⌊

iN + k − l

N

⌋

(2.41)

Now the decision statistics isℜ(yu) = yR
u . The MPOE and MMSE based algorithms are derived

in the following sections.
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2.6.1 MRT beamforming for MPOE joint prefilter

By using same procedure of (2.12) and replacingyu[i] of (2.12) with (2.40) the conditional

mean of the decision statistics is given by

µyR
u |B[i][i] = E

[

ℜ
(N−1

∑

k=0

suk

Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

M
∑

m=1

Avbv[j2]s̃v[iN + k − l].

.wvm[j2]hum[j1]

)

]

(2.42)

The conditional variance of the decision statistics is given by

σ2
yR

u |B[i][i] = var

(

ℜ
[

N−1
∑

k=0

sukηu[iN + k]

])

= N
σ2

2
(2.43)

The probability of error at particular instant of timei for useru is

PE|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σ
√

N/2

)

(2.44)

The joint probability of errorPEj can be computed using (2.44) in (2.18).PEj can now be used

as cost function in (2.21) to determine the prefilter coefficients as follows:

minz[.][i]PEJ [i] (2.45)

2.6.2 MRT beamforming for MMSE joint prefilter

The find the MMSE cost function we can follow the similar procedure of Section 2.4.2 with

yu[i] of (2.40).

ξ2
J |B[i][i] =

U
∑

u=1

E

[

((yR
u )2 + b2

u − 2yR
u bu)|B

]

=
U

∑

u=1

[

(E(yR
u )|B)2 + σ2N

2
+ 1 − 2buE(yR

u |B)

]

(2.46)

In the above equation indexi is dropped in the right hand side for notational convenience. The

above formulated mean square error will be used as the cost function in (2.21) to determine the

prefilter weights.
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Figure 2.4: DS-CDMA system model with individual prefiltering and MRT beamforming

2.7 MRT Beamforming for Individual Prefilter

Each user is assumed to haveM MRT paths with an individual prefilter for each user as shown

in Fig 2.4. Note that in Fig 2.4 the prefilter (zu[.][.]) is common for allM MRT paths of useru

but different for different users. The total transmitted signal is

x′[n] =
U

∑

u=1

M
∑

m=1

(Aubu(i)s̃u[n]wum[n] ⊗ zu[.][n]) (2.47)

By following the same steps of (2.37)-(2.39), the signal transmitted from MRT antennam is

x′′
m[n] =

U
∑

u=1

(

Aubu[nN ]s̃u[n]wum[n] ⊗ zu[.][n]
)

(2.48)

By following similar analysis in Sections 2.5 and 2.6, we can derive the individual prefilter

weights. The received signal after matched filtering, by following (2.4)-(2.9) and by replacing

x[n] in (2.6) with (2.47) is

yu[i] =
N−1
∑

k=0

suk

Lu
z−1
∑

l=0

U
∑

v=1

M
∑

m=1

zv[l][j2]Avbv[j2]s̃v[iN + k − l]wvm[j2]hum[j1]

+
N−1
∑

k=0

sukηu[iN + k] (2.49)

wherej1 andj2 are same as in (2.41).
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2.7.1 MRT beamforming for MPOE individual prefilter

The conditional mean and variance of the decision statistics can be found in same way as that

of (2.12) and (2.13) and are given by

µyR
u |B[i][i] = E(yR

u |B[i]) = ℜ
(

E

[N−1
∑

k=0

suk

(

Lu
z−1
∑

l=0

U
∑

v=1

M
∑

q=1

zvq[l][j2]Avbv[j2].

.hvq[j1 ]̃svq[iN + k − l]wvq[j2]
)

]

)

(2.50)

σ2
yR

u |B[i][i] = var

(

ℜ
[

N−1
∑

k=0

sukηu[iN + k]
]

)

= N
σ2

2
(2.51)

The probability of error at particular instant of timei for uth user’s data is

P u
E|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σ
√

N/2

)

(2.52)

P u
E|B[i] can now be used as cost function in stochastic gradient search of (2.30) to find the

prefilter coefficientzu[.][i].

2.7.2 MRT beamforming for MMSE individual prefilter

An approach similar to that of Section 2.4.2 can be followed to find the MMSE cost function.

By replacingyu[i] in Section 2.4.2 with (2.49) the cost function can be writtenas

ξ2
J |B[i][i] =

[

(E(yR
u )|B)2 + σ2N

2
+ 1 − 2buE(yR

u |B)

]

(2.53)

where indexi is dropped for notational ease. The above formulated cost functionξ2
J |B[i][i] can

be used in (2.30) to determine the prefilter weights.

The prefilter coefficients are normalized at every instant inboth MPOE and MMSE algo-

rithms in all the proposed models to reduce the effect of power boosting. The normalization is

carried out by dividing the prefilter coefficient vector by its norm.

2.8 System Model with Rake Receiver

The system model with rake receiver is shown in Fig 2.5. The main objective of the prefiltering

system is to avoid the channel estimation at the receiver. Onthe contrary, MRC demands
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Figure 2.5: DS-CDMA system with rake receiver

channel estimation at the receiver. Therefore, we use simple Equal Gain Combiner (EGC) rake

receiver. The rake receiver fingers of theuth user are matched with the delayed version of

spreading waveformcu(t). All fingers are assumed to receive signal from one common receiver

antenna as shown in Fig 2.5. The spreading code ofuth user is chosen such that

N
∑

n=1

cu(nTc − tdf )cu(nTc − tdF ) ≈ 0 (2.54)

wheretdf andtdF are the estimated excess propagation delay at any two fingersf andF of rake

receiver. In general the excess propagation delays are multiples ofTc. Now the received signal

for the joint prefiltering system of Fig 2.1 is

yu[i] =
F

∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

hu[m][j1]

(Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2 ]̃sv[iN + k − m − l]

)

+
F

∑

f=1

N−1
∑

k=0

s
(f)
uk η(f)

u [iN + k] (2.55)

where F is the number of fingers ands
(f)
uk is the sampled version of spreading code corresponding

to f th finger andη(f)
u [.] is the additive white Gaussian noise atf th finger ofuth user.

Received signal corresponding to individual prefiltering system and systems with MRT

can also be written similarly. The probability of error and mean square error can be derived

by following steps (2.12)-(2.14) and Section 2.4.2. The simulation results are presented in the

following section.
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Figure 2.6: Performance of MPOE and MMSE transmitter prefiltering with 16 users

2.9 Simulations and Results

Extensive simulations were carried out to calculate the prefilter coefficients and the correspond-

ing BER for various SNRs for MPOE and MMSE prefilters. BPSK constellation for bits was

assumed with equal probability for bits +1 and -1. The processing gainN , was assumed to be

32 and the number of users was taken to be16. Orthogonal spreading codes were assumed.

Channel was assumed to be complex Gaussian with both real and imaginary parts followi.i.d

Gaussian distribution withσ value as0.1655 and mean as0.5. Channel length,Lu
h was taken to

be4 for systems without MRT and1 for systems with MRT. The prefilter length was assumed

to be5 (for both joint and individual prefiltering). Step size parameterµ was calculated based

on the received signal energy. We choseµ as10−2 × received signal energy.

2.9.1 BER performance of joint and individual prefiltering

BER performance for various SNRs were plotted for both individual and joint prefiltering. BER

was calculated independently for each channels and BERs of1000 such channels were averaged

for each SNR. All the users were assumed to transmit with equalamplitude. The BER perfor-
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Figure 2.7: BER performance for various SNRs with MRT beamforming

mance is shown in Fig 2.6. From Fig 2.6, we observe that individual prefiltering performs much

better than joint prefiltering and MPOE prefiltering always performs better than that of MMSE

prefiltering. This is because individual prefilter hasU prefilters and the length of the individual

prefilter is effectivelyU times that of corresponding joint prefilter. Therefore, theMAI and ISI

are better compensated and also the individual probabilityof error is minimized in the case of

individual prefilter and thus the better performance. On theother hand joint prefilter jointly

minimizes all the users’ probability of error using just single prefilter. Hence, its performance

is inferior compared to individual prefilter model.

2.9.2 MRT results and discussions

The BER performances of MPOE joint and individual prefiltering with MRT beamforming were

plotted. Since MPOE performs better than MMSE at all SNRs we have considered only MPOE

case for MRT beamforming to better visualize the plots. Results for varying SNRs is shown

in Fig 2.7. Single and3 MRT weights (paths) for each user were assumed at the base station.

From Fig 2.6 and Fig 2.7 one can infer that BER of MPOE prefilter with MRT is better than
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Figure 2.8: BER against number of users for a fixed SNR of20 dB

that of MPOE without MRT. This is because the weights are proportional to the dominant eigen

vector ofhhH . Hence we will transmit the signal proportional to channel coefficient, which

will mitigate the channel effect. The performance improvements are quite significant at higher

SNRs. Better performance could be obtained by increasing the number of MRT weights per

user but at the cost of higher complexity. Though we increasethe number of weights at the

transmitter for each user, MRT beamforming will not increase the transmission power at base

station since the weights are equal to maximum eigenvector which has unit energy.

Since the individual prefiltering offers better performance than joint prefiltering, we will

consider the performance of individual prefiltering (without MRT) under a general channel

model (MAI+ISI) for various scenarios in the following sub sections.

2.9.3 Varying number of users

The effect of increasing the number of users in the system fora SNR of20 dB is shown in Fig

2.8. It is evident that more the number of users, more the interference will be seen in the system.
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Figure 2.9: BER comparison of MPOE individual prefiltering systems with rake receiver and
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Therefore, as the number of users increases the BER performance reduces. Moreover, as the

number of users increases the performance difference between MPOE and MMSE prefilters

increases. This is because MPOE prefilter better compensates MAI and ISI in the increasing

multiuser interference environment.

2.9.4 Performance comparison with rake receiver

The proposed MPOE individual prefiltering system model is compared with the MPOE indi-

vidual prefiltering system which uses rake receiver. Rake receiver with 3 fingers is considered.

Conventional autocorrelation based path search algorithm is used to estimate the excess propa-

gation delay at each finger. The performances of both the proposed system and the prefiltering

system with EGC rake receiver are shown in Fig 2.9. One can infer that while using prefilter-

ing the conventional single user detector performance is very close to the EGC rake receiver’s

performance. This can be explained as follows:

1. Since we use prefiltering, the multipath effect is precompensated. In other words the

precoder and channel combination is effectively a single tap channel. Therefore, the
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diversity gain obtained due to multipath effect is less significant.

2. Any additional gain will not be obtained by channel equalization at the receiver and trans-

mitter simultaneously. Equalization at one end would be theoptimal solution.

3. Since a multiuser scenario is assumed and the system is interference limited, the perfor-

mance gain from EGC is rather minimal in the case of interference limited system.

2.10 Conclusion

Two system models have been proposed for MPOE and MMSE based prefiltering technique for

DS-CDMA systems under a general channel conditions. Simulation results show that MPOE

prefilter outperforms MMSE prefilter in terms of BER and also the individual prefiltering is

superior to that of corresponding joint prefiltering. The prefiltering performance is analyzed

by varying number of users. And also the proposed system performance is compared with

the prefiltering system which employs rake receiver and found that the performance is almost

similar in both the system models. The performance of the proposed system is further enhanced

by using MRT beamforming so that it can be considered for practical implementation.
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Chapter 3

MPOE Prefiltering and MRT

Beamforming for Statistical Channel

Model

A precoding filter based only on the statistical knowledge ofthe channel for DS-CDMA systems

is proposed in this chapter. The proposed prefilter (precoder) minimizes the probability of error

in downlink multiuser transmission. The receiver at mobileterminal is assumed to be a simple

matched filter to reduce the computational complexity. By following the similar procedure in

the previous chapter, two approaches have been investigated for the proposed algorithm. The

first approach has a system model where a common FIR precodingfilter is used for all users

and the prefilter is optimized to jointly minimize the probability of error of all users. The

second approach has separate precoders for each user which are obtained by minimizing the

probability of error for the respective user. In order to fully utilize the knowledge available at the

transmitter, in both approaches the filter weights are computed conditioned on the transmitted

bit vector sequence, this makes the computation of the optimal prefilter coefficients linear in the

number of users. In addition to the above, the performance ofthe proposed statistical channel

prefilter models are further enhanced by using MRT beamforming strategy. The results of the

proposed approach based on the statistical channel model are compared with the results based on

assuming complete knowledge of the channel. Simulation results clearly show that precoders

based only on the statistical knowledge of the channel provide acceptable BERs. Also the

proposed prefilter achieves better performance compared toexisting algorithms.
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3.1 Introduction

In this work, we explore a prefiltering scheme at the base station transmitter when only statistical

parameters of the channel available at the base station. Prefilter design is less complicated when

the transmitter has complete Channel State Information (complete CSI)i. e. the transmitter

knows channel coefficients at every instant as explained in Chapter 2. The drawback with this

assumption is that it requires significant amount of feedback from the receiver to the transmitter

[40, 48, 49]. This is especially true in Frequency Division Duplex (FDD) channel where the

downlink and uplink channels are uncorrelated. In this chapter, we explore the approach of

working only with the first and second order statistics of thechannel at the transmitter for

optimizing the precoding filter [50–52]. The basic assumption is that the first and second order

statistics of the channel change at a much slower rate than the channel coefficient itself. Hence,

it is easier to track the statistics of the channel which makes practical implementation feasible.

As explained in the previous chapter, two approaches are considered for prefiltering: The

first one considers the common prefilter for all users as shownin Fig 2.1. To further improve

the performance significantly, a second approach is considered wherein an individual prefilter

is used for each user as shown in Fig 2.2. The standard single user receiver (conventional

matched filter detector) is used in our model in order to significantly reduce the receiver com-

plexity [9, 16, 26–28]. By following the similar argument as in previous chapter the MPOE

optimization is considered in transmitter prefilter designin this chapter too. MPOE prefilter is

designed by conditioning the filter weights on the transmitted bits [19]. In addition, a novel

MRT beamforming is also developed by taking advantage of theavailable statistical knowl-

edge of the channel, to improve the Bit Error Rate (BER) performance of the proposed prefilter

models.

The contributions of this chapter are follows:

1. We develop MPOE/MMSE based joint prefilters by assuming only the first order and

second order statistics of the channel.

2. Also we propose an individual prefiltering system model where we employ individual

prefilter for each users. The prefilter coefficients are optimized using MPOE/MMSE

criteria. A minimal complexity receiver is employed in all the prefiltering models.

3. The performance of the proposed prefilters are further improved by using MRT beam-

forming for the system having only statistical knowledge ofthe channel. The proposed
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system considerably differs from other works on maximum ratio transmission where com-

plete CSI has been assumed [39,41–43,49,53].

3.1.1 Notations

In this chapter⌊.⌋ denotes floor operation and⌈.⌉ is ceiling operation. SuperscriptT denotes

transpose and bold small letters denote sequence/vector. Superscript * andH denote complex

conjugate and Hermitian transpose, respectively. Parentheses[.], (.) used in vector and signal

arguments to denote discrete samples and continuous signals, respectively however, when used

in functions they do not have any specific meanings. Superscripts I, Q denote in-phase and

quadrature-phase components respectively.E(.) is statistical expectation,var(.) is variance,

ℜ(.) is real part of complex number andℑ(.) is imaginary part of complex number.

3.2 Signal Model

Consider a similar DS-CDMA system model of Chapter 2 as shown in Fig 2.1. By following

similar steps of (2.2)-(2.9) the received signal at theuth user after matched filtering is

yu[i] =
N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]
Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2]s̃v[iN + k−m− l] +
N−1
∑

k=0

sukηu[iN + k]

(3.1)

where

j1 =

⌊

iN + k − m

N

⌋

, j2 =

⌊

iN + k − m − l

N

⌋

(3.2)

In (5.5),
∑Lu

h
−1

m=0 gives the Inter Symbol Interference (ISI) term due to the multipath channel

while
∑U

v=1 is the Multiple Access Interference (MAI) component due to multiuser transmis-

sions. Since BPSK constellations are used for input data, thedecision statistics is given by

ℜ(yu[i]) = yR
u [i]. In the following sections we shall derive the MPOE and MMSE algorithms

for the demodulation at theuth user with the above decision statistic(yR
u [i]).

3.3 Proposed Joint Prefiltering Model

In the prefilter design only the first order and second order statistics of the downlink channel

are assumed at the base station.
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3.3.1 MPOE based prefiltering

We first compute the conditional probability of error (PE|B[i]) conditioned on transmitted bit

vector sequenceB[i] = b[i],b[i− 1], . . ., whereb[i] = b1[i], b2[i], . . . , bU [i] is the vector of bits

transmitted at time instanti for all the users. Let us define mean of the channel coefficientas

γu[m][i] = E(hu[m][i]) (3.3)

and the second order statistics as

Ru[m1,m2][i1, i2] = E

[

hu[m1][i1]h
∗
u[m2][i2]

]

, R̃u[m1,m2][i1, i2] = E

[

hu[m1][i1]hu[m2][i2]

]

(3.4)

Cu[m1,m2][i1, i2] = E

[

(hu[m1][i1] − γu[m1][i1])(h
∗
u[m2][i2] − γ∗

u[m2][i2])

]

C̃u[m1,m2][i1, i2] = E

[

(hu[m1][i1] − γu[m1][i1])(hu[m2][i2] − γu[m2][i2])

] (3.5)

The mean (µyR
u |B[i]) of the decision statistic (yR

u [i]) is given by

µyR
u |B[i][i] = E(yR

u |B[i]) = E

[

ℜ
(

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]
Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2] s̃v[iN + k − m − l]

+
N−1
∑

k=0

sukηu[iN + k]

)]

(3.6)

By using the fact thatE[ℜ(a)] = ℜ(E[a]) for anya, E(ηu[iN + k]) = 0 and excepthu[m][j1],

ηu[iN + k] all other quantities are deterministic, the above equationcan be written as

µyR
u |B[i][i] = ℜ

[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

γu[m][j1]
Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2]s̃v[iN + k − m − l]

]

(3.7)

Without loss of generality we can assume that channelhu[.][.] and noiseηu[.] follow independent

distribution. Now by using the fact thatvar(a + b) = var(a) + var(b) whena and b are

independent, the conditional variance of the decision statistics (σ2
yR

u |B[i]) is given by

σ2
yR

u |B[i][i] = var

[

ℜ
(

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]
Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2]s̃v[iN + k − m − l]

)]

+ var

[

N−1
∑

k=0

sukηu[iN + k]

]

(3.8)
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Since the receiver noises are assumed to be zero meani.i.d AWGN with equal variance (i.e,σ)

and also the spreading coefficientssuk is either +1 or -1 and deterministic we can write,

var

[

N−1
∑

k=0

sukηu[iN + k]

]

= N
σ2

2
(3.9)

where we have used linearity property of variance operationover independent random variables.

Let

σ2
ỹR

u |B[i][i] = var

(

ℜ
[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]
Lz−1
∑

l=0

z[l][j2]

( U
∑

v=1

Avbv[j2] s̃v[iN + k − m − l]

)

])

(3.10)

This can be rewritten as

σ2
ỹR

u |B[i][i] = var

(

ℜ
[

N−1
∑

k=0

Lu
h
−1

∑

m=0

Lz−1
∑

l=0

U
∑

v=1

sukhu[m][j1]z[l][j2]Avbv[j2] s̃v[iN + k − m − l]

])

, var

(

ℜ
[

∑

k,m,l,v

hu[m][j1]fu[k,m, l, v]

])

(3.11)

wherefu[k,m, l, v] = sukz[l][j2]Avbv[j2] s̃v[iN + k − m − l], the indicesj1, j2 are given in

(3.2) and the sum
∑

k,m,l,v =
∑N−1

k=0

∑Lu
h
−1

m=0

∑Lz−1
l=0

∑U
v=1. By using the fact thatvar(a) =

E[a − E(a)]2 for anya andfu[k,m, l, v] is deterministic variable, (3.11) can be written as

σ2
ỹR

u |B[i][i] = E

[(

ℜ
[

∑

k,m,l,v

(hu[m][j1] − γu[m][j1])fu[k,m, l, v]

]

)2]

= E

[

ℜ
(

∑

k1,m1,l1,v1

(hu[m1][j11] − γu[m1][j11])fu[k1,m1, l1, v1]

)

.

.ℜ
(

∑

k2,m2,l2,v2

(hu[m2][j21] − γu[m2][j21])fu[k2,m2, l2, v2]

)

]

(3.12)

where,

j11 =

⌊

iN + k1 − m1

N

⌋

j21 =

⌊

iN + k2 − m2

N

⌋

(3.13)

For notational convenience let us assume

h1 = hu[m1][j11], γ1 = γu[m1][j11], f1 = fu[k1,m1, l1, v1]

h2 = hu[m2][j21], γ2 = γu[m2][j21], f2 = fu[k2,m2, l2, v2]
(3.14)

Since the channel coefficients of different users arei.i.d, from (3.12), (5.17) we can get

σ2
ỹR

u |B[i][i] = E

[

∑

k1,m1,l1,v1,k2,m2,l2,v2

ℜ[(h1 − γ1)f1]ℜ[(h2 − γ2)f2]

]

(3.15)

37



By using the fact thatℜ(a) = (a+a∗)
2

for any complex numbera, the above equation can be

rewritten as

σ2
ỹR

u |B[i][i] =
1

4
E

[

∑

k1,m1,l1,v1,k2,m2,l2,v2

(h1f1 − γ1f1 + h∗
1f

∗
1 − γ∗

1f
∗
1 )(h2f2 − γ2f2 + h∗

2f
∗
2 − γ∗

2f
∗
2 )

]

(3.16)

After some algebraic manipulations on the above equation weget

σ2
ỹR

u |B[i][i] =
1

4

∑

k1,m1,l1,v1,k2,m2,l2,v2

E

[

(h1 − γ1)(h2 − γ2)f1f2 + (h∗
1 − γ∗

1)(h2 − γ2)f
∗
1 f2

+ (h1 − γ1)(h
∗
2 − γ∗

2)f1f
∗
2 + (h∗

1 − γ∗
1)(h

∗
2 − γ∗

2)f
∗
1 f ∗

2

]

(3.17)

Sincef1 andf2 are deterministic, by using (3.5) in (3.17)

σ2
ỹR

u |B[i][i] =
1

4

[

∑

k1,m1,l1,v1,k2,m2,l2,v2

C̃uf1f2 + C̃∗
uf

∗
1 f ∗

2 + Cuf1f
∗
2 + C∗

uf
∗
1 f2

]

(3.18)

whereCu = C[m1,m2][j11, j21] andC̃u = C̃[m1,m2][j11, j21]. From (3.8), (3.9) and (3.18) the

conditional variance will become

σ2
yR

u |B[i][i] =
1

4

[

∑

k1,m1,l1,v1,k2,m2,l2,v2

C̃uf1f2 + C̃∗
uf

∗
1 f ∗

2 + Cuf1f
∗
2 + C∗

uf
∗
1 f2

]

+N
σ2

2
(3.19)

We have derived expressions for the conditional mean (3.7) and conditional variance (3.19) of

yR
u [i]. The conditional probability of error ofuth user as a function of above derived conditional

mean and conditional variance is [54]

PE|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.20)

and the corresponding probability of correct detection is

Q

(

−bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.21)

where we have used the fact that1 − Q(x) = Q(−x).

We would like to minimize the joint conditional probabilityof error for all users, namely,

PEJ [i] = 1 − P [yR
1 ∈ α1, y

R
2 ∈ α2, . . . , y

R
U ∈ αU ] (3.22)

38



whereP [yR
1 ∈ α1] is the probability of correct detection foruth user,αu is theuth user decision

region for symbol detection andJ denotes joint probability of error. We have dropped the

conditioning markers and indexi for notational ease. Since the noise vectors for all users are

independent, the joint conditional probability of error becomes

PEJ [i] = 1 − P [yR
1 ∈ α1]P [yR

2 ∈ α2] . . . P [yR
U ∈ αU ] (3.23)

Using (3.21), (3.23) and since we have assumed identical distribution assumption for noise,PEJ

can be written in closed form as

PEJ [i] = 1 −
U

∏

u=1

Q

(

−bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.24)

The prefilter coefficients (z[.][i]) of lengthLz for each bit intervali is calculated by minimizing

the above formulated probability of error. The proposed algorithm is adaptive in nature where

the prefilter coefficients are adapted continuously. Gradient search is the simplest adaptive algo-

rithm widely used. Therefore, we employ the gradient descent approach to adaptively calculate

the prefilter coefficients as follows

z[.][i + 1] = z[.][i] − µ
∂PEJ

∂z[.][i]
(3.25)

whereµ is an appropriately chosen step-size parameter, and in general it could be adaptive.

3.3.2 MMSE based prefiltering

By following the similar procedure of Section 2.4.2 we can write the cost function for MMSE

based algorithm as

ξ2
J |B =

U
∑

u=1

E

[

((yR
u )2 + b2

u − 2yR
u bu)|B

]

=
U

∑

u=1

[

E((yR
u )2|B) + 1 − 2buE(yR

u |B)

]

(3.26)

Sinceσ2
ỹR

u |B[i] = E((yR
u )2|B) when mean is0, the same procedure ofσ2

ỹR
u |B[i][i] can be followed

to deriveE((yR
u )2|B) except thatRu, R̃u will replaceCu, C̃u becauseCu, C̃u becomeRu, R̃u

when mean is0. Therefore,E((yR
u )2|B) can now be written as

E((yR
u )2|B) =

1

4

[

∑

k1,m1,l1,u1,k2,m2,l2,u2

R̃uf1f2 + R̃∗
uf

∗
1 f ∗

2 + Ruf1f
∗
2 + R∗

uf
∗
1 f2

]

(3.27)
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wherej11, j21 are given by (5.16) and̃Ru = R̃u[m1,m2][j11, j21], Ru = Ru[m1,m2][j11, j21].

From (3.26) and (3.27) the cost function can be written as

ξ2
J |B[i][i] =

U
∑

u=1

[

1

4

(

∑

k1,m1,l1,u1,k2,m2,l2,u2

R̃uf1f2+R̃∗
uf

∗
1 f ∗

2 +Ruf1f
∗
2 +R∗

uf
∗
1 f2

)

+1−2bu[i]µyR
u |B[i]

]

(3.28)

whereµyR
u |B[i] is given by (3.7). We follow the similar gradient descent approach as in (3.25) to

computez[.][i] by minimizingξ2
J |B[i][i].

Note that in the statistical channel algorithm, we only needknowledge of the first order

(γu[.][.]) and second order (Cu[., .][., .], . . . , Cu[., .][., .]) statistics of the channel coefficients in

designing the prefilter.

3.4 Proposed Individual Prefiltering Model

In this model the data for useru is prefiltered by a individual filter of lengthLu
z with a discrete

time impulse responsezu[.][i] as shown in Fig 2.2. The resulting prefiltered signals from all U

users are added and then transmitted from the base station. The prefilterszu[.][i], u = 1, . . . , U

are designed such that the probability of error for that particular user is minimum at the receiver.

The prefiltered signal at time instantn corresponding to useru is given by

xu[n] ⊗ zu[.][n] (3.29)

Now the total signal to be transmitted, is given by
U

∑

u=1

xu[n] ⊗ zu[.][n] (3.30)

If we carry out the similar formulation as in (2.2)-(2.9) by using (3.30) in place ofx[n], the

received signal at useru after matched filtering is

yu[i] =

[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]

Lu
z−1
∑

l=0

U
∑

v=1

zv[l][j2]Avbv[j2] s̃v[iN + k − m − l]

]

+
N−1
∑

k=0

sukηu[iN + k]

(3.31)

wherej1 andj2 are given by (3.2). The decision statistics isℜ(yu[i]) = yR
u [i].

3.4.1 MPOE based prefilter

The probability of error for a useru (P u
E|B[i][i]) can be formulated in the similar way as given

in (3.20), except the fact that the prefilter is different foreach user. By analyzing along the
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similar lines of (3.3)-(3.19) and by replacingyu[i] in (3.3)-(3.19) by (3.31), the conditional

mean (µyR
u |B[i]) and the conditional variance (σ2

yR
u |B[i]) can be written as

µyR
u |B[i][i] = ℜ

[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

γu[m][j1]

Lu
z−1
∑

l=0

U
∑

v=1

zv[l][j2]Avbv[j2] s̃v[iN + k − m − l]

]

(3.32)

σ2
yR

u |B[i][i] = var

(

ℜ
[

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]

Lu
z−1
∑

l=0

( U
∑

v=1

zv[l][j2]Avbv[j2] s̃v[iN + k − m − l]

)

])

+N
σ2

2

=
1

4

[

∑

k1,m1,l1,v1,k2,m2,l2,v2

C̃uf1f2 + C̃∗
uf

∗
1 f ∗

2 + Cuf1f
∗
2 + C∗

uf
∗
1 f2

]

+N
σ2

2

(3.33)

whereCu = C[m1,m2][j11, j21], C̃u = C̃[m1,m2][j11, j21] and

f1 = fu[k1,m1, l1, v1], f2 = fu[k2,m2, l2, v2], fu[k,m, l, v] = sukzv[l][j2]Avbv[j2] s̃v[iN+k−m−l]

(3.34)

Note thatfu[k,m, l, v] of individual prefiltering is different from the corresponding joint pre-

filtering. The cost function to be minimized to determine theprefilter coefficients (zu[.][n]) can

be formulated, by using the above derived conditional mean and conditional variance as follows

P u
E|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.35)

Note that the probability of error at the receiver is calculated after the signal is prefiltered and

transmitted through the multipath channel as shown in Fig 2.2. Therefore, the probability of

error at the receiver for useru is function of all users prefiltering coefficients.

Intuitively we can see that all other users’ prefilter coefficients influence the probability of

error of a particular user by disturbing the orthogonality among the spreading codes as shown

in (3.32) and (3.33). Hence, it is important to optimize the probability of error of a particular

user by taking into account the effect caused in the receivedsignal due to all other prefilter

coefficients. Now the prefilter of lengthLu
z at time instanti + 1 for useru is calculated using

gradient search method as follows

zu[.][i + 1] = zu[.][i] − µ
∂P u

E

∂zu[.][i]
, u ∈ {1, 2, . . . , U} (3.36)
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3.4.2 MMSE based prefiltering

By following the same arguments as that of Section 3.3.2 and Section 3.4.1 the MMSE cost

function for useru is

ξ2
u|B[i][i] =

U
∑

u=1

(

1

4

[

∑

k1,m1,l1,u1,k2,m2,l2,u2

R̃uf1f2+R̃∗
uf

∗
1 f ∗

2 +Ruf1f
∗
2 +R∗

uf
∗
1 f2

]

+1−2buµyR
u |B[i][i]

)

(3.37)

wheref1, f2 are given in (3.34) and̃Ru = R̃u[m1,m2][j11, j21], Ru = Ru[m1,m2][j11, j21].

We follow the similar gradient descent approach as in (3.36)to computezu[.][i] by minimizing

ξ2
u|B[i][i].

3.5 MRT Beamforming for Joint Prefilter

In MRT beamforming each user data will be transmitted through M paths withM different

weights as shown in Fig 2.3. Note that in Fig 2.3 prefilter (z[.][.]) is common for all users

and all paths. By following the same procedure in (2.33) afterchip rate samplingxu[n] can be

written as

xu[n] = Aubu[nN ]s̃u[n] (3.38)

Theuth user data atmth path will be multiplied by maximum ratio weightwum. The weights

wum will be calculated at every bit interval and assumed to be constant over one bit interval

because channel is constant over one bit interval. Now the signal transmitted for useru at mth

path is

x′
um[n] = Aubu[nN ]s̃u[n]wum[n] (3.39)

The beamforming weights are concatenated for useru in vector format as

wu[i] =
[

wu1[i], wu2[i], . . . , wuM [i]
]T

(3.40)

Assume that the wireless channel betweenM transmitter beamforming antennas and a mobile

receiver antenna for useru is hu[i] which can be represented as

hu[i] =
[

hu1[i], hu2[i], . . . , huM [i]
]T

(3.41)

wherehum[i], (u = 1, . . . , U, m = 1, . . . ,M ) is the channel coefficient betweenmth beam-

forming antenna ofuth user and receiver antenna atith bit interval.
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Assume that the transmit beamforming vector for useru is wu, where the time index is

dropped for notational convenience. The average SNR at the receiver of useru is given by

wH
u E(huh

H
u )wu. Now, among all possible unit-norm transmit beamforming vectorswu, the

one which maximizes the average received SNR is the dominanteigenvector ofE(huh
H
u ). The

total signal transmitted for allU users after prefiltering is

x′[n] =

[ U
∑

u=1

M
∑

m=1

Aubu[nN ]s̃u[n]wum[n]

]

⊗z[.][n] (3.42)

By using the linearity property of convolution the above equation can be written as

x′[n] =
U

∑

u=1

(

Aubu[nN ]s̃u[n]wu1[n] ⊗ z[.][n]
)

+
U

∑

u=1

(

Aubu[nN ]s̃u[n]wu2[n] ⊗ z[.][n]
)

+ . . .

+
U

∑

u=1

(

Aubu[nN ]s̃u[n]wuM [n] ⊗ z[.][n]
)

(3.43)

Now the signal transmitted from MRT beamforming antennam is

x′′
m[n] =

U
∑

u=1

(

Aubu[nN ]s̃u[n]wum[n] ⊗ z[.][n]
)

(3.44)

The next step is to find the prefilter coefficients (z[.][i]).

Let γum is mean,Cum, C̃um, Rum andR̃um are second order statistics ofhum[i]. Then

γum[i] = E(hum[i]) (3.45)

Cum1m2 [i1, i2] = E

[

(hum1 [i1] − γum1 [i1])(h
∗
um2

[i2] − γ∗
um2

[i2])

]

C̃um1m2 [i1, i2] = E

[

(hum1 [i1] − γum1 [i1])(hum2 [i2] − γum2 [i2])

]

(3.46)

Rum1m2 [i1, i2] = E

[

hum1 [i1]h
∗
um2

[i2]

]

, R̃um1m2 [i1, i2] = E

[

hum1 [i1]hum2 [i2]

]

(3.47)

The x[n] in (2.6) is replaced with (3.42) and follow the same steps of (2.7)-(2.9) to find the

received signal at the receiver ofuth user (yu[i])

yu[i] =
N−1
∑

k=0

suk

Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

M
∑

m=1

Avbv[j2]s̃v[iN + k − l]wvm[j2]hum[j1]

+
N−1
∑

k=0

sukηu[iN + k] (3.48)

where, sinceLu
h = 1 j1 andj2 are given by

j1 =

⌊

iN + k

N

⌋

, j2 =

⌊

iN + k − l

N

⌋

(3.49)
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3.5.1 MRT beamforming for MPOE joint prefilter

By following the similar steps of (3.3)-(3.19) and by using (3.48) in place ofyu[i] the conditional

mean and variance of the decision statistics are given by

µyR
u |B[i][i] = E(yR

u |B[i]) = ℜ
[

N−1
∑

k=0

suk

Lz−1
∑

l=0

z[l][j2]

( U
∑

v=1

M
∑

m=1

Avbv[j2]s̃v[iN + k − l].

.wvm[j2]γum[j1]

)

]

(3.50)

wherej1 andj2 are given in (3.49).

σ2
yR

u |B[i][i] =
1

4

[

∑

k1,l1,v1,m1,
k2,l2,v2,m2

C̃um1m2f1f2 + C̃∗
um1m2

f ∗
1 f ∗

2 + Cum1m2f1f
∗
2 + C∗

um1m2
f ∗

1 f2

]

+N
σ2

2
(3.51)

where

Cum1m2 = Cum1m2 [j11, j21], C̃um1m2 = C̃um1m2 [j11, j21] (3.52)

j11 =

⌊

iN + k1

N

⌋

, j21 =

⌊

iN + k2

N

⌋

(3.53)

f1 = fu[k1, l1, v1,m1]

f2 = fu[k2, l2, v2,m2]

fu[k, l, v,m] = sukz[l][j2]Avbv[j2]s̃v[iN + k − 1]wvm[j2] (3.54)

For k1, l1, v1, m1, k2, l2, v2, m2 (3.11) can be revisited. Now the probability of error at

particular bit periodi for mth beamforming path of useru as a function of conditional mean

and variance is

PE|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.55)

The joint probability of errorPEj can be determined by using the similar procedure of (3.24).

PEJ can now be used as cost function in (3.25) to determine the prefilter coefficients.
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3.5.2 MRT beamforming for MMSE joint prefilter

The same procedure of Section 3.3.2 is followed by using (3.48) in place ofyu[i]. The MMSE

cost function is

ξ2
J |B[i][i] =

U
∑

u=1

E

[

(yR
u )2 + b2

u − 2yR
u bu)|B

]

=
U

∑

u=1

[

E((yR
u )|B)2 + 1 − 2buE(yR

u |B)

]

=
U

∑

u=1

[

1

4

(

∑

k1,m1,l1,u1,
k2,m2,l2,u2

R̃um1m2f1f2 + R̃∗
um1m2

f ∗
1 f ∗

2 + Rum1m2f1f
∗
2 + R∗

um1m2
f ∗

1 f2

)

+1

− 2buµyR
u |B[i][i]

]

(3.56)

wherej11, j21 are same as in (3.53),µyR
u |B[i] is same as in (3.50),f1, f2 are given in (3.54) and

Rum1m2 = Rum1m2 [j11, j21], R̃um1m2 = R̃um1m2 [j11, j21]. The above formulated mean square

error will be optimized by using (3.25) to determine the prefilter coefficients.

3.6 MRT Beamforming for Individual Prefilter

Each user is assumed to haveM beamforming weights with an individual prefilter for each

user as shown in Fig 2.4. Note that in Fig 2.4 the prefilter (zu[.][.]) is common for allM

beamforming antennas of useru. By following the same steps of (3.42)-(3.44), the signal

transmitted from beamforming antennam is

x′′
m[n] =

U
∑

u=1

(

Aubu[nN ]s̃u[n]wum[n] ⊗ zu[.][n]
)

(3.57)

The individual prefilter weights can be derived by followingsimilar analysis in Sections 3.4 and

3.5.1. By following the similar steps of (2.7)-(2.9) the received signal after matched filtering is

yu[i] =
N−1
∑

k=0

suk

Lu
z−1
∑

l=0

U
∑

v=1

M
∑

m=1

zv[l][j2]Avbv[j2]s̃v[iN + k − l]wvm[j2]hum[j1]

+
N−1
∑

k=0

sukηu[iN + k] (3.58)

3.6.1 MRT beamforming for MPOE individual prefilter

The similar analysis of (3.3)-(3.19) can be followed by substituting (3.58) in place ofyu[i] to

calculate the conditional mean (µyR
u |B[i]) and the conditional variance (σ2

ỹR
u |B[i][i]). The condi-
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tional mean and variance are given by

µyR
u |B[i][i] = E(yR

u |B[i])

= ℜ
[

N−1
∑

k=0

suk

Lu
z−1
∑

l=0

M
∑

m=1

U
∑

v=1

zv[l][j2]Avbv[j2]s̃v[iN + k − l].

.wvm[j2]γum[j1]

]

(3.59)

σ2
yR

u |B[i][i] =
1

4

[

∑

k1,l1,v1,m1,
k2,l2,v2,m2

C̃um1m2f1f2 + C̃∗
um1m2

f ∗
1 f ∗

2 + Cum1m2f1f
∗
2 + C∗

um1m2
f ∗

1 f2

]

+N
σ2

2
(3.60)

wheref1 = fu[k1, l1, v1,m1], f2 = fu[k2, 1, l2, v2,m2] and

fu[k, l, v,m] = sukzv[l][j2]Avbv[j2]s̃v[iN + k − 1 − l]wvm[j2] (3.61)

Now the probability of error at particular instant of timei for uth user’s data is

P u
E|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.62)

P u
E|B[i] can now be used as cost function in gradient search of (3.36) to determine the MPOE

prefilter coefficients.

3.6.2 MRT beamforming for MMSE individual prefilter

The approach similar to that of Section 3.4.2 is adopted withthe yu[i] of (3.58). The MMSE

cost function is given by

ξ2
u|B[i][i] =

U
∑

u=1

(

1

4

[

∑

k1,m1,l1,u1,
k2,m2,l2,u2

R̃um1m2f1f2 + R̃∗
um1m2

f ∗
1 f ∗

2 + Rum1m2f1f
∗
2 + R∗

um1m2
f ∗

1 f2

]

+1

− 2buµyR
u |B[i][i]

]

)

(3.63)

wherej11, j21 are given in (3.53),µyR
u |B[i][i] is given in (3.59) andf1, f2 are given in (3.61). The

above formulated mean square error will be the cost functionin (3.36) to determine the MMSE

prefilter weights.

The prefilter weights are normalized at every bit period in both the MPOE and MMSE

algorithms in all proposed models to reduce the effect of power boosting.
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3.7 Complexity Analysis

3.7.1 Complexity of the proposed MPOE individual prefilter algorithm

The probability of error expression for individual prefiltering model is

P u
E|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.64)

The filter updation equation is given by

zu[.][i + 1] = zu[.][i] − µ
∂P u

E

∂zu[.][i]
, u ∈ {1, 2, . . . , U} (3.65)

Using Leibniz integral rule we can write

∂P u
E

∂zu[.][i]
= − 1√

2π
exp

(

−µ2
yR

u |B[i]

2σ2
yR

u |B[i]
[i]

)∂

(

µ
yR
u |B[i]

σ
yR
u |B[i]

[i]

)

∂zu[.][i]
(3.66)

As the exponential withp digits of precision requires just O(p1/2) complexity [55], the complex-

ity in finding filter weights essentially lies in determiningthe values ofµyR
u |B[i] andσ2

yR
u |B[i][i].

Complexity in determining µyR
u |B[i]

The received signal in (3.31) is expanded in (3.78) to distinguish the signal component and

interference component. As number of users increases interference term in (3.78) approaches

Gaussian. Sincebu[j2] is either+1 or−1 and if we assumeAu = 1, ∀ u the complexity involved

in determiningµyR
u |B[i] of (3.78) is2LzLh flops. If we include the complexity in determining the

index termj1 andj2 the total complexity will be20LzLh multiplications and10LzLh additions

where we have assumed division takes4 flops [54]. Therefore, the total complexity involved in

determiningµyR
u |B[i] is O(LzLh).

Complexity in determining σ2
yR

u |B[i][i]

From (3.19)

σ2
yR

u |B[i][i] =
1

4

[

N−1
∑

k1=0

Lu
h
−1

∑

m1=0

Lz−1
∑

l1=0

U
∑

v1=1

N−1
∑

k2=0

Lu
h
−1

∑

m2=0

Lz−1
∑

l2=0

U
∑

v2=1

(

C̃uf1f2 + C̃∗
uf

∗
1 f ∗

2 + Cuf1f
∗
2 + C∗

uf
∗
1 f2

)

]

+ N
σ2

2

(3.67)
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As bu[j2], suk are either+1 or−1 and if we assumeAu = 1, ∀ u thenf1 andf2 can be directly

determined. Due to the above fact the summations
∑N−1

k1=0,
∑N−1

k2=0 in (3.67) will not constitute

any additional complexity. However, the terms
∑U

v1=1 and
∑U

v2=1 will introduce additional

complexity sincef1, f2 are functions ofzu[.][.] as derived in (3.34). Furthermore, the second

order statistics of the channel coefficientsCu, C∗
u, C̃u, C̃∗

u are already available. Therefore,

from (3.67) the total number of multiplications involved isO(U2L2
hL

2
z) and the total number of

additions is O(U2L2
hL

2
z). We haveU such prefilters. However, sinceγu[.][.], Cu, C∗

u, C̃u, C̃∗
u

are given, we can see in (3.32) and (3.33) that the only component which is specific to useru is

suk which is either+1 or −1. Therefore, with little modification the function which calculates

prefilter coefficients of useru can be used to calculate the prefilter coefficients of all other users.

Hence, the total number of operations involved in calculating all the prefilter coefficients

in the case of MPOE prefiltering is O(U2L2
hL

2
z). Similar complexity is involved in MMSE based

prefiltering models.

3.7.2 Complexity of the proposed MPOE joint prefilter algorithm

The joint probability of error is

PEJ [i] = 1 −
U

∏

u=1

Q

(

−bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(3.68)

Unlike individual prefiltering, in joint prefilteringf1, f2 are functions of common prefilterz[.][.].

Therefore, by following the similar arguments of Section 3.7.1 with newf1 and f2 we can

conclude that the complexity involved in determining gradient of singleQ(.) term in (3.68) is

O(L2
hL

2
z). We haveU such terms in (3.68). Therefore, the total complexity in determining the

prefilter coefficientz[.][.] is O(U2L2
hL

2
z).

3.7.3 Complexity of other precoding algorithms

The total number of operations required in determining the cost function in the case of transmitter-

based inverse filter systems proposed in [16] is O(U2) (reference: equation (10) of [16]) and the

number of operations required in calculating the prefilter coefficients is O(U3) (reference: equa-

tion (11) of [16]). Here we have assumed multiplication of two matrices of equal sizeN requires

N2 operations and matrix inverse of matrix of sizeN requiresN3 operations. Similar complex-

ity is required in case of Tomlinson-Harashima Precoding filter proposed in [52] though it is
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single user system. The transmitter precoding system proposed in [30] requires Cholesky fac-

torization ofL × L matrix whereL is the CDMA code gain. Therefore, the total complexity in

the algorithm proposed in [30] isL4. Note that in case of orthogonal CDMA system the coding

gain is directly proportional to number of users. Therefore, as the number of users increases the

complexity increases in power of four in [30].

Therefore, we can conclude that our proposed algorithm has much lower complexity com-

pared to other existing algorithms and scales very well withrespect to number of users.

3.8 Simulation Results

Extensive simulations have been carried out to calculate the filter coefficients and the corre-

sponding BER for various scenarios for both MPOE and MMSE prefilters. To demonstrate

the performance of the proposed algorithms BPSK modulation is considered with bits -1 and

+1 being equi-probable. The spreading codes are assumed to be orthogonal and the spreading

gain of N =32 is used for the simulations. Root raised cosine chip waveformwith the roll off

factor ofβ = 0.1 is considered and the number of users is taken to beU = 16 except for the

graph in which the number of users itself is varying. The results were averaged over at least

1000 independent channels. The channel coefficients were complex Gaussian with both real

and imaginary parts arei.i.d Gaussian distributed. FIR channel filter lengthLu
h is taken to be

4 and the prefilter lengthLz is considered to be5 for all the models. We have carried out the

optimization using numerical gradient descent approach for simulation purpose.

3.8.1 BER performance of joint and individual prefiltering

The performance of the proposed prefiltering algorithms arecompared with that of completely

known channel prefiltering model (complete CSI model) proposed in [48, 49] and the system

without prefiltering. BER performance for various SNRs is shown in Fig 3.1. Lower bound on

individual prefiltering probability of error which is derived in Appendix I, is also plotted in Fig

3.1. From Fig 3.1 it is clear that the proposed prefiltering models outperform the system without

prefiltering. We can also see that the MPOE algorithms perform significantly better than that of

the respective MMSE algorithms. At low SNRs both MPOE and MMSEperforms very closely.
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Figure 3.1: Performance of MPOE and MMSE transmitter prefiltering for various SNRs
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Figure 3.2: Performance of MPOE and MMSE transmitter prefiltering for various SINRs
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This is because at low SNRs

σ2
yR

u |B[i][i] = var

[

ℜ
(

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]
Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2]s̃v[iN + k − m − l]

)]

+N
σ2

2

≈ N
σ2

2

(3.69)

i.e. at low SNRs, the channel almost behaves like AWGN channel hence, the similar perfor-

mance [25]. However, as the SNR increases channel variance term starts dominating the noise

variance term in (3.69) hence, there is a significant performance gain at high SNRs in MPOE

systems. Furthermore, from Fig 3.1 we can observe that statistical channel algorithms perform

close to that of the corresponding fully known channel algorithms.

From Fig 3.1, we can also infer that individual prefiltering performs much better than that

of corresponding joint prefiltering systems. This is because in joint prefiltering model there

is one common prefilter for all users hence, some of the users channel may not get prefiltered

properly. However, in individual prefiltering model we haveU number of prefilters. Hence,

effectively the length of the individual prefilter isU times that of corresponding joint prefilter

and consequently this compensates for the MAI as well as ISI in a better way.

The BER performance of proposed algorithms for various SINRs (Signal to Interference

and Noise Ratio) is also analyzed and the results are shown in Fig 3.2. Average SINR is cal-

culated at each SNR (SNR varies from5 dB to 20 dB to calculate SINR) using the approach

presented in Appendix III. In Fig 3.2 we can observe that the average SINRs are negative (in

dB) at low SNRs since the average SINR at the receiver is less in magnitude in multiuser inter-

ference environment. At high SINR the curves become steep. This is due to diminishing noise

variance at high SINR (due to increase in SNR) and hence, interference term dominates which

is more or less constant.

It is interesting to observe the performance of the proposedmodels for various spreading

code correlation coefficients (correlation coefficientρ is defined in (3.77)). For a givenρ all 16

users’ spreading codes are generated such that each spreading code has correlation coefficient

of ρ with all other codes. We have varied theρ value from0.0625 to 0.25 and generated all

the users’ spreading codes for eachρ. With thus generated spreading codes we have calculated

the corresponding BER for a fixed SNR. Fig 3.3 shows the BER performance for variousρ and

fixed SNR of20 dB for both joint and individual prefiltering model. From Fig 3.3, we can

observe that as theρ increases the performances slightly reduces due to the increasing effect of
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Figure 3.3: Performance of MPOE and MMSE prefilters for variousρ and fixed SNR of20 dB

MAI. The impact is minimal because the prefilter is optimizedto cater for this effect.

3.8.2 Proposed prefilters’ performance with higher order modulations

Using the procedure explained in Appendix IV the probability of errors are formulated for

higher modulations such as QPSK, 16 QAM and 64 QAM. With thus formulated probability

of error MPOE prefilters (both joint and individual) are designed and their performances are

plotted for various SNRs in Fig 3.4. We can observe from Fig 3.4that BER performance reduces

when the modulation order increases for a fixed transmissionpower. This is because in higher

order modulations the constellation size reduces and also the detection region. Therefore, the

BER performance reduces due to increase in detection error asthe detection region reduces.

3.8.3 Performance comparison of various prefiltering algorithms

In Fig 3.5 we compare the MPOE individual filter performance with that of “transmitter-based

inverse filters (INVF)” proposed in [16] and with “optimizedtransmitter precoding system

(OTPS)” proposed in [30]. This plot shows the average BER as function of SNR in dB. The
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results were obtained with number of users equal to16. From this figure we can see that the

MPOE prefilter outperforms the INVF prefilter as well as OTPS prefilters. This is because both

“INVF” and “OTPS” are based on MMSE criterion and also both ofthem suffer from stability

problem associated with the matrix inverse operations in determining prefilter coefficients.

3.8.4 Varying number of users

The effect of increasing the number of users for a fixed SNR of20 dB is shown in Fig 3.6. From

Fig 3.6 we can observe that as the number of users increases the BER performance reduces.

This is because as the number of users increases, the interference experienced by the system

will also increase. We can also observe that the MPOE prefilter outperforms the corresponding

MMSE prefilter when the number of users increases to large extend. This is because, though

the interference increases with number of users MPOE prefilter still minimizes the probability

of error.
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3.8.5 MRT beamforming results and discussions

The BER performance of the proposed system models with MRT beamforming is plotted. Com-

parisons are made with known channel models. Results for varying SNRs and SINRs are shown

in Fig 3.7 and Fig 3.8 respectively. Single and3 beamforming antennas are assumed for each

user at the base station. Since it is shown that MPOE outperforms MMSE at all SNRs, only

MPOE model is considered for MRT beamforming to visualize the plots better. From Fig 3.1,

Fig 3.2, Fig 3.7 and Fig 3.8 one can observe that BER performance of MPOE prefilter with

beamforming is better than that of MPOE prefilter without beamforming. This can be justified

as follows: since the weights are proportional to dominant eigen vector ofE(hhH), weights

will be matched to the channel coefficients itself (approximately), hence multipath effect will

be better compensated.

Fig 3.8 also shows that the performance of statistical channel MRT beamforming will

be slightly inferior to that of known channel beamforming. This is because the beamforming

weights are calculated by maximizing the average SNR at the receiver in the case of statistical

channel model, but instantaneous SNR is maximized to calculate the beamforming weights in

known channel case. It is intuitively known that SNR will be maximum by maximizing instan-

taneous SNR than by maximizing the average SNR. Hence, the known channel beamforming

performs better than that of statistical channel beamforming. Moreover, as the diversity or-

der increases (number of beamforming antennae) the difference in BER performance between

known channel and statistical reduces. This is due to beamforming diversity which combat the

channel effect in statistical channel model. But the cost paid in increasing the beamforming

weights is transmitter complexity. Though the number of transmitter antennas are increased for

each user, MRT beamforming will not increase the transmission power at base station since the

antennae weights are equal to maximum eigen vector which hasunit energy.

3.9 Conclusion

In this chapter two system models have been proposed for MPOEand MMSE based prefilterings

for DS-CDMA systems by assuming only the first order and secondorder statistical parameters

of channel at the base station transmitter. Simulation results show that the performance of the

statistical channel model closely matches with the system where complete channel knowledge

is assumed. Furthermore, MPOE prefilters are superior to that of MMSE prefilters in terms of
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BER performance and individual prefilters are superior to that of corresponding joint prefilters.

The effect of MAI is also well analyzed by varying the number of users and the correlation

coefficients of the spreading codes. Also the performance ofthe proposed MPOE/MMSE pre-

filterings are further enhanced by employing MRT beamforming. Therefore, we conclude that

prefiltering based on statistical knowledge of the channel has high potential for practical imple-

mentations.
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Appendix I

Lower bound on individual probability of error

P u
E|B[i][i] = Q
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(3.71)

Since chip sequence is having unit energy, prefilter coefficients are normalized to unit energy

and if we assumeAu = 1 ∀ u and also perfect synchronization then the mean of the received

signal is

µyR
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(3.72)

From (3.8) and (3.19) the variance of the received signal is

σ2
yR

u |B[i][i] = var

[

ℜ
(

N−1
∑

k=0

suk

Lu
h
−1

∑

m=0

hu[m][j1]
Lz−1
∑

l=0

U
∑

v=1

Avbv[j2]zv[l][j2]s̃v[iN + k − m − l]

)]

+N
σ2

2

≥ N
σ2

2

(3.73)

The above inequality is from the fact thatvar(.) ≥ 0. From (3.70), (5.29) and (5.30) the lower

bound on individual probability of error can be written as

P u
E|B[i][i] ≥ Q

(
∑Lu

h
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∣
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∣
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(Nσ2/2)

)

(3.74)

It is interesting to note that the lower bound is function of number of multipaths and SNR.
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Appendix II

Lower bound on joint probability of error

The joint probability of error is
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is an interesting observation because the lower bound for joint probability error is very similar

to that of individual probability of error.

Appendix III

Determination of SINR and correlation coefficient

From (5.5) the received signal is
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whereρ is the correlation coefficient between spreading codes which is given by
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From (3.76) and (3.77)

yu[i] ≈
Lu

h
−1

∑

m=0

hu[m][j1]
Lz−1
∑

l=0

z[l][j2]
U

∑

v=1

Avbv[j2]+I.(U −1).ρ+η = S+I(MAI+ISI) +η (3.78)

whereI is the interference factor due to amplitude gain of the interfering users,S is the signal

component,I(MAI+ISI) is the interference component andη is the noise term. Now the SINR is

given by

SINR =
S

I(MAI+ISI) + η
(3.79)

(3.79) gives instantaneous SINR for useru. However, instantaneous SINR has some random

quantity (hu[m][j1]) associated with that and also theρ is altered by the randomhu[m][j1] while

signals propagate through the channel. Therefore, we work with average SINR over longer bit

period.
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Chapter 4

Route Discovery and Route Resilience for

Multihop Cellular Networks

This chapter proposes a cross-layer routing protocol and route resilience scheme for CDMA

based Multihop Cellular Network (MCN). MCN is defined as one in which the mobile node

may communicate with base station or with other mobile nodesby relaying its communication

through one or more neighbouring mobile nodes. This is in contrast to most deployments to-

day where there is only a single-hop access to the base station. In this chapter in designing

the routing protocol for MCN, multiple constraints are imposed on intermediate relay node se-

lection and end-to-end path selection. The constraints on relay nodes include willingness for

cooperation,sufficient neighbourhood connectivityand the level of interference offered on the

path. Path constraints include end-to-end throughput and end-to-end delay. A facile incentive

mechanism is presented to motivate the cooperation betweennodes in call forwarding. In addi-

tion, we present a route resilience scheme in the event of dynamic call dropping. In particular,

a fast neighbour detection scheme for route resilience is proposed. Instead of using periodic

HELLO messages as in traditional ad-hoc routing, the proposed neighbour detection scheme

adopts explicit handshake mechanism to reduce neighbour detection latency. We conclude the

chapter by demonstrating the superior performance of the proposed routing and route resilience

scheme compared with the other well known routing algorithms.
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4.1 Introduction

Conventional cellular network uses a centralized networking system which has fixed infrastruc-

ture (base stations and wide-area communication), with themobile node accessing the infras-

tructure in a single radio hop. In contrast, ad-hoc wirelessnetworks consist of fully distributed

wireless nodes with no dependency on fixed infrastructure. The communication within ad-hoc

networks is generally a path which is formed of multiple radio hops. Recent studies [56–58]

have shown that the use of multihop relaying in conventionalcellular networks has several ad-

vantages such as capacity improvements, lower transmission power requirement and effective

spectral re-use. It can also be of instrumental in time critical applications [59, 60]. Such a net-

work has come to be termed as Multihop Cellular Network (MCN). In MCNs, a fundamental

issue we investigate is that of finding a multihop routing path and route resilience in order to

achieve satisfactory end-to-end performance. A cross layer unified routing scheme is proposed

with multiple metrics in this chapter.

An established routing path in an MCN might become unusable atany time due to node

mobility, energy drainage of relay nodes or poor channel quality. One straightforward solution

to this problem is to repeat the normal route discovery procedure to find an alternative path.

However, this solution could incur a large traffic overhead,but more importantly adds latency

in re-establishing the communication path for a connectionthat is in progress. To solve this

problem, we propose an effective on-the-fly route resilience scheme for route maintenance along

with a cross layer routing protocol.

The major contributions of this chapter include:

1. A unified cross layer routing protocol is proposed with multiple constraints for CDMA

MCNs. Full cooperation is not assumed in call forwarding and therefore present a facile

incentive mechanism to motivate cooperation between mobile nodes acting as relays. In

the routing protocol design, multiple constraints are imposed on intermediate relay node

selection and end-to-end path selection. The relay node constraints include cooperation,

sufficient neighbourhood connectivityand level of interference. Path constraints for route

selection are end-to-end throughput and end-to-end delay.

The proposed routing protocol follows a cross-layer designbetween network layer, MAC

layer and physical layer. The end-to-end throughput is defined using physical layer pa-

rameters: received power, signal to interference and noiseratio (SINR) and probability
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of successful packet delivery. The interference metric involves MAC layer and physical

layer parameters, and these metrics are used in the network layer for routing protocol

design.

2. A route resilience scheme is introduced in the event of dynamic call dropping. If we

assume a path consists of multiple hops or links, then dynamic call dropping occurs when

one of the links breaks and the path is no longer usable. Link breakage may be caused

by node mobility, poor channel quality (i.e. interference)or energy drainage of a node,

resulting in a non-forwarding node. In the proposed resilience scheme we bypass the

non-forwarding node and route the call via one of the cooperative neighbours such that

all the routing criteria are satisfied.

3. A fast neighbour detection mechanism is proposed for the route resilience scheme. The

neighbour detection mechanism is localized and carried outin a distributed fashion at

each node. Instead of using periodic HELLO messages, the proposed scheme adopts an

explicit handshake mechanism to reduce the latency in neighbour detection.

4.2 Related Work

An MCN architecture was proposed in [56] and evaluated in [57]where shortest-path-first al-

gorithm was adopted in route selection. An integrated Cellular and Ad-hoc Relaying (iCAR)

system was presented in [58] with a set of fixed relays and fixedroutes through these relays.

A routing protocol for hybrid networks based on a spanning-tree was proposed in [61], and

selection of relay-nodes based on finding a route that has thesmallest bottleneck was presented

in [62]. A charging and rewarding policy in routing for MCNs was proposed in [63, 64] where

Dynamic Source Routing (DSR) is used as the routing protocol. Aroute selection algorithm

based on call status, signal strength, battery power and round-trip time (RTT) was proposed

in [59]. There are a number of power-aware ad-hoc routing protocols which use energy as the

critical parameters [65–70]. Recently there has been much work on route maintenance and

route recovery for ad-hoc networks. Route maintenance usinglocal route recovery techniques

was proposed in [71] and a power-aware route maintenance protocol enabled through balancing

power dissipation among nodes was proposed in [72]. A route recovery scheme based on an

any-cast policy was presented in [73] and a fast route recovery method for a cellular Internet
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Figure 4.1: MCN hybrid architecture

Protocol (IP) access network was given in [74].

Our proposed cross-layer routing protocol introduces a newdimension to the work listed

above. The resilience functionality our approach providesis similar to that proposed by Lee

et al [75]. However, whilst Leeet al’s work assumesboth full cooperation from all nodes and

relies on single-hop broadcast techniques, this chapter analyzes the incentives for cooperation

and uses a fast neighbour detection technique.

4.3 Hybrid Architecture for MCN

There could be three possible modes of operation for MCNs as shown in Fig 4.1.

1. Ad-hoc mode: The source-to-destination call is multihopin nature without using any

infrastructure (i.e. base stations). However, the centralized base stations will have knowl-

edge about the on-going communications through control channels as explained in Sec-

tion 4.4.
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2. Infrastructural mode: As in a conventional cellular modeof operation, all communication

is single-hop. The major concerns about the infrastructural mode include limited user

capacity, higher transmission power and communication failures when the mobile user is

in a ‘dead spot’ or out of the coverage area.

3. Hybrid mode: This can be viewed as a combination of infrastructural and ad-hoc mode.

This mode would be used where the source and destination nodes are in different cells

so the source-to-destination path involves base station(s). The communication, from the

source node to its base station and/or the destination node to its base station, is multihop.

In the rest of the chapter, we assume a scenario with a single cell that uses the ad-hoc mode of

operation as default.

4.4 Assumptions and Proposed Ad-hoc Mode MCN Archi-

tecture

In this chapter, we assume that mobile nodes are distributedaccording to a two-dimensional

uniform point process. The base station and the nodes use CDMAas the access method for

their interconnections [76]. Perfect power control is usedin this CDMA network so that all the

transmitters use just the transmission power level that is required to let the receiver decode the

signal with proper quality. However, the nodes transmit HELLO messages with fixed power

pHELLO for neighbour detection. Nodes are assumed not to transmit and receive in the same

time slot to avoid primary collision at nodes [77]. The propagation channel between the mobile

nodes are flat fading andi.i.d Rayleigh.

The logical channel is divided into Control Channel (CCH) and Traffic Channel (TCH).

CCH handles only signaling, while TCH carries speech and data traffic. Control messages,

containing the source ID and the destination ID are exchanged between the nodes and base

station using a CCH. Control messages are routed based on Dijkstra’s algorithm, as they are

very short and transmitted, only at the time of call initialization. TCHs follow the unified cross

layer routing scheme proposed in Section 4.5. Fig 4.2 shows such an architecture with dashed

lines for control messages and continuous lines for voice/data communications.
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4.5 Proposed Cross Layer Routing Protocol

In our proposal, when a node wants to initiate transmission to a destination node, it will trans-

mit a call initiation request orRoute Request(RReq) packet containing the ID of the source and

destination to its base station over a CCH. The base station uses the strategy proposed in this

section to compute a route between the source node and the destination node. This route infor-

mation is sent back to the source using aRoute Reply(RRep) packet over the CCH. The source

node then inserts the route information into its data packets and transmits these data packets.

The constraints used in the proposed routing protocol are divided intonode constraints

andpath constraints. The constraints considered for relay node selection are:

1. Cooperation: All of the selected relay nodes must cooperate to forward the call.

2. Sufficient neighbourhood connectivity: The selected relay nodes must have a sufficient

number of connected neighbours in order to provide resilience.

3. Interference: Interference caused in the networks due tocommunication between any two

relay nodes in the path must be below certain thresholdImax.

The constraints for path selection are:

1. End-to-end throughput: End-to-end throughput in the selected path must be above certain

threshold.
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2. End-to-end delay: End-to-end delay in the selected path must be below certain threshold.

4.5.1 Node selection criteria

Cooperation metric and proposed incentive mechanism

An essential component in MCN is the co-operation of mobile nodes in relaying data packets

from other mobile nodes. In our proposal, each node has awillingness status[78] flags for

packet relaying as follows:

1. will status=0 for non cooperation

2. will status=1 for cooperation

In conventional cellular networks, mobile nodes by defaultdo not agree for packet relaying

since packet relaying consumes scarce resources such as battery power, processor time and

bandwidth. Hence, the default willingness status of a node is 0 (i.e. non-cooperation for packet

relaying) [78]. Therefore, it is clear that a node must be stimulated in some way to change their

willingness status from 0 to 1. The proposed incentive mechanism works as follows.

Whenever a node wants to initiate a communication, it sends a RReq to the base station

through CCH. Upon receiving the RReq, the base station broadcasts a Cooperation request

(CReq) to the whole network (cell) through broadcast CCH. The CReq contains source ID,

destination ID and theincentive amountper node that is to be ‘paid’ after communication.

Those nodes that are interested will change their willingness status from 0 to 1 and reply to the

base station using CCH. Let us assumeΦ̄(n) is the network of cooperating nodes (nodes with

will status=1). It makes sense that the incentives for multihop routing to be ‘paid’ by service

providers since:

• MCN promises enormous user capacity improvement which is advantageous for the ser-

vice provider [56].

• A routing path is found by the base station, which has the capability of switching to single

hop when it finds multihop is inefficient and costlier.

• Mobile nodes may unintentionally be in unreachable locations (e.g. dead spots or out of

coverage) and the service providers would like to keep customers satisfied by providing

any time any where services.
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neighbourhood connectivity and detection

In [79], it is shown that in a network ofn randomly placed nodes, each node should be con-

nected toO(log(n)) nearest neighbours. If a node has less than0.074(log(n)) connected neigh-

bours, then the network is asymptotically disconnected with probability 1 asn increases. Fur-

thermore, if each node is connected to more than5.1774(log(n)) nearest neighbours, then the

network is asymptotically connected with probability approaching1 asn increases. Hence,suf-

ficient neighbourhood connectivityis an important criterion to establish communication within

an MCN: it is essential to avoid dynamic call dropping as explained in Section 4.6. Therefore,

thesufficient neighbourhood connectivityof nodes is defined as follows: If a nodem ∈ Φ̄(n)

hask neighbours from̄Φ(n) and if:

k > O(log(n)) (4.1)

then nodem satisfiessufficient neighbourhood connectivitycriterion and consequently, it will

become a eligible relay node. In our work we chooseO as a function of square root of number

of nodes in the network. Let us construct a subsetΦ̂(n) from Φ̄(n) with nodes which satisfy

our sufficient neighbourhood connectivitycriterion. Every node builds its neighbour table and

notifies this information to the base station. However, the MCN topology may change frequently

and hence the time delay involved in neighbour detection is critical. In the following section

the problem of neighbourhood detection with low delay is considered.

Proposed Neighbourhood Detection Scheme

Traditionally, ad-hoc routing protocols such as OptimizedLink State Routing (OLSR) [78] de-

tect neighbour changes through exchanging periodic HELLO messages. Although the HELLO

based neighbour detection is simple to implement and robustin the presence of message loss,

there have been concerns about its performance in the dynamic environments like MCNs:

1. Detection latency: The HELLO based mechanism has a relatively large delay in neigh-

bour detection. For example, it takes around 3 seconds on an average for OLSR nodes to

detect neighbour connections [78]. Such latency might leadto unnecessary packet drops

due to route unavailability for route resilience, especially in high mobility networks.

2. Resource waste: Periodic HELLO messages are broadcasted even if no link changes

occur, which wastes bandwidth and battery life. Smaller HELLO intervals resulting in

increased frequency of HELLO messages would increase channel contention and might

lead to congestion.
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In our proposal, instead of relying on periodic HELLO messages, we use an explicit route

handshake mechanism, which reduces the latency in neighbourhood detections and improves

path availability. In particular, we propose a unicast based handshake (UHS) option. i.e. the

handshake packets are transmitted as unicast messages between the neighbouring nodes. For

example, when nodeA receives its first HELLO message fromB, it sends ACK messages only

to nodeB.

Outline:

Traditional ad-hoc routing protocols only use symmetric links in route calculations. The estab-

lished (physical) connections would not be available for data transfer until identified assym-

metric links by the routing protocols. Therefore, a delay in neighbour detection might lead

to routing performance degradation. The neighbour detection latency of HELLO based routing

protocols is caused by the periodic nature of HELLO messages. After receiving the first HELLO

message from a neighbour, the node does not respond until it broadcasts its own HELLO mes-

sage. Essentially, the neighbour handshake process isimplicit through exchanging periodic

HELLO messages.

In our scheme, we useexplicit handshake messages to facilitate connectivity detection.

More specifically, in addition to periodic HELLO messages, anode sends explicit handshake

messages to its neighbours. The basic process is described as follows.

1. Each node broadcasts periodic HELLO messages to its neighbours.

2. When nodeA receives its first HELLO message from its unknown neighbourB, it creates

a new entry for directed link (B → A), and responds with an ACK message immediately

to nodeB, with the status of the new link (B → A).

3. When nodeB receives such an ACK message, it infers the existence of bi-directional link

(B ↔ A); then nodeB sends immediately an ACK message to nodeA, confirming the

symmetric link (A ↔ B) status between them.

4. If, for any reason, the ACK message fromA toB is lost or dropped, the following periodic

HELLO messages would recover such a loss and complete the neighbour detection as

normal.

5. Similarly, if the ACK message fromB toA is dropped, the next periodic HELLO message

recovers the loss and acknowledgesA.

69



Intended signal


Interference


Interference


d

j
r


j


q

r


s


i

 d


ij


d

is


d

iq


Interference


Figure 4.3: Interference metric

Additionally, to reduce control traffic overhead, we propose that nodes only transmit their

neighbour table to the base station (using a CCH) when there is achange in the neighbour

connectivity.

4.5.2 Interference metric

Interference reduction in CDMA networks is achieved by controlling the transmission power.

However, the transmission power levels of the nodes depend on the distance of the other inter-

mediate nodes in the route. Let us consider the communication between a particular nodei and

any other nodej as shown in Fig 4.3. The average interference received at some noder due to

transmission from nodei to nodej is given by:

ρ2
irpij

dγ
ir

(4.2)

whereρir is the time-correlation between the signature waveforms ofnodesi andr, γ is the path

loss coefficient,dir is the distance between nodei and noder, pij is the transmitted power from

nodei to nodej. Note that the average received power in a Rayleigh flat fadingchannel always

follows a distance-decay law [80]. To avoid channel estimation across the mobile nodes [81], we

are interested in average received power in our interference calculation rather than instantaneous

received power. Let us assumeN is the DS-CDMA modulation processing gain. Then, the sum

of the interference received in all neighbour nodes in the network due to the transmission from
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i to j is given by:

I =
1

N

(

n
∑

r=1,r 6={i,j}

ρ2
ir

pij

dγ
ir

)

(4.3)

Let us construct a subsetΦ̈(n) from Φ̂(n) such that the communication between any two nodes

in Φ̈(n) causes interference in the network which is below certain thresholdImax. The nodes in

Φ̈(n) are named aspotential relay nodes.

4.5.3 Path metrics formulation

Let χ = {x1, x2, x3, . . . , xM} denote the set of paths available between a source node and a

destination node along thepotential relay nodes. The following are the metrics used in choosing

a particular path from the setχ:

1. End-to-end throughput

2. End-to-end delay

End-to-end throughput metric

End-to-end throughput is defined as the probability of successful transmission from a source

node to a destination node which involves successful transmission at each and every inter-

mediate node. The successful single hop transmission from node i to its neighbour nodej

(∀i, j ∈ Φ̈(n)) occurs when the received power at nodej from nodei is stronger than inter-

ference plus noise power by a factor ofβ (i.e SINR ≥ β). The probability of successful

transmission from nodei to nodej is:

P(Ci,j) = P(SINRi,j ≥ β) = P(
ri,j

(Ii,j + η)
≥ β)

= P(ri,j ≥ β.(Ii,j + η)) (4.4)

whereri,j is the received power at nodej from the intended nodei, Ii,j is the interference at

nodej due to other communications andη is the noise power in the receiver. Letrk,j, k =

1, . . . , K (k 6= i, j) be the received power at nodej from thekth interferer andK is the total

number of interferers in the network, then the interferenceat nodej from all interferers is:

Ii,j =
1

N

(

K
∑

k=1,k 6={i,j}

ρ2
k,jrk,j

)

(4.5)
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Erroneous detection occurs whenSINRi,j < β, this probabilityP(Ei,j) is given by:

P(Ei,j) = P(ri,j < β.(Ii,j + η)) (4.6)

The propagation channel between mobile nodes is different from a conventional wireless chan-

nel. However, the envelope still follows Rayleigh distribution [82]. When the channel envelope

is Rayleigh then the received powerri,j follows an exponential distribution. Hence:

P(ri,j) =
1

Ri,j

e
−ri,j
Ri,j (4.7)

whereRi,j denotes the average received powerRi,j =
pi,j

dγ
i,j

[80], [83].

1. Case I: number of hops> 1

Let us sayxm = {1, 2, 3, . . . , h} is the path selected to relay the packets from source

node1 to the destination nodeh and number of hops in the communication ish − 1.

The probabilityP(C1,h) that the message is successfully transmitted from source1 to

destinationh is given by

P(C1,h) = P(
h−1
⋂

i=1

Ci,i+1) = 1 − P(
h−1
⋃

i=1

Ei,i+1) ≥ 1 −
h−1
∑

i=1

P(Ei,i+1) (4.8)

Let us consider a communication between nodei and its closest neighbouri + 1 in the

routing path

P(Ei,i+1) = P(SINRi,i+1 < β)

= P(ri,i+1 < β.(Ii,i+1 + η)) (4.9)

Now the probability of error conditioned on the interference is

P(Ei,i+1)Ii,i+1
=

1

Ri,i+1

∫ β.(Ii,i+1+η)

0

(e
−

ri,i+1
Ri,i+1 )dri,i+1

= 1 − (e
−β(Ii,i+1+η)

Ri,i+1 ) (4.10)

whereIi,i+1 itself is a random quantity, therefore, the probability of error P(Ei,i+1) after

removing the condition onIi,i+1 is

P(Ei,i+1) = EIi,i+1

[

1 − e
−

β(Ii,i+1+η)

Ri,i+1

]

=

∫ ∞

0

. . .

∫ ∞

0

(

1 −
(

e
−

β[ 1
N

PK
k=1,k 6={i,i+1}

ρ2
k,i+1rk,i+1+η]

Ri,i+1

)

)

.

.
K
∏

k=1,
k 6={i,i+1}

P (rk,i+1)drk,i+1 (4.11)

72



whereEIi,i+1
[.] is the expectation of [.] with the random variable beingIi,i+1. By sub-

stitutingP(ri,j) from (4.7) and by invoking the independence assumption ofP(ri,j), the

above equation can be written as

P(Ei,i+1) = 1 −
[

e

(

− βη

pi,i+1d
−γ
i,i+1

)

K
∏

k=1,
k 6={i,i+1}

1

1 + β
N

ρ2
k,i+1pk,i+1

pi,i+1
(

di,i+1

dk,i+1
)γ

]

(4.12)

From (4.8) and (4.12) the lower bound on end-to-end throughput can be written as

P(C1,h) ≥ 1 −
h−1
∑

i=1

(

1 −
[

e

(

− βη

pi,i+1d
−γ
i,i+1

)

K
∏

k=1,
k 6={i,i+1}

1

1 + β
N

ρ2
k,i+1pk,i+1

pi,i+1
(

di,i+1

dk,i+1
)γ

]

)

(4.13)

2. Case II: number of hops = 1

P(C1,2) = P(r1,2 ≥ β.(I1,2 + η)) (4.14)

Now the conditional probability of correct detection is

P(C1,2)I1,2 =
1

R1,2

∫ ∞

β.(I1,2+η)

(e
−

r1,2
R1,2 )dr1,2

= e
−β.(I1,2)+η

R1,2 (4.15)

After averaging overI1,2 the probability of correct detection is

P(C1,2) =

[

e

(

− βη

p1,2d
−γ
1,2

)

.
K
∏

k=1,k 6={1,2}

1

1 + β
N

ρ2
k,2pk,2

p1,2
( d1,2

dk,2
)γ

]

(4.16)

From the set of pathsχ, we construct a set{X} such that the constraint on end-to-end

throughput is satisfied.

4.5.4 End-to-end delay metric

The major contributions to the end-to-end delay are transmission delay (queuing delay) induced

by the relay nodes and propagation delay over the multihop communications. In our routing

algorithm, we ensure that end-to-end delay is minimal by introducing an additional path con-

straint. A path that has minimal end-to-end delay and satisfies end-to-end delay constraint will

be selected from set{X}.
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4.5.5 Summary

The summary of process involved in routing protocol design for data/voice messages is:

1. Fromn nodes, select a set of cooperative nodes and construct a setΦ̄(n).

2. FromΦ̄(n) nodes, choose a set of nodes which havesufficient neighbourhood connectivity

and build a set̂Φ(n).

3. FromΦ̂(n) select a set of nodes which satisfy interference criterion and construct a set

Φ̈(n).

4. FromΦ̈(n) select source to destination paths{X} such that the lower bound onP (C1,h)

is above a certain threshold.

5. From{X} choose a source to destination path which has minimal end-to-end delay and

having end-to-end delay below certain threshold.

When a node wants to start data transmission, it sends a Call Initiation Request (CIR) con-

taining source ID and destination ID to the base station through CCH (node→ base station).

Upon receiving CIR the base station broadcasts within the entire network the Cooperation Re-

quest (CReq) which contains the ID of the source node, the destination node and the incentive

amount offered (base station→ node). After receiving CReq, those nodes that are willing to

cooperate make their response, with their neighbour details to base station through the CCH

(node→ base station). Now the base station will find a source to destination path usingsuf-

ficient neighbourhood connectivity, interference, end-to-end throughput and end-to-end delay

constraints, and will convey the route information to the source node through CCH (base station

→ node).

4.6 Dynamic Call Dropping and Proposed Route Resilience

Scheme

The forced termination of the call against the will of the subscriber is defined asdynamic call

dropping. Dynamic call dropping may be caused by various reasons including mobility, energy

drainage, and an emergency requirement of an intermediate node to make its own call. The

proposed solution for dynamic call dropping is as follows:
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Since each selected intermediate node has sufficient numberof connected neighbours (suf-

ficient neighbourhood connectivitycriterion), whenever any of the above situations arise, the

corresponding intermediate node (i.e. depleted node) notifies the base station through the CCH.

The base station then picks up one of the neighbours of the depleted node as a substitute such

that the constraints on all the metrics are satisfied. The depleted node will be removed from the

path subsequently. This is handled without terminating theongoing communication.

4.7 Routing Metric Analysis

Let us have a close look at the constraints used in route selection.

1. In the cooperation constraint, as the number of intermediate nodes increases, the incentive

offered will also increase. Hence, the service providers will prefer having a direct link

from source to destination.

2. If we look at end-to-end throughput:

Case I:when number of hops is very large
∑h−1

i=1 P(Ei,i+1) → 1. This is from the axiom,0 ≤ P(Ei,i+1) ≤ 1. Hence,P (C1,h) ≥
1 − ∑h−1

i=1 P(Ei,i+1) → 0. This will lead to negligibly smaller end-to-end throughput.

Case II:when the number of hops=1

The end-to-end throughput is a function only of SINR. Hence, it is possible to achieve

end-to-end throughput of 1 as long as the transmitted power is large enough to guarantee

that SINR > β. Hence, end-to-end throughput metric also favours a directlink from

source to destination.

3. As far as end-to-end delay is concerned, the delay in queuing and data propagation in-

creases linearly with the number of intermediate nodes. Hence, the end-to-end delay

constraint always favours fewer intermediate nodes, and ideally a direct path from source

to destination.

In summary, all the above constraints favour direct source-to-destination paths (i.e. peer to

peer communication). However, let us look at the interference constraint more closely. Assume
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that the transmitted power levels at nodei is adjusted such that the destination nodej receives

a power level ofpref , i.e.:

pij = prefd
γ
ij

(4.17)

Now the interference received at neighbour nodes as a function ofdij is:

I(dij) =
1

N

(

n
∑

r=1,r 6={i,j}

ρ2
ir

prefd
γ
ij

dγ
ir

)

(4.18)

wherepref anddir are fixed quantities and the only variable isdij.

Therefore, the interference constraint favours a shorter hop length (dij). However, shorter

hop lengths may lead to more number of relay nodes in the path.This conflicts with other

constraints. Hence, it is critical to find the balance between the number of hops and the hop

length such that the constraint on all metrics are satisfied.

4.7.1 Route discovery delay analysis

The delay involved in route discovery includes:

1. The delay in exchanging control messages

2. The delay in route calculation

3. The delay in neighbourhood detection

From the Section 4.5.5 each route discovery process involves exchange of 4 control mes-

sages. The computational complexity at the base station involves finding an optimal route that

satisfies all the proposed metrics. Let us assumeTCH is the delay in exchanging one control

message,Tcomputational is the computational delay andTneighbour is the neighbour detection la-

tency of each node. Now the total route discovery delayTroute:

Troute = 4 × TCH + Tcomputational + max(Tneighbour)

= 4 × TPCH + 4 × TQCH + Tcomputational + max(Tneighbour) (4.19)

whereTPCH is the propagation delay of control message,TQCH is the queuing delay of control

messages in nodes (or in base station) andmax(Tneighbour) is the maximum latency in neighbour

detection of any node. GenerallyTPCH is considered negligible due to the relatively short
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Figure 4.4: HELLO based neighbour detection

distances, andTcomputational can also be considered negligible as CPU capability is not an issue.

Hence,Troute can be approximated as:

Troute ≈ 4 × TQCH + max(Tneighbour) (4.20)

4.8 Neighbourhood Detection Latency Analysis

In this section, we compare the link detection latency underHELLO based neighbour detection

mechanism with that under the proposed fast neighbour detection scheme. In the following

discussions, we assume that:

1. The arrival of a link establishment event is ani.i.d Poisson process with arrival rateλ.

2. The delay in packet transmission and propagation (i.e.tp) are small enough (compared

with link detection latency) to be ignored.

4.8.1 HELLO based neighbour detection

Let us consider a nodeA and its neighbourm as shown in Fig 4.4. Assume that nodeA

generates periodic HELLO packets at everyr seconds (HELLO interval) starting from time
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instantt0, and to avoid primary collision atA, nodem starts generating the periodic HELLO

packets afterdm time, i.e. starting from time instantt0 + dm. Let Xm be the time when the first

symmetric link is established aftert0. Then the link discovery latency of a particular link (lm)

can be approximated by:

lm = t0 + dm − Xm + r

= r + dm − (Xm − t0) (4.21)

Assume a particular nodeA hasM number of neighbours. Since the link arrivals are

Poisson distributed with parameterλ, the inter-arrival time(Xm − t0) will be exponentially

distributed with parameterλ [84]. Let us assume the collision avoidance offset timedm (1 ≤
m ≤ M ) for various nodes are exponentially distributed with parameterλ in the interval(t0, t0+

r].

Now, let us calculate the total link detection latency. The total link detection latency is the

sum of all the individual link detection latency values at each hop. The link detection process

is assumed to be time slotted and at a given time only one link detection can occur. Then the

latency involved inM link detections, (lM ), in a collision free condition is:

lM =
M

∑

m=1

[

r + dm − (Xm − t0)
]

= M × r +
M

∑

m=1

[

dm − (Xm − t0)
]

(4.22)

Since(Xm − t0) anddm are exponentially distributed,
[

dm − (Xm − t0)
]

will also be exponen-

tially distributed with parameterλ and
∑M

m=1

[

dm−(Xm−t0)
]

will follow Gamma(M, 1
λ
) [84].

Therefore, the statistical average link latency of totalM number of link detections(LM)

in a collision free condition can be approximated by:

LM = E[lM ] = M × r + E

[ M
∑

m=1

(

dm − (Xm − t0)
)

]

= M(r +
1

λ
) (4.23)
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Figure 4.5: Proposed fast neighbour detection

4.8.2 Proposed fast neighbour detection scheme

As explained in Section 4.5.1, the neighbour detection consists of exchange of one HELLO

message and two handshake signals as shown in Fig 4.5. Let thelatency involved in a link de-

tection isl′m then, under our proposed scheme, the link discovery latencycan be approximated

by:

l′m = t0 + dm − Xm

= dm − (Xm − t0) (4.24)

Now, the total link detection latency ofM number of neighbours is:

l′M =
M

∑

m=1

(

dm − (Xm − t0)
)

(4.25)

By following procedures similar to the development of (4.22)and (4.23), the statistical average

link detection latency ofM number of neighbours(L′
M) in a collision free condition is:

L′
M = E

[

l′M

]

= E

[ M
∑

m=1

(

dm − (Xm − t0)
)

]

= M
1

λ
(4.26)
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Figure 4.6: Improvement factor in latency in the case of proposed link detection compared to
HELLO based link detection for a fixed HELLO interval

4.8.3 Factorial analysis

From the above discussions, we can see that the handshake scheme has a smaller link discovery

latency. Smaller link discovery latency provides better route availability, which leads to better

route resilience. We present now an analysis on the impacts of factors such as node density and

HELLO message transmission power (pHELLO) on the performance of the proposed handshake

scheme. Consider the improvements of the proposed scheme on neighbour detection latency:

∆l

LM

=
LM − L′

M

LM

=
r

(r + 1
λ
)

(4.27)

Equation (4.27) presents a quantitative relationship between the improvements on latency and

the variables of interest (λ, r).

Inferences drawn from the plots:

• Rate of new link arrivals λ. Studies on link dynamics [85] show that, the rate of new link

arrivalsλ increases with node velocityv, node densityn and HELLO message transmis-

sion powerpHELLO. Fig 4.6 shows that increasing link arrival rateλ gives improvements
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Figure 4.7: Improvement factor in latency in the case of proposed link detection compared to
HELLO based link detection for a fixed link arrival rate

for link detection latency. From this we can infer that, in high-density networks with rel-

atively higher transmission powerpHELLO, the proposed handshake scheme is expected

to outperform the proactive neighbour detection scheme.

• Refresh Intervals r. From Fig 4.4 we can see that as the refresh intervalr increases,

the latency in HELLO based link detection will increase. However, increasingr will not

have as high an impact in latency with respect to the proposedlink detection scheme as

we can see it from Fig 4.5. This can be seen from (4.27) and Fig 4.7 as well. Therefore,

the proposed handshake scheme is expected to have a better performance in a network

with large refresh intervalr.

4.9 Simulations and Results

We simulate a single-cell of radius1000m with nodes distributed as a two dimensional uniform

processes with mean0.5. Equal distribution of incentives for all intermediate relay nodes is

assumed. The end-to-end delay threshold is considered as100msec, the SINR threshold (β)
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Figure 4.8: Total power spent per packet transmission versus number of nodes

for throughput calculation is taken to be0.25dB and the end-to-end throughput threshold is

assumed to be0.92. The CDMA codes spreading factor (N ) is taken to be32. The Interference

threshold (Imax) is chosen as0dB. To validate the performance of the proposed model, a brute-

force, Monte-Carlo simulation was carried out by randomly selecting the source and destination

nodes, and the results were averaged over at least500 realizations of the node distributions. The

simulation results are presented with error bars. [µ-σ,µ+σ] is the interval for error bars, where

µ is the sample mean andσ is the standard deviation of the samples.

In the underlying simulation environment the proposed algorithm is compared with:

• Interference Aware Routing (IAR) proposed in [86]

• Optimum Hop Size Routing (OHSR) proposed in [76]

• Nearest neighbour routing algorithm.
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4.9.1 Total power analysis

The transmission power model used for the analysis is:

pij = αd4
ij + λ (4.28)

whereλ is a constant to represent minimum transmit power (pmin), andα is the normalization

constant. For simulation purposes, let us assumeλ = 0.1. The maximum transmitted power

from mobile handset is assumed to be of the order of2W . By substituting these values, we can

rewrite the above equation as:

pij = 1.9 × 10−12 × d4
ij + 0.1 (4.29)

Apart from the transmission power, we also consider receivepower (packet processing power)

in our power analysis, since the power spent in the local oscillators and bias circuitry of the

low-power transceivers will be considerable in receiving the packets [87]. A constant power

of 50mW per packet per node in receiver circuitry is assumed in our simulations. Fig 4.8

compares the total power spent per packet transmission in various algorithms. From Fig 4.8 we

can infer that the proposed routing algorithm has significantly less total power requirement per

packet transmission. This is because the proposed algorithm has end-to-end delay constraint

which itself acts as constraint on number of intermediate nodes. We can also observe that

as the number of nodes increases the total power spent per packet transmission in the nearest

neighbour algorithm and the IAR algorithm increases considerably. This is because though

the single hop transmission power in both the algorithms is less, these algorithms result in

many intermediate nodes as the node density increases; hence the total transmitted power and

the power spent in receiving will be significantly higher. The OHSR algorithm minimizes the

maximum hop length. However, most of the time it gives a path with a greater number of hops

of significantly large length.

4.9.2 End-to-end throughput analysis

We assume50 fixed nodes of uniformly distributed interferers for ongoing communications.

The lower bound on end-to-end throughput is plotted by varying the number of nodes in Fig

4.9. From Fig 4.9 we can deduce that the lower bound on end-to-end throughput in the case

of the proposed algorithm is considerably higher. This is because from (4.13) it is clear that

lower bound on end-to-end throughput reduces as the number of hops increases. All nearest
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Figure 4.9: Lower bound on end-to-end throughput versus number of nodes

neighbour, IAR and OHSR algorithms result in a greater number of hops. Moreover, as the

node density increases the number of hops increases in all the three algorithms. However, in

our algorithm we maintain the end-to-end throughput by incorporating a constraint on it.

4.9.3 Incentives and end-to-end delay analysis

In end-to-end delay, transmission delay (queuing delay) inthe intermediate nodes is a more

significant component compared to the propagation delay. Therefore, as the number of inter-

mediate nodes increases the end-to-end delay increases. Moreover, the incentives paid also

increases linearly as the number of intermediate nodes increases. Hence, the algorithm behaves

similar in terms of the end-to-end delay and incentives paid. A constant transmission delay

(queuing delay) of30msec per node is assumed in our simulation model. Fig 4.10 compares

end-to-end delay. From Fig 4.10 we can infer that the end-to-end delay in case of IAR is at an

intolerable level for voice communication, while the end-to-end delay in the proposed approach

is around100ms, which is insensitive to human ears. Also, as the number of nodes increases

the delay increases because as the node density increases the number of hops increases in each
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Figure 4.10: End-to-end delay versus number of nodes

of nearest neighbour, IAR and OHSR algorithms as explained above. The incentives offered

will also behave like end-to-end delay.

4.10 Conclusion

We have proposed a unified cross-layer routing routing protocol for MCNs by taking all the es-

sential performance metrics into account. The proposed algorithm is compared with the existing

MCN routing algorithms such as the interference aware routing algorithm, the nearest neighbour

algorithm and optimum hop size routing algorithm. We find that, compared to other algorithms,

the proposed algorithm has better performance in terms of overall power consumption, end-to-

end throughput, end-to-end delay and incentives paid. Alsoa fast neighbour detection scheme

for route resilience is proposed. Instead of using periodicHELLO messages, the proposed

scheme adopts an explicit handshake mechanism to reduce thelatency in neighbour detection.

An analytical study of the neighbour detection latency shows that the proposed scheme reduces

the link detection latency compared to HELLO based neighbour detection algorithm such as

OLSR.
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Chapter 5

Spatial Link Scheduling for SCDMA

Multihop Cellular Networks: A Cross

Layer Framework

Probability of error based Spatial Code Division Multiple Access (SCDMA) scheduling algo-

rithm is presented in this chapter to systematically reuse the orthogonal CDMA codes in a given

cell for Multihop Cellular Network (MCN). We assign and reuse the CDMA codes to peer-to-

peer links such that the probability of error in all scheduled links are below certain threshold.

The proposed scheduling algorithm PoE-LinkSchedule involves two phases. In the first phase

we present a scheduling metric “Probability of Error (PoE)”as a function of first and second

order statistics of wireless channel coefficients between nodes. The second phase presents a

graph theoretical as well as PoE based centralized scheduling algorithm. For a graph of net-

work with n number of nodes,U number of links andθ thickness, the proposed scheduling

algorithm has computational complexity ofO(Un log n + Unθ) as opposed toO(UU) in the

case of exhaustive search algorithm. The performance of theproposed algorithm is evaluated

in terms ofspatial reuseand end-to-end throughput. We show that the proposed algorithm has

considerably higher end-to-end throughput and higherspatial reusecompared to existing link

scheduling algorithms.
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5.1 Introduction

In MCN mobile terminals transmit packets to base stations as well as to other mobile stations

using multiple hops with less transmission range. Such a system enhances the throughput, user

capacity and energy efficiency [56]. This chapter addressesthe problem of link scheduling for

CDMA based MCN to increase thespatial reuse. By link scheduling, we mean assignment

of proper CDMA codes to peer-to-peer links and reuse them at farther distance links such that

communication over all links is successful in probability of error sense. CDMA access mecha-

nism with orthogonal spreading codes is considered1. However, it can be shown that the number

of orthogonal waveforms that can be designed within a given bandwidth (W) and time duration

(T) is limited (O(WT)). Furthermore, since the transmissions in MCN are divided into many

smaller hops, there could be many simultaneous smaller range transmissions in a given time

than a conventional single hop cellular networks [88]. Therefore, it is of paramount impor-

tance to devise a scheduling strategy to reuse the orthogonal CDMA codes in a given cell to

maximize the system’s user capacity. Once the link scheduling information is available we can

find source to destination path along the scheduled links using some routing algorithms so that

the spatial reusewill be maximized in the network. We term the CDMA system wherethe

CDMA codes are reused in a given cell as Spatial-CDMA (SCDMA) system. The problem of

determining an optimal link schedule for a general multihopnetwork is NP-complete [89], [90].

Hence, we present a suboptimal method for link scheduling inSCDMA MCNs. The significant

contributions of this work are:

1. SNR based graph theoretical algorithms as well as brute-force computations for link

scheduling in SCDMA wireless systems often lead to high probability of error in the links.

To overcome this problem, we propose a link scheduling algorithm PoE-LinkSchedule

for SCDMA MCN with probability of error criterion. Since the probability of error is a

widely used performance metric for digital systems, it is appropriate to use it as a criterion

for scheduling.

2. Peer-to-peer physical layer probability of error is formulated by assuming independent

and identically distributed (i.i.d) Rayleigh multipath channel (frequency selective) be-

tween nodes. Only the statistical knowledge of the channel coefficients between mobile

nodes is assumed in the probability of error formulation instead of complete channel

1Orthogonal CDMA codes are considered since it gives tight bounds on resources
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knowledge. The above formulated physical layer probability of error will be used as a

criterion in MAC layer link scheduling. Hence, we have a cross layer scheduling scheme.

3. We introducespatial reuseas an important performance metric and argue that a high

value ofspatial reusedirectly translates to higher throughput over many links.

5.2 Related Work

A Spatial Time Division Multiple Access (STDMA) link scheduling is reported in [89], shows

that the tree networks can be scheduled optimally and oriented graphs can be scheduled near-

optimally. Link scheduling algorithms under the physical interference model are derived in [91]

and [92]. In [93], the authors investigate the time complexity of scheduling a set of communi-

cation requests in an arbitrary network. A general framework for the max-min scheduling prob-

lem in static wireless networks is proposed in [94]. A cross layer framework for multiple access

problem in a contention based wireless network is derived in[95]. The design of simple dis-

tributed dynamic routing algorithms and scheduling policies based upon link state information

is proposed in [96]. The problem of determining the jointly optimal end-to-end communication

rates, routing, power allocation and transmission scheduling for wireless networks is considered

in [97]. A code reuse scheme based on a heuristic method is proposed in [98]. Variable Spread-

ing Factor (VSF) code allocation protocol for maximizing throughput in CDMA based ad-hoc

networks is analyzed in [99]. Our proposed algorithm PoE-LinkSchedule is considerably dif-

ferent from all the above work. It is a cross layer approach with physical layer probability of

error used as metric.

5.3 Scheduling Metric Formulation

Consider a single cell CDMA-MCN system withU transmitting links. All the nodes are as-

sumed to transmit at same powerP . Multipath channel is considered for wireless links between

nodes. Partial channel knowledge, namely the first order andsecond order statistics of the

channel between nodes are assumed to be available at the basestation. Logical channel is di-

vided into Control Channels (CCH) and Traffic Channels (TCH). CCH handles only signaling,

while TCH carries speech and data traffic. Base station is the centralized scheduler. Schedul-

ing information is transmitted from base station to the nodes through CCH. We formulate the
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Figure 5.1: Proposed system model for communication between links.

scheduling metrici.e. link (peer-to-peer) probability of error by conditioning on the transmit-

ted bits at the link. The transmit node of linku transmits Binary Phase Shift Keying (BPSK)

bit bu(i), with amplitudeAu, in ith interval. The length of signaling interval for each link is

Tbit. Assume that transmit node of linku is assigned with a spreading waveformcu(.) and

su = [su0, su1, . . . , suN−1]
T denotes the corresponding spreading sequence. Then,

cu(t) =
N−1
∑

k=0

sukrect(t − kTc), u = 1, 2, . . . , U

where,Tc is the chip period,rect(t) is a rectangular waveform with unit amplitude in [0, Tc]

andN is the processing gain of the system. The baseband signal fortheuth link in the ith bit

interval can now be expressed as

xu(t) = Aubu(i)cu(t − iTbit), iTbit ≤ t < (i + 1)Tbit (5.1)

Assume thatxu(t) is sampled(xu[n]) atTc, then

xu[n] = Aubu(nN)s̃u[n] (5.2)

wherenN = ⌊ n
N
⌋ because of chip rate sampling (note thatNTc = Tbit) ands̃u[n] = su((n)mod(N)).

The multipath wireless channel is modeled as Finite ImpulseResponse (FIR) filter. The chan-

nel gain for theuth link at theith bit interval is denoted ashu[.][i] which is of lengthLu
h for all

i. The elements of the channel FIR filter (hu[l][n]) are assumed to be complex Gaussian with

both real and imaginary parts following thei.i.d Gaussian distribution. The noise (ηu[n]) is

assumed to bei.i.d. zero mean Additive White Gaussian Noise (AWGN). The received signal
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at the receiver node of linku can now be written as

ru[n] =
U

∑

v=1

hv[.][n] ⊗ xv[n] + ηu[n] (5.3)

where⊗ denotes convolution operation andhv[.][n] (v 6= u) is the channel coefficient between

any other node (interfering nodes) to the receiver of linku. Convertingru[n] into a parallel

stream ofN samples (number of chips), we obtainru[n] = [ru[iN ], . . . , ru[iN + N − 1]]T .

Rake receiver is used in the link’s receiver as shown in Fig. 5.1. The received signal after rake

receiver filtering is

yu[i] =
F

∑

f=1

s(f)
u

T ru[i] =
F

∑

f=1

N−1
∑

k=0

s
(f)
uk ru[iN + k] (5.4)

whereF is the number of fingers in the rake receiver ands
(f)
uk is the sampled version of CDMA

code corresponding tof th finger. From (5.3) and (5.4)

yu[i] =
F

∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

U
∑

v=1

hv[m][j]Avbv[j]s̃v[iN + k − m] +
F

∑

f=1

N−1
∑

k=0

s
(f)
uk ηu[iN + k] (5.5)

where

j =

⌊

iN + k − m

N

⌋

(5.6)

In (5.5),
∑Lu

h
−1

m=0 gives the Inter Symbol Interference (ISI) term due to the multipath channel

while
∑U

v=1 is the Multiple Access Interference (MAI) component due to loss of spreading

code orthogonality in a multipath environment with multiple link transmissions. Since BPSK

constellations are used for input data, the decision statistics is given byℜ(yu[i]) = yR
u [i]. We

compute the conditional probability of error (PE|B[i]) conditioned on transmitted bit vector se-

quenceB[i] = b[i],b[i − 1], . . ., whereb[i] =
[

b1[i], b2[i], . . . , bU [i]
]T

is the vector of bits

transmitted at bit periodi in links 1,2,. . . ,U . The mean of themth channel coefficient atith bit

interval ofuth link is defined as

γu[m][i] = E
[

hu[m][i]
]

(5.7)

and the second order statistics of the channel coefficients are

Cu,v[m1,m2][i1, i2] = E

[

(

hu[m1][i1] − γu[m1][i1]
)(

h∗
v[m2][i2] − γ∗

v [m2][i2]
)

]

C̃u,v[m1,m2][i1, i2] = E

[

(

hu[m1][i1] − γu[m1][i1]
)(

hv[m2][i2] − γv[m2][i2]
)

]

(5.8)
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where * denotes complex conjugate. The conditional mean (µyR
u |B[i]) of the decision statistic

(yR
u [i]) is given by

µyR
u |B[i][i] = E

[

ℜ
( F

∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

U
∑

v=1

hv[m][j]Avbv[j]s̃v[iN + k − m]

+
F

∑

f=1

N−1
∑

k=0

s
(f)
uk ηu[iN + k]

)

]
(5.9)

By using the fact thatE[ℜ(a)] = ℜ(E[a]) for anya, E(ηu[iN + k]) = 0 and excepthu[m][j],

ηu[iN + k] all other quantities are deterministic, the above equationcan be written as

µyR
u |B[i][i] =ℜ

( F
∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

U
∑

v=1

γv[m][j]Avbv[j]s̃v[iN + k − m]

)

(5.10)

Note thatµyR
u |B[i][i] is conditioned on transmitted bit and it is a function of meanof the channel

coefficient (γu[m][j]).

Without loss of generality we can assume that channelhu[.][.] and noiseηu[.] follow inde-

pendent distribution. Now by using the fact thatvar(a + b) = var(a) + var(b) whena andb

are independent, the conditional variance of the decision statistics (σ2
yR

u |B[i]) can be written as

σ2
yR

u |B[i][i] = var

[

ℜ
(

F
∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

U
∑

v=1

hv[m][j]Avbv[j]s̃v[iN + k − m]

)]

+ var

[

F
∑

f=1

N−1
∑

k=0

s
(f)
uk ηu[iN + k]

]
(5.11)

Since the receiver noises are assumed to be zero meani.i.d AWGN with equal variance (i.e,σ)

and also the spreading coefficientsuk is either +1 or -1 and deterministic, we can get

var

[

F
∑

f=1

N−1
∑

k=0

s
(f)
uk ηu[iN + k]

]

= N × F
σ2

2
(5.12)

where we have used linearity property of variance operationover independent random variables.

Let

σ2
ỹR

u |B[i][i] =var

[

ℜ
(

F
∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

U
∑

v=1

hv[m][j]Avbv[j]s̃v[iN + k − m]

)]

(5.13)

This can be rewritten as

σ2
ỹR

u |B[i][i] = var

[

ℜ
(

∑

f,k,
m,v

hv[m][j]ψu[f, k,m, v]

)]

(5.14)
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whereψu[f, k,m, v] = s
(f)
uk Avbv[j] s̃v[iN + k − m], the indexj is given in (5.6) and the sum

∑

f,k,
m,v

=
∑F

f=1

∑N−1
k=0

∑Lu
h
−1

m=0

∑U
v=1. By using the fact thatvar(a) = E[a − E(a)]2 for anya

andψu[f, k,m, v] is deterministic variable, (5.14) can be written as

σ2
ỹR

u |B[i][i] = E

[(

ℜ
[

∑

f,k,
m,v

(hv[m][j] − γv[m][j])ψu[f, k,m, v]

]

)2]

= E

[

ℜ
(

∑

f1,k1,
m1,v1

(hv1 [m1][j1] − γv1 [m1][j1])ψu[f1, k1,m1, v1]

)

.

.ℜ
(

∑

f2,k2,
m2,v2

(hv2 [m2][j2] − γv2 [m2][j2])ψu[f2, k2,m2, v2]

)

]

(5.15)

where,

j1 =

⌊

iN + k1 − m1

N

⌋

j2 =

⌊

iN + k2 − m2

N

⌋

(5.16)

For notational convenience let us assume

h1 = hv1 [m1][j1], γ1 = γv1 [m1][j1], ψ1 = ψu[f1, k1,m1, v1]

h2 = hv2 [m2][j2], γ2 = γv2 [m2][j2], ψ2 = ψu[f2, k2,m2, v2]
(5.17)

Since the channel coefficients of different links arei.i.d, from (5.15), (5.17) we can get

σ2
ỹR

u |B[i][i] = E

[

∑

f1,k1,m1,v1,
f2,k2,m2,v2

ℜ[(h1 − γ1)ψ1]ℜ[(h2 − γ2)ψ2]

]

(5.18)

By using the fact thatℜ(a) = (a+a∗)
2

for any complex numbera, the above equation can be

rewritten as

σ2
ỹR

u |B[i][i] =
1

4
E

[

∑

f1,k1,m1,v1,
f2,k2,m2,v2

(

h1ψ1 − γ1ψ1 + h∗
1ψ

∗
1 − γ∗

1ψ
∗
1

)(

h2ψ2 − γ2ψ2 + h∗
2ψ

∗
2 − γ∗

2ψ
∗
2

)

]

(5.19)

Sinceψ1 andψ2 are deterministic the above equation will become

σ2
ỹR

u |B[i][i] =
1

4

[

∑

f1,k1,m1,v1,
f2,k2,m2,v2

C̃v1,v2ψ1ψ2 + C̃∗
v1,v2

ψ∗
1ψ

∗
2 + Cv1,v2ψ1ψ

∗
2 + C∗

v1,v2
ψ∗

1ψ2

]

(5.20)
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whereCv1,v2 = Cv1,v2 [m1,m2][j1, j2] and C̃v1,v2 = C̃[m1,m2][j1, j2] can be calculated using

(5.8). From (5.11), (5.12), (5.13) and (5.20) the conditional variance will become

σ2
yR

u |B[i][i] =
1

4

[

∑

f1,k1,m1,v1,
f2,k2,m2,v2

C̃v1,v2ψ1ψ2 + C̃∗
v1,v2

ψ∗
1ψ

∗
2 + Cv1,v2ψ1ψ

∗
2 + C∗

v1,v2
ψ∗

1ψ2

]

+N × F
σ2

2

(5.21)

We have derived expressions for the conditional mean (5.10)and conditional variance (5.21) of

yR
u [i]. The conditional probability of error ofuth link as a function of above derived conditional

mean and conditional variance is [19]

P u
E|B[i][i] = Q

(

bu[i]µyR
u |B[i][i]

σyR
u |B[i][i]

)

(5.22)

Let us denote the conditional probability of error ofuth link between nodesi andj asPEij
. The

code assignment and reuse will be done such thatPEij
< β ∀i, j ∈ n whereβ is the probability

of error threshold andn is the number nodes in the network.

5.4 System Model and Proposed Link Schedule Algorithm

Let us consider a SCDMA MCN networkΦ(V , E) with n nodes, whereV = {v1, v2, . . . , vn} is

the set of vertices/nodes andE is the set of edges/links between nodes. A link schedule for the

SCDMA network is denoted byΨ(C,M1, · · · ,MC), where

• C = {ci} set of CDMA codes available for link schedule

• |C|:= size ofC, |E|:= U size ofE , |V|:= n size ofV

• Mi= set of transmitter-receiver pairs which can communicate concurrently using same

CDMA codeci i.e. {ti,1 → ri,1, · · · , ti,|Mi| → ri,|Mi|}

• |Mi| := size ofMi

If node vk is within nodevj ’s communication range, then there is acommunication edge

from vj to vk, denoted byvj
c→ vk. Thus, the mapping from networkΦ(·) to communication

networkGc(Vc, Ec) can be described as follows:

D(j, k) ≤ Rc ⇒ vj
c→ vk ∈ Ec, vk

c→ vj ∈ Ec (5.23)
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whereRc is the communication range [100] andD(j, k) is the distance between nodesvj andvk.

i.e.,Gc(Vc, Ec) consists of nodes which has communication link with atleastone of its neighbour.

The scheduleΨ(·) is then designed from the graphGc(·). The scheduling problem is to assign

CDMA code to nodes such that the communication over links are successful and simultaneously

maximize thespatial reuseof the CDMA codes in the network. Specifically, an SCDMA link

scheduling algorithm is equivalent to assigning a unique color to every communication edge in

the graph, such that source-destination pairs corresponding tocommunication edges with the

same CDMA code can transmit simultaneously in a particular time slot.

Algorithm 1 PoE-LinkSchedule
1: input: Given networkΦ(·) and its associated communication graphGc(·)
2: output: Set of colorsC which ensures successful communication in all links,C : Ec →

{1, 2, . . .}
3: Label the vertices ofGc randomly using uniform distribution

4: Use successive breadth first searchesalgorithm to partitionGc into out and in oriented

graphsgi, 1 ≤ i ≤ k

5: for i ← 1 to k do

6: for j ← 1 to n do

7: if gi is out-orientedthen

8: let λ = (s, d) be such thatLabel(d) = j

9: else

10: let λ = (s, d) be such thatLabel(s) = j

11: end if

12: C(λ) ← PoE-LinkColor(λ)

13: end for

14: end for

5.4.1 PoE-LinkSchedule algorithm

We use graph coloring approach for scheduling of CDMA codes among links. The term

“colors” in graph coloring approach represents available CDMA codes. The proposed PoE-

LinkSchedule algorithm is described in Algorithm 1. We use physical layer probability of error

as metric in scheduling algorithm. Probability of error is formulated based only on first and
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second order statistics of the channel.

Step-1: In first step of our PoE-LinkSchedule algorithm at Line 3, we label all the vertices

(nodes) randomly using uniform distribution.

Step-2: After the labeling step, communication graphGc(·) obtained in Section. 5.4 (equa-

tion (5.23)) is decomposed intok number of out-oriented and in-oriented graphsg1, g2, . . . , gk in

Line 4 [89]. This decomposition is achieved by partitioninggraphGc(·), the undirected equiva-

lent ofGc(·) into undirected forests. To reduce intensive computations, asuccessive breadth first

searchesis used to decomposeGc(·) into undirected forests. Each undirected forest is further

mapped to two directed forests. In one forest, the edges (links) in every connected component

point away from the root and every vertex has at most one incoming edge, thus producing an

out-oriented graph. In the other forest, the edges in every connected component point toward

the root and every vertex has at most one outgoing edge, thus producing an in-oriented graph.

An in-oriented graph is also constructed by Algorithm 1 in [92] to determine a link schedule in

a power-controlled STDMA network.

Step-3: In last step Lines 5-14, the oriented graphs are considered sequentially. For each

oriented graph, vertices are considered in increasing order by label and the unique edge asso-

ciated with each vertex is colored using the PoE-LinkColor function. In essence, the edges

are considered in a random order for scheduling, since labeling is random. In Line 8 and 10

Label(.) is the re-labeling function which assigns numberj to nodes which are randomly con-

sidered for re-labeling. The PoE-LinkColor function is explained in Algorithm 2. In Algorithm

1 thecommunication edge between nodess andd (s → d) is denoted asλ(s, d). We choose

the first color such that the resulting probability of error at the receiver ofλ and the receivers of

all co-colored edges are below the thresholdβ. If no such color is found, we assign a new color

to λ.

5.5 Complexity Analysis

5.5.1 Complexity of the probability of error scheduling metric

As theQ(.) function value can be found from look-up table, the complexity in determining

probability of error (5.22) essentially lies on determining the values ofµyR
u |B[i] andσ2

yR
u |B[i][i].
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Algorithm 2 PoE-LinkColor(̂λ)
1: input: Given networkΦ(·) and its associated communication graphGc(·)
2: output: A color which ensures successful communication in a given link

3: C ← set of existing colors

4: Cc ← {C(h) : h ∈ Ec, h is colored,λ̂ andh interferes each other and hence PoE≥ β in

bothλ̂ andh }
5: Ccf = C \ Cc i.e.,Ccf is nothing butC exceptCc

6: for i ← 1 to |Ccf | do

7: r ← ith color inCcf

8: Er ← {h : h ∈ Ec,C(h) = r}
9: C(λ̂) ← r

10: if probability of error at all receivers ofEr ∪ {λ̂} lower thanβ then

11: returnr

12: end if

13: end for

14: return|C| + 1

Complexity in determining µyR
u |B[i]

The received signal in (5.5) is expanded in the following equation with the assumption of perfect

synchronization

yu[i] =
F

∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

hu[m][j]
(

Aubu[j]s̃u[iN + k − m]
)

+
F

∑

f=1

N−1
∑

k=0

s
(f)
uk ηu[iN + k]

(5.24)

Sincebu[j] is either+1 or −1 and if we assumeAu = 1, ∀ u the computational complexity

in determiningµyR
u |B[i] of (5.24) is2Lh flops. If we include the complexity in determining the

index termj the total complexity will be10Lh multiplications and4Lh additions where we have

assumed division takes4 flops [54]. Therefore, the total complexity involved in determining

µyR
u |B[i] is O(Lh).
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Complexity in determining σ2
yR

u |B[i][i]

From (5.21)

σ2
yR

u |B[i][i] =
1

4

[

∑

f1,k1,m1,v1,
f2,k2,m2,v2

C̃v1,v2ψ1ψ2 + C̃∗
v1,v2

ψ∗
1ψ

∗
2 + Cv1,v2ψ1ψ

∗
2 + C∗

v1,v2
ψ∗

1ψ2

]

+N × F
σ2

2

(5.25)

As bu[j], suk are either+1 or −1 and if we assumeAu = 1, ∀ u thenψ1 andψ2 can be directly

determined. Due to the above fact the summations
∑N−1

k1=0,
∑N−1

k2=0 in (5.25) will not constitute

any additional complexity. Furthermore, the second order statistics of the channel coefficients

Cu, C∗
u, C̃u, C̃∗

u are already available. Therefore, the terms which constitute complexity are
∑Lu

h
−1

m1=0,
∑Lu

h
−1

m2=0 asψus are functions ofm and also the terms
∑U

v1=1,
∑U

v2=1 asCus are functions

of u. Hence, the total number of operations involved in determining theσ2
yR

u |B[i][i] O(U2L2
h).

After analyzing the complexity involved in determiningµyR
u |B[i] and σ2

yR
u |B[i][i] we can

conclude that the number of operations required to determine probability of error metric for a

particular link is O(U2L2
h).

5.5.2 Complexity of the proposed scheduling algorithm

In this section, we derive upper bounds on the running time complexity (computational com-

plexity) of the PoE-LinkSchedule algorithm. Let us assumeθ as thickness of the communication

graphGc(V , Ec) i.e., minimum number of graphs into which the undirected equivalent ofGc(·)
can be partitioned.

Lemma 5.1 An oriented graphg can be colored with no more thanO(n) colors using PoE-

LinkSchedule.

Since an oriented graph withn vertices has at mostn edges, the edges ofg can be colored with

at mostn colors.

Lemma 5.2 For an oriented graphg, the running time of PoE-LinkSchedule isO(n2).

Assuming that an element can be chosen randomly and uniformly from a finite set in unit

time (Chapter 1, [101]), the running time of Phase 1 can be shown to beO(n). Since there is

only one oriented graph, Phase 2 runs in timeO(1). In Phase 3, the unique edge associated

with the vertex under consideration is assigned a color using PoE-LinkColor algorithm. From
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Lemma 5.1, the size of the set of colors to be examined|Cc∪Ccf | is O(n). In PoE-LinkColor al-

gorithm, the probability of error is checked only once for every colored edge in the set
⋃|Ccf |

i=1 Ei

and at mostn times for the edge under considerationλ. With a careful implementation, PoE-

LinkColor algorithm runs in timeO(n). So, the running time of Phase 3 isO(n2). Thus, the

total running time isO(n2).

Theorem 5.3 For an arbitrary graphG, the running time of PoE-LinkSchedule isO(Un log n+

Unθ).

Assuming that an element can be chosen randomly and uniformly from a finite set in unit

time [101], the running time of Phase 1 can be shown to beO(n). For Phase 2, the optimal

partitioning technique of [102] based on Matroids can be used to partition the communication

graphGc into at most6θ oriented graphs in timeO(Un log n). Thus,k ≤ 6θ holds for Phase

3. From Lemma 5.2, it follows that the first oriented graphg1 can be colored in timeO(n2).

However, consider the coloring of thejth oriented graphgj, where2 ≤ j ≤ k. When coloring

edgeλ from gj using PoE-LinkColor algorithm, conflicts can occur not only with the colored

edges ofgj, but also with the edges of the previously colored oriented graphsg1, g2, . . . , gj−1.

Hence, the worst-case size of the set of colors to be examined|Cc ∪ Ccf | is O(U). Note that

in PoE-LinkColor algorithm, the probability of error is checked only once for every colored

edge in the set
⋃|Ccf |

i=1 Ei and at mostU times for the edge under considerationλ. With a careful

implementation, PoE-LinkColor algorithm runs in timeO(U). Hence, any subsequent oriented

graphgj can be colored in timeO(Un). Thus, the running time of Phase 3 isO(Unθ). There-

fore, the overall running time of PoE-LinkSchedule isO(Un log n + Unθ). This complexity

is comparable to that of ArboricalLinkSchedule algorithm of [89] and much lower than that of

TruncatedGraphSchedule algorithm of [91]. Furthermore, this complexity is much lower than

that of exhaustive search algorithm which has complexity ofO(UU).

5.6 Effect of Channel on the PoE Metric

The numerator term of theQ(.) function of probability of error metric derived in (5.22) is

bu[i]µyR
u |B[i][i] =ℜ

[

bu[i]
F

∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

U
∑

v=1

γv[m][j]Avbv[j]s̃v[iN + k − m]

]

(5.26)
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By using the inequality thatℜ(a) < |a| for any complex numbera (5.26) can be written as

bu[i]µyR
u |B[i][i] ≤

∣

∣

∣

∣

∣

bu[i]
F

∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

U
∑

v=1

γv[m][j]Avbv[j]s̃v[iN + k − m]

∣

∣

∣

∣

∣

(5.27)

By using the assumption ofi.i.d distribution of channel and simple algebraic manipulation

(5.27) can be further written as

bu[i]µyR
u |B[i][i] ≤

F
∑

f=1

N−1
∑

k=0

Lu
h
−1

∑

m=0

U
∑

v=1

∣

∣

∣

∣

∣

s
(f)
uk γv[m][j]Avbv[j]s̃v[iN + k − m]

∣

∣

∣

∣

∣

(5.28)

Since the chip sequence is having unit energy and if we assumeAu = 1 ∀ u, perfect synchro-

nization and the chip waveforms matched with rake receiver fingers are independent then (5.28)

will become

bu[i]µyR
u |B[i][i] ≤ F

Lu
h
−1

∑

m=0

∣

∣

∣

∣

∣

γu[m][j]

∣

∣

∣

∣

∣

(5.29)

From (5.11) and (5.12) the variance term (denominator) of the probability of error metric (5.22)

can be written as

σ2
yR

u |B[i][i] =

(

var

[

ℜ
(

F
∑

f=1

N−1
∑

k=0

s
(f)
uk

Lu
h
−1

∑

m=0

hu[m][j]
U

∑

v=1

Avbv[j]s̃v[iN + k − m]
)

]

+N × F
σ2

2

)

≥ N × F
σ2

2

(5.30)

The above inequality is from the fact thatvar(.) ≥ 0. From (5.22), (5.29) and (5.30) the lower

bound on individual probability of error can be written as

PE|B[i][i] ≥ Q

(

√
F

∑Lu
h
−1

m=0

∣

∣

∣
γu[m][j]

∣

∣

∣

√

(Nσ2/2)

)

(5.31)

From (5.31) we can see that the lower bound on probability of error in a link increases when

the channel mean, number of multipaths reduce and receiver noise increases. Therefore, we can

conclude that thespatial reusewhich is defined in (5.32) will increase when the mean of the

channel, number of multipath increases and the receiver noise reduces.

5.7 Simulations and Results

5.7.1 Performance metric-I: Spatial reuse

The spatial reuseof the schedule is defined as the average number of successfully received

packets per CDMA code in the SCDMA schedule. The transmission from transmit nodei using

99



CDMA codec at tth time slot is successful at receiving nodej only if PEi,j
≤ β. Thus

spatial reuse= τ =

∑|C|
c=1

∑|Mc|
k=1 I(PEi,j

< β)

|C| (5.32)

whereI(A) denotes the indicator function for eventA, i.e.,I(A) = 1 if eventA occurs,I(A) =

0 if eventA does not occur. From (5.32) we can see that large value ofτ implies that there are

many simultaneous successful communications.

5.7.2 Performance metric-II: End-to-End throughput

End-to-end throughput is defined as the probability of successful transmission from source node

to destination node, which involves successful transmission at each and every intermediate hop.

The closed form expression for the end-to-end throughput isderived as follows

• Case I: Number of hops> 1

Let us sayxm = {1, 2, 3, . . . , h} is the path selected to relay the packets from source

node1 to the destination nodeh using some routing algorithms and number of hops in the

routing path ish−1. The probabilityP(S1,h) that the message is successfully transmitted

from source1 to destinationh is given by:

P(S1,h) = P(
h−1
⋂

i=1

Si,i+1) = 1 − P(
h−1
⋃

i=1

Ei,i+1) =≥ 1 −
h−1
∑

i=1

P(Ei,i+1) (5.33)

whereP(Ei,i+1) is the probability of error in the linki, i + 1 as derived in (5.22).

• Case II: Number of hops = 1,P(S1,h) = 1 − P(E1,h)

For simulations a single circular cell of radiusR = 1000 m is considered with nodes distributed

as stationary distribution derived from Random Waypoint (RWP) mobility model [103]. The

radial distribution of nodes as a function of radial distance r from the center is given by

f(r) =
12

73

(

27r − 35r3 + 8r5
)

(5.34)

All the nodes are assumed to transmit with a constant powerP . The value ofRc is consid-

ered to be500 m. From the nodes’ distribution we constructΦ(·) and then map networkΦ(·)
to the graphGc(·) using (5.23). The PoE-LinkSchedule is computed using the proposed algo-

rithm. Once the link schedule is computed, thespatial reuseis calculated using (5.32). The
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Figure 5.2: Spatial reuse versus number of nodes
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Figure 5.3: Spatial reuse versus transmission range
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Figure 5.4: End-to-end throughput versus SNR

spatial reuseis averaged over100 nodes’ distributions. In the underlined simulation environ-

ment with the SCDMA network thespatial reuseis calculated using the algorithms ArboricalL-

inkSchedule proposed in [89], TruncatedGraphSchedule algorithm of [91] and also Conflict-

FreeLinkSchedule of [100]. Thespatial reuseis plotted against the varying number of nodes

in Fig. 5.2. We can observe that the PoE-LinkSchedule has higherspatial reusecompared to

all other algorithms. This is because PoE-LinkSchedule hasprobability of error as scheduling

metric while all the other algorithms have SNR as schedule metric. Hence, thespatial reuse

which is the function of probability of error is higher in theproposed PoE-LinkSchedule.

The spatial reuseis also plotted against the transmission range for a fixed node density.

From Fig. 5.3, we can see that thespatial reuseincreases for increasing transmission range

(transmission power) till it reaches the maximum range. However, after it reaches the maximum,

it starts decreasing. This is because at lower transmissionranges the received signal strength

will be minimum and receiver noise dominates the received signal. Therefore, as we increase

the transmission range received signal strength will also increase and so does thespatial reuse.

However, after some level of transmission range, the interference dominates the received signal.

Hence, thespatial reusedecreases as shown in Fig. 5.3.
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We have also plotted the lower bound on end-to-end throughput by selecting a random

source and random destination and using minimum hop count routing algorithm. The lower

bound on end-to-end throughput is calculated using (5.33) and averaged over atleast100 dif-

ferent source-destination pairs. Thus obtained lower bound on end-to-end throughput is plotted

in Fig. 5.4 for various SNRs. We can conclude from Fig. 5.4 thatthe proposed algorithm has

better end-to-end throughput. This is because the end-to-end throughput metric is defined as a

function of probability of error and the proposed algorithmhas lower probability of error in all

links due to probability of error constraint.

5.8 Conclusion

In this work, we have developed PoE-LinkSchedule algorithmfor SCDMA MCNs. An em-

pirical modeling shows that, on an average, our algorithm achieves higherspatial reuseand

end-to-end throughput compared to the ConflictFreeLinkSchedule, ArboricalLinkSchedule and

TruncatedGraphSchedule algorithms. Furthermore, PoE-LinkSchedule algorithm has complex-

ity comparable to that of ArboricalLinkSchedule algorithmand much lower than that of Trun-

catedGraphSchedule algorithm. Since the statistics of thechannel varies slower than the channel

coefficients itself, computing PoE metric and scheduling the links offline in a centralized fashion

is feasible. Thus, in cognizance ofspatial reuseand end-to-end throughput PoE-LinkSchedule

is a good candidate for efficient link scheduling algorithm.Once the scheduling information is

available the source to destination path for multihop voice/data communication can be estab-

lished through the scheduled links using some standard routing algorithms.
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Chapter 6

On Optimal Transmission Range for

Multihop Cellular Networks

In this chapter analytical relationship between transmission range and network connectivity

is obtained as a function of number of nodes for CDMA based Multihop Cellular Network

(MCN). We show that for a network ofn uniformly distributed nodes in a single cell of unit

radius, the transmission ranger should be sufficiently larger than
√

2 ln n
n−1

to achieve asymptotic

full connectivity. The distribution of the nodes may not be uniform in case of mobility. In such

case a mobility model dependent lower bound on transmissionrange is obtained. We show that

for Random Waypoint (RWP) model the lower bound for the nodes which lie completely inside

the cell is same as the corresponding uniform node distribution case. However, for nodes on

boundary the transmission range lower bound is
(

ln n
n

)1/3

which is larger than the corresponding

uniform node distribution case. Our findings show that more transmission range is required at

the boundary to establish better connectivity and hence, a variable transmission range control

mechanism is necessary. In addition to the lower bound, we also propose a method to choose the

optimal value of transmission range using a scheduling mechanism and ensure that the optimal

value is always greater than the lower bound. Thus obtained transmission range could be used to

select the transmission power of the nodes in a meaningful way and hence, the nodes’ isolation

could be avoided and the spectral efficiency can be increased. We demonstrate empirically, that

the proposed transmission range control mechanism increases the network connectivity as well

asspatial reuse of the resources.
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6.1 Introduction

In Multihop Cellular Network (MCN) mobile terminals transmitpackets to base stations as well

as to other mobile stations using multiple hops with less transmission range. Such a system en-

hances the throughput, user capacity and energy efficiency [56]. However, the issue of optimal

selection of the transmission range in MCN is yet to be addressed. In MCN, obtaining optimal

transmission range assumes quite significance due to many multiple short range transmissions

instead of single long range transmission [88]. This chapter addresses the transmission range

control problem for CDMA based MCN. The motivation and main contributions of this chapter

are

1. In CDMA-MCN to obtain highspatial reuse of resources the transmission range of

mobile nodes have to be decreased. While, the transmission range is decreased beyond

certain threshold the connectivity of the network will become questionable [79]. We de-

rive an analytical relationship between transmission range and connectivity as a function

of number of nodes in the network and thus obtain a lower boundon transmission range

as a function of number of nodes.

2. For better connectivity of the nodes the transmission range of the nodes has to be in-

creased well above the lower bound. However, more the transmission range more the

interference seen in the systems and hence, lessspatial reuse of the resources. We pro-

pose an optimal choice for the transmission range usingspatial reuse metric in the case

of MCN. When the optimal range is below the connectivity lower bound then the closest

suboptimal value, which satisfies lower bound as well as providesspatial reuse close to

the maximum, will be chosen. With thus obtained transmission range, the transmission

power of the mobiles could be better controlled to reduce theinterference [104] as well

as to achieve high connectivity.

3. We also derive the minimum required transmission range aswell as optimal transmission

range in case of nodes’ mobility. RWP mobility model is used for illustration. The results

show that the transmission range in case of RWP model is same asthat of uniform node

distribution when the nodes lie completely inside the cell.However, it is higher than

the corresponding uniform node distribution scenario whenthe node lies in the boundary

regions.
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6.2 Related Work

A transmission range strategy to maximize throughput for a direct-sequence spread-spectrum

multihop packet radio network is proposed in [105]. An individual variable-range transmission

power control on the physical and network connectivity, network capacity and power savings of

wireless multihop networks is presented in [106]. For uniformly distributed nodes the required

transmission range that creates an almost surely k connected topology for a given node density

is proposed in [107]. A transmission range assignment scheme for wireless sensor node such

that a multihop communication path exists between each sensor node and a super node (base

station) is derived in [108]. A heuristic approach based on interference efficient topology control

is proposed for wireless ad-hoc networks in [109]. [110] presents a method to adjust the powers

of mobile stations to control/improve the topology of the packet radio network. [111] proposes a

transmission range selection method by considering the channel fading effect. We considerably

differ from all the above work by considering the boundary aswell as non boundary scenarios

and also the mobility in the network which is prevalent in thecase of MCN.

6.3 Lower Bound on Transmission Range

We derive the lower bound on transmission range such that thenetwork is fully connected.

Disconnectivity is defined as probability of at least one node being out of coverage region of all

other nodes in a given cell. Consider a single cell with unit radius andn nodes distributed as

uniform point process and a single nodem with transmission ranger (r < 1) at the boundary of

the cell. The scenario of nodem being isolated is shown in Fig. 6.1. We wish to find the lower

bound on value ofr to avoid the node’s isolation. The probability of nodem being in isolation

could be found by calculating the intersection of area of circle of radius1 and circle of radiusr.

Now the area of sector ABC which is shown with dotted lines in Fig. 6.2 is given by

AABC =
(π

2
− θ

2

)

r2 (6.1)

Therefore, the area of shaded regionAshaded= Area of sector AOC centered at O- Area of OABC

(two back to back triangle with OB as common side) which is given by

Ashaded =
1

2
× 2θ − 2 × 1

2
× r × cos

(θ

2

)

(6.2)

from (6.1), (6.2) the area of portion of cell within the transmission range of nodem (Ar) is
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given by

Ar = θ − r cos
(θ

2

)

+ (
π

2
− θ

2
)(r2) (6.3)

Now consider first and second term in the RHS of above equation.As r is less than1 in MCN

we can neglect the area of shaded region of Fig. 6.2. This is because of the reason thatθ being

small,cos θ tends to 1 andθ tends tor. Hence, both of these terms vanish and we can obtain

the following approximation

Ar ≈
(π

2
− θ

2

)

r2 (6.4)

Therefore, probability of a particular nodei amongn nodes being isolated (Pi) is given by

probability that alln−1 nodes lie in uncovered region. As we have assumed uniform distribution

of nodes,

Pi =

(

A − Ar

A

)n−1

=

(

1 − Ar

A

)n−1

(6.5)

whereA = π is the area of circle of radius1. Therefore, from (6.4), (6.5)

Pi =

(

1 −
(1

2
− θ

2π

)

× r2

)n−1

(6.6)

Now, the probability of at least one node being isolated (P 1
i ) is given byP 1

i =
⋃n

i=1 Pi. Upper

bound onP 1
i could be obtained by using the union bound property as

P 1
i =

n
⋃

i=1

Pi ≤
n

∑

i=1

Pi =
n

∑

i=1

(1 − k × r2)n−1 (6.7)

where,k = 1
2
− θ

2π
. Sinceθ ≤ π, k < 0.5. For dense network (i. e large n) using Poisson

approximation [103]

P 1
i ≤

n
∑

i=1

e−(n−1)k×r2

= n × e−(n−1)k×r2

(6.8)

We define the probability of disconnection (PD) as probability of at least one node being isolated

(P 1
i ). Therefore, from (6.8)

PD ≤ n × e−(n−1)k×r2

= eln n−(n−1)k×r2

(6.9)

Finally,

PD ≤ e
ln n

(

1−
(n−1)kr2

ln n

)

= e
ln n

(

1−k×
(

r
r

ln n
(n−1)

)2
)

(6.10)

In the above expression ifr decreases slower than,
√

ln n
k(n−1)

, thenPD will asymptotically ap-

proach zero. Hence, the network will become fully connectedfor sufficiently largen. As
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k < 0.5 we can further say thatr >
√

2lnn
(n−1)

in order to achieve asymptotic connectivity. This

result is in agreement with a landmark result by Gupta and Kumar [112] which states that when

πr2(n) = ln n+C(n)
n

then the network is connected with probability1 provided that, forn → ∞,

C(n) → ∞.

In case the mobile node is completely inside the cell as shownin Fig. 6.3 then in (6.5)

Ar/A will becomer2 hencek will become1. Therefore, the lower bound on transmission range

for the node completely inside the cell is
√

ln n
(n−1)

. For dense network this lower bound can be

approximated as
√

ln n

n
(6.11)

6.3.1 Lower bound on transmission range due to mobility

RWP model is a commonly used model for mobility in ad-hoc networks. Uniform distribution

for nodes’ location may not be true in case of mobility of nodes. The distribution of the nodes

will dependent on the mobility model chosen. For instance incase of RWP model under steady

state conditions the probability density function of nodesis shown in Fig. 6.4. The occurrence

of node at a distances from the origin with RWP model is given by the mean-square error

approximation [113]

f(s) =
6

73π
(27 − 35s2 + 8s4) (6.12)

We can find the probability density function of node occurrence in a ring of radiuss with

reference to the origin by multiplying the above equation by2πs :

fS(s) =
12s

73
(27 − 35s2 + 8s4) (6.13)

Above distribution is used for the connectivity analysis inthe subsequent section.

Lets look at the worst case scenario for the isolation of nodewith RWP model which,

again, should be looked at boundary of the cell. We can still neglect the shaded region in Fig.

6.2 and consider sectoral area ABC. Lets define a polar coordinate system(x, α) with B as

center and OB as the axis in Fig 6.2. Forr < 1, radial distance of any point in the sector from

O can be stated as

s =
√

1 + x2 − 2xcosα (6.14)
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Using this in (6.12) the probability density function of RWP model can be stated as

1f(x, α) =
6

73π
(38xcosα − 19x2 + 32x2cos2α − 32x3cosα + 8x4) (6.15)

Now the probability that a node lies within the sector ABC of Fig. 6.2 is,

p = 2

∫
(π−θ)

2

0

∫ r

0

f(x, α)xdxdα (6.16)

On solving with approximations (consideringsinθ ≈ θ ≈ r and neglecting terms ofr with

degree higher than 4) above equation yields

p ≈ 76r3

73π
− 9r4

292
≈ 76r3

73π
(6.17)

Now, the mean number of nodes within the transmission range can be given asnp (Poisson

approximation for large n [103]), so that the probability for no node lying within the range of a

given nodei is

Pi = e−np (6.18)

Hence, in this case by union bound

PD < nPi (6.19)

substitutingp from (6.17) in (6.18) and then using (6.18) in (6.19)

PD < e
ln n

(

1−k
(

r

3
√

ln n
n

)3
)

(6.20)

wherek = 76
73π

. Comparing with (6.10) this result suggests us that the transmission range value

at boundary should be greater than
(

ln n
n

)1/3

.

In case when the node completely lies in the cell

p =

∫ 2π

0

∫ r

0

f(x, α)xdxdα (6.21)

In order to look at the transmission range requirement near center, lets generalize the analysis

considering that node is located at distancey from origin, where,r ≤ y ≤ 1 − r as shown in

Fig. 6.3. Clearly, the substitution required for this case (as in (6.14)) is

s2 = x2 + y2 − 2xycosα (6.22)

1here it is defined only for the region covered by node
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Hence, calculating requiredf(x, α) and using (6.21), the following general probability expres-

sion can be obtained

p =
1

3
[(162 − 210y2 + 48y4)r2 + (96y2 − 105)r4 + 16r6] (6.23)

Fory = r, this probability of coverage converges to

p =
1

73
[162r2 − 315r4 + 160r6] (6.24)

which suggests that near center the transmission range can be chosen of the order of
√

ln n
n

. This

result matches with the case for uniform node distribution as shown in (6.11). Fory = 1− r the

expression forp has minimum degree 3 confirming that lower bound on transmission increases

at the boundary for high probability of connectivity.

6.4 Variation of Connectivity with Transmit Energy

Monte Carlo simulations have been performed to observe the effect of transmit range variation

on the connectivity of a network. A 1000m radius circular area with 1000 uniformly distributed

nodes have been considered. For illustration purpose hop count is taken as routing metric to

select a path between a source node and destination node. However, the algorithm is routing

independent. Source and destination nodes are selected using uniform distribution from the set

of nodes. The probability of end-to-end connectivity (thatis probability of establishing a path

between any two nodes using a minimum hop count routing) is calculated for a given node

transmission range. A plot is obtained between average connectivity versus transmission range.

The experiment is repeated for various number of hop counts to understand the relationship

between connectivity and hop count. Fig. 6.5 illustrates the plots. Note that the probability

of connectivity is getting higher when hop count increases.This is because as the hop count

increases we can establish the path with multiple smaller hops even though the transmission

range is less.

In the second phase nodes are assumed to be distributed according to RWP model which

is carried out by an inverse mapping of cumulative distribution function corresponding to prob-

ability density given in (6.13) on to cumulative distribution for uniform distribution in circular

area. Fig. 6.6 shows the steady state nodes distribution forRWP mobility model and its corre-

sponding uniform distribution. The probability of connectivity in case of RWP model is shown

in Fig. 6.7 against transmission range for various hop counts.
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Figure 6.5: Connectivity analysis with uniformly distributed nodes
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Figure 6.7: Connectivity analysis with RWP mobility model

6.4.1 Inferences drawn from the plots

We observe the effect of hop count on our analysis. For 1000 nodes, the minimum transmission

range should be well above 0.08m, where we have not considered the limit on number of hops

for transmission. Therefore, simulation results, considering maximum hop constraint show that

a higher transmission range will be required for achieving high probability of connectivity. If

we make the network more delay tolerant (in terms of hop counts), a lesser transmission range

lower bounded by threshold value will be required. For same hop count, average connectivity

of RWP model is found to be higher than the uniform model.

6.5 Optimal Value of Transmission Range

We have seen that the connectivity increases with the transmission range. However, it is es-

sential that the transmit range of each user in MCN-CDMA systems must be reduced to limit

interference so that thespatial reuse can be increased. To evaluate the performance of the

MCN-CDMA systems with respect to transmission range, we definethespatial reusemetric in
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the same way as in (5.32) i.e., the average number of successfully received packets per time slot.

However, we repeat it here for continuity. The transmissionfrom nodeti,j using CDMA codei

at jth time slot is successful at receiving noderi,j only if PEri,j
≤ β whereβ is probability of

error threshold andPEri,j
is the probability of error at receiverri,j. Thus

spatial reuse= σ =

∑C
i=1

∑Mi

j=1 I(PEri,j
< β)

C
(6.25)

whereI(A) denotes the indicator function for eventA, i.e.,I(A) = 1 if eventA occurs,I(A) =

0 if eventA does not occur andC is total number of available orthogonal CDMA codes andMi

is the number of transmit and receive pairs which can successfully communicate in a given time

slot using the same CDMA codei. The essence of MCN-CDMA is to have a reasonably large

number of concurrent and successful transmissions. From (6.25) we can see that transmission

range (power) of each node must be reduced to limit interference, however, the range (power)

should be sufficient enough to maintain the probability of error at the desired receiver for a

satisfactory call quality as well as to maintain the connectivity in the network. Therefore, the

optimal transmission range should be chosen such that the lower bound on transmission range

is satisfied as well as thespatial reuse (which is a function of probability of error) is increased.

We consider a single circular cell of radiusR = 1000m with 1000 nodes distributed as

uniform point process as well as distribution of RWP model. All the nodes are assumed to

transmit with a constant powerP . Our aim is to find the optimal transmit range for each node.

Spatial reusing of CDMA codes is carried out using the PoE-LinkSchedule algorithm proposed

in Chapter 5. Once the reusing strategy is planned, thespatial reuse metric is computed using

(6.25). Thespatial reuse is plotted against the transmission range in Fig. 6.8 after averaging

over100 nodes distributions. From Fig. 6.8 we can see that thespatial reuse increases for in-

creasing transmission range (transmission power) till it reaches the maximum range. However,

after it reaches the maximum it starts decreasing. This is because at lower transmission ranges

the received signal strength will be minimum and receiver noise dominates the received signal.

Therefore, as we increase the transmission range received signal strength will also increase and

hence, thespatial reuse. However, after some level of transmission range the interference will

start dominating the received signal. Hence, thespatial reuse will start decreasing as shown in

Fig. 6.8. In case of dense network the optimal transmission range corresponding to maximum

spatial reuse will always be greater than the lower bound. However, in sparse network it may
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not true. In such case a suboptimal value which is greater than the lower bound and in the

neighbourhood of the optimal transmission range will be selected.

6.6 Conclusion

In this work we have analyzed the relationship between connectivity and transmission range for

both uniform distribution as well as RWP distribution of nodes for MCN. We have observed that

with a given hop count there exists a minimum transmit energyabove which the connectivity in-

creases significantly. Later, we have also proposed a selection strategy for optimal transmission

range to increase both thespatial reuse of the resources as well as the network connectiv-

ity. Employing such a transmission range, the communication link can be better established

between any pair of nodes using multiple hops with improved network capacity.
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Chapter 7

Access Mechanism for Multihop Cellular

Networks

A CDMA-OFDM access mechanism is proposed for Multihop Cellular Networks in this chap-

ter. Source node, destination node and intermediate relay nodes constitute a group and a CDMA

spreading sequence is assigned to each such group. In a particular group, a single OFDM carrier

is assigned to each intermediate hop, hence the proposed OFDM is FDMA in nature. The sub

carriers assigned to the intermediate hops in a given group are mutually orthogonal and also the

CDMA codes assigned to different groups. The sub carriers andtransmit power levels to the re-

lay nodes are assigned in such a way as to maximize the end-to-end throughput. The end-to-end

throughput is formulated by assuming a Rayleigh flat fading channel between nodes. Simula-

tion results show that the proposed access mechanism achieves better end-to-end throughput

and Bit Error Rate (BER) performance compared to standard accessmechanisms like CDMA

and OFDM-FDMA. Furthermore, the BER performance with multiple transmit sources is also

considerably higher in the case of the proposed access mechanism.

7.1 Introduction

This chapter addresses the issue of access mechanism for Multihop Cellular Networks (MCN).

The primary objectives of the MCN wireless systems are efficient bandwidth utilization, low

implementation complexity and higher data rates. To achieve these objectives, the two primary

contending technologies are
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• Orthogonal Frequency-Division Multiplexing (OFDM), which has higher spectral effi-

ciency and very low implementation complexity.

• Code Division Multiple Access (CDMA), which promises higher data rate.

The combination of CDMA and OFDM is a promising candidate for MCN. We will derive the

mechanisms for using OFDM-CDMA in multihop cellular networks in the subsequent sections

of this chapter.

The main contributions of this chapter are as follows:

1. We propose a strategy to use CDMA-OFDM access mechanism in multihop cellular net-

works. Our proposed OFDM is FDMA in nature. We propose a sub carrier allocation

scheme to the intermediate hops such that the end-to-end throughput is maximized with

the constraint that the interference is maintained below certain threshold.

2. The end-to-end throughput is formulated by assuming ani.i.d Rayleigh flat fading prop-

agation channel between nodes instead of the commonly encountered distance-decay law

in literature.

7.2 Related Work

There has been a significant amount of research work going on in access mechanism design

for MCN. MC-CDMA access mechanism is proposed for MCN in [114]; however, the system

model assumes fixed relays and the proposed algorithm is onlyfor uplink communications. Sub

carrier allocation scheme to maximize the information theoretic capacity of an OFDM based

multihop network is proposed in [115]. An OFDM relaying scheme by taking into account

the propagation channel is proposed in [116]. Optimal number of sub-carriers into which the

bandwidth should be split in order to maximize the throughput of the OFDM based MCN is

analyzed in [117]. There are many literature on CDMA based MCN [118–120]. However, to

the best of our knowledge, there is no literature available on CDMA-OFDM for MCN with

generic system model and Rayleigh fading channel to maximizethe end-to-end throughput.

118



Group 1,

Spreading code c
1


Group 2,

Spreading code c
2


Group n,

Spreading code c
n


OFDM

Sub Carrier 1


OFDM

Sub Carrier 3


OFDM

Sub Carrier 1


OFDM

Sub Carrier 2


OFDM

Sub Carrier 1


Base station


Mobile station


Figure 7.1: Proposed access mechanism

7.3 Proposed Access Mechanism and System Model

7.3.1 Proposed access mechanism

The underlying system model is shown in Fig 7.1. Let us assumethat the source node, destina-

tion node and intermediate relay nodes in the routing form a single group as shown in Fig 7.1.

There could be many such groups in a cell. Each group is assigned with a CDMA spreading

code and the spreading codes assigned to different groups are orthogonal. In a particular group

each node uses a single OFDM sub carrier to forward the call. Hence, the proposed OFDM is

FDMA in nature. Moreover, FDMA based OFDM has higher throughput than TDMA based

OFDM [115]. The receiver is a simple matched filter receiver in order to reduce the complex-

ity. The message packets are CDMA spreaded and OFDM modulatedat the source node. The

relay nodes are assumed to be of demodulate and forward type;i.e., relay nodes demodulate the

OFDM packet and modulate them again with a different OFDM carrier and forward it to the

next node in the path. Note that CDMA spreading/despreading will be done only at the source

node and/or destination node (end nodes) and not at the relaynodes (intermediate nodes).
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7.3.2 System model

We consider an CDMA-OFDM system withG groups transmitting at a given instant. Assume

Binary Phase Shift Keying (BPSK) constellation for generating the input bits with equal prob-

ability for bits +1 and -1. Let us consider a groupg consisting of source node, destination node

and set of intermediate relay nodes. Assume that sourceu is assigned with a spreading wave-

form cg(.) whose support is [0, Tbit] andsg = [sg0, sg1, . . . , sgN−1] denotes the corresponding

spreading sequence with spreading gainN . Then,

cg(t) =
N−1
∑

n=0

sgnrect[t − nTc], (7.1)

whererect(t) is a rectangular waveform with unit amplitude in [0, Tc] andTc is the chip period.

Let us assumebg(i) is transmitted bit in groupg. Thekth relay node in groupg transmits bit

bg(i) with amplitudeAkg in ith bit interval and the length of signaling interval for eachuser is

Tbit. The baseband signal of thekth transmitting node ingth group can now be expressed as

xkg(t) = Akgbg(i)exp

(

j2πkt

Tbit

)

cg(t − iTbit),

iTbit ≤ t < (i + 1)Tbit,

(7.2)

Processing at relay nodes

Assume perfect synchronization at the relay nodes in the underlying CDMA-OFDM model and

there areG number of groups communicating simultaneously. The received signal at any relay

nodel from any other nodek in groupg at any instantt is given by

ŷkl(t) = Akgbg(i)cg(t − iTbit) +
G

∑

G=1,G6=g

AνGbG(i)cG(t − iTbit) + η(t) (7.3)

where
∑

G=1
G6=g

(.) is the signal received at nodel from some nodeν of groupG which uses same

carrier as that of nodek andη(t) is zero mean Additive White Gaussian Noise (AWGN). Once

the OFDM demodulation is complete the signals are again OFDMmodulated with a different

carrier and transmitted to the next relay node.

Processing at end nodes

The processing at the end node consists of OFDM demodulationand CDMA despreading. Let

us assumed is the end node which receives signal from nodem. The OFDM demodulated
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signalŷmd(t) at noded can also be derived in a similar fashion asŷul(t). After matched filtering

and despreading of̂ymd(t), the received symbolyd[i] in bit intervali at noded can be written as,

yd[i] = ρAmgbg(i) +
G

∑

G=1G6=g

AνGbG(i)ρGg + η (7.4)

whereρGg =
∫ Tbit

t=0
cG(t − iTbit)cg(t − iTbit)dt is the correlation factor due to loss in spreading

codes’ orthogonality between groupg and groupG, ρ is the correlation factor due to synchro-

nization loss of waveformcg andη is the noise added to the symbol over one bit interval.

7.4 Resources Allocation

7.4.1 Sub carrier and power allocation

We allocate the sub carriers and transmit powers to the intermediate nodes such that the end-to-

end throughput is maximized with the condition that the interference caused to other nodes in

the network is bounded. The end-to-end throughput is definedas the probability of successful

transmission of packets from source to destination. We follow the similar procedures of (4.8)-

(4.16). However, we repeat the same here for continuity. Successful transmission from source

to destination involves successful transmission at each and every intermediate nodes. A node

throughput is defined as the probability of successfully transmitting its packet in a given slot to

its immediate neighbour in the path. The successful single hop transmission from nodel to its

neighbour nodem occurs when the received power at nodem from nodel (rlm) is stronger than

interference plus noise power by a factor ofβ (i.e SINR ≥ β). The probability of successful

transmission from nodel to nodem is

P(Clm) = P(SINRlm ≥ β)

= P(
rlm

(Ilm + η)
≥ β)

= P(rlm ≥ β.(Ilm + η)) (7.5)

whereIlm is the interference at nodem from other communicating entities,SINRlm is the

signal to interference plus noise ratio at link betweenl andm, β is theSINR threshold andη

is the noise power. LetrGm, G = 1, . . . , G (G 6= g) be the received power at nodem from the

interferer in groupG. The total interference at nodem from the interferers in allG − 1 groups
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which use the same carrier as the hop betweenl andm is given by

Ilm =
1

N

(

G
∑

G=1,G6=g

ρ2
GgrGm

)

(7.6)

Erroneous detection occurs whenSINRlm < β, and this probabilityP(Elm) is given by

P(Elm) = P(rlm < β.(Ilm + η)) (7.7)

The propagation channel between mobile node to mobile node is different from the conventional

wireless channel. However, the envelope still follows Rayleigh distribution [82]. Using the fact

that if Y is Rayleigh distributed and X=Y2, then X will follow exponential distribution, we can

conclude thatrlm follows exponential distribution. Hence, the probabilitydensity function of

rlm is given by

P(rlm) =
1

Rlm

e
−rlm
Rlm (7.8)

whereRlm denotes the average received powerRlm = plm

dγ
lm

, plm being the transmitted power

from nodel to nodem andγ is the path loss coefficient [83]. Letχm = {1, 2, 3, . . . , h} be

the path selected to relay the communication from source node 1 to the destination nodeh in

groupg, with h − 1 number of hops. The probabilityP(C1h) that the message is successfully

transmitted from source1 to destinationh is given by

P(C1h) = P(
h−1
⋂

i=1

Cii+1)

= 1 − P(
h−1
⋃

i=1

Eii+1)

≥ 1 −
h−1
∑

i=1

P(Eii+1) (7.9)

where the last inequality is obtained by using the union bound. Note thatP(Cii+1) is dependent

on correct detection of all its previous nodes. Let us consider the communication between node

i andi + 1 in groupg.

P(Eii+1) = P(SINRii+1 < β)

= P(rii+1 < β.(Iii+1 + η))

=
1

Rii+1

∫ β.(Iii+1+η)

0

(e
−

rii+1
Rii+1 )drii+1

= 1 − (e
−β(Iii+1+η)

Rii+1 ) (7.10)
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whereIii+1 itself is a random variable, therefore, by analyzing along the similar lines of [83],

P(Eii+1) can be written as

P(Eii+1) =

∫ ∞

0

. . .

∫ ∞

0

(

1 −
(

e
−

β

[

1
N

PG
G=1G6=g

ρ2
GgrGi+1+η

]

Rii+1

)

)

×
G

∏

G=1G6=g

P (rGm)drGm (7.11)

By substitutingP(rGi+1) from (7.8) and by invoking independence ofP(rGi+1) the above equa-

tion can be written as

P(Eii+1) = 1 −
[

e

(

− βη

pii+1d
−γ
ii+1

)

.
G

∏

G=1G6=g

1

1 + β
N

ρ2
Gi+1pGi+1

pii+1
( dii+1

dGi+1
)γ

]

(7.12)

Using (7.9) and (7.12), the lower bound on end-to-end throughput (Pl(C1h)) can be written as

P(C1h) ≥ 1 −
h−1
∑

i=1

(

1 −
[

e

(

− βη

pii+1d
−γ
ii+1

)

G
∏

G=1,G6=g

1

1 + β
N

ρ2
Gi+1pGi+1

pii+1
( dii+1

dGi+1
)γ

]

)

(7.13)

Now the sub carriers and power allocation functionf(.) is derived as follows

f(c1, c2, . . . , ch−1, p12, p23, . . . , ph−1h) = Max Pl(c1h)

S.T

Iij < Imax ∀i, j ∈ h (7.14)

7.5 Simulation and Results

We simulate a single cell system with the simulation parameters presented in Table 7.1. To

validate the performance of the proposed model, a Monte-Carlo simulation was carried out

by randomly selecting the source and destination nodes, andthe results were averaged over at

least100 realizations of the nodes distribution. We employ Genetic Algorithm (GA) to solve

the constrained optimization of (7.14) [121]. Chromosome values of GA are generated from

uniformly distributed random number generator. Maximum transmit power (maximum value of

chromosomes) from any node is assumed to be1 watt. We use0.95 asPl(c1h) threshold. The

mean square error between the value ofPl(c1h) obtained by substituting chromosomes’ values

of GA and0.95 is taken as fitness function. Cross over probability is assumed to be0.5 while

mutation probability is0.01.
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Table 7.1: Simulation Parameters to show the effectivenessof the proposed access mechanism

Parameters Value

Cell radius 1 Km

Number of nodes in the cell 1000

Propagation loss exponent (γ) 4

SINR threshold(β) 0.25 dB

Interference threshold(Imax) -80 dB

Spreading factor (N ) 32

Thermal noise at receiver -90 dB

Antenna Gain in MT 0 dB (Omni directional)

7.5.1 BER performance

BER performances of various access mechanisms is compared inFig 7.2. For comparison pur-

pose we consider a CDMA access mechanisms which has similar correlation properties as that

of our proposed CDMA-OFDM mechanism. We also consider a OFDM-FDMA access mech-

anism proposed in [115]. We allow50 number of randomly placed groups to transmit at the

same time i.e.,G = 50. We examine a single group communication and assume a matched

filter receiver at the end node as explained in (7.4). From Fig7.2 we can infer that the proposed

CDMA-OFDM access mechanism has better BER performance compared to other algorithms.

This is because the interference in the network in the case ofproposed access mechanism is

much lower compared to remaining access mechanisms due to two level of orthogonal modu-

lations. Therefore, the BER performance is much better in thecase of proposed access mecha-

nism.

7.5.2 Multiple access interference analysis

The effect of increasing the number of active groups (transmitting groups) in the system for a

SNR of20 dB at each node is shown in Fig 7.3. It is evident that more the number of active

groups (G), more the interference in the system. Therefore, as the number of active groups

increases the BER performances of the access mechanisms reduce as shown in Fig 7.3. How-

ever, in the proposed algorithm due to the two levels of orthogonal modulations (OFDM and
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Figure 7.2: BER performance comparison

CDMA), interference at the nodes will be at tolerable level. Hence, the performance is signif-

icantly better in the proposed algorithm compared to CDMA andOFDM-FDMA algorithms.

7.5.3 End-to-end throughput analysis

We have plotted lower bound on end-to-end throughput by varying the number of active groups

in Fig 7.4. From (7.13) it is clear that the end-to-end throughput is a function of transmit powers

of nodes(pii+1). In the proposed algorithm the power levels are optimized such that the end-

to-end throughput is maximized. Therefore, the minimum guaranteed throughput in the case of

proposed algorithm is considerably higher compared to other algorithms as shown in Fig 7.4.

Moreover, as the number of active group increases the end-to-end throughput reduces due to

increase in interference in the system.
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Figure 7.5: Convergence of Genetic algorithm in power and sub-carrier allocations

7.5.4 Convergence analysis

The mean square convergence of GA in power and sub carrier optimization of (7.14) is shown

in Fig 7.5. From Fig 7.5 we can deduce that the GA converges to amean square error of about

10−3 within 50 generations.

7.6 Conclusion

We have proposed a novel CDMA-OFDM access mechanism for MCN. Wehave used a simple

Genetic algorithm to solve the constrained optimization ofpower and sub carrier allocation.

Our proposed algorithm is simple in implementation and has better BER and throughput per-

formance compared to the CDMA and OFDM-FDMA.
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Chapter 8

Conclusions: Summary and Future Work

8.1 Summary

Multiuser transmission techniques and multihop communications enhance the performance of

cellular systems. In this work, we have proposed two entirely new multiuser transmission al-

gorithms. We have employed the simplest possible receiver structure and a new optimization

criterion for finding the filter weights at the transmitter. We have considered the most general

channel conditions with both ISI and MAI effecting the system.

• The problem of channel estimation at the transmitter was solved using the statistical es-

timates for the channel rather then actual channel coefficients. This greatly reduces the

control overhead and saves bandwidth as well as power at the receiver (which is expended

in estimating the channel and then communicating it back to the transmitter) both of

which are deficient in a mobile wireless system.

• To reduce the computational complexity the conditional joint probability of error and

conditional joint norm were minimized. This also gives the optimal filter for each sce-

nario rather than the best filter for the average case. The statistical channel model based

algorithms provide acceptable performance as compared to the fully known channel case

even when the channel variations are large.

• We have simulated both the MPOE and the MMSE algorithms for extremely fast fad-

ing channels and observed the performance to be much better than the case without the

presence of prefiltering. The MPOE algorithms performed significantly better than the

MMSE algorithms as expected.
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On the basis of this work, it is cogent that transmitter basedprefiltering is a promising direction

to explore in order to improve the performance on the downlink of wireless communication

systems. Prefiltering techniques are used in many wired systems (e.g. DSL) and even in FM

broadcasting (pre-emphasis, de-emphasis). This work is a step forward in their logical extension

to wireless systems. In fact, the results from the statistical channel model algorithms prove that

an extensive potential exists in transmitter based prefiltering techniques for application to real-

life practical systems.

In addition to prefiltering we have also explored the option of establishing multihop relay

communications in cellular network. Relaying has potentialto reduce transmitted power and

subsequent interference in the network by breaking longer communication path into a number

of smaller hops. A conventional cellular approach, however, prevents capacity gains due to

interference, as all traffic must be routed through the BS (BaseStation). A network topology

where traffic may be routed between users, without requiringthe BS to take part in all calls,

may avoid the capacity limits resulting from all calls routing via a single BS transceiver.

In multihop cellular networks (MCN) finding an optimal sourceto destination path is an

important issue to be addressed. Routing based solely upon minimizing path loss/distance is un-

able to achieve these potential capacity gains. A novel routing algorithm based upon cross layer

parameters is presented in this thesis. The proposed routing protocol was shown to increase

end-to-end throughput and reduce the end-to-end delay and interference in the network.

Resource scheduling is the another method of further mitigating interference. The ad-hoc

nature of the proposed architecture means that we cannot guarantee successful transmissions

over all the links if all of them are simultaneously involvedin calls. To mitigate this problem

we have proposed a scheduling scheme where CDMA codes can be reused in a given cell with

the constraint that at a given instant, communications overall transmitting links are successful

in the probability of error sense. The proposed MPOE based scheduling scheme increases the

spatial reuse and also the end-to-end throughput.

We have also derived the lower bound on transmission range under various conditions and

proposed a method to choose optimal transmission range so that the network is fully connected

simultaneously maximizing the spatial reuse.

In addition to routing, resource scheduling and transmission range control we have also

proposed an OFDM-CDMA access mechanism for multihop communications in the cellular

network. From the throughput and interference analysis, wecan see that the proposed access
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mechanism contributes not only power reductions but also increases the number of users to

attain a high throughput.

Our proposed solutions solve most of the issues which can occur while incorporating mul-

tihop feature in cellular network. Therefore, we can conclude that multihop communications in

cellular network can successfully be established. We further summarize from our findings that

multihop communications increase spatial reuse reduce interference and also ensure end-to-end

communication with minimum delay and sufficiently high throughput. Also due to reduced

transmission range and high spatial reuse multihop relaying can increase the user capacity to

large extent and reduce the transmission power expenditures. On the basis of this work, it can be

stated without apprehension that multihop relaying has tremendous potential to be considered

as candidate for future generation cellular communications.

8.2 Future Work

The following are some future work suggestions which may be worthy of further exploration in

the case of prefiltering system:

• In the prefiltering model the deployment of the statistical channel algorithm in a real-life

system will depend on the channel statistics and the ratio between the channel mean and

the channel variance. A proper mathematical characterization of this relationship will

surely help in taking decisions about systems in which the statistical channel model can

be used.

• In prefiltering system, the extension of the analysis to a MIMO prefiltering system may

also be investigated.

• For a given mean and variance of the channel, finding the optimum prefilter lengthLz

depends on the balance of MAI and ISI in the system. This trade-off could be studied

further so as to gain a deeper understanding of the role of thetransmitter prefilter. Using

this understanding, a better demodulation scheme could be suggested which treats both

the MAI as well as the ISI in the system separately thereby improving performance.

The following are some of the issues which need further attention in the case of multihop cel-

lular networks:
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• In the MCN model most of the scenarios examined are static userpopulation. Mobility

between users will cause changes in the metrics. More importantly, routing based upon

metrics that have changed is likely to show impaired performance. The impact of mobility

upon the various algorithms presented for MCN is currently anarea for investigation.

• The concept of relaying enables a greater number of communication links permutations

than has previously been possible in centralized CDMA network. The formulation of

simultaneous routing, resource allocation and power control for FDMA and TDMA are

well analyzed in the literature. This approach with regard to MCN in a mobile environ-

ment with OFDM-CDMA access mechanism is an area for future research.

• Cooperative diversity is an another area which can be well utilized in the MCN to max-

imize the end-to-end performance. However, MCN has heterogeneous and dynamic en-

vironment. Therefore, cooperative diversity in such an environment with the goal of

effective resource utilization is a major challenge to be addressed.
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