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Abstract

In this thesis we devise multiuser transmission strateggesell as multihop relaying commu-
nications for DS-CDMA based cellular network.

The performance of DS-CDMA communication systems is limibgdthe interference
caused by other users known as Multiple Access Interfer@viée) and by the channel caused
Inter Symbol Interference (ISI). Receiver based multiuggection techniques that utilize the
knowledge of the downlink channel by the mobile terminaljMave been extensively studied
in the literature, in order to deal with MAI and ISI. Howevtrese techniques result in high MT
receiver complexity. Recently, work has been done on algostthat transfer the complexity
from the MT to the base station by exploiting the fact that imé& Division Duplex (TDD)
mode the downlink channel can be known to the transmitter.

Algorithms based on the Minimum Mean Squared Error (MMSHEgdon are optimal for
‘ideal’ AWGN channels. However, in the case of multiple accegeless multi-path channels,
wherein MAI and ISl are inherent, MMSE based algorithms dicofifer the optimal framework.
Minimum Probability of Error (MPOE) based algorithms haweh shown to perform signifi-
cantly better than MMSE based approaches in these scenkrimsler to reduce the complexity
of the MT, we develop two precoding algorithms at the basgostéo minimize the probability
of error at the MTs receiver. In one algorithm we use a joimfifier for all users and hence,
jointly minimize the probability of error and in the anotha@gorithm an individual prefilters
are employed for each users. Complete channel knowledgesleasassumed in designing the
prefiltering coefficients. Also we employ maximal ratio tsamtter (MRT) beamformer at the
transmitter using the available channel knowledge. Wéaimtelax the assumption of complete
channel knowledge and design the prefilters and maximal ba&mformers by using only first
and second order statistics of the channel.

In a cellular network it is desired to let the MTs stay conedais long as possible. But,

this is quite a challenge because of the limited power MTslpece and also the interference



in the network that must be reduced. A possible way to acHege coverage areas and less
interference is to use multihop relaying. Therefore, weoedice multihop relaying in cellular
domain and resolve some of the problems that arise. Relayisiges use several shorter
communication links instead of the conventional poinptont transmission. This can allow
for a lower power requirement and also frequency re-use reaydre efficiently exploited.

The routing of data packets in MCN must be performed to mingnmterference atthe MT
simultaneously ensuring proper Quality of Service (QoSist@ints. Furthermore, end-to-end
delay and end-to-end throughput are important QoS metwoice and data communications.
We propose a unified cross layer routing by taking all therggdemetrics into consideration.
We also propose an incentive scheme to stimulate the caaperfar relaying. In case of
dynamic call dropping we propose a route resilience scherkedp the communication intact.

The simultaneous allocation of CDMA code to the mutually alelusers affects system
performance through co-channel interference. To attemptihimize this, a novel schedul-
ing scheme is developed based on the probability of errtegravn. The proposed scheduling
scheme is heuristic in nature and has linear complexity rafipect to number of users. Sim-
ulation results show that the proposed scheduling schelmevas greater spatial reuse and
end-to-end throughput.

In addition, we also determine a lower bound on the transarissange of nodes as a
function of number of nodes in the network in order to keepribvork fully connected. With
thus obtained lower bound, we derive an optimal transnmgsinge to increase the spatial reuse
as well to enhance the effective connectivity in the mulilcellular network.

To further increase the throughput performance in multiredgy networks we design a
OFDM-CDMA based access mechanism. The source to destinatine path is grouped and
a single CDMA code is assigned to that group. Inside the grbepritermediate links are
distinguished using OFDM orthogonal carriers. Hence, ttop@sed scheme has two level of
demodulation, therefore greater end-to-end performance.

The advantages and the performance of the proposed te€esniglong with a variety of

characteristics are demonstrated by means of Monte Carldagions.
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Chapter 1

Introduction

Wireless communications were attempted as early as in t668’'48y Mahlon Loomis in the
United States. However, a clear understanding of the basiciples of radio only emerged
after the theoretical work of the Scottish physicist JamesiOMaxwell in the 1860’s and the
experimental work of the German physicist Heinrich Hertzhia 1880’s. More than decade
later, Guglielmo Marconi understood Hertz’s work and fodhtiee Wireless Telegraph and Sig-
nal province in 1897 to manufacture and sell radio equipmenhe first long range wireless
transmission was established in the early part of twentettiury. Marconi and his colleagues
transmitted the three dots of the letter “S” from Cornwallgkmd in the early afternoon of
December 12, 1901 and the signal was heard several timegfecdand out of the background
interference at the receiver station set up by them at CapeMagtachusetts, U.S.A. Thus the
first transatlantic wireless telegraph had been proveries8ut Marconi’s wireless telegraph
transmitted only signals. Voice over the air came into exise only in 1921. Marconi went
on to introduce short wave transmissions in 1922. Since, tthe® to the continuous efforts of
notable scientists and organizations, wireless commtiaichas become an essential part of

our daily lives today.

In the present age, wireless communication capture thateteof wide variety of re-
searchers around the globe. It is almost impossible to keayk f the technical journals,
magazines, symposiums and articles concerning this duljexclear, therefore, that wireless
communication is by any measure, one of the most rapidly gigwegments of the telecom-
munications market. A wireless communication system, wlareast one terminal moves is

classified as a mobile communication system. Mobile systaayshave a terrestrial component



and/or satellite component. Our focus in this thesis is ertérestrial component.

The mobile communication revolution that has happenedd, can be broadly classi-

fied as first generation, second generation (2G) and thirdrgéon (3G) mobile systems.

The first mobile radio systems were introduced by the miliand were limited only to
voice communication systems. The handsets provided vesy ymce quality, low talk time
and were rather bulky in size. The first public cellular phegstem known as Advanced Mo-
bile Phone System (AMPS) was introduced in 1979 in the UnBtdes. This was followed
shortly by the introduction of the Nordic Mobile Telephom¢MT) systems in Denmark, Fin-
land, Norway, Sweden and the Total Access CommunicatioreBy6TACS) and Nippon Mo-
bile Telephone System (NAMTS) in the UK and Japan respdgtiféese systems were widely
considered as first generation mobile phone systems andvireybased on analog Frequency

Division Multiple Access (FDMA) technique.

By 1987, there were 5 incompatible first generation analotesys operating across Eu-
rope. However, it is obvious that any version of a global rebommunication system needs
international roaming and therefore a common mobile stahddence, the network operators,
equipment manufacturers, research establishments aiecgt pakers came together and jointly
launched a Global Standard for Mobile communications otis® known as GSM. GSM was
designed based on TDMA/FDMA scheme with an operating fraguéand of 900 MHz. How-
ever, the 900 MHz frequency band allotted for GSM in Europe nat available in the US and
also there was strong pressure on US researchers and mtanefad¢o develop a competitive
standard for the US market which could work irrespectivénefftequency band. The result was
the development of a narrowband Code Division Multiple AsdgaDMA) standard otherwise
known as IS-95 (Interim Standard-95). GSM and 1S-95 aresiflad as 2G systems. These
systems are now commercially successful and deployed i ith@n 110 countries with the
subscriber numbers reaching in excess of 3 billion. The mam data rate promised by GSM
is 9.6 kbps [1].

By the late 1990s, the very success of GSM and 1S-95 agairdrgisestions about the fu-

ture demand for high date rates, enhanced multimedia ss;\vseamless mobility and flexible
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QoS. Though the GSM community has proposed standards likekSBSHigh-Speed Circuit-
Switched Data), GPRS (General Packet Radio Service) and EEBGRa(ced Data rates for
GSM Evolution), the highest data rate offered was 128 kbgschvwas far below than the
demand. So multinational collaboration was again initldteidentify and agree to a suitable
technology that could be used with new spectrum to provideemsapacity, high bandwidths
and offer international roaming. Hence, the wireless nieseeommunity has started working
on global technological and interoperable air interfaeegard for 3G wireless services in late
1990s and started 3rd Generation Partnership Project (B&RP3GPP2. In Europe 3G has
become UMTS (Universal Mobile Telecommunication Systemd an Japan and US the 3G
system often carries the name IMT-2000 (International Nobelephony 2000) [2, 3].

The 3G mobile communication systems aim to provide enhanoé®, text and data
services to the user at a minimum transmission rates of 144 kbmobile (outdoor) and 2
Mbps in fixed (indoor) environments. Based on these requinesnén 1999 the ITU (Interna-
tional Telecommunication Union) approved five radio irded modes for IMT-2000 standards
(Recommendation 1457). Three of the five approved stand@ddA2000, TD-SCDMA,
WCDMA) are based on CDMA. Many CDMA techniques have been propasditerature



(DS-CDMA, FH-CDMA, TH-CDMA, MC-CDMA, etc.,). Each of them differin the way the
user signature waveforms are designed. DS-CDMA has been dlse pppular amongst the
CDMA techniques and is adopted for 3GPP WCDMA standard. Heneajsg DS-CDMA as

the default access technique in the rest of the thesis uolleeswise stated.

To summarize, mobile communication systems are widelysiflad as three different gen-
erations i.e first generation analog FDMA based AMPS moliileng systems, second genera-
tion TDMA based GSM systems and third generation CDMA basedRBGGPP2 and UMTS

systems.

1.1 CDMA Multiple Access Communication and Multiuser
Transmissions

DS-CDMA is a widely used technique for multiple access comication in wireless systems.
It differs from the classical Time Division Multiple Acce¢§DMA) and Frequency Division
Multiple Access (FDMA) in the context that all users transagaross the entire frequency band

and many users can transmit simultaneously as shown in Eig 1.

DS-CDMA uses linear modulation with wideband pseudonoid¢) (fequences to gen-
erate signals. These sequences, also known as spreadieg, apdead the spectrum of the
modulating signal over a large bandwidth, simultaneoustiucing the spectral density of the
signal. Various CDMA signals occupy the same bandwidth apeéapas interference to each
other. Each user data is assigned with an individual codeeatitne of call initiation. This
code is used both for spreading the signal at the time of ine&as$on and despreading it at the
time of reception. The principle of DS-CDMA is that the codes arthogonal between each
other to allow for decoupling at the receiver. On downlin& Base station transmits to all users
synchronously and this preserves the orthogonality obuarcodes assigned to different users.
The orthogonality, however, is not preserved between rdiffecomponents arriving from dif-
ferent paths in multipath propagation. Hence, althoughspireading codes are designed to be
orthogonal with each other, there are scenarios under whilorthogonality cannot be con-
trolled. This results in interference from user to user.stiape of interference is called multiple

access interference (MAI) and imposes a limitation to CDMAtens.

4



The detection is done on the basis of a filter matched to thedgdiece of the user. We
refer to this detector as the conventional matched filtexatet. Since the conventional matched
filter is designed for orthogonal signature waveforms, fitesa from MAI and Inter Symbol In-
terference (ISI) due to complex multi path time-varyinggagation channels and simultaneous
usage of bandwidth by many users. MAI and ISI are often addete background thermal
noise modeled as Additive White Gaussian Noise (AWGN). Thus siystem performance is
limited by the amount of total interference instead of thelkgaound noise exclusively as in
other cases. In other words, the Signal to Interferencelgaise Ratio (SINR) is the limiting
factor for a mobile communication system instead of the &8ligm Noise Ratio (SNR). There-
fore, in systems employing CDMA, the two problems of equaiaraand signal separation
have to be solved simultaneously to increase the SINR anéwech good performance. In the
state of the art CDMA systems, MAI and ISI are addressed usutjuser signal processing

techniques which offer better performance than the cormeatmatched filter detector.

1.1.1 Multiuser signal processing

Multiuser signal processing techniques can be broadlified into two categories:

1. Multi-User Detection (MUD): MUD has been studied exteei and a number of solu-
tions have been proposed. These techniques are all ret@ised, they usually require
channel estimation, knowledge of all the active users’atigre waveforms and have con-
siderable computational cost. While this is feasible forlthse station (for the uplink
scheme), it contrasts with the desire to keep portable (futsthe downlink scheme),

like simple and power efficient mobile phones.

2. Multiuser Transmission: An alternative to multiuseredgiton is to precode the transmit-
ted signal such that the ISI and MAI effects are minimizedobeftransmission in the
downlink [4]. The extra computational cost is transferrethie base station where power
and computational resources are more readily availableesdlschemes involve some
pre-processing at the transmitter with the aim of keepieg&teiver at the mobile hand-
set simple. The low computational burden at the receiveremdkem better alternative

for deployment in the downlink.



1.1.2 Precoding optimization criterion

The main issue in designing the precoding filter is to develgguitable optimization crite-
rion. The fast growth in popularity and customer base of g® systems has led to a lot of
techniques from the wired world being deployed directlyhe tvireless scenarios without a
thorough study on the optimality of the algorithms. Minimiviean Squared Error (MMSE)
based demodulation schemes are one such example being«tesesively at the physical layer
in wireless systems. The optimality of MMSE based algorghemwell-known for Additive
White Gaussian Noise (AWGN) channels. Wired channels being clese to ideal AWGN
channels, most conventional detectors used the MMSE ioritdor demodulation and detec-
tion of digital symbols. The advent of wireless technolggaw these being directly adapted to
the wireless scenarios where they are being used till datelé§'s channels are incomparably
more hostile and different from wired channels and henae pirformance of MMSE based
approaches is severely degraded and stands much belowabfiimthese systems. Thus there
is a necessity to develop optimal algorithms for demodaiteitn multi-path, I1SI inducing wire-
less channels. Minimum Probability of Error (MPOE) turng tube a natural choice for the
optimality criterion for digital communication systems.

In this thesis, we present two multiuser transmission s@sdmased on novel MPOE cri-
terion. We also propose a Maximal Ratio Transmission (MRBniferming to further enhance

the prefiltering performance.

1.2 Multihop Relaying

The radio frequency bandwidth used for mobile communicatioas become a scarce and ex-
pensive medium as the number of mobile users increased teadegrextent of late and there
is a huge demand of high data rate applications. Given thigaliion on the spectrum, many
researchers have attempted to increase the amount of datansend with complex receiver
structures, modulation schemes, error correction and sdPoobably the greatest single ad-
vance in bandwidth utilization is the cellular concept. sThieans that bandwidth can be re-
used. CDMA systems promise a frequency re-use-factor of Weider, its potential is limited
by co-channel interference as CDMA is a interference limitedtiple access system. Because
all users transmit on the same frequency, internal intenieg generated by the system is the

most significant factor in determining system capacity aalll quality. The transmit power



for each user must be reduced to limit interference, howekerpower should be enough to
maintain the required SNR at the desired receiver for satisfy call quality. Moreover, mo-

bile users rely on a small battery to power the terminal. Hesirable to try and achieve the
lowest transmitted power possible by breaking the transionsfrom a direct link into a series

of smaller hops using other users, or strategically plaetys.

In addition to the above, cellular networks still have somesaa where coverage is yet to
be provided. These areas are often referred as dead spaasl dpets include subway train
platforms, indoor environments and underground areaseMa@r, in dense areas known as hot
spots, such as downtown areas and amusement parks, sebsteifid to experience higher call

blocking.

Multihop relaying has been proven to be effective in inciegighe coverage, reducing the
call blocking probability and decreasing the per node trassion power. With relaying, the
only requirement is that users can achieve the require@kssfggrength at the next relay, meaning
that coverage and high data rates should be available to msers and to the users even at the
edge of the cell. Furthermore, with a conventional systetihdfuser has a poor channel estab-
lished directly to the base station, they may have no chaitédochange location to achieve
communication. However, in multihop relaying, mobilesiwiio good path to any base station

may instead relay their calls through other mobiles withdygiropagation conditions.

Relaying of wireless communication signals is not a new iddze principle behind re-
laying traces its roots back to 500 B.C. Darius I, the king ofsRerdevised an innovative
communication system that was used to send messages anffomwss capital to the remote
provinces of his empire by means of a line of shouting mentjposd on tall structures. This
system was more than 25 times faster than normal messengéetée at that time. In 1970,
Norman Abramson and his fellow researchers at the Uniyes$idawaii invented the ALOHA
protocol for multiple access systems. The success andtg@fé\LOHA triggered widespread
interest in different directions of communications inchglwireless relay communication sys-
tems. Relaying has also been used in satellite communisattorboost the signal in fixed
microwave links and in Defense Advanced Research Projeatsi@yg(DARPA) using one of

the first implementations of packet based communicatiohdfSact multihop relaying is the
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Figure 1.2: Multihop relaying in cellular network illustran

principal strategy followed in Mobile Adhoc Network (MANETsince in MANET due to the
lack of infrastructure and the limited transmission ranfjeach node, data needs to be routed

to the destination by the nodes in a multihop fashion.

Encouraged by the above facts there have been interestsarporating multinop relay
communications into cellular networks as shown in Fig 1.@clBa network is often referred
as Multihop Cellular Network (MCN) which merges the benefitboth ad-hoc networks and
centralized cellular networks and at the same time oversdime drawbacks of both. This is
the concept behind Opportunity Driven Multiple Access (OBMroposed in 3GPP [6]. To
Provide a relaying capability service in next-generatidrhac GSM (AGSM) is also under
study [7]. For data networks also, multihop cellular netvgdnave been proposed in [8]. Being
an effective solution, MCN heavily depends on the mutualrfatence between nodes for the
capacity, coverage and power requirements of a networks,Tihis necessary to understand
the properties of the topology which minimizes the totahsmit power in the presence of

interference. Finding a suitable routing strategy is atillopen problem in MCN. This problem



is computationally intractable and heuristic algorithmes mainly used. Furthermore, suitable
medium access mechanism, link scheduling and optimal teheof transmission power are
some of the issues which need immediate attention. In tleisishve address some of these

important issues in a comprehensive fashion.

1.3 Thesis Contributions and Organization

¢ In Chapter 2, two prefiltering techniques have been devised POE optimization as-
suming complete knowledge (complete channel state infoomeof the forward channel
at the base station transmitter. In the first prefiltering eboal common filter is optimized
to minimize the probability of error in the simple handsetihg matched filter receiver
matched with the CDMA PN code of the user. In the second prefifenodel, an in-
dividual prefilter is employed for each and every user. Rerémces of the proposed
prefiltering models are compared against the correspondiM$GE based prefiltering

systems.

Since complete channel knowledge is assumed at the traesmvie further utilize this
information by employing the MRT technique at the baseatatthere the MRT weights

are optimized based on the available knowledge of the cthanne

e We further relax the assumption of complete channel knogdethd design the MMSE/MPOE
joint as well as individual precoding filter based only on tinst and second order statis-
tics of the channel (partial channel state information) imgter 3. A novel MRT scheme
is proposed to optimize the MRT weights based only on thegd@hiannel state informa-

tion.

e In Chapter 4, a cross layer routing strategy is introducednit &in optimal path from
a given source to destination using multiple path as well@erconstraints. In case
of dynamic call dropping, a time effective route resilierstdeme is presented to find
an alternate path without breaking the ongoing commumnafi he performance of the
proposed routing and route resilience schemes have begracedagainst existing algo-

rithms.

e Chapter 5introduces a heuristic cross layer schedulingiserthe CDMA codes such that

the probability of error in all links in the network is optir@d. The proposed algorithm is

9



based on both graph theoretic as well as physical interferdhhas minimal complexity

and superior performance compared to standard algorithms.

In Chapter 6, an analytical relationship has been derivedid®t coverage and trans-
mission range, so that the transmission power of the moluitees can be controlled
effectively while ensuring connectivity of the nodes. Witle proposed solution, com-
munication can be established in a more power effective erdogtween any two nodes

in the cell.

A group based CDMA-OFDM access mechanism for the effectieeaisCDMA codes
and OFDM carriers in MCN is proposed in Chapter 7. The proposkdree has high

potential to increase the user capacity and to ensure hagtteto-end throughput.

Summary of the work and conclusion of the thesis are given iap@r 8. Furthermore,

future areas of research and extensions are also presented.
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Chapter 2

MPOE Prefiltering and MRT
Beamforming for DS-CDMA Systems

To reduce the complexity of the mobile receiver, two prefitt@dels using a linear FIR prefilter
for minimizing the probability of error is proposed in thisapter. A multiuser downlink trans-
mission scenario is considered. The first system model,istsnsf a single common prefilter
for all users at the base station and the second system masl@hdiividual prefilter for each

and every user. Complete knowledge of the channel at the bats@nds assumed. In order to
fully utilize the knowledge available at the transmittée ffilter weights are computed, condi-
tioned on the transmitted bit vector sequence. This alseemtile computation of the prefilter
coefficients linear in the number of users as opposed to ther@ntial complexity otherwise.
Coefficients of FIR prefilter are computed by minimizing thendtional probability of error

and the mean square error. To further improve the performahthe proposed models, Max-
imum Ratio Transmission (MRT) beamforming is considerechatliase station for both the

models. Simulation results illustrate the performancéefiroposed system models.

2.1 Introduction

Multiple Access Interference (MAI) and Inter Symbol Interénce (ISI) mitigations have been
a challenging research topic since the very beginning esuoin DS-CDMA systems. The fre-
guently considered approach of performing multiuser dete@t the receiver is quite unattrac-
tive for the downlink because it entails an increase of cexipl and power consumption at

the mobile terminals. The solution lies in transferring Wik load to the base station trans-

11



mitter in the form of prefiltering. This chapter explores affitering scheme at the transmitter
which can allow for considerably simplified receiver stures. It is evident that prefiltering
will only be useful if the channel variation timescales akatively slower than the time taken
for the channel to be estimated at the transmitter [9]. Thendiok channel can be estimated
at the transmitter by using some feedback from the recebM@r13]. Alternately, for TDD
based systems, estimates of the uplink channel can be usbd elsannel parameters for the
downlink channel as well, if the time interval between swihg from uplink to downlink is
small enough [14-17]. In this chapter complete knowledgéhefchannel is assumed at the
base station.

Two approaches for prefiltering is considered: the first amesers a common prefilter
for all users as shown in Fig 2.1. Such an approach is termgardgrefiltering. Since the
precoding (prefiltering) is done jointly for all users, trerfprmance of joint prefiltering will not
be up to the mark. To improve the performance significantither, the second case considers
a system which has individual prefilter for each user at tlee Isgation transmitter as shown in
Fig 2.2. Such a model is termed as individual prefiltering.

Minimum Mean Squared Error (MMSE) has traditionally beerdias the optimization
criterion in the design of most of the prefiltering system&wdver, since the symbols are of
significance for a digital communication systems, the optmprefilter should be the one which
minimizes the probability of symbol error at the receiveB{22]. Such a system is referred as
the Minimum Probability of Error (MPOE) based system [18}-2Zually MPOE optimization
tends to be computationally expensive but since ample ctatipoal resources are considered
at the base station, using MPOE instead of MMSE as the otioiz criterion for prefiltering
can be justified. Moreover, by conditioning the filter wegbn the transmitted bits, one can
design a MPOE prefilter with linear complexity [18—-25].

The second part of the chapter, considers a MRT beamformyngking advantage of
the available channel knowledge for improving the Bit ErroteRBER) performance of the
proposed prefilter models. The strategy to adapt weights RT Mssentially depends on the
knowledge about the propagation channel that is availablprefiltering at the base station. A
standard single user receiver (conventional matched disexctor) is used for all the proposed
system models [9, 16, 26-28].

The contributions of this chapter are follows:
e The concept of MPOE based joint and individual prefiltersdeeeloped.

12



e The use of MRT beamforming to further improve the perfornegaotproposed prefilters

is also explored.

The rest of the chapter is organized as follows: Section 2stiibes the related work
in the area of prefiltering, MPOE optimization and MRT beamfmg. The system model is
introduced in Section 2.3. MPOE and MMSE based joint preiiitgis derived in Section 2.4.
The individual prefiltering with MPOE and MMSE optimizatios discussed in Section 2.5.
Sections 2.6 and 2.7 explain the MRT beamforming for joirtt endlividual prefiltering respec-
tively. Prefiltering system model with rake receiver is ddesed in Section 2.8. Simulation
results and analysis of the results are provided in Sect@nR2nally some concluding remarks

are given in Section 2.10.

2.2 Related Work

Significant amount of research work have been carried oteiatea of prefiltering over the last
few years. But almost all the research work have been dirdoteards the design of MMSE
based prefiltering wherein the optimization criterion isrtmimize the mean squared error be-
tween the transmitted and received waveforms [9], [14—2F,[26—-28, 30-34]. Vojcic and
Jang in [9], Honet alin [30], Reynoldset al in [31], Luna-Riveraet al in [26] considered a
synchronous multiuser CDMA system and designed the prefitimg MMSE criterion. In all
these work the analyzes were carried out by assuming zerdnl§l6], a prefilter approach is
proposed where the receiver is matched with both the chamagbrefilter coefficients. But this
method requires the receiver to know the precoder coefte@md perfect channel knowledge
which will increase the receiver complexity. Linear/nowar precoder is designed by assuming
only the long term channel estimate with MMSE criterion i2].3Decorrelating prefilter and
jointly optimized sequences algorithm have been propas¢83], but the optimization crite-
rion is MMSE. Minimum Bit Error Rate (MBER) optimization for lia@ combiner decision
feedback equalizer receiver was proposed in [35] and adaptBER linear multiuser detector
was proposed in [23—-25]. Dua and Desai in [18] proposed th® K Bptimization method for
general DS-CDMA system. Later D al in [19], Soodet alin [20], Mohit et alin [21] and
Wanget alin [22] extended it to different scenarios. In [18-22] it westablished that MPOE

13
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Figure 2.1: DS-CDMA system model for a multipath channel yotht transmitter prefiltering

optimization has better performance than MMSE optimizatiMoreover, in [20—22] a linear
computational complexity MPOE filters (with respect to thember of users) were proposed.
In [36] Ding et al proposed a precoder and in [37] Paloratal derived a transceiver based on
minimum BER method for Zero-Forcing (ZF) equalizer at theereer. These receivers need
training or both the channel and precoding filter knowledgthe receiver hence, a relatively
complex receiver is required which may not be desirable.tiéamore, the Maximal Ratio
Combiner (MRC) rake receiver used in 3rd generation WCDMA alsaireg the receiver to
estimate the channel which impairs the purpose of prefilgef88]. The primary objective of
prefiltering is to simplify the receiver structure hence,wak with a conventional single-user
detector at the receiver. Georgoudisal in [14—-16] and Reynoldst al in [28, 31] have used
a simple matched filter receiver by considering a generahmblamodel with ISI while opti-
mizing the filter on the basis of the MMSE criterion. MRT beamnfiing was first proposed
in [39] and further analyzed in [40-43]. Prefiltering with £Fterion and transmit antenna
array is considered in [43], but it does not take advantagevailable channel information. To
the best of our knowledge there is no treatment on MPOE basditgring. In this chapter,
MPOE based prefiltering with ISI and MAI is proposed in thetfpart. Also the performance
of the MPOE based prefiltering system is substantially imgdousing MRT beamforming in

the second part.

2.3 System Model

Consider a DS-CDMA system withi users as shown in Fig 2.1. Assume Binary Phase Shift
Keying (BPSK) constellation for generating the input bitdheT:ith user transmits BPSK bit
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b, (7) with amplitudeA,, in ith bit interval and the length of signaling interval for eacder is

Ty [44—46]. Let us assume uselis assigned with a spreading waveforp{.) whose support

is [0, Ty::] ands, = [Suo, Su1, - - -, Sun—1] denotes the corresponding spreading sequence. Then,
N—-1
cu(t) = Zsukrect[t— (k— 1T, u=12...,U (2.1)
k=0

where,rect(t) is a rectangular waveform with unit amplitude in [7.], 7. is the chip period
and N is the processing gain of the system. The baseband signla¢ ottt user in theith bit

interval can now be expressed as
Ty (t) = Aubu(i)cu(t — iThy), Ty <t < (i+1)Tyy (2.2)

By adding up all the users’ signalsi# bit interval we get,

= Z .Iu Z A b Cu t - ZTb’Lt) init S t < (2 + 1)Tbit (23)

Assume that:(t) is sampled af. (chip rate sampling), then the resulting sequerieg is

z[n] = Z Aubu(in)eu(nTe — iTyy)

u=1

N-1
= ZA by (in Z suprect(nT, — iTyy — (k — 1)T,)

k=0
- Z Auby(in)3,[n] (2.4)

whereiy = L%J because of chip rate sampling (note th&f, = 7;,;) and the sequence
Sull] = Sun, Sunti,---> SunN, Su0s---,Sun—1 Wheren is the sampling instant. Note thad |
denotes the floor operation which rounds the value tfthe nearest integer towardsc. For

a fixedi, s,[n] will be of length NV, but when the input data is infinitely long, thép[n] will
cyclicly repeat as.[.., sun—1, Suos Suls Su2,.--s SuN—1, Su0, Sul,--.]- The prefilter for a
particular bit period is assumed to be a Finite Impulse Response (FIR) fiielfi() of length
L. and it will be calculated adaptively at every bit intervaheTlidea is to compute these filter
coefficients using MPOE and MMSE criteria. The prefiltereghal which will be sent through

the wireless channel is
z[n] ® z[.][n] (2.5)

where® denotes the convolution operation asid[n| is the prefilter at time instamt. A general

multipath frequency selective channel is assumed in otesysThe multipath wireless channel
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is modeled as a FIR filter and the channel coefficients arerassto be constant over one bit
period. The channel for theth user at theth bit interval is denoted ak, |.|[¢] which is of
length L} for all 5.

The elements of the channel FIR filtér,({][n]) are assumed to be complex Gaussian with
both real and imaginary parts following thed (identical independent distribution) Gaussian
distribution [47]. The noiser,[n]) is assumed to bei.d zero mean Additive White Gaussian

(AWGN). The signal received at useris
ru[n] = hu[J[n] @ z[n] ® z[.][n] + nu[n] (2.6)

whereh,|.][n] is the channel FIR filter at time instant Convertingr,[n] into a parallel stream

of N samples (number of chips per bit period), we obtain
r,[n] = [ru[iN],...,7u[iN + N —1]]" (2.7)

where superscrigl’ denotes transpose. A simple matched filter receiver is asguihhe re-

ceived signal at theth user after matched filtering is

=

yuli] = sir,[i] = SukTuliN + k| (2.8)
k=0
From (2.6) and (2.8)
N-1 Ly—1 L.—1 U
vai] =) sue > halm][1] ( > 2] Y AvbuljalSu[iN + k —m — u)
k=0 m=0 =0 v=1
N-1
+ 3 surnu[iN + k] (2.9)
k=0
where
leVJ\f—l—]l\;;—mJ7 j2:VN+k]\7m_lJ (2.10)

are index parameters in the convolution. In (2}9), gives the ISI term due to the multipath
channel while)_ is the MAI component due to multiple user transmission. 8iBESK con-
stellations are used for input data, the decision stasissigiven byR(y,[i]) = yZ[i], where
R(y.[7]) denotes real part af,[i]. In the following section the MPOE and MMSE algorithms

for the demodulation at theth user with the above decision statistig[i]) is derived.

16



2.3.1 Signal model for MPOE prefiltering

This section compute the conditional probability of erré¥; ;) conditioned on transmitted
bit vector sequencB(i| = b[i], b[i — 1], ..., whereb[i] = b[i], bs[i], ..., by[i] is the vector of
bits transmitted at time instanfor all the users. The conditional mearmB[i]) of the decision

statistics of the received signal is

tyzm i) = E(yyBli]) < Z Suk / h[m Jl](iz[l”j?]-

U
D ADb[R)E[IN + k—m 1] )

v=1

) E(afe {Z Suelu[iN + k]D (2.11)

wherejy, j» are given in (2.10). By using the fact th@{R(a)| = R(E[a]) for anya, E(n,[i N +

k]) = 0 and except, [:N + k] all other quantities are deterministic, the above equatéombe

written as
N-1 Ly—1 L.—1
peali) = BGEBD) = R| 3 su 3 hulm] 1] ( )
k=0 m=0 =0
.ZAvbv[jQ]év[iNJrk—m—l])] (2.12)

The conditional variancerf, ;) of the decision statistics is

oympll] = var (% [i suk Y ha[m][1] (i 2[l[2) > Auby[a]8[iN + k —m — l])]

v=1

o

+ SukMu[tN + k:])

k=0
N-1
= wvar (?R Z SukMul[iN + k;])
k=0
2
- NZ (2.13)

2

For simplicity the variance of the channel noise is assurod tconstant for all users in (2.13).

Now the conditional probability of error is

bl s
Peisgli] = Q <—[O]M }Lv];[z][ ]> (2.14)
where
Q(a) = \/Lz_w/ e do (2.15)
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The probability of correct detection is
bu i)ty B [1]
e i L4 UL 2.16
@( /T3 (2.16)

where we have used the fact that Q(z) = Q(—z).

2.4 Proposed Joint Prefiltering Algorithm

2.4.1 MPOE based prefilter

In joint prefiltering, we have one common prefilter and we wiolike to minimize the joint

conditional probability of error for all users, namely,
PEJM:1_P[y{%ealay§€a2>---ay§€aU] (217)

here P[yf* € «,] is the probability of correct demodulation for th¢h user,q, is decision
region for symbol detection farth user and/ denotes joint probability of error. The condi-
tioning markers and indexin right hand side of the above equation are dropped for oozt
ease. Since the noise vectors for all users are indepentieatb other, the joint conditional

probability of error becomes
Ppyli] =1 = Plyi" € ai]Plys’ € ao] ... Plygf € a] (2.18)

The decision region for BPSK constellatiop, for any uset, is given by(0, co) whenb,[i] =
+1 and(—o0, 0) whenb,[i] = —1. Using (2.16) and (2.18)?z; can be written in closed form
as
Ppylil=1- f[ Q (—M> (2.19)
u=1 a\/N/2

Thus the MPOE optimization problem now becomes
mmz[,”i] PEJ[Z] (220)

i.e., the filter coefficientsA(.][:]) of length L, for each bit interval is calculated by minimizing
the above formulated probability of error. A stochasticdigat descent approach can now
be used to minimize the joint probability of error with resp® the prefilter coefficients. In
gradient descent, the prefilter coefficients are updateordity to the rule

_0Pgy
ol 1]

z[)[i + 1] = z[][i] (2.21)
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wherey is an appropriately chosen step-size paramegteould be chosen adaptively based on

the received signal energy.

2.4.2 MMSE based prefilter

Let us assume that®[i] = y[i], yii[i], y&[i], ..., yii[i] is a vector of decision statistics of all

users. Therefore, the cost function in case of MMSE basedtiiign can be written as

Emlil = zz@uyRm-—bwDHﬂBwﬂ
= ZU: { )2+ b2 — 295 )|B}

= Z{ (y?)B)? +1—2b( (yu|B))} (2.22)

whereb? = 1 as a consequence of BPSK modulation &{g’|B) is given by (2.12).J in
the above equation denotes the joint norm for all the userdex: is dropped for notational

simplifications. Now the filter weights are calculated from

M€y 1] (2.23)

An exactly similar optimization framework as of (2.21) idléeved to optimize the MMSE

prefilter weights.

2.5 Proposed Individual Prefiltering Model

In this model the data for userafter being spread is prefiltered by a FIR filter of lengthwith

a discrete time impulse responsg.|[n| as shown in Fig 2.2. The resulting modified signals are
summed to form the final transmitted signal. The prefiligis[n], v = 1,...,U are designed
such that the probability of error for that particular useminimum at the receiver. Each user’s
prefilter is designed individually by taking into accourg thannel information and the transmit

code of that particular user. The signal for ugeat base station is
Iu(t) = Aubu<l)cu(t — init>7 init S t < (Z + 1)Tbit (224)

This signal is sampled at chip rate as given in (2.4) and vélpbocessed through a prefilter

z,[.][7]. The prefiltered signal corresponding to usext time instant: is given by
2] @ z[ ][] (2.25)
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Now the transmitted signal is given by

qu ® 2,[][7] (2.26)

By analyzing along the similar lines as in (2.6)-(2.9) andhgs{2.26) in place ofc[n], the

received signal for user after matched filtering is

N-1 Ly—-1 u_1 U
ZsukZh m][j1 (ZZZU [j2] Ayby ]Q]SU[ZN+k_m_l])]
k=0 m=0

=0 v=1

=

-1
+ > suknu[iN + k] (2.27)
0

B
Il

wherej;, andj, are given by (2.10). The decision statistic&igy, [i]) = y[i].

2.5.1 MPOE based prefilter

The probability of error for a user ( Phg [i] ) can be formulated in the same way as given in
(2.14), except the fact that the prefilter is different focleaser.
. bult] ptyr By (1]
Pe i = Nt d 2.28
wherey, r g [7] is conditional mean of decision statistics, which can beébly following the

same procedure of (2.12) and is given by

N—-1 Ly-1

pyrisilil = E(y,|Bli]) = E (3%{2 S D hulml[ji].

(i LZZ_I zo[l][J2] Avbu[jo]Su[iN + k —m — l])D (2.29)
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Now the filter of lengthL? at time instant + 1 for useru is calculated using stochastic gradient

search method as follows

2ol ][i + 1] = za[ ][i] — u%, we{l,2,... U} (2.30)

2.5.2 MMSE based prefilter

The function to be optimized for the case of MMSE individuedfitering can be written as
gl = B[00 - )18
— B[00 + 1 - 28]
R 2 2N R
= (E(y,)B)*+0o > +1—2b,E(y,'|B) (2.31)

where E(y2[:]|B) is given in (2.29). Index is dropped for notational simplifications. Now
the individual MMSE prefilter coefficients are calculatedngsgradient search by minimizing

sy [7] as follows
Mg, 165 7] (2.32)

The similar procedure of (2.30) is followed to optimize th&IQE prefilter.

2.6  MRT Beamforming for Joint Prefilter

In MRT beamforming each user data will be transmitted throlilgantennas with\/ different
weights as shown in Fig 2.3. Note that in Fig 2.3 prefili#g1[.]) is common for all users and
all antennas. By following the same procedure in (2.4) theaigansmitted from base station

for useru after chip rate sampling can be written as

Theuwuth user data at:th path will be multiplied by MRT weightv,,,,,. The weightso,,,,, will be
calculated at every bit interval and assumed to be constaniome bit interval because channel

is constant over one bit interval. Now the signal transrdifte useru atmth MRT path is

um
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The MRT weights for uset is concatenated in vector format as

T

wo[i] = [wa[i], waelil, . . ., warri]] (2.35)

Assume that the wireless channel betwd&MMRT transmitter antennas and a mobile receiver

antenna for user is h,[i] which can be represented as
h[i] = [huli), huolil, - -, hueli]] (2.36)

whereh,,,[i], w = 1,...,U, m = 1,..., M) is the channel coefficient betweenth MRT
path ofuth user and receiver antennaitit bit interval. The channel is assumed to be a single
coefficient (} = 1) FIR filter with the coefficient being complex Gaussian [38]ence the
channel is flat fading in MRT model. Note that though chansdiat fading, the prefilter
(L, > 1) at the transmitter to mitigate MAI, itself is a source of IBénce still ISI is the factor
of concern. Flat fading is assumed to simplify the MRT weiggdtulation. MRT can be applied
even when the channel is frequency selective. In case ofiéexy selective channel we can
employ MC-CDMA (or CDMA-OFDM) access mechanism to convert ajfiency selective
channel to a set of flat fading channels and then use MRT [32Jvener, such an analysis is
out of scope of this work.

Assume that the transmit beamforming vectowiswhere the time index is dropped for

notational convenience. The instantaneous SNR at thevegdsigiven byw!’ (hh" )w, where
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the superscripf/ denotes Hermitian transpose. Now, among all possiblenorita transmit
beamforming vectorss, the one which maximizes the instantaneous received SNiR iddm-
inant eigenvector dih” . Sincehh’ is a rank 1 matrix the dominant eigen vector computation
of hh would be rather simple (in fact dominant eigen vector wouddpboportional tda it-
self) [32]. Once the weight vector is computed, the next step is to determine the prefilter
coefficients £[.][7]). The total signal transmitted for &ll users after prefiltering is

U M

ol = |02 AdldSalnlun ]| o] (2.37)

u=1 m=1

By using the linearity property of convolution the above d@racan be written as

©'[n] = XU: (Aubu ]S u]we [n] © 2] [n]) n i (Aubu nn]8un]wesln] © 2] [n]> v

u=1
U
+y (Aubu nx)8uln]war[n] © 2] [n]) (2.38)
u=1
Now the signal transmitted from MRT antenmais

U

=Y (Aubu )8 [n]wam|n] © 2] [n]> (2.39)

u=1
The z[n| in (2.6) can be replaced with (2.37) and the similar step2d)(and (2.9) can be
followed to find the received signal at the receivertf user ¢, i])

N-1 L.—-1

k=0 1=0 v=1 m=1

N—-1
+ ) SuknuliN + k] (2.40)

k=0

sinceL} = 1, j; andj, are given by
N+ k N +k—1

= o= | ———— 2.41
J1 L N J y 2 L N J ( )

Now the decision statistics #(y,,) = y*. The MPOE and MMSE based algorithms are derived

in the following sections.
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2.6.1 MRT beamforming for MPOE joint prefilter

By using same procedure of (2.12) and replacing] of (2.12) with (2.40) the conditional

mean of the decision statistics is given by

(Z Suk Z Z Z Aybylial8u[iN + k —1].

v=1 m=1

HyR B[]

The conditional variance of the decision statistics is gilog

N-1
UiMBH[ﬂ = var(% [Z SukNu[tN + k| )
k=0
02
= N (2.43)
2
The probability of error at particular instant of timéor useru is
. by ] R|B[:] [1]
Poplil = Q| ——=— 2.44
w18 7] Q( N2 (2.44)

The joint probability of erro’z,; can be computed using (2.44) in (2.18):; can now be used

as cost function in (2.21) to determine the prefilter coedfits as follows:

2.6.2 MRT beamforming for MMSE joint prefilter
The find the MMSE cost function we can follow the similar prdoee of Section 2.4.2 with

ya[i] Of (2.40).

U
Emalil = ZE[ Yo 2y5bu>|B}

=1

J ,N
= 3 |(FOIBY 4t 1~ 2B (246)

S

In the above equation indéxs dropped in the right hand side for notational conveniefi¢e
above formulated mean square error will be used as the aodtidn in (2.21) to determine the

prefilter weights.
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Figure 2.4:. DS-CDMA system model with individual prefiltegiand MRT beamforming

2.7 MRT Beamforming for Individual Prefilter

Each user is assumed to haeMRT paths with an individual prefilter for each user as shown
in Fig 2.4. Note that in Fig 2.4 the prefiltez,(.][.]) is common for allA/ MRT paths of uset:

but different for different users. The total transmitteginsil is

Z Z (Auby ()8 [0 Wum 0] @ z4[][1]) (2.47)
u=1m=1
By following the same steps of (2.37)-(2.39), the signaldmaitted from MRT antennau is
U
ADESY <Aubu )8 [2] W [1] © zu[.][n]> (2.48)
u=1

By following similar analysis in Sections 2.5 and 2.6, we camivk the individual prefilter
weights. The received signal after matched filtering, blofeing (2.4)-(2.9) and by replacing
x[n] in (2.6) with (2.47) is

N-1 L-1 v M

= Z Suk Z Z Z 2p[l][J2] Auby[JalSu [N + k — Hwym [72] hum[71]

=0 v=1m=1
N-1
+ ) sunuliN + k] (2.49)
k=0
wherej; andj, are same as in (2.41).
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2.7.1 MRT beamforming for MPOE individual prefilter

The conditional mean and variance of the decision staism be found in same way as that
of (2.12) and (2.13) and are given by

sl = EGEIBI) = §R<E {Z s 303wl Aub L)

-th[j1]§UQ[iN + k— ”qu[.72]>:|> (250)

N-1 2
szle[i} [i] = var <3? [ Z SukMu[tN + k;]] ) = N? (2.51)

k=0

The probability of error at particular instant of timéor uth user’s data is

bui 1y [i
Pl = Q <%) (2.52)

Ppgp;; can now be used as cost function in stochastic gradient lsedr(2.30) to find the

prefilter coefficient,, [.][7].

2.7.2 MRT beamforming for MMSE individual prefilter

An approach similar to that of Section 2.4.2 can be follonedirtd the MMSE cost function.

By replacingy, [i] in Section 2.4.2 with (2.49) the cost function can be writisn
2 - R 2 2 N R
Emlil = | (E(y,)|B)" + o 5 1 1—2b,E(y,|B) (2.53)

where index is dropped for notational ease. The above formulated costifon {7 5., [i] can
be used in (2.30) to determine the prefilter weights.

The prefilter coefficients are normalized at every instamiath MPOE and MMSE algo-
rithms in all the proposed models to reduce the effect of pdwesting. The normalization is

carried out by dividing the prefilter coefficient vector by rtorm.

2.8 System Model with Rake Receiver

The system model with rake receiver is shown in Fig 2.5. Thmmbjective of the prefiltering

system is to avoid the channel estimation at the receiver.th@rcontrary, MRC demands

26



Finger 1
4*{%?—‘ Integrator
c,(tty,)

u a1
Finger 2
Integrator
Tcu(t’taz) Equal gain

|

1

. | combiner
Receiver antenna :

of user u \

1

1

1

\

1

Finger F
Integrator

S, (l'tm:)

Figure 2.5: DS-CDMA system with rake receiver

channel estimation at the receiver. Therefore, we use silaglial Gain Combiner (EGC) rake
receiver. The rake receiver fingers of théh user are matched with the delayed version of
spreading waveform, (). All fingers are assumed to receive signal from one commagivec
antenna as shown in Fig 2.5. The spreading codslotiser is chosen such that

N
Z cu(nTe — tgr)cu(nTe — tap) = 0 (2.54)

n=1
wheret,; andt,r are the estimated excess propagation delay at any two fifigard 7" of rake
receiver. In general the excess propagation delays arépfeslof7,.. Now the received signal

for the joint prefiltering system of Fig 2.1 is

F N-1 Ly-1 L.—1
:Z s) hu[m [jl(z 1[ge ZAb jgsvz]\H—k—m—l])
=1 k=0 m=0 =0
F N-1
+3 3T sUnPEN + k] (2.55)
f=1 k=0

where F is the number of fingers arfﬁ) is the sampled version of spreading code corresponding
to fth finger andyff)[.] is the additive white Gaussian noisefah finger ofuth user.

Received signal corresponding to individual prefilteringteyn and systems with MRT
can also be written similarly. The probability of error an@éan square error can be derived
by following steps (2.12)-(2.14) and Section 2.4.2. Theutation results are presented in the

following section.

27



[ | = Without Prefiltering H
10 k| -©-MMSE Joint Prefiltering : E
F | =©—MPOE Joint Prefiltering )
[.-| =B =MMSE Individual Prefiltering : ]
| =B~ MPOE Individual Prefiltering
|

107
5 10 15 20
SNRin dB

Figure 2.6: Performance of MPOE and MMSE transmitter pegfitlg with 16 users

2.9 Simulations and Results

Extensive simulations were carried out to calculate thélfecoefficients and the correspond-
ing BER for various SNRs for MPOE and MMSE prefilters. BPSK cdiedien for bits was
assumed with equal probability for bits +1 and -1. The prsicgsgainN, was assumed to be
32 and the number of users was taken tollbe Orthogonal spreading codes were assumed.
Channel was assumed to be complex Gaussian with both reatmeaginary parts followi.i.d
Gaussian distribution with value ag).1655 and mean a8.5. Channel lengthl.} was taken to
be 4 for systems without MRT and for systems with MRT. The prefilter length was assumed
to beb (for both joint and individual prefiltering). Step size pareter,, was calculated based

on the received signal energy. We chepsas10~2 x received signal energy.

2.9.1 BER performance of joint and individual prefiltering

BER performance for various SNRs were plotted for both indigidand joint prefiltering. BER
was calculated independently for each channels and BER¥)0such channels were averaged

for each SNR. All the users were assumed to transmit with emualitude. The BER perfor-
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Figure 2.7: BER performance for various SNRs with MRT beamfogn

mance is shown in Fig 2.6. From Fig 2.6, we observe that iddadi prefiltering performs much
better than joint prefiltering and MPOE prefiltering alwagsfprms better than that of MMSE
prefiltering. This is because individual prefilter Haprefilters and the length of the individual
prefilter is effectivelyU times that of corresponding joint prefilter. Therefore, &l and ISI
are better compensated and also the individual probaliigrror is minimized in the case of
individual prefilter and thus the better performance. Ondtieer hand joint prefilter jointly
minimizes all the users’ probability of error using justglim prefilter. Hence, its performance

is inferior compared to individual prefilter model.

2.9.2 MRT results and discussions

The BER performances of MPOE joint and individual prefiltgnmith MRT beamforming were
plotted. Since MPOE performs better than MMSE at all SNRs we leansidered only MPOE
case for MRT beamforming to better visualize the plots. Redofr varying SNRs is shown
in Fig 2.7. Single and MRT weights (paths) for each user were assumed at the bagmsta

From Fig 2.6 and Fig 2.7 one can infer that BER of MPOE prefilteh WIRT is better than
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that of MPOE without MRT. This is because the weights are priopnal to the dominant eigen
vector ofhh®. Hence we will transmit the signal proportional to chanreféicient, which
will mitigate the channel effect. The performance improeeis are quite significant at higher
SNRs. Better performance could be obtained by increasinguh#ar of MRT weights per
user but at the cost of higher complexity. Though we incréasenumber of weights at the
transmitter for each user, MRT beamforming will not incieétse transmission power at base
station since the weights are equal to maximum eigenvedtarhahas unit energy.

Since the individual prefiltering offers better performarban joint prefiltering, we will
consider the performance of individual prefiltering (withdMRT) under a general channel

model (MAI+ISI) for various scenarios in the following subcsions.

2.9.3 Varying number of users

The effect of increasing the number of users in the systera 8NR 0f20 dB is shown in Fig

2.8. Itis evident that more the number of users, more thefarence will be seen in the system.
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Therefore, as the number of users increases the BER perfoenmmaduces. Moreover, as the
number of users increases the performance difference batMEOE and MMSE prefilters
increases. This is because MPOE prefilter better compenb&ié and ISI in the increasing

multiuser interference environment.

2.9.4 Performance comparison with rake receiver

The proposed MPOE individual prefiltering system model isypared with the MPOE indi-
vidual prefiltering system which uses rake receiver. Rakeivec with 3 fingers is considered.
Conventional autocorrelation based path search algorghumed to estimate the excess propa-
gation delay at each finger. The performances of both theogezpsystem and the prefiltering
system with EGC rake receiver are shown in Fig 2.9. One caan thit while using prefilter-
ing the conventional single user detector performancerng slese to the EGC rake receiver’s

performance. This can be explained as follows:

1. Since we use prefiltering, the multipath effect is precengated. In other words the

precoder and channel combination is effectively a singtediaannel. Therefore, the
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diversity gain obtained due to multipath effect is less sigant.

2. Any additional gain will not be obtained by channel eqeettion at the receiver and trans-

mitter simultaneously. Equalization at one end would beojstemal solution.

3. Since a multiuser scenario is assumed and the systeneifenrgnce limited, the perfor-

mance gain from EGC is rather minimal in the case of interfeedimited system.

2.10 Conclusion

Two system models have been proposed for MPOE and MMSE bastitiping technique for
DS-CDMA systems under a general channel conditions. Simualaesults show that MPOE
prefilter outperforms MMSE prefilter in terms of BER and alse thdividual prefiltering is
superior to that of corresponding joint prefiltering. Thefgtering performance is analyzed
by varying number of users. And also the proposed systenoqmeaince is compared with
the prefiltering system which employs rake receiver and daiat the performance is almost
similar in both the system models. The performance of thpgsed system is further enhanced

by using MRT beamforming so that it can be considered fortfmaldmplementation.
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Chapter 3

MPOE Prefiltering and MRT
Beamforming for Statistical Channel

Model

A precoding filter based only on the statistical knowledgthefchannel for DS-CDMA systems
is proposed in this chapter. The proposed prefilter (pregodimimizes the probability of error
in downlink multiuser transmission. The receiver at mob#ieninal is assumed to be a simple
matched filter to reduce the computational complexity. Byofwing the similar procedure in
the previous chapter, two approaches have been investif@téhe proposed algorithm. The
first approach has a system model where a common FIR precbtldergs used for all users
and the prefilter is optimized to jointly minimize the prolday of error of all users. The
second approach has separate precoders for each user whichtained by minimizing the
probability of error for the respective user. In order tdyfuitilize the knowledge available at the
transmitter, in both approaches the filter weights are cdatpoonditioned on the transmitted
bit vector sequence, this makes the computation of the apprefilter coefficients linear in the
number of users. In addition to the above, the performandkeoproposed statistical channel
prefilter models are further enhanced by using MRT beamfagrsirategy. The results of the
proposed approach based on the statistical channel medebesapared with the results based on
assuming complete knowledge of the channel. Simulationltseslearly show that precoders
based only on the statistical knowledge of the channel gdewcceptable BERs. Also the

proposed prefilter achieves better performance comparexigtng algorithms.
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3.1 Introduction

In this work, we explore a prefiltering scheme at the basestatansmitter when only statistical
parameters of the channel available at the base statiofilidtréesign is less complicated when
the transmitter has complete Channel State Information ftete CSl)i. e. the transmitter
knows channel coefficients at every instant as explained ap@hn 2. The drawback with this
assumption is that it requires significant amount of feekhaxn the receiver to the transmitter
[40, 48, 49]. This is especially true in Frequency Divisiondex (FDD) channel where the
downlink and uplink channels are uncorrelated. In this tdapve explore the approach of
working only with the first and second order statistics of dmannel at the transmitter for
optimizing the precoding filter [50-52]. The basic assumpis that the first and second order
statistics of the channel change at a much slower rate tiachidinnel coefficient itself. Hence,
it is easier to track the statistics of the channel which makactical implementation feasible.

As explained in the previous chapter, two approaches argidered for prefiltering: The
first one considers the common prefilter for all users as showig 2.1. To further improve
the performance significantly, a second approach is coreideherein an individual prefilter
is used for each user as shown in Fig 2.2. The standard sisgleraceiver (conventional
matched filter detector) is used in our model in order to $icgmtly reduce the receiver com-
plexity [9, 16, 26—28]. By following the similar argument as previous chapter the MPOE
optimization is considered in transmitter prefilter desigthis chapter too. MPOE prefilter is
designed by conditioning the filter weights on the transditbits [19]. In addition, a novel
MRT beamforming is also developed by taking advantage ofatl@lable statistical knowl-
edge of the channel, to improve the Bit Error Rate (BER) perfoneaant the proposed prefilter
models.

The contributions of this chapter are follows:

1. We develop MPOE/MMSE based joint prefilters by assuminly tme first order and

second order statistics of the channel.

2. Also we propose an individual prefiltering system modekmehwe employ individual
prefilter for each users. The prefilter coefficients are ojth using MPOE/MMSE

criteria. A minimal complexity receiver is employed in dikt prefiltering models.

3. The performance of the proposed prefilters are furtheromga by using MRT beam-

forming for the system having only statistical knowledgeta channel. The proposed
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system considerably differs from other works on maximunotaansmission where com-

plete CSI has been assumed [39,41-43,49,53].

3.1.1 Notations

In this chapter.| denotes floor operation arjd] is ceiling operation. Superscrifit denotes
transpose and bold small letters denote sequence/vectper&ript * andH{ denote complex
conjugate and Hermitian transpose, respectively. Pageath|, (.) used in vector and signal
arguments to denote discrete samples and continuous sigesiectively however, when used
in functions they do not have any specific meanings. Sugptsdr, ) denote in-phase and
quadrature-phase components respectivély.) is statistical expectationjar(.) is variance,

R(.) is real part of complex number aRx(.) is imaginary part of complex number.

3.2 Signal Model

Consider a similar DS-CDMA system model of Chapter 2 as showngr2A. By following

similar steps of (2.2)-(2.9) the received signal atdkieuser after matched filtering is

N-1  Lp-1 L.—1 U N-1
vali] = sue Y humlli] Y 2ll[2] > Aubu[i2l5u[iN +k—m =1+ surnu[iN + k]
k=0 m=0 =0 v=1 k=0
(3.1)
where
, IN+k—m , iIN+k—m-—1
1= {TJ’ J2 = { N J (3.2)

In (5.5), foi:_ol gives the Inter Symbol Interference (ISI) term due to thetipath channel
while fo:l is the Multiple Access Interference (MAI) component due toltmser transmis-
sions. Since BPSK constellations are used for input datagddieesion statistics is given by
R(y.[i]) = y[i]. In the following sections we shall derive the MPOE and MM3go&thms

for the demodulation at theth user with the above decision statistic'[:]).

3.3 Proposed Joint Prefiltering Model

In the prefilter design only the first order and second ordaistics of the downlink channel

are assumed at the base station.
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3.3.1 MPOE based prefiltering

We first compute the conditional probability of errdPgg;) conditioned on transmitted bit
vector sequencB|i] = bl[i],b[i — 1], ..., wherebli] = b;[i], bsi], . .., by]i] is the vector of bits

transmitted at time instaftfor all the users. Let us define mean of the channel coeffieignt
Yulm][i] = E(hu[m][i]) (3.3)

and the second order statistics as

, RyJmy,molir, i) = E

Ry[my,mollir, iz = E | hy[ma][ir]h,[me][iz]

homa][in ] b [meo] [iz]]
(3.4)

Culmy, mal[ir, io] = E| (hy[ma][i1] — vulma][ir]) (hy, [ma][iz] — vi[ma][ia])
- - (3.5)
Culma, ma)lir, is] = E | (hu[ma]lir] — vu[ma][ia]) (hulmo] [i2] — ~u[mo] [i2])

The mean ,»g;)) of the decision statistig/f*[i]) is given by

N—-1 Ly-1 L.—1
(Z‘S“kzh m][j1] Z 1[ja ZAb Ja] Su[iN + k —m — ]

=0

N-1
+ Z SukMuliN + k])
k=0

pypmilil = By, B

(3.6)
By using the fact that’[(a)] = R(E|a]) for anya, E(n,[iN + k]) = 0 and exceph,, [m][j1],
n.[tN + k] all other quantities are deterministic, the above equatémbe written as

L.—-1 U

Z Suk Z yalm[i) Y 2[052) Y Aubuljal 5u[iN + k —m — z]] 3.7)

=0 v=1

py i) [1]

Without loss of generality we can assume that chahpfel[.] and noisey, .| follow independent
distribution. Now by using the fact thaiur(a + b) = var(a) + var(b) whena andb are

independent, the conditional variance of the decisiornssiezg (O'ER\BM) is given by

=0 v=1

0% g l1] = W[ (Z Suk Z h| z_j 2[0)[52) > Aubu[fa]8o[iN + k —m — z])]

Z SukNu[iN + k]
k=0

+ var

(3.8)
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Since the receiver noises are assumed to be zero medAWGN with equal variance (i.er)

and also the spreading coefficients is either +1 or -1 and deterministic we can write,

N-1
var [Z SukMul[iN + k|
k=0

2

where we have used linearity property of variance operati@n independent random variables.

Let

O%RIBM = var( [Z Suk Z | . [ [a] <Z A,bylja) Su[iN +k —m — l])])

= v=1

(3.10)

This can be rewritten as
0snmp i = var (3? >
k=0

£ var (?R hu[m][jl]fu[k‘,m,l,v]]>

km,lv

m=0 [=0 v=1

(3.11)
where f, [k, m, [, v] = su,2[l] [jg]A by [72] §,,[z’N + k —m — [, the indicesjy, j, are given in
(3.2) and the sumy_, ., = Sy Sy Sk UL By using the fact thatar(a) =

Ela — E(a))?* for anya andfu[k, m, [, v] is deterministic variable, (3.11) can be written as

Osﬁ\B[i] [Z] =L (%[ Z (hu[m][jl] - 'Vu[m] [jl])fu[k7m7lvv]:|> ]

k,m,lv

R Y (bl - Gl oo (3.12)

k1,m1,l1,v1

|
&

§R( Z (hu[m2][j21]_%[m2][j21])fu[k2vm2>l2vv2])]

k2,ma,l2,v2

where,

N N
For notational convenience let us assume

. iIN+k —m . IN +ky—m
I L L -

hy = ho[malljul, n = ylmallin, fi = fulk,ma, b, o] (3.14)

ho = hu[m2][j21]a Y2 = ’Yu[m2”j21], Jo = fu[kf2>m2752,1}2]

Since the channel coefficients of different usersiard, from (3.12), (5.17) we can get

gl = B

> R[(h1 — ) A1IR[(ha — 72)f2]] (3.15)

k1,ma,l1,v1,k2,m2,l2,v2
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By using the fact thalt(a) = @ for any complex numbet, the above equation can be

rewritten as

1
2 1
oyl = 7E

Z (hifr = mfir + hfi =i fi)(hefe — e fo + hafs — ’Y;fz*)]

k1,m1,l1,v1,k2,ma,l2,v2

(3.16)

After some algebraic manipulations on the above equatiogete

1
osmmill = 2. E

k1,ma,l1,v1,k2,m2,l2,v2

(h1 = 71)(he — 72) fufo + (h] — 1) (he — 72) f1 fo

+ (b =) (hs =) fufs + () — ) (B — vé)fffé‘]
(3.17)

Sincef; and f, are deterministic, by using (3.5) in (3.17)

szl = i[ ) Cufifo+ Cofi f5 + Cufifs + ijf{‘f2] (3.18)

k1,m1,l1,v1,k2,m2,l2,v2

WhereC'u = C’[ml, mg][jlhjgl] andéu = C’[ml, MQ][jll,jgl]. From (38), (39) and (318) the
conditional variance will become

2

1
+N%— (3.19)

oyemili] = 1[ Z Cufifo+ Cofifs + Cufifs + Cofifo

k1,m1,l1,v1,k2,ma,l2,v2

We have derived expressions for the conditional mean (3@ )canditional variance (3.19) of
y2[i]. The conditional probability of error afth user as a function of above derived conditional

mean and conditional variance is [54]

Pyl = Q Huy—“lB[.]H (3.20)
7yl [1]
and the corresponding probability of correct detection is
b, [i i
Q _M (321)
a8l [1]

where we have used the fact that Q(z) = Q(—xz).

We would like to minimize the joint conditional probabiliof error for all users, namely,

Pgjlil =1— Pyl € ar,y € ay, ..., yft € ay] (3.22)
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whereP[yf € a4] is the probability of correct detection foth usery, is theuth user decision
region for symbol detection and denotes joint probability of error. We have dropped the
conditioning markers and indexfor notational ease. Since the noise vectors for all users ar

independent, the joint conditional probability of errocbenes

Pyyli) = 1 - Plyf € au]Plyf € o] ... Pyl € au] (3.23)

Using (3.21), (3.23) and since we have assumed identidaibiison assumption for noisé)z
can be written in closed form as

Peyli] =1~ ﬁ@(——b“m“yf'w m) (3.24)

oyrBli ]

u=1
The prefilter coefficientse(.][:]) of length L, for each bit interval is calculated by minimizing
the above formulated probability of error. The proposedallym is adaptive in nature where
the prefilter coefficients are adapted continuously. Gradiearch is the simplest adaptive algo-
rithm widely used. Therefore, we employ the gradient defsapproach to adaptively calculate

the prefilter coefficients as follows

OPgy

2 i+ 1] = 2]l — g

(3.25)

wherey is an appropriately chosen step-size parameter, and ingeneould be adaptive.

3.3.2 MMSE based prefiltering

By following the similar procedure of Section 2.4.2 we canta/the cost function for MMSE

based algorithm as

U
s = ZE{«yf)Q 12— 2y, >\B]
(3.26)

_Z{ )2B) + 1 — 2b,E(y" |B)}

Sinceo? gy = E((y%)?|B) when mean i9, the same procedure o5, [] can be followed
to deriveE((y)%|B) except that?,, R, will replaceC,, C, becaus&,, C, becomeR,, R,

when mean i9. Therefore £((y*)%|B) can now be written as

B(f1B) = | [ S Rh+ RS RS RS @B2D)

k1,ma,l1,u1,ka,ma,l2,us
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wherej, jo; are given by (5.16) an@u = Ru[mme] 11, J21)s Ry = Ru[ma, ma][ji1, jo1]-

From (3.26) and (3.27) the cost function can be written as

U
. 1 - Ik % [k *
ﬁmmm:=§jb( ) Ruwzuaﬁfguaﬁﬁ+ﬁxﬁﬁ)+12b[mﬁmm]
u=1
(3.28)
wherey, rg; is given by (3.7). We follow the similar gradient descentraggh as in (3.25) to

k1,mq,l1,u1,k2,ma,l2,us

computez[.][:] by minimizingg’?]le [i].
Note that in the statistical channel algorithm, we only nkedwledge of the first order
(7[-][-]) and second ordet,[., ][., .|, ..., Cu[., ][.,.]) statistics of the channel coefficients in

designing the prefilter.

3.4 Proposed Individual Prefiltering Model

In this model the data for useris prefiltered by a individual filter of length? with a discrete
time impulse response,[.][i] as shown in Fig 2.2. The resulting prefiltered signals frohi/al
users are added and then transmitted from the base statierpré&filtersz,,[.|[i], u = 1,...,U
are designed such that the probability of error for thatipaldr user is minimum at the receiver.

The prefiltered signal at time instamtcorresponding to useris given by
2] © 2, ][] (3.29)
Now the total signal to be transmitted, is given by
Z Tu[n] @ z,]. (3.30)

If we carry out the similar formulation as in (2.2)-(2.9) bging (3.30) in place of[n], the

received signal at userafter matched filtering is

N-1 Ly-1 Ly-1 U N-1
D sur Y ha[mllin] Y 2l Aubulio] 8 iN 4k —m = 1|+ sunuliN + k]
k=0 m=0 =0 v=1 k=0

(3.31)
wherej; andj, are given by (3.2). The decision statistic§igy, [i]) = yZ]i].

3.4.1 MPOE based prefilter

The probability of error for a user (Pngm [i]) can be formulated in the similar way as given

in (3.20), except the fact that the prefilter is different &ach user. By analyzing along the
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similar lines of (3.3)-(3.19) and by replacing[i] in (3.3)-(3.19) by (3.31), the conditional

mean fu,rgp;) and the conditional varianceZR|Bm) can be written as

N—1 Ly—1 LY-1 U
pymmili] = R [Z sue Y Yalmllin] Do D zulllja] Aubulja] 3, [iN + K —m — z]] (3.32)
k=0 m=0 =0 v=1
N—1 Ly—1 LY—1 U 0_2
o2pygli] = var (ére [ sor X mulmli] Y- (Y2 0l S8+ k=~ 1] ) T
k=0 m=0 =0 “v=1
1 ~ Sk Pk Lk * * ¥ 02
:Zl Cuf1f2+0uf1f2+Cuf1f2+cuflf2 +N?
k1,ma,l1,01,k2,me,l2,v2
(3.33)

whereC,, = Cmy, ms][j11, ja1], Cu = CN’[mth]Umjm] and

fi = fulki,ma, by, fa = fulke, ma,la, val, fulk,m, 1 o] = surzo[l][J2] Avbo[d2] S [iN+Ek—m—l]
(3.34)

Note thatf, [k, m, [, v] of individual prefiltering is different from the correspadnd joint pre-
filtering. The cost function to be minimized to determine hefilter coefficients4,[.|[n]) can
be formulated, by using the above derived conditional mearcanditional variance as follows

il = @ (%) (3.35)
Note that the probability of error at the receiver is caltedibafter the signal is prefiltered and
transmitted through the multipath channel as shown in R2g Zherefore, the probability of
error at the receiver for useris function of all users prefiltering coefficients.

Intuitively we can see that all other users’ prefilter coédints influence the probability of
error of a particular user by disturbing the orthogonalityoag the spreading codes as shown
in (3.32) and (3.33). Hence, it is important to optimize thel@ability of error of a particular
user by taking into account the effect caused in the recesigll due to all other prefilter
coefficients. Now the prefilter of length? at time instant + 1 for useru is calculated using
gradient search method as follows

oPy

al i+ 1] =l i~ g o

we{1,2,...,U} (3.36)
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3.4.2 MMSE based prefiltering

By following the same arguments as that of Section 3.3.2 amtid®e3.4.1 the MMSE cost

function for usen is

U
£5|B[i} [i] = Z <111[ Z ﬁuﬁf2+Rfof§+Ruf1f5+Rfof2 +1—2by f1yr B M)
B (3.37)

k1,ma,l1,u1,k2,ma,l2,ug

where f1, f, are given in (3.34) and?u = Ru[mlamZHjlbjﬂ]y R, = Ry[m1,ma][j11, ja1]-

We follow the similar gradient descent approach as in (3@@pmputez,[.|[i] by minimizing

s li]-

3.5 MRT Beamforming for Joint Prefilter

In MRT beamforming each user data will be transmitted thiodg paths with A/ different
weights as shown in Fig 2.3. Note that in Fig 2.3 prefiltgt][.]) is common for all users
and all paths. By following the same procedure in (2.33) aftép rate sampling:,[n] can be

written as

Thewuth user data at:th path will be multiplied by maximum ratio weight,,,. The weights
w.m WIll be calculated at every bit interval and assumed to bestaont over one bit interval
because channel is constant over one bit interval. Now trebktransmitted for user at mth

path is
2l [n] = Aubu[nn]Su[n]wem[n] (3.39)

um

The beamforming weights are concatenated for uservector format as

Assume that the wireless channel betwéérnransmitter beamforming antennas and a mobile

receiver antenna for useris h,[i] which can be represented as
h[i] = [huli), huolil, - -, huneli]] (3.41)

whereh,,[i], (w = 1,...,U, m = 1,..., M) is the channel coefficient betweerth beam-

forming antenna ofith user and receiver antennaitt bit interval.
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Assume that the transmit beamforming vector for us& w,, where the time index is
dropped for notational convenience. The average SNR atetteivier of user is given by
wiE(h,hH)w,. Now, among all possible unit-norm transmit beamformingtoes w,, the
one which maximizes the average received SNR is the doméigetvector of(h,hi’). The

total signal transmitted for all’ users after prefiltering is

2'[n] = [Z S Aol [n]] @zl (3.42)
By using the linearity properz':;lo?;nvolution the above ipracan be written as
Z[n] = Z (Aubulnnsullwaln) @ 2[)in]) + 2 (Abulnnlsulnlwialn] @ 2l]in]) + ..
+ i (Aubulnnlunlwanln] @ 2 )n)) (3.43)
Now the signal transmitted from MR;:l;eamforming antennis
2! [n] = i (Aubulnlulnlwamln] @ 2 )n)) (3.44)

The next step is to find the prefilter coefficients |(i]).

Let v, Is meanC,,., Cum, Rum andR,,, are second order statistics/of,, [i]. Then

Yamli] = E(humli]) (3.45)
Cumyma [ilv iQ] = F (hum1 [Zl] = Yuma [il])<h2m2 [22] - 7Zm2 [22])
C~1um1mz [ilv 2.2] = E (hum1 [Zl] = Yumy [il])(humz [22] — Yuma [22]) (3-46)

Rum1m2 [ila ZQ} =K huml [il]thQ [22] s Rumlmg [7;17 Z2] =F

Py [0 Py [7,2]] (3.47)

The z[n] in (2.6) is replaced with (3.42) and follow the same steps207)((2.9) to find the

received signal at the receiverath user ¢, [i])

N-1 L.—-1 u M

Yuli] = Z Suk Z z[l][J2] Z Z Auby[J2]Su[iN + k — lwym[j2] hum [71]
k=0 1=0 v=1 m=1
N-1
+ D Suku[iN + K] (3.48)
k=0
where, sincd; =1 j; andj, are given by
. N+ k . N +k—1
J1= L N J, J2 = {TJ (3.49)
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3.5.1 MRT beamforming for MPOE joint prefilter

By following the similar steps of (3.3)-(3.19) and by usingd@®) in place ofy, [i] the conditional
mean and variance of the decision statistics are given by

N-1 L.—-1

pypisili = By, Bli]) = R [Z Suk ) z[1][72] (Z Z Auby[jo] $o[iN + k —1].

k=0 1=0 v=1 m=1

Wym [J2]7um[]l]>] (350)

wherej; andj, are given in (3.49).

. 1 2 Yk * L * * *
oyl = [ Y. Cummfifet Comimafi f5 + Cumms 155 + Copins f2]
k1,l1,01,m1,

ka,l2,v2,m2
2

+N% (3.51)
where
Cum1m2 - Cumﬂng [jllaj?l]a éumlmz - éumlmz [jllaj?l] (352)
) iN + k . iIN + k

Jun = {TlJ’ Jo1 = { N ZJ (3.53)

fl = fu[kl)l17vl7m1]

f2 = fu[k27l271}27m2]
fulk,lbo,m] = suz[l][J2) Avbu[d2)Su[iN + k — wym[J2] (3.54)

For ki, Iy, v, mq, ko, la, ve, my (3.11) can be revisited. Now the probability of error at
particular bit period; for mth beamforming path of user as a function of conditional mean

and variance is

Ppspyli] = Q <M> (3.55)

oy By 7]
The joint probability of errotPy; can be determined by using the similar procedure of (3.24).

Pg; can now be used as cost function in (3.25) to determine tHétpreoefficients.
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3.5.2 MRT beamforming for MMSE joint prefilter

The same procedure of Section 3.3.2 is followed by using8jdrplace ofy, [:]. The MMSE

cost function is

Mq

Empldl = E {(95)2 + 0% — 2y, )|B}

1

u

I
M=

E((yP)IB) +1 - 2buE<yf|B>]

IS
Il
—

( S Rummafifo + R 75+ Rumima fif5 + R fi f2) +1

k1,ma,l1,u1,
ka2,ma,l2,u2

IS
Il
—

Il
[]=
-

— 2byfiyrBYi [i]] (3.56)

wherejiy, jo1 are same as in (3.53),r ;) is same as in (3.50);, f- are given in (3.54) and

Rumims = Rumyms|J11,921]s Rumyms = Rumlmz [711, j21]- The above formulated mean square

error will be optimized by using (3.25) to determine the preficoefficients.

3.6 MRT Beamforming for Individual Prefilter

Each user is assumed to ha¥eé beamforming weights with an individual prefilter for each
user as shown in Fig 2.4. Note that in Fig 2.4 the prefiligf.[[.]) is common for all M/
beamforming antennas of user By following the same steps of (3.42)-(3.44), the signal

transmitted from beamforming antennais
U

wnln) =7 (Aubulnalulnwun(n) © 2. )n]) (357)

u=1

The individual prefilter weights can be derived by followsigilar analysis in Sections 3.4 and

3.5.1. By foIIowing the similar steps of (2.7)-(2.9) the riveel signal after matched filtering is

LY-1 v M

Z Suk Z Z sz [72] Auby[72] 34 [IN + k — lwym[ja] huml[j1]

=0 v=1m=1
N-1

+ 3 surnu[iN + k] (3.58)
k=0

3.6.1 MRT beamforming for MPOE individual prefilter

The similar analysis of (3.3)-(3.19) can be followed by gitbsng (3.58) in place ofy,[i] to

calculate the conditional meap (= g;) and the conditional varlancergR|B[ [i]). The condi-
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tional mean and variance are given by

sl = E(y,[Bli])
N-1 LY—1 M
- R [Z Sui S 2ol Abulja) 3 [iN + k — 1.
k=0 =0 m=1v=1

. 1 ~ Sk * Pk * * *
O—Z{E\B[z] [7’] - Z [ Z CumlmgflfQ + Cum1m2f1 f2 + CumlmelfQ + Cum1m2f1 f2

k1,l1,01,m1,
k2,l2,v2,m2

2

+N% (3.60)
wheref, = fulki, li,vi,ma], fo= fulks, 1,12, v2, ms] and
fu[ka l,U, m] - Sukzv[l] []2]Avbv[]2]§v[ZN + E—1-— ”wvm[]Z] (361)

Now the probability of error at particular instant of timéor uth user’s data is
bu ]ty Bya 7]
Pramli] = Q ——22=2— (3.62)
el < oy
Ppg);) can now be used as cost function in gradient search of (3036¢termine the MPOE

prefilter coefficients.

3.6.2 MRT beamforming for MMSE individual prefilter

The approach similar to that of Section 3.4.2 is adopted thighy, [i| of (3.58). The MMSE

cost function is given by

U

. 1 5 9% * ok * * *
Sumalll = Z(z[ D Rumimafifo+ Ry 715+ Rumima f115 + Rl 1 f2] 1

u=1 k1,ma,l1,u1,

k2,ma,l2,u2
— 2bypuyriBp) M} > (3.63)

wherejy1, jo1 are given in (3.53)u, x5, [i] is given in (3.59) andy, f; are givenin (3.61). The
above formulated mean square error will be the cost fundtigB.36) to determine the MMSE
prefilter weights.

The prefilter weights are normalized at every bit period ithtitbe MPOE and MMSE

algorithms in all proposed models to reduce the effect ofgrdvoosting.
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3.7 Complexity Analysis

3.7.1 Complexity of the proposed MPOE individual prefilter algorithm

The probability of error expression for individual prefiiteg model is

bu ) R P )
Prwyl = oLzl
The filter updation equation is given by
oP}
z, [ + 1] = zu[.][7] — Ha 1 Aok we{l,2,...,U} (3.65)

Using Leibniz integral rule we can write

A A

As the exponential with digits of precision requires just @(2) complexity [55], the complex-

8( “y{?B[i[]‘})
O P 1 —/L2 i TyRBLi

B 202 yR(Bi] [2] 8Zu[.] [Z]

ity in finding filter weights essentially lies in determinitige values ofi,r gy andaiR‘Bm [4].

Complexity in determining 1,z g;

The received signal in (3.31) is expanded in (3.78) to digtish the signal component and
interference component. As number of users increasegargace term in (3.78) approaches
Gaussian. Sinck,[j»] is either+1 or —1 and if we assumé,, = 1, V « the complexity involved
in determiningu, gy, of (3.78) is2 L. L, flops. If we include the complexity in determining the
index termj; andj, the total complexity will be20L . L, multiplications andl 0L, L, additions
where we have assumed division takd®ops [54]. Therefore, the total complexity involved in

determiningu, r gy is O(L. Ly).

Complexity in determining o=y i, [1]

From (3.19)

N-1Ly-1p.,—1 U N-1Ly-1p,-1 U

ol = | 3 3 33 57 3 3 (€ Coni o+ Cifih)|
=0 1

m1=0 [1=0 v1=1 ko=0m2=0 [2=0 v2=
2

N
+2

(3.67)
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AS b, [j2], sur are either+1 or —1 and if we assumel, = 1, ¥V u then f; and f, can be directly
determined. Due to the above fact the summat@'ﬁ%;t, ZQ;;B in (3.67) will not constitute
any additional complexity. However, the terrEfi:1 and ZvUFl will introduce additional
complexity sincef;, f» are functions ok, |[.|[.] as derived in (3.34). Furthermore, the second
order statistics of the channel coefficieits, C, C,, C“; are already available. Therefore,
from (3.67) the total number of multiplications involvedd$U2L? L?) and the total number of
additions is OU>L?L?). We havel such prefilters. However, sineg[.][.], C,, C*, C,, C*
are given, we can see in (3.32) and (3.33) that the only coemtamhich is specific to useris
sy Which is eitherd-1 or —1. Therefore, with little modification the function which calates
prefilter coefficients of user can be used to calculate the prefilter coefficients of allratlsers.
Hence, the total number of operations involved in calcatatll the prefilter coefficients
in the case of MPOE prefiltering is Ot L? L.%). Similar complexity is involved in MMSE based

prefiltering models.

3.7.2 Complexity of the proposed MPOE joint prefilter algorithm

The joint probability of error is

Poslil =1 ﬁ@(—w> (3.69)

e a8 [7]

Unlike individual prefiltering, in joint prefiltering, f, are functions of common prefiltef.]].].
Therefore, by following the similar arguments of Sectioi.B.with new f; and f, we can
conclude that the complexity involved in determining geadiof singleQ(.) term in (3.68) is
O(L? L%). We haveU such terms in (3.68). Therefore, the total complexity iredeining the

prefilter coefficient|.][.] is O(U? L3 L?).

3.7.3 Complexity of other precoding algorithms

The total number of operations required in determining tst function in the case of transmitter-
based inverse filter systems proposed in [16] i§ & (reference: equation (10) of [16]) and the
number of operations required in calculating the prefilaafticients is O?) (reference: equa-
tion (11) of [16]). Here we have assumed multiplication obtwatrices of equal siz& requires

N? operations and matrix inverse of matrix of siXerequiresN? operations. Similar complex-

ity is required in case of Tomlinson-Harashima Precodirtgrfibroposed in [52] though it is
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single user system. The transmitter precoding system pespm [30] requires Cholesky fac-
torization of L x L matrix whereL is the CDMA code gain. Therefore, the total complexity in
the algorithm proposed in [30] i&*. Note that in case of orthogonal CDMA system the coding
gain is directly proportional to number of users. Therefaethe number of users increases the
complexity increases in power of four in [30].

Therefore, we can conclude that our proposed algorithm heh hower complexity com-

pared to other existing algorithms and scales very well vadpect to number of users.

3.8 Simulation Results

Extensive simulations have been carried out to calculadiliter coefficients and the corre-
sponding BER for various scenarios for both MPOE and MMSE Ipgedi To demonstrate
the performance of the proposed algorithms BPSK modulatiaonsidered with bits -1 and
+1 being equi-probable. The spreading codes are assumedadhmgonal and the spreading
gain of N =32 is used for the simulations. Root raised cosine chip waveisitm the roll off
factor of 5 = 0.1 is considered and the number of users is taken t&' be 16 except for the
graph in which the number of users itself is varying. The ltssuere averaged over at least
1000 independent channels. The channel coefficients wenpleg Gaussian with both real
and imaginary parts arei.d Gaussian distributed. FIR channel filter lendthis taken to be

4 and the prefilter lengtli, is considered to bé for all the models. We have carried out the

optimization using numerical gradient descent approachkifoulation purpose.

3.8.1 BER performance of joint and individual prefiltering

The performance of the proposed prefiltering algorithmscarepared with that of completely
known channel prefiltering model (complete CSI model) pregos [48, 49] and the system
without prefiltering. BER performance for various SNRs is shawFig 3.1. Lower bound on

individual prefiltering probability of error which is deed in Appendix I, is also plotted in Fig
3.1. From Fig 3.1 itis clear that the proposed prefilteringlgls outperform the system without
prefiltering. We can also see that the MPOE algorithms perfgnificantly better than that of
the respective MMSE algorithms. At low SNRs both MPOE and MM@Eorms very closely.
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This is because at low SNRs

N-1 Ly-1 Lz 1 U
o lil = var [ (Z Suk Z ha| 2A0[2) > Aby[fa)3u[iN + k —m — u)
2
7

2
o

N—
+2

=0 v=1

~
~

(3.69)

i.e. at low SNRs, the channel almost behaves like AWGN channel heheesimilar perfor-
mance [25]. However, as the SNR increases channel variantestarts dominating the noise
variance term in (3.69) hence, there is a significant perdoice gain at high SNRs in MPOE
systems. Furthermore, from Fig 3.1 we can observe thasstali channel algorithms perform
close to that of the corresponding fully known channel atpars.

From Fig 3.1, we can also infer that individual prefilterirgrforms much better than that
of corresponding joint prefiltering systems. This is beeamsjoint prefiltering model there
is one common prefilter for all users hence, some of the usensnel may not get prefiltered
properly. However, in individual prefiltering model we hallenumber of prefilters. Hence,
effectively the length of the individual prefilter (g times that of corresponding joint prefilter
and consequently this compensates for the MAI as well asl8lketter way.

The BER performance of proposed algorithms for various SINggn@l to Interference
and Noise Ratio) is also analyzed and the results are showig iB.E. Average SINR is cal-
culated at each SNR (SNR varies frégna B to 20 dB to calculate SINR) using the approach
presented in Appendix Ill. In Fig 3.2 we can observe that trexage SINRs are negative (in
dB) at low SNRs since the average SINR at the receiver is lesagnitude in multiuser inter-
ference environment. At high SINR the curves become stebis. i3 due to diminishing noise
variance at high SINR (due to increase in SNR) and hencefenégice term dominates which
IS more or less constant.

It is interesting to observe the performance of the proposedels for various spreading
code correlation coefficients (correlation coefficiens defined in (3.77)). For a givemall 16
users’ spreading codes are generated such that each sigreade has correlation coefficient
of p with all other codes. We have varied thevalue from0.0625 to 0.25 and generated all
the users’ spreading codes for eactWith thus generated spreading codes we have calculated
the corresponding BER for a fixed SNR. Fig 3.3 shows the BER pednoce for varioug and
fixed SNR of20 dB for both joint and individual prefiltering model. From Fig33.we can

observe that as theincreases the performances slightly reduces due to theasitrg effect of
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MAI. The impact is minimal because the prefilter is optimizedater for this effect.

3.8.2 Proposed prefilters’ performance with higher order modulations

Using the procedure explained in Appendix IV the probapitf errors are formulated for
higher modulations such as QPSK, 16 QAM and 64 QAM. With tharsmulated probability
of error MPOE prefilters (both joint and individual) are dgsd and their performances are
plotted for various SNRs in Fig 3.4. We can observe from Figlsa4 BER performance reduces
when the modulation order increases for a fixed transmigsoever. This is because in higher
order modulations the constellation size reduces and hésdetection region. Therefore, the

BER performance reduces due to increase in detection ertbeaketection region reduces.

3.8.3 Performance comparison of various prefiltering algorithms

In Fig 3.5 we compare the MPOE individual filter performandthvhat of “transmitter-based
inverse filters (INVF)” proposed in [16] and with “optimizedansmitter precoding system
(OTPS)” proposed in [30]. This plot shows the average BER astion of SNR in dB. The
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results were obtained with number of users equal6toFrom this figure we can see that the
MPOE prefilter outperforms the INVF prefilter as well as OTRP&ifters. This is because both
“INVF” and “OTPS” are based on MMSE criterion and also bothtwm suffer from stability

problem associated with the matrix inverse operations fardening prefilter coefficients.

3.8.4 Varying number of users

The effect of increasing the number of users for a fixed SNR)@B is shown in Fig 3.6. From
Fig 3.6 we can observe that as the number of users increas®&ER performance reduces.
This is because as the number of users increases, the iateréeexperienced by the system
will also increase. We can also observe that the MPOE predilitperforms the corresponding
MMSE prefilter when the number of users increases to largeneixt This is because, though
the interference increases with number of users MPOE mnestill minimizes the probability

of error.
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3.8.5 MRT beamforming results and discussions

The BER performance of the proposed system models with MRmfwaning is plotted. Com-
parisons are made with known channel models. Results fomgaBNRs and SINRs are shown
in Fig 3.7 and Fig 3.8 respectively. Single ahtheamforming antennas are assumed for each
user at the base station. Since it is shown that MPOE outpesf6IMSE at all SNRs, only
MPOE model is considered for MRT beamforming to visualize plots better. From Fig 3.1,
Fig 3.2, Fig 3.7 and Fig 3.8 one can observe that BER performmah®POE prefilter with
beamforming is better than that of MPOE prefilter withoutré&@ming. This can be justified
as follows: since the weights are proportional to dominager vector of Z(hh'), weights
will be matched to the channel coefficients itself (appraadety), hence multipath effect will
be better compensated.

Fig 3.8 also shows that the performance of statistical chlaWRT beamforming will
be slightly inferior to that of known channel beamforminghi§is because the beamforming
weights are calculated by maximizing the average SNR atabeiver in the case of statistical
channel model, but instantaneous SNR is maximized to atkethe beamforming weights in
known channel case. It is intuitively known that SNR will beximum by maximizing instan-
taneous SNR than by maximizing the average SNR. Hence, therkobannel beamforming
performs better than that of statistical channel beamfiogmiMoreover, as the diversity or-
der increases (number of beamforming antennae) the differsn BER performance between
known channel and statistical reduces. This is due to baamrig diversity which combat the
channel effect in statistical channel model. But the codll jpaiincreasing the beamforming
weights is transmitter complexity. Though the number afisraitter antennas are increased for
each user, MRT beamforming will not increase the transimimsgower at base station since the

antennae weights are equal to maximum eigen vector whichritenergy.

3.9 Conclusion

In this chapter two system models have been proposed for MiIPABIMSE based prefilterings

for DS-CDMA systems by assuming only the first order and secoder statistical parameters
of channel at the base station transmitter. Simulationltsesbiow that the performance of the
statistical channel model closely matches with the systémrarcomplete channel knowledge

Is assumed. Furthermore, MPOE prefilters are superior taoffdMSE prefilters in terms of
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BER performance and individual prefilters are superior to tfi@orresponding joint prefilters.
The effect of MAI is also well analyzed by varying the numbémesers and the correlation
coefficients of the spreading codes. Also the performand¢eeoproposed MPOE/MMSE pre-
filterings are further enhanced by employing MRT beamfogninherefore, we conclude that
prefiltering based on statistical knowledge of the chanaslhigh potential for practical imple-

mentations.
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Appendix |

Lower bound on individual probability of error

Pl ] = @ ( 2w (3.70)
oy i)
Liy—-1 L.—1 U
buli]pryzmili] = buli]R [Z Suk Z Yalmlli] D Y Abuli]zull[a]5u[iN + k —m — l]]
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(3.71)
Since chip sequence is having unit energy, prefilter coefiisiare normalized to unit energy
and if we assumel, = 1 V u and also perfect synchronization then the mean of the redeiv
signal is

Ly—1

ol Z\ I (3.72)

m=

From (3.8) and (3.19) the variance of the received signal is

oril] = var[ <Z Suk Z ha i > A )z 0ol G [iN + k —m — 1]>

=0 v=1

2
o

N—
+2

(3.73)

The above inequality is from the fact thatr(.) > 0. From (3.70), (5.29) and (5.30) the lower

bound on individual probability of error can be written as

Pggyli] = Q(Zm_o i Ul]) (3.74)

(Na?/2)

It is interesting to note that the lower bound is function ofmber of multipaths and SNR.
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Appendix Il

Lower bound on joint probability of error

The joint probability of error is

Pgsli] = 1— H Q( M) > 1 — maz, O (_bu[i]ﬂymma ﬁ])

oyrBli ] oy B [1]

— i buldlpyipiali]
= mmuQ< ol > (3.75)

bu [Z]‘uy{}\B[v] [Z]

wheremaz, Q(— 7 R

> is the maximum probability of correct detection among all

users andnin,, Q(M is the minimum probability of error among all users. The

g R\B [Z]

7,1 s [ 7y 1 s 7

. L byt e buli e
above inequality is from the fact thf’_, Q el ) Q —M> It
IS an interesting observation because the lower bound iior poobability error is very similar

to that of individual probability of error.

Appendix Il

Determination of SINR and correlation coefficient

From (5.5) the received signal is

Ly—1 L.—1 U N—1 N—1
=" hu[m][i] Y 202 Y Aubulio] Y suroliN +k—m—1]+ > suruliN + K]
m=0 =0 v=1 k=0 k=0
(3.76)
whereév = Sy((n)mod(N)) and
N—-1 . .
Aubylja]. (1 if v=
ZAb Jo Zsuk§v[iN+k‘—m—l]% U[h]() _U “
k=0 Zv:l,v;éu Aubulja].(p) Fv#u
wherep is the correlation coefficient between spreading codesiwisigiven by
N-—1
p= SukSo[iN +k—m —1] ifv#u (3.77)

W

0
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From (3.76) and (3.77)

-1 L.—1 U

yali] = > ha[m[ii] Y 2[l[2] Y Aubuljo] + 1.(U=1).p41 = S+ Inrarersn +n (3.78)
m=0 v=1

=0 =
where! is the interference factor due to amplitude gain of the fetarg userss is the signal
component/rar+1sr) IS the interference component and the noise term. Now the SINR is

given by

SINR = & (3.79)

Iivarvrsn +n
(3.79) gives instantaneous SINR for userHowever, instantaneous SINR has some random

quantity (,,[m][71]) associated with that and also thés altered by the randota, [m][j;] while
signals propagate through the channel. Therefore, we witkaverage SINR over longer bit

period.
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Chapter 4

Route Discovery and Route Resilience for

Multihop Cellular Networks

This chapter proposes a cross-layer routing protocol antenesilience scheme for CDMA
based Multihop Cellular Network (MCN). MCN is defined as one inakithe mobile node
may communicate with base station or with other mobile ndye®laying its communication
through one or more neighbouring mobile nodes. This is irtreshto most deployments to-
day where there is only a single-hop access to the baserstdtiathis chapter in designing
the routing protocol for MCN, multiple constraints are impd$n intermediate relay node se-
lection and end-to-end path selection. The constraintetay modes include willingness for
cooperationsufficient neighbourhood connectivayd the level of interference offered on the
path. Path constraints include end-to-end throughput adet@end delay. A facile incentive
mechanism is presented to motivate the cooperation betmadss in call forwarding. In addi-
tion, we present a route resilience scheme in the event ardimcall dropping. In particular,
a fast neighbour detection scheme for route resiliencedpgsed. Instead of using periodic
HELLO messages as in traditional ad-hoc routing, the pregasighbour detection scheme
adopts explicit handshake mechanism to reduce neighbdectan latency. We conclude the
chapter by demonstrating the superior performance of thiegsed routing and route resilience

scheme compared with the other well known routing algorghm
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4.1 Introduction

Conventional cellular network uses a centralized netwagrkiystem which has fixed infrastruc-
ture (base stations and wide-area communication), withmblkeile node accessing the infras-
tructure in a single radio hop. In contrast, ad-hoc wirelestsvorks consist of fully distributed
wireless nodes with no dependency on fixed infrastructuhe dommunication within ad-hoc
networks is generally a path which is formed of multiple cabdops. Recent studies [56-58]
have shown that the use of multihop relaying in conventiaedular networks has several ad-
vantages such as capacity improvements, lower transmipswer requirement and effective
spectral re-use. It can also be of instrumental in timecaitapplications [59, 60]. Such a net-
work has come to be termed as Multihop Cellular Network (MCN)MCNSs, a fundamental
issue we investigate is that of finding a multihop routinghpad route resilience in order to
achieve satisfactory end-to-end performance. A cross laydéed routing scheme is proposed
with multiple metrics in this chapter.

An established routing path in an MCN might become unusabéaatime due to node
mobility, energy drainage of relay nodes or poor channeligu®ne straightforward solution
to this problem is to repeat the normal route discovery prace to find an alternative path.
However, this solution could incur a large traffic overheaat, more importantly adds latency
in re-establishing the communication path for a connedtiat is in progress. To solve this
problem, we propose an effective on-the-fly route resikesazheme for route maintenance along
with a cross layer routing protocol.

The major contributions of this chapter include:

1. A unified cross layer routing protocol is proposed with tiplg constraints for CDMA
MCNSs. Full cooperation is not assumed in call forwarding dretefore present a facile
incentive mechanism to motivate cooperation between raatmbes acting as relays. In
the routing protocol design, multiple constraints are isggbon intermediate relay node
selection and end-to-end path selection. The relay nodsti@nts include cooperation,
sufficient neighbourhood connectivapd level of interference. Path constraints for route

selection are end-to-end throughput and end-to-end delay.

The proposed routing protocol follows a cross-layer debiggmween network layer, MAC
layer and physical layer. The end-to-end throughput is ddfumsing physical layer pa-

rameters: received power, signal to interference and maise (SINR) and probability
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of successful packet delivery. The interference metriolves MAC layer and physical
layer parameters, and these metrics are used in the neteyk for routing protocol

design.

2. A route resilience scheme is introduced in the event ofadyin call dropping. If we
assume a path consists of multiple hops or links, then dymaaii dropping occurs when
one of the links breaks and the path is no longer usable. Liakkage may be caused
by node mobility, poor channel quality (i.e. interferenoe)energy drainage of a node,
resulting in a non-forwarding node. In the proposed rasigescheme we bypass the
non-forwarding node and route the call via one of the codperaeighbours such that

all the routing criteria are satisfied.

3. A fast neighbour detection mechanism is proposed fordheerresilience scheme. The
neighbour detection mechanism is localized and carriedroatdistributed fashion at
each node. Instead of using periodic HELLO messages, thpoped scheme adopts an

explicit handshake mechanism to reduce the latency in beighdetection.

4.2 Related Work

An MCN architecture was proposed in [56] and evaluated in {@7¢re shortest-path-first al-
gorithm was adopted in route selection. An integrated Callahd Ad-hoc Relaying (iICAR)
system was presented in [58] with a set of fixed relays and figates through these relays.
A routing protocol for hybrid networks based on a spannmeg-twas proposed in [61], and
selection of relay-nodes based on finding a route that hasntladlest bottleneck was presented
in [62]. A charging and rewarding policy in routing for MCNs svaroposed in [63, 64] where
Dynamic Source Routing (DSR) is used as the routing protocoloude selection algorithm
based on call status, signal strength, battery power anadrtip time (RTT) was proposed
in [59]. There are a number of power-aware ad-hoc routingops which use energy as the
critical parameters [65—-70]. Recently there has been muak wo route maintenance and
route recovery for ad-hoc networks. Route maintenance usaaj route recovery techniques
was proposed in [71] and a power-aware route maintenanteqaie@nabled through balancing
power dissipation among nodes was proposed in [72]. A ratevery scheme based on an

any-cast policy was presented in [73] and a fast route regawethod for a cellular Internet
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Protocol (IP) access network was given in [74].

Our proposed cross-layer routing protocol introduces a dievension to the work listed
above. The resilience functionality our approach providesimilar to that proposed by Lee
et al[75]. However, whilst Leeet als work assumesoth full cooperation from all nodes and
relies on single-hop broadcast techniques, this chaptyzss the incentives for cooperation

and uses a fast neighbour detection technique.

4.3 Hybrid Architecture for MCN
There could be three possible modes of operation for MCNs@asrsin Fig 4.1.

1. Ad-hoc mode: The source-to-destination call is multimmature without using any
infrastructure (i.e. base stations). However, the cam@dlbase stations will have knowl-
edge about the on-going communications through contratrobla as explained in Sec-

tion 4.4.
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2. Infrastructural mode: As in a conventional cellular moéleperation, all communication
is single-hop. The major concerns about the infrastrutimade include limited user
capacity, higher transmission power and communicatidarizs when the mobile user is

in a ‘dead spot’ or out of the coverage area.

3. Hybrid mode: This can be viewed as a combination of infuastiral and ad-hoc mode.
This mode would be used where the source and destinatiorsravdan different cells
so the source-to-destination path involves base stajiomfsge communication, from the

source node to its base station and/or the destination dtieldase station, is multihop.

In the rest of the chapter, we assume a scenario with a sielilthat uses the ad-hoc mode of

operation as default.

4.4 Assumptions and Proposed Ad-hoc Mode MCN Archi-
tecture

In this chapter, we assume that mobile nodes are distritatedrding to a two-dimensional
uniform point process. The base station and the nodes use C&8dvtAe access method for
their interconnections [76]. Perfect power control is usetthis CDMA network so that all the
transmitters use just the transmission power level thadsired to let the receiver decode the
signal with proper quality. However, the nodes transmit HBLmessages with fixed power
pueLLo for neighbour detection. Nodes are assumed not to transmiteceive in the same
time slot to avoid primary collision at nodes [77]. The prgation channel between the mobile
nodes are flat fading and.d Rayleigh.

The logical channel is divided into Control Channel (CCH) andfic&@&hannel (TCH).
CCH handles only signaling, while TCH carries speech and daffaictr Control messages,
containing the source ID and the destination ID are exchamgt#ween the nodes and base
station using a CCH. Control messages are routed based onrBgkalgorithm, as they are
very short and transmitted, only at the time of call inizalion. TCHs follow the unified cross
layer routing scheme proposed in Section 4.5. Fig 4.2 shaals an architecture with dashed

lines for control messages and continuous lines for voae/dommunications.
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4.5 Proposed Cross Layer Routing Protocol

In our proposal, when a node wants to initiate transmissiandestination node, it will trans-
mit a call initiation request dRoute RequegRReq) packet containing the ID of the source and
destination to its base station over a CCH. The base statianthisestrategy proposed in this
section to compute a route between the source node and tieadies node. This route infor-
mation is sent back to the source using@ute ReplyRRep) packet over the CCH. The source
node then inserts the route information into its data packetl transmits these data packets.
The constraints used in the proposed routing protocol afideti intonode constraints

andpath constraintsThe constraints considered for relay node selection are:

1. Cooperation: All of the selected relay nodes must coopéeodfiorward the call.

2. Sufficient neighbourhood connectivityhe selected relay nodes must have a sufficient

number of connected neighbours in order to provide resiéen

3. Interference: Interference caused in the networks doertanunication between any two

relay nodes in the path must be below certain threshgld.

The constraints for path selection are:

1. End-to-end throughput: End-to-end throughput in thectet path must be above certain
threshold.
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2. End-to-end delay: End-to-end delay in the selected patt be below certain threshold.

4.5.1 Node selection criteria
Cooperation metric and proposed incentive mechanism

An essential component in MCN is the co-operation of mobildasoin relaying data packets
from other mobile nodes. In our proposal, each node hadliagness statug78] flags for

packet relaying as follows:
1. will_status=0 for non cooperation
2. will_status=1 for cooperation

In conventional cellular networks, mobile nodes by defaladtnot agree for packet relaying
since packet relaying consumes scarce resources suchtesy dwer, processor time and
bandwidth. Hence, the default willingness status of a nedk(i.e. non-cooperation for packet
relaying) [78]. Therefore, it is clear that a node must bestated in some way to change their
willingness status from 0 to 1. The proposed incentive meisihnaworks as follows.

Whenever a node wants to initiate a communication, it sends & RiRéne base station
through CCH. Upon receiving the RReq, the base station broada@3boperation request
(CReq) to the whole network (cell) through broadcast CCH. The CRatans source ID,
destination ID and théncentive amounper node that is to be ‘paid’ after communication.
Those nodes that are interested will change their willisgrstatus from 0 to 1 and reply to the
base station using CCH. Let us assude) is the network of cooperating nodes (nodes with
will _status=1). It makes sense that the incentives for multiboging to be ‘paid’ by service

providers since:

e MCN promises enormous user capacity improvement which iaradgeous for the ser-

vice provider [56].

e Arouting path is found by the base station, which has thelwéigeof switching to single

hop when it finds multihop is inefficient and costlier.

e Mobile nodes may unintentionally be in unreachable loceti(e.g. dead spots or out of
coverage) and the service providers would like to keep oosts satisfied by providing

any time any where services.
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neighbourhood connectivity and detection

In [79], it is shown that in a network ai randomly placed nodes, each node should be con-
nected ta)(log(n)) nearest neighbours. If a node has less tha (log(n)) connected neigh-
bours, then the network is asymptotically disconnecteti wibbability 1 as: increases. Fur-
thermore, if each node is connected to more thafi74(log(n)) nearest neighbours, then the
network is asymptotically connected with probability apgehingl asn increases. Hencsyf-
ficient neighbourhood connectivity an important criterion to establish communication withi
an MCN: it is essential to avoid dynamic call dropping as eixygd in Section 4.6. Therefore,
the sufficient neighbourhood connectivity nodes is defined as follows: If a node ¢ ®(n)

hask neighbours fromb(n) and if:
k> O(log(n)) (4.1)

then noden satisfiessufficient neighbourhood connectivityiterion and consequently, it will
become a eligible relay node. In our work we cho6ksas a function of square root of number
of nodes in the network. Let us construct a sulisgt) from &(n) with nodes which satisfy
our sufficient neighbourhood connectivityiterion. Every node builds its neighbour table and
notifies this information to the base station. However, tli&NMiopology may change frequently
and hence the time delay involved in neighbour detectiomiigal. In the following section
the problem of neighbourhood detection with low delay issidared.

Proposed Neighbourhood Detection Scheme
Traditionally, ad-hoc routing protocols such as Optimizatk State Routing (OLSR) [78] de-
tect neighbour changes through exchanging periodic HELlg€8sages. Although the HELLO
based neighbour detection is simple to implement and rabube presence of message loss,

there have been concerns about its performance in the dgreawvironments like MCNs:

1. Detection latency: The HELLO based mechanism has avelgtiarge delay in neigh-
bour detection. For example, it takes around 3 seconds ovesage for OLSR nodes to
detect neighbour connections [78]. Such latency might teathnecessary packet drops

due to route unavailability for route resilience, espédgia high mobility networks.

2. Resource waste: Periodic HELLO messages are broadcasrdfeno link changes
occur, which wastes bandwidth and battery life. Smaller HBLlintervals resulting in
increased frequency of HELLO messages would increase ehaontention and might

lead to congestion.
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In our proposal, instead of relying on periodic HELLO messgve use an explicit route
handshake mechanism, which reduces the latency in neighbod detections and improves
path availability. In particular, we propose a unicast basandshakelHS) option. i.e. the
handshake packets are transmitted as unicast messageebehe neighbouring nodes. For
example, when nod4 receives its first HELLO message froh) it sends ACK messages only
to nodeB.

Outline:

Traditional ad-hoc routing protocols only use symmetmsi in route calculations. The estab-
lished (physical) connections would not be available faldeansfer until identified asym-
metric links by the routing protocols. Therefore, a delay in neiginbdetection might lead
to routing performance degradation. The neighbour detedsitency of HELLO based routing
protocols is caused by the periodic nature of HELLO messaifisr receiving the first HELLO
message from a neighbour, the node does not respond untiatibasts its own HELLO mes-
sage. Essentially, the neighbour handshake processpitcit through exchanging periodic
HELLO messages.

In our scheme, we usexplicit handshake messages to facilitate connectivity detection.
More specifically, in addition to periodic HELLO messagesioale sends explicit handshake

messages to its neighbours. The basic process is descsliedbavs.

1. Each node broadcasts periodic HELLO messages to itsmigh

2. When noded receives its first HELLO message from its unknown neighligut creates
a new entry for directed link® — A), and responds with an ACK message immediately

to nodeB, with the status of the new linkg — A).

3. When nodeb receives such an ACK message, it infers the existence oféctibnal link
(B « A); then nodeB sends immediately an ACK message to nedeconfirming the

symmetric link A «— B) status between them.

4. If, for any reason, the ACK message frohto B is lost or dropped, the following periodic
HELLO messages would recover such a loss and complete tgbbwir detection as

normal.

5. Similarly, if the ACK message froms to A is dropped, the next periodic HELLO message

recovers the loss and acknowledges
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Additionally, to reduce control traffic overhead, we propdtisat nodes only transmit their
neighbour table to the base station (using a CCH) when thereclgage in the neighbour

connectivity.

45.2 Interference metric

Interference reduction in CDMA networks is achieved by colfitrg the transmission power.
However, the transmission power levels of the nodes depenhdeodistance of the other inter-
mediate nodes in the route. Let us consider the communich&bveen a particular nodend
any other nodeg as shown in Fig 4.3. The average interference received at sather due to
transmission from nodeto nodej is given by:

% (4.2)
wherep;, is the time-correlation between the signature waveforrmodes andr, v is the path
loss coefficientd,, is the distance between nodland noder, p;; is the transmitted power from
node: to nodej. Note that the average received power in a Rayleigh flat faclagnel always
follows a distance-decay law [80]. To avoid channel estiomedicross the mobile nodes [81], we
are interested in average received power in our interferealculation rather than instantaneous
received power. Let us assumeis the DS-CDMA modulation processing gain. Then, the sum

of the interference received in all neighbour nodes in thevok due to the transmission from
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i to j is given by:

n

_ 2 Pij
=50 X o) (4.3)
T':LT?&{IJ} w
Let us construct a subsé{n) from ®(n) such that the communication between any two nodes
in <i>(n) causes interference in the network which is below certaisstiold/,,,.,.. The nodes in

®(n) are named agotential relay nodes

45.3 Path metrics formulation

Let x = {x1, xo, z3,..., zp} denote the set of paths available between a source node and a
destination node along tip®tential relay nodesThe following are the metrics used in choosing

a particular path from the set
1. End-to-end throughput

2. End-to-end delay

End-to-end throughput metric

End-to-end throughput is defined as the probability of sssfte transmission from a source
node to a destination node which involves successful tresséom at each and every inter-
mediate node. The successful single hop transmission frae hto its neighbour nodeg
(Vi,j € é(n)) occurs when the received power at ngdom node: is stronger than inter-
ference plus noise power by a factor @fi,e SINR > [). The probability of successful
transmission from nodéto nodeyj is:

P(C;;) = P(SINR,; > )= P(m > 0)
= P(rij; =2 8-(1i;+m)) (4.4)

wherer; ; is the received power at nogefrom the intended nodg 7, ; is the interference at
node; due to other communications amds the noise power in the receiver. Leat;, k =
1,...,K (k # 1, j) be the received power at nogdrom thekth interferer andx’ is the total

number of interferers in the network, then the interferegtogode; from all interferers is:

1 K
Im:ﬁ( 3 p;jrk?j) (4.5)

k=1,k#{i,j}
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Erroneous detection occurs WhEAN R; ; < (3, this probabilityP (E; ;) is given by:

P(E;;) =P(ri; < B.(Li; +n)) (4.6)

The propagation channel between mobile nodes is different & conventional wireless chan-
nel. However, the envelope still follows Rayleigh distribuat[82]. When the channel envelope
is Rayleigh then the received powey; follows an exponential distribution. Hence:

1 —rig
P(riy) = p—e ™ 4.7)
1,]

whereR; ; denotes the average received power = p” [80] [83].

1. Case |: number of hops 1
Let us sayr,, = {1, 2, 3,...,h} is the path selected to relay the packets from source
nodel to the destination nodé and number of hops in the communicationhis- 1.
The probabilityP(C, ;) that the message is successfully transmitted from soutce

destinatior is given by

h—1
P(Cl,h) = P(ﬂ Ci,i—H =1~ U Ez z+1 > 1— Z P ’L’L+1 (48)
=1

Let us consider a communication between nodad its closest neighbourt 1 in the

routing path
P(E;;+1) = P(SINR; ;41 < f)
= P(Tz itl < ﬂ ( 1,041 + 77)) (49)

Now the probability of error conditioned on the interferens

1 B-(Lii+1+n) gl

— Ri g ..

P(Ei7i+1)li7i+1 = 3 / (e Fiitt)dr vy
i1 Jo

=B i+1+n)

(e ) (4.10)

wherel, ;. itself is a random quantity, therefore, the probability obeP(E; ;) after

removing the condition om; ;4 is

B 541+m)
_ R,
P(Eiiy1) = Ep,,|l—e fn

00 00 _ﬁ[% Zg:l,k;é{i,i-&-l} PR i1k i1 1)
[ e (e
0
K
H Tk H—l d’l"k Ja+1 (411)

k=1
k#{1, +1}
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whereE, ., [.] is the expectation of [.] with the random variable beihg, ;. By sub-
stituting P(r; ;) from (4.7) and by invoking the independence assumptioR(of ), the

above equation can be written as

(o) [
P(Eii1)=1- [6 il H 2 prir s } (4.12)
_ 1 _|_ ﬁ k,i+1Pk,i+1 ( 3,141 )'y
k‘#lzi 1.1_;_1} N piit1 di i1

From (4.8) and (4.12) the lower bound on end-to-end througban be written as

h—1 . B8n K
P(Cl,h) >1- Z (1 — |: ( pi»i+1dz‘,?+1> H 1 ]) (4.13)
)'y

2

Pk,- 1Pk i+1 d‘y' 1
i=1 k=1, 1+ % o (75
k£{i,i+1} et At

. Case II: number of hops =1

P(CLQ) = P(’I"Lg Z ﬁ.(ILQ + 77)) (414)

Now the conditional probability of correct detection is

1 o 71,2

(6 Ri,2 )drl’Q

P(C R
( 172)‘11»2 R1,2 B.(I1,24n)

—B.(I12)+n

= e M2 (4.15)
After averaging over, , the probability of correct detection is

) f
P(Om):[e SELEYS

(4.16)

2
B pkygpk,Q dl,g
h=thz{i2y L+ § o (G0

From the set of pathg, we construct a sefX} such that the constraint on end-to-end

throughput is satisfied.

4.5.4 End-to-end delay metric

The major contributions to the end-to-end delay are trassionm delay (queuing delay) induced

by the relay nodes and propagation delay over the multihepnmoanications. In our routing

algorithm, we ensure that end-to-end delay is minimal bgoohicing an additional path con-

straint. A path that has minimal end-to-end delay and sasigihd-to-end delay constraint will

be selected from s€X }.
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4.5.5 Summary

The summary of process involved in routing protocol desagrdata/voice messages is:
1. Fromn nodes, select a set of cooperative nodes and constructdsset

2. From®(n) nodes, choose a set of nodes which rawféicient neighbourhood connectivity
and build a se®(n).

3. From®(n) select a set of nodes which satisfy interference criteriwh @nstruct a set

4. From®(n) select source to destination paf%} such that the lower bound aR(C )

is above a certain threshold.

5. From{X} choose a source to destination path which has minimal erddcdelay and

having end-to-end delay below certain threshold.

When a node wants to start data transmission, it sends a Qadtibmn Request (CIR) con-
taining source ID and destination ID to the base stationuinoCCH (node— base station).
Upon receiving CIR the base station broadcasts within thieeemétwork the Cooperation Re-
quest (CReq) which contains the ID of the source node, thenddistn node and the incentive
amount offered (base statieh node). After receiving CReq, those nodes that are willing to
cooperate make their response, with their neighbour detiaibase station through the CCH
(node— base station). Now the base station will find a source to mksdin path usinguf-
ficient neighbourhood connectivjtinterference, end-to-end throughput and end-to-endydela
constraints, and will convey the route information to therse node through CCH (base station

— node).

4.6 Dynamic Call Dropping and Proposed Route Resilience
Scheme

The forced termination of the call against the will of the seitber is defined adynamic call
dropping Dynamic call dropping may be caused by various reasonsdire mobility, energy
drainage, and an emergency requirement of an intermediate to make its own call. The

proposed solution for dynamic call dropping is as follows:
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Since each selected intermediate node has sufficient nushbennected neighboursyf-
ficient neighbourhood connectivityiterion), whenever any of the above situations arise, the
corresponding intermediate node (i.e. depleted nodefjemthe base station through the CCH.
The base station then picks up one of the neighbours of thieteéejnode as a substitute such
that the constraints on all the metrics are satisfied. Theetepnode will be removed from the

path subsequently. This is handled without terminatingptingoing communication.

4.7 Routing Metric Analysis
Let us have a close look at the constraints used in routetssiec

1. Inthe cooperation constraint, as the number of interatediodes increases, the incentive
offered will also increase. Hence, the service providetsprefer having a direct link

from source to destination.

2. If we look at end-to-end throughput:

Case l:.when number of hops is very large
Zf;fP(EZ-,M) — 1. This is from the axiom() < P(E;;+1) < 1. Hence,P(Cy,) >
1— Z?;ll P(E;i+1) — 0. This will lead to negligibly smaller end-to-end througipu

Case Il:.when the number of hops=1

The end-to-end throughput is a function only of SINR. Hentés possible to achieve
end-to-end throughput of 1 as long as the transmitted pawarge enough to guarantee
that SINR > (3. Hence, end-to-end throughput metric also favours a dimgictfrom

source to destination.

3. As far as end-to-end delay is concerned, the delay in qgeamd data propagation in-
creases linearly with the number of intermediate nodes. cklethe end-to-end delay
constraint always favours fewer intermediate nodes, agalligla direct path from source

to destination.

In summary, all the above constraints favour direct sotwegestination paths (i.e. peerto

peer communication). However, let us look at the interfeestonstraint more closely. Assume
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that the transmitted power levels at nade adjusted such that the destination ngdeceives

a power level op,.y, i.e.:

Pij = prefd;yj (417)

Now the interference received at neighbour nodes as a dmofid;; is:

1 = refdy;
I(dij) = N(m;m 2 dg ) (4.18)

wherep,.; andd;, are fixed quantities and the only variableljs.

Therefore, the interference constraint favours a shodpréngth ¢;;). However, shorter
hop lengths may lead to more number of relay nodes in the péltiis conflicts with other
constraints. Hence, it is critical to find the balance betwi#e number of hops and the hop

length such that the constraint on all metrics are satisfied.

4.7.1 Route discovery delay analysis

The delay involved in route discovery includes:
1. The delay in exchanging control messages

2. The delay in route calculation

3. The delay in neighbourhood detection

From the Section 4.5.5 each route discovery process inv@xehange of 4 control mes-
sages. The computational complexity at the base statiaives finding an optimal route that
satisfies all the proposed metrics. Let us asslimg is the delay in exchanging one control
Message] omputational 1S the computational delay an@,;qn.0.- IS the neighbour detection la-

tency of each node. Now the total route discovery dé€lay;.:

Troute = 4x TCH + Tcomputational + max(Tneighbour)

= 4x TPCH +4 x TQCH + Tcomputational + max(Tneighbom'> (419)

whereTpcy is the propagation delay of control messéfig;  is the queuing delay of control
messages in nodes (or in base station)rand(7,,.;snp0u-) iS the maximum latency in neighbour

detection of any node. Generalljp- is considered negligible due to the relatively short
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Figure 4.4: HELLO based neighbour detection

distances, and.,,putqtiona: €N also be considered negligible as CPU capability is nadsarei

Hence,T,,.:c Can be approximated as:

Troute ~ 4 X TQCH + max(Tneighbou'r) (420)

4.8 Neighbourhood Detection Latency Analysis

In this section, we compare the link detection latency uhttelt LO based neighbour detection
mechanism with that under the proposed fast neighbour i@tescheme. In the following

discussions, we assume that:

1. The arrival of a link establishment event isiaind Poisson process with arrival rake

2. The delay in packet transmission and propagation {j,eare small enough (compared

with link detection latency) to be ignored.

4.8.1 HELLO based neighbour detection

Let us consider a nodd and its neighbour as shown in Fig 4.4. Assume that node

generates periodic HELLO packets at evergeconds (HELLO interval) starting from time
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instantty, and to avoid primary collision at, nodem starts generating the periodic HELLO
packets afted,, time, i.e. starting from time instang + d,,,. Let X,,, be the time when the first
symmetric link is established aftéy. Then the link discovery latency of a particular link,}

can be approximated by:

lm = to+dm— Xy +r
= r+dy,— (X —to) (4.21)

Assume a particular nodd has M number of neighbours. Since the link arrivals are
Poisson distributed with paramet&y the inter-arrival time(X,,, — ¢,) will be exponentially
distributed with parametex [84]. Let us assume the collision avoidance offset tilpe(1 <
m < M) for various nodes are exponentially distributed with pagger) in the interval(t, to+
r].

Now, let us calculate the total link detection latency. Totaltlink detection latency is the
sum of all the individual link detection latency values atle&op. The link detection process
is assumed to be time slotted and at a given time only one kt&ation can occur. Then the
latency involved inM link detections, ), in a collision free condition is:

M
- [7" by — (X — to)}

m=1
M

= Mxr+)Y [dm (X — to)} (4.22)
m=1
Since(X,, — to) andd,, are exponentially distributecﬁdm — (X — to)} will also be exponen-
tially distributed with paramet@randef:1 [dm—(Xm—to)} will follow Gamma(M, ;) [84].
Therefore, the statistical average link latency of tdtahumber of link detection§L ;)

in a collision free condition can be approximated by:

Ly =E[ly] = Mx r+E{§: <dm — (X — to))}

m=1

= M(r+ %) (4.23)
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Figure 4.5: Proposed fast neighbour detection
4.8.2 Proposed fast neighbour detection scheme

As explained in Section 4.5.1, the neighbour detection isty®f exchange of one HELLO
message and two handshake signals as shown in Fig 4.5. Let¢hey involved in a link de-
tection isl’,,, then, under our proposed scheme, the link discovery lateacye approximated
by:
Uy = tot+dm— X
= dp — (X — to) (4.24)
Now, the total link detection latency @ff number of neighbours is:

Uy = i (dm (X — to)) (4.25)

m=1

By following procedures similar to the development of (4.28¥ (4.23), the statistical average

link detection latency of\/ number of neighbourgl’,,) in a collision free condition is:

L'y = E [Z’M]

- E{i (dm (X — t0)>]

1
= M= 4.26
i (4.26)
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Figure 4.6: Improvement factor in latency in the case of psagl link detection compared to
HELLO based link detection for a fixed HELLO interval

4.8.3 Factorial analysis

From the above discussions, we can see that the handsh&eesblas a smaller link discovery
latency. Smaller link discovery latency provides bettertecavailability, which leads to better
route resilience. We present now an analysis on the impa&stors such as node density and
HELLO message transmission powef;{;,..0) on the performance of the proposed handshake

scheme. Consider the improvements of the proposed schenegitbour detection latency:

Al Ly—Ly
Ly Ly
T
- 4.27
(T+§) ( )

Equation (4.27) presents a quantitative relationship eetwthe improvements on latency and
the variables of interesi\( r).

Inferences drawn from the plots:

e Rate of new link arrivals \. Studies on link dynamics [85] show that, the rate of new link
arrivals \ increases with node velocity, node density: and HELLO message transmis-

sion powemyerro. Fig 4.6 shows that increasing link arrival ratgives improvements
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Figure 4.7: Improvement factor in latency in the case of psagl link detection compared to
HELLO based link detection for a fixed link arrival rate

for link detection latency. From this we can infer that, igtmdensity networks with rel-
atively higher transmission poweg z1..0, the proposed handshake scheme is expected

to outperform the proactive neighbour detection scheme.

e Refresh Intervals . From Fig 4.4 we can see that as the refresh intervacreases,
the latency in HELLO based link detection will increase. Hwer, increasing will not
have as high an impact in latency with respect to the propbskdetection scheme as
we can see it from Fig 4.5. This can be seen from (4.27) and Figgwell. Therefore,
the proposed handshake scheme is expected to have a betbemaece in a network

with large refresh interval.

4.9 Simulations and Results

We simulate a single-cell of radiu®00m with nodes distributed as a two dimensional uniform
processes with mean5. Equal distribution of incentives for all intermediateaginodes is

assumed. The end-to-end delay threshold is considerédOassec, the SINR threshold)
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Figure 4.8: Total power spent per packet transmission garember of nodes

for throughput calculation is taken to 0254 B and the end-to-end throughput threshold is
assumed to be.92. The CDMA codes spreading facta¥{] is taken to be32. The Interference
threshold (,,...) is chosen a8dB. To validate the performance of the proposed model, a brute-
force, Monte-Carlo simulation was carried out by randomlgsting the source and destination
nodes, and the results were averaged over ati@asealizations of the node distributions. The
simulation results are presented with error bagso [u+o] is the interval for error bars, where

1 is the sample mean andis the standard deviation of the samples.

In the underlying simulation environment the proposed i@lgm is compared with:

¢ Interference Aware Routing (IAR) proposed in [86]
e Optimum Hop Size Routing (OHSR) proposed in [76]

¢ Nearest neighbour routing algorithm.
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4.9.1 Total power analysis
The transmission power model used for the analysis is:
pi; = ad}; + A (4.28)

where\ is a constant to represent minimum transmit power,(), anda is the normalization
constant. For simulation purposes, let us assame 0.1. The maximum transmitted power
from mobile handset is assumed to be of the ord@lBt By substituting these values, we can

rewrite the above equation as:
pij = 1.9x 107" x dj; +0.1 (4.29)

Apart from the transmission power, we also consider regeoveer (packet processing power)
in our power analysis, since the power spent in the locallasmis and bias circuitry of the
low-power transceivers will be considerable in receivihg packets [87]. A constant power
of 50mW per packet per node in receiver circuitry is assumed in auukitions. Fig 4.8
compares the total power spent per packet transmissiorrimugaalgorithms. From Fig 4.8 we
can infer that the proposed routing algorithm has signitigdass total power requirement per
packet transmission. This is because the proposed algohts end-to-end delay constraint
which itself acts as constraint on number of intermediatdeso We can also observe that
as the number of nodes increases the total power spent pertgeensmission in the nearest
neighbour algorithm and the IAR algorithm increases cagrsidly. This is because though
the single hop transmission power in both the algorithmsss,| these algorithms result in
many intermediate nodes as the node density increases bentotal transmitted power and
the power spent in receiving will be significantly higher.eT@HSR algorithm minimizes the
maximum hop length. However, most of the time it gives a path @ greater number of hops

of significantly large length.

4.9.2 End-to-end throughput analysis

We assumé0 fixed nodes of uniformly distributed interferers for ongpicommunications.

The lower bound on end-to-end throughput is plotted by veyyhe number of nodes in Fig
4.9. From Fig 4.9 we can deduce that the lower bound on emahdiothroughput in the case
of the proposed algorithm is considerably higher. This isdose from (4.13) it is clear that

lower bound on end-to-end throughput reduces as the nunilfeps increases. All nearest
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Figure 4.9: Lower bound on end-to-end throughput versusheurof nodes

neighbour, IAR and OHSR algorithms result in a greater nunatbdnops. Moreover, as the
node density increases the number of hops increases irealhtbe algorithms. However, in

our algorithm we maintain the end-to-end throughput by ipocating a constraint on it.

4.9.3 Incentives and end-to-end delay analysis

In end-to-end delay, transmission delay (queuing delayhéintermediate nodes is a more
significant component compared to the propagation delagréfare, as the number of inter-
mediate nodes increases the end-to-end delay increaseeoWo, the incentives paid also
increases linearly as the number of intermediate nodesases. Hence, the algorithm behaves
similar in terms of the end-to-end delay and incentives pa@idconstant transmission delay
(queuing delay) oBOmsec per node is assumed in our simulation model. Fig 4.10 comspare
end-to-end delay. From Fig 4.10 we can infer that the englbdelay in case of IAR is at an
intolerable level for voice communication, while the edeind delay in the proposed approach
is around100ms, which is insensitive to human ears. Also, as the number désdncreases

the delay increases because as the node density increasesiber of hops increases in each
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Figure 4.10: End-to-end delay versus number of nodes

of nearest neighbour, IAR and OHSR algorithms as explaifedea The incentives offered

will also behave like end-to-end delay.

4.10 Conclusion

We have proposed a unified cross-layer routing routing patior MCNSs by taking all the es-
sential performance metrics into account. The proposewtigthgn is compared with the existing
MCN routing algorithms such as the interference aware rgutigorithm, the nearest neighbour
algorithm and optimum hop size routing algorithm. We find tcampared to other algorithms,
the proposed algorithm has better performance in termsearfthpower consumption, end-to-
end throughput, end-to-end delay and incentives paid. Alfsst neighbour detection scheme
for route resilience is proposed. Instead of using peri¢tht LO messages, the proposed
scheme adopts an explicit handshake mechanism to redutaehey in neighbour detection.
An analytical study of the neighbour detection latency shtivat the proposed scheme reduces
the link detection latency compared to HELLO based neighlo@tection algorithm such as

OLSR.
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Chapter 5

Spatial Link Scheduling for SCDMA
Multihop Cellular Networks: A Cross

Layer Framework

Probability of error based Spatial Code Division Multipleodss (SCDMA) scheduling algo-
rithm is presented in this chapter to systematically rens@tthogonal CDMA codes in a given
cell for Multihop Cellular Network (MCN). We assign and reube CDMA codes to peer-to-
peer links such that the probability of error in all scheduieks are below certain threshold.
The proposed scheduling algorithm PoE-LinkSchedule iremtwo phases. In the first phase
we present a scheduling metric “Probability of Error (Po&$”a function of first and second
order statistics of wireless channel coefficients betwemies. The second phase presents a
graph theoretical as well as PoE based centralized schedailjorithm. For a graph of net-
work with n. number of nodesl/ number of links and thickness, the proposed scheduling
algorithm has computational complexity 6fUn logn + Un#) as opposed t®(UY) in the
case of exhaustive search algorithm. The performance girbgosed algorithm is evaluated
in terms ofspatial reuseand end-to-end throughput. We show that the proposed Higotias
considerably higher end-to-end throughput and higipatial reusecompared to existing link

scheduling algorithms.
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5.1 Introduction

In MCN mobile terminals transmit packets to base stationselkasg to other mobile stations
using multiple hops with less transmission range. Suchi@gysnhances the throughput, user
capacity and energy efficiency [56]. This chapter addrettseproblem of link scheduling for
CDMA based MCN to increase thepatial reuse By link scheduling, we mean assignment
of proper CDMA codes to peer-to-peer links and reuse thenrtiiadistance links such that
communication over all links is successful in probabilifyeoror sense. CDMA access mecha-
nism with orthogonal spreading codes is consideredwever, it can be shown that the number
of orthogonal waveforms that can be designed within a giardividth (W) and time duration
(T) is limited (O(WT)). Furthermore, since the transmissioam MCN are divided into many
smaller hops, there could be many simultaneous smalleertragsmissions in a given time
than a conventional single hop cellular networks [88]. Ef@re, it is of paramount impor-
tance to devise a scheduling strategy to reuse the orthb@@dA codes in a given cell to
maximize the system’s user capacity. Once the link schegutiformation is available we can
find source to destination path along the scheduled linkggusbme routing algorithms so that
the spatial reusewill be maximized in the network. We term the CDMA system whtre
CDMA codes are reused in a given cell as Spatial-CDMA (SCDMAjeys The problem of
determining an optimal link schedule for a general multihepvork is NP-complete [89], [90].
Hence, we present a suboptimal method for link schedulir83BDMA MCNs. The significant

contributions of this work are:

1. SNR based graph theoretical algorithms as well as bortefcomputations for link
scheduling in SCDMA wireless systems often lead to high poditbyaof error in the links.
To overcome this problem, we propose a link scheduling #@lyarPoE-LinkSchedule
for SCDMA MCN with probability of error criterion. Since the gdvability of error is a
widely used performance metric for digital systems, it ipraypriate to use it as a criterion

for scheduling.

2. Peer-to-peer physical layer probability of error is fatated by assuming independent
and identically distributed:(i.d) Rayleigh multipath channel (frequency selective) be-
tween nodes. Only the statistical knowledge of the chanoefficients between mobile

nodes is assumed in the probability of error formulatiorteéad of complete channel

l0orthogonal CDMA codes are considered since it gives tighinds on resources
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knowledge. The above formulated physical layer probgbditerror will be used as a

criterion in MAC layer link scheduling. Hence, we have a srlag/er scheduling scheme.

3. We introducespatial reuseas an important performance metric and argue that a high

value ofspatial reusalirectly translates to higher throughput over many links.

5.2 Related Work

A Spatial Time Division Multiple Access (STDMA) link schelilug is reported in [89], shows
that the tree networks can be scheduled optimally and @tdegtaphs can be scheduled near-
optimally. Link scheduling algorithms under the physicaérference model are derived in [91]
and [92]. In [93], the authors investigate the time compieaf scheduling a set of communi-
cation requests in an arbitrary network. A general framé&arthe max-min scheduling prob-
lem in static wireless networks is proposed in [94]. A cr@s®l framework for multiple access
problem in a contention based wireless network is derivg®%h. The design of simple dis-
tributed dynamic routing algorithms and scheduling pebdbased upon link state information
is proposed in [96]. The problem of determining the jointptimmal end-to-end communication
rates, routing, power allocation and transmission sclieglfbr wireless networks is considered
in [97]. A code reuse scheme based on a heuristic methodp®gea in [98]. Variable Spread-
ing Factor (VSF) code allocation protocol for maximizingatghput in CDMA based ad-hoc
networks is analyzed in [99]. Our proposed algorithm PoikBichedule is considerably dif-
ferent from all the above work. It is a cross layer approadin whysical layer probability of

error used as metric.

5.3 Scheduling Metric Formulation

Consider a single cell CDMA-MCN system withi transmitting links. All the nodes are as-
sumed to transmit at same power Multipath channel is considered for wireless links betwee
nodes. Partial channel knowledge, namely the first ordersaednd order statistics of the
channel between nodes are assumed to be available at thethase. Logical channel is di-
vided into Control Channels (CCH) and Traffic Channels (TCH). CCH lesnahly signaling,
while TCH carries speech and data traffic. Base station is thigadezed scheduler. Schedul-

ing information is transmitted from base station to the motteough CCH. We formulate the
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Figure 5.1: Proposed system model for communication beatwelks.

scheduling metric.e. link (peer-to-peer) probability of error by conditioning the transmit-
ted bits at the link. The transmit node of linktransmits Binary Phase Shift Keying (BPSK)
bit b, (i), with amplitudeA,,, in ith interval. The length of signaling interval for each lirs i
Ty Assume that transmit node of link is assigned with a spreading wavefory{.) and

Su = [Su0; Sul, - - -, Sunv—1]T denotes the corresponding spreading sequence. Then,

cu(t) = surrect(t — kT,), u=12...,U
0

=

i

where,T. is the chip periodrect(t) is a rectangular waveform with unit amplitude in [7.]
andN is the processing gain of the system. The baseband signéidath link in theith bit

interval can now be expressed as
ZL’u<t) = Aubu<l)cu(t — init)a init S t < (2 + 1)Tbit (51)

Assume that, (¢) is sampledz,[n]) atT,, then

zu[n] = Auby(nn)34[n) (5.2)

whereny = | ] because of chip rate sampling (note thNalt, = T3,;;) ands, [n] = su((n)mod(n))-
The multipath wireless channel is modeled as Finite ImpRlssponse (FIR) filter. The chan-
nel gain for theuth link at the:th bit interval is denoted ds,[.|[i] which is of lengthL} for all

i. The elements of the channel FIR filtér,(/][n]) are assumed to be complex Gaussian with
both real and imaginary parts following the.d Gaussian distribution. The noisg,(n]) is

assumed to béi.d. zero mean Additive White Gaussian Noise (AWGN). The receivgdas
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at the receiver node of linkk can now be written as

Zh n] @ z,[n] + nun] (5.3)

where® denotes convolution operation ahdl.|[n] (v # u) is the channel coefficient between
any other node (interfering nodes) to the receiver of linkConvertingr,[n] into a parallel
stream of N samples (number of chips), we obtaip{n] = [r,[iN],...,r[iN + N — 1]]7.
Rake receiver is used in the link’s receiver as shown in Fif). Bhe received signal after rake

receiver filtering is

=2

F
Z st Tr,[i] Z Sy )ru iN + k| (5.4)

f=1 f=1 k=0

B
Il

whereF is the number of fingers in the rake receiver aH@ is the sampled version of CDMA

code corresponding tgth finger. From (5.3) and (5.4)

F N-1 Ly-1 vy F N-1
valil = > s TS T b ml [ Aubu )5, [N 4k —m] + 3 ) s nu[iN + k] (5.5)
f=1 k=0 m=0 v=1 f=1 k=0
where
iIN+k—m
o (e rrTm 5.6
= | 56)

In (5.5), Z,L,;i_()l gives the Inter Symbol Interference (ISI) term due to thetipath channel
while ZUUZI is the Multiple Access Interference (MAI) component due dssl of spreading
code orthogonality in a multipath environment with mukégink transmissions. Since BPSK
constellations are used for input data, the decision sitatis given byR(y,[i]) = yZ[i]. We
compute the conditional probability of erraP£gj;) conditioned on transmitted bit vector se-
quenceB([i] = b[i],b[i — 1],..., whereb[i] = [bl[z’],b2[i], . ,bU[iﬂT is the vector of bits
transmitted at bit periodin links 1,2,...,U. The mean of thenth channel coefficient ath bit

interval ofuth link is defined as
Yulm]li] = B | hufm]l] (5.7)
and the second order statistics of the channel coefficieats a

C’u,v [mh m?] [7:17 22] - E

(Pulmalia) = yulmalia]) (s fmallia) %wmmﬂ

Cu,’v [mh m2] [ih 22] — E

(mmmm—%mmmﬂmmﬂm—%mﬂmﬂ (5.8)

90



where * denotes complex conjugate. The conditional megn ;) of the decision statistic

(v22[i) is given by

F N-1 Ly-1 p
ol = B R( 3 3 o Y0 ST h AL i + k)
f=1 k=0 m=0 v=1
b N1 (5.9)
+ Z st k nu [iN + k] )
f=1 k=0

By using the fact that/[R(a)] = R(F|[a]) for anya, E(n,[iN + k]) = 0 and except, [m][;],

n.[tN + k] all other quantities are deterministic, the above equatémbe written as

F N-1 =1l U
tyr B[ 1] <Z Z suk Z Z Yolm wl7])Su[iN + k — m]) (5.10)

f=1 k=0 m=0 v=1
Note thatu, g [i] is conditioned on transmitted bit and it is a function of meéathe channel
coefficient ¢, [m][j]).
Without loss of generality we can assume that chanp][.] and noise, .| follow inde-
pendent distribution. Now by using the fact that(a + b) = var(a) + var(b) whena andb

are independent, the conditional variance of the decigatrstcs @;R‘B[i]) can be written as

035\3[1'] [i] = var [§R< Z_ Su];c) Z Z ho[m][j]Avbyl]5,[iN + k — TR]>]

f=1 k=0 m=0 v=1
P (5.11)
+ var Z sOn.[iN + k]
f=1 k=0

Since the receiver noises are assumed to be zero medAWGN with equal variance (i.er)

and also the spreading coefficient, is either +1 or -1 and deterministic, we can get

F N—1
var [Z Z SELJ,?UU [iN + K]

f=1 k=0

0.2
=N xF (5.12)

where we have used linearity property of variance operati@n independent random variables.

Let

F N-1 Ly-1 y
oyl =var [%(Z STSWSTS T ho[m)li]Aubolj]E[iN + k — m])] (5.13)
f=1 k=0 m=0 v=1
This can be rewritten as
o5y li] = var [?R (Z hulmlj1ulf, k. m, 0] (5.14)
£k,

m,v
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wherey, [f, k, m,v] = sfj;)A by[j] $,[iN + k — m], the index;j is given in (5.6) and the sum

ka = Zf SV Lshi Zv .- By using the fact thatar(a) = E[a — E(a)]* for anya
andwu[f, k,m,v| is deterministic variable, (5.14) can be written as

oonplil = E (3‘% {Z(hv[m][ﬂ — Yo[m] i)Vl f, k,m,v]D ]

L 1.k,

=F 3‘%( Z (hoy [ma] [51] = You [mal [ ])0ul f1, K, m17U1])- (5.15)
L f1,k1,

-3?( > (hus[ma] (2] = Yo ma][j2))voulfo, ko, ma, vg})]
i
where,

. 2N+k1—m1 . ZN—F]{Q—mQ
o [t ) 519

For notational convenience let us assume

hy = hy, [ml][j1]> 71 = Yn [ml][jl]a Y = ¢u[f1> k«‘bml,vl] (5.17)
hQ = hvz[mQ] [j2]7 T2 = Yo [mQ][jQ]a ¢2 = ¢u[f2> k27m27v2]

Since the channel coefficients of different links aiel, from (5.15), (5.17) we can get

ogamilil = E

> R{(h = )] R[(ha — 72)¢2]] (5.18)

f1,k1,ma,v1,
f2,k2,m2,v2

By using the fact thalt(a) = “*“ (ata®) for any complex numbed, the above equation can be

rewritten as

oonpp i = ZLE Z <h11/11 M + hiYT — ’Y1¢1) <h21/12 — Y22 + hahy — ’Yz%)]
A

(5.19)

Sincey; andqy, are deterministic the above equation will become

o5 g&B z] [ Z évl»vzwllm + v1, v2w1¢2 + CUl U2¢1¢2 + C:l 1,21#11#2] (5.20)

f1,k1,m1,v1,
f2,/€2,m2,v2
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whereC,, ,, = Cy, .0,[m1, mo][j1, j2] @andCy, », = C[my, my][j1, j2] can be calculated using
(5.8). From (5.11), (5.12), (5.13) and (5.20) the condaiorariance will become

2

% g
o’ \B[z] E Cm v2¢1¢2 ‘|’ v, vgwﬂpz +Cy, vzwle + Cul 1,2%1#2 +N X F?
f1,k1,m1,v1,
f2,k2,m2,v2
(5.21)

We have derived expressions for the conditional mean (ad@)onditional variance (5.21) of
yZ[i]. The conditional probability of error afth link as a function of above derived conditional

mean and conditional variance is [19]

buil it mima i
BBl = Q (M> (5.22)

a8 1]
Let us denote the conditional probability of erroruth link between nodesand;j asPg,;. The

code assignment and reuse will be done suchffpat< 3 Vi, j € n whereg is the probability

of error threshold and is the number nodes in the network.

5.4 System Model and Proposed Link Schedule Algorithm

Let us consider a SCDMA MCN network(V, £) with n nodes, wher® = {vy, vy, ..., v,}iS
the set of vertices/nodes aéds the set of edges/links between nodes. A link schedulentor t
SCDMA network is denoted by (C, My, --- , M), where

e C={¢;} set of CDMA codes available for link schedule
e |C|:=size ofC, |£|:= U size of€, |V|:= n size ofV

e M= set of transmitter-receiver pairs which can communicatecarrently using same

CDMA COdeCi i.e. {tiJ — T, 7ti,|./\/li| — TMMZ.‘}
e | M;| :=size of M;

If node vy, is within nodev,’s communication range, then there is @aommunication edge
from v; to v;, denoted by; % v,. Thus, the mapping from network(-) to communication

networkg.(V,, £.) can be described as follows:

D(j,k) < R. = v; > v €E, v — v €& (5.23)
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whereR, is the communication range [100] anl j, k) is the distance between nodesanduy,.
ie.,G.(V., &) consists of nodes which has communication link with atleastof its neighbour.
The scheduld(-) is then designed from the gragh(-). The scheduling problem is to assign
CDMA code to nodes such that the communication over links@reessful and simultaneously
maximize thespatial reuseof the CDMA codes in the network. Specifically, an SCDMA link
scheduling algorithm is equivalent to assigning a uniquerdo every communication edge in
the graph, such that source-destination pairs correspgrdiommunication edges with the

same CDMA code can transmit simultaneously in a particutae slot.

Algorithm 1 PoE-LinkSchedule
1: input: Given network®(-) and its associated communication gr&pty)

2: output: Set of colorsC which ensures successful communication in all links; £, —
{1,2,...}

3: Label the vertices of. randomly using uniform distribution

4: Use successive breadth first searchagorithm to partitiong,. into out and in oriented
graphsg;, 1 <i <k

5. for i — 1tok do

6: forj« 1tondo

7 if g; is out-orientedhen

8: let A = (s,d) be such thaLabel(d) = j
o: else

10: let A\ = (s, d) be such thaLabel(s) = j
11: end if

12: C(\) < PoE-LinkColof\)

13:  end for

14: end for

5.4.1 PoE-LinkSchedule algorithm

We use graph coloring approach for scheduling of CDMA codesrayrlinks. The term
“colors” in graph coloring approach represents availableM?Dcodes. The proposed PoE-
LinkSchedule algorithm is described in Algorithm 1. We ubggical layer probability of error

as metric in scheduling algorithm. Probability of error erhulated based only on first and
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second order statistics of the channel.

Step-1: In first step of our PoE-LinkSchedule algorithm aieL8, we label all the vertices
(nodes) randomly using uniform distribution.

Step-2: After the labeling step, communication grgph) obtained in Section. 5.4 (equa-
tion (5.23)) is decomposed intonumber of out-oriented and in-oriented graphsys, . . ., gx In
Line 4 [89]. This decomposition is achieved by partitiongrgphG.(-), the undirected equiva-
lent of G.() into undirected forests. To reduce intensive computatiassccessive breadth first
searchess used to decomposg,(-) into undirected forests. Each undirected forest is further
mapped to two directed forests. In one forest, the edgdssjlin every connected component
point away from the root and every vertex has at most one inmpredge, thus producing an
out-oriented graph. In the other forest, the edges in evempected component point toward
the root and every vertex has at most one outgoing edge, tbdsigng an in-oriented graph.
An in-oriented graph is also constructed by Algorithm 1 i@][f determine a link schedule in
a power-controlled STDMA network.

Step-3: In last step Lines 5-14, the oriented graphs areideresl sequentially. For each
oriented graph, vertices are considered in increasing dogléabel and the unique edge asso-
ciated with each vertex is colored using the PoE-LinkColarction. In essence, the edges
are considered in a random order for scheduling, sinceitape random. In Line 8 and 10
Label(.) is the re-labeling function which assigns numbe¢o nodes which are randomly con-
sidered for re-labeling. The PoE-LinkColor function is eaipkd in Algorithm 2. In Algorithm
1 thecommunication edge between nodes andd (s — d) is denoted a3 (s, d). We choose
the first color such that the resulting probability of errottee receiver of\ and the receivers of
all co-colored edges are below the thresh@ldf no such color is found, we assign a new color

to \.

5.5 Complexity Analysis

5.5.1 Complexity of the probability of error scheduling metric

As the (.) function value can be found from look-up table, the compieki determining

probability of error (5.22) essentially lies on determgpthe values ofi,r g|; andcr;Rle [].
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Algorithm 2 PoE-LinkColor{\)
1: input: Given network®d(-) and its associated communication gr&jf)

2: output: A color which ensures successful communication in a give li

3: C « set of existing colors

C, — {C(h) : h € &, his colored,\ andh interferes each other and hence PoB in
both\ andh }

C.s =C\C.i.e.,C.is nothing butC exceptC.

B

am

(o]

: for i — 1t0|C.s| do

7. r i colorinC.

8 E.—{h:he&,C(h)=r}

9. C(\) «r

10:  if probability of error at all receivers df, U {\} lower than3 then
11: returnr

12:  end if

13: end for

1

I

: return|C| + 1

Complexity in determining i,z g

The received signal in (5.5) is expanded in the followingadgun with the assumption of perfect

synchronization

—_
~

u_1

=33 sO ST hufm ][](Ab[]su[@N+k m]>+z sDnuliN + k]

f=1 k=0 m=0 f=1 k=0

=

i

(5.24)

Sinceb,[j] is either+1 or —1 and if we assumel, = 1, V u the computational complexity
in determiningu, r ;) Of (5.24) is2L,, flops. If we include the complexity in determining the
index termy the total complexity will b 0L, multiplications and.L,, additions where we have

assumed division takesflops [54]. Therefore, the total complexity involved in deténing

pyigii) 1S O(Ln)-
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Complexity in determining aijm [4]

From (5.21)

2

. 1 2 sk * ok * * * g
U;}}\B[i] [Z] = Z § C’Ul,v2¢1w2 + Cyl,vgwl,@DQ + Cv1,v2¢1w2 + Cm,w%% +N X F?
f1,k1,m1,v1,
f2,k2,m2,v2

(5.25)

As b,[j], sux are either-1 or —1 and if we assumel,, = 1, V u theni); andi, can be directly
determined. Due to the above fact the summatipi$_, S"p._; in (5.25) will not constitute
any additional complexity. Furthermore, the second ortirssics of the channel coefficients
Cu, Cy, C, é; are already available. Therefore, the terms which constitomplexity are
Zﬁi;%, Z,an;é asy,s are functions of» and also the termggl:l, Zf}izl asC,s are functions
of u. Hence, the total number of operations involved in deteirmgimeaijm [i] O(UZL3).
After analyzing the complexity involved in determiningr gy and UiﬁlB[ﬂ [i] we can

conclude that the number of operations required to determinbability of error metric for a

particular link is OU2L?).

5.5.2 Complexity of the proposed scheduling algorithm

In this section, we derive upper bounds on the running tinmeptexity (computational com-
plexity) of the PoE-LinkSchedule algorithm. Let us assuéas thickness of the communication
graphg.(V, &.) i.e., minimum number of graphs into which the undirectediedant of G..(-)

can be partitioned.

Lemma 5.1 An oriented graphy can be colored with no more than(n) colors using PoE-
LinkSchedule.

Since an oriented graph withvertices has at most edges, the edges gfcan be colored with

at mostn colors.
Lemma 5.2 For an oriented graphy, the running time of PoE-LinkScheduleO$n?).

Assuming that an element can be chosen randomly and unifdrarh a finite set in unit
time (Chapter 1, [101]), the running time of Phase 1 can be shovbeO(n). Since there is
only one oriented graph, Phase 2 runs in ting ). In Phase 3, the unique edge associated

with the vertex under consideration is assigned a colorguBimE-LinkColor algorithm. From
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Lemma 5.1, the size of the set of colors to be examj@edC.| is O(n). In PoE-LinkColor al-
gorithm, the probability of error is checked only once foegyvcolored edge in the s@f'ic;{‘ E;
and at mostk times for the edge under considerationWith a careful implementation, PoE-
LinkColor algorithm runs in timeé(n). So, the running time of Phase 3(gn?). Thus, the

total running time i (n?).

Theorem 5.3 For an arbitrary graphg, the running time of POE-LinkSchedul&l$Un log n+
Un@).

Assuming that an element can be chosen randomly and unifdrarh a finite set in unit
time [101], the running time of Phase 1 can be shown t®be). For Phase 2, the optimal
partitioning technique of [102] based on Matroids can belusepartition the communication
graphg. into at most66 oriented graphs in tim@&(Unlogn). Thus,k < 66 holds for Phase
3. From Lemma 5.2, it follows that the first oriented graptcan be colored in tim®(n?).
However, consider the coloring of th& oriented graphy;, where2 < j < k. When coloring
edge from g, using PoE-LinkColor algorithm, conflicts can occur not onlyhathe colored
edges ofy;, but also with the edges of the previously colored orientehlysy, , go, . . ., g;—1.
Hence, the worst-case size of the set of colors to be examihedC,,| is O(U). Note that
in PoE-LinkColor algorithm, the probability of error is chkaa only once for every colored
edge in the SQULC;{‘ E; and at most/ times for the edge under considerationwith a careful
implementation, PoE-LinkColor algorithm runs in tifgé/). Hence, any subsequent oriented
graphg; can be colored in tim@®(Un). Thus, the running time of Phase 30Un#). There-
fore, the overall running time of PoE-LinkScheduled§Un logn + Un#). This complexity
is comparable to that of ArboricalLinkSchedule algorithfij89] and much lower than that of
TruncatedGraphSchedule algorithm of [91]. Furthermdris, ¢complexity is much lower than

that of exhaustive search algorithm which has complexit@ @i’ ).

5.6 Effect of Channel on the PoE Metric

The numerator term of th@(.) function of probability of error metric derived in (5.22) is

bulilitggma il =R [0l S0 3" 59 ST S [ Ab SN + k—m)|  (5.26)



By using the inequality thak(a) < |a| for any complex number (5.26) can be written as

F N-1 Ly-1 v
balil gz Z s D D wlmAbLISLN +k—m]  (5.27)
=1 k=0 m=0 v=1

By using the assumption sz.d distribution of channel and simple algebraic manipulation

(5.27) can be further written as

F N-1Ly-1 ©y

b luleB[Z ] < Z Z Z Z

f=1 k=0 m=0 v=1
Since the chip sequence is having unit energy and if we assyme 1 V u, perfect synchro-

Suk % JlAuby[7]8u[iN + k — m]' (5.28)

nization and the chip waveforms matched with rake receingefis are independent then (5.28)

will become

(5.29)

From (5.11) and (5.12) the variance term (denominator)®pttobability of error metric (5.22)

can be written as

o li] = (var {%(XF: s ST by [m) ) > Ab[fl5[iN + k- m])}vLN X F(;)

(5.30)
The above inequality is from the fact thatr(.) > 0. From (5.22), (5.29) and (5.30) the lower

bound on individual probability of error can be written as

VE Sy m] )
Pgppli] > Q( (NO'Z/2) ’ ‘) (5.31)

From (5.31) we can see that the lower bound on probabilityrairen a link increases when

the channel mean, number of multipaths reduce and recenss mcreases. Therefore, we can
conclude that thepatial reusewhich is defined in (5.32) will increase when the mean of the

channel, number of multipath increases and the receiveeneduces.

5.7 Simulations and Results

5.7.1 Performance metric-l: Spatial reuse

The spatial reuseof the schedule is defined as the average number of sucdgssiteived

packets per CDMA code in the SCDMA schedule. The transmisston fransmit node using
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CDMA codec attth time slot is successful at receiving nadenly if Pg, ; < 3. Thus

Z|C‘ Z‘k/\:/llcl ‘[(PEi,j < ﬁ)
C|

spatial reuse- 7 = (5.32)

wherel(A) denotes the indicator function for evefiti.e.,7(A) = 1 if event A occurs,/(A) =
0 if event A does not occur. From (5.32) we can see that large valudraplies that there are

many simultaneous successful communications.

5.7.2 Performance metric-1l: End-to-End throughput

End-to-end throughput is defined as the probability of ssgite transmission from source node
to destination node, which involves successful transimisat each and every intermediate hop.

The closed form expression for the end-to-end throughpdriisved as follows

e Case I: Number of hops 1
Let us sayr,, = {1, 2, 3,...,h} is the path selected to relay the packets from source
nodel to the destination node using some routing algorithms and number of hops in the
routing path ish — 1. The probabilityP (.5, ;) that the message is successfully transmitted
from sourcel to destinatiorh is given by:

h—1

Sl h ﬂ Sz H—l =1~ (U zz—l—l > 1-—- ZP zz-l—l (533)

=1

whereP(E; ;1) is the probability of error in the link, i + 1 as derived in (5.22).
e Case Il: Number of hops = B(S, ) = 1 — P(Ey )

For simulations a single circular cell of radiigss= 1000 m is considered with nodes distributed
as stationary distribution derived from Random Waypoint (RWiebility model [103]. The

radial distribution of nodes as a function of radial disendérom the center is given by
) = 2 — (285" 4 877) (5.34)
73

All the nodes are assumed to transmit with a constant pa@werhe value ofR.. is consid-
ered to bes00 m. From the nodes’ distribution we construet-) and then map networ(-)
to the graphg.(-) using (5.23). The PoE-LinkSchedule is computed using tbpgsed algo-

rithm. Once the link schedule is computed, #patial reusds calculated using (5.32). The
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Figure 5.3: Spatial reuse versus transmission range

101



Lower bound on end-to—end throughput
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Figure 5.4: End-to-end throughput versus SNR

spatial reusds averaged over00 nodes’ distributions. In the underlined simulation enmiro
ment with the SCDMA network thgpatial reuses calculated using the algorithms ArboricallL-
inkSchedule proposed in [89], TruncatedGraphSchedulerighgn of [91] and also Conflict-
FreeLinkSchedule of [100]. Thepatial reusds plotted against the varying number of nodes
in Fig. 5.2. We can observe that the PoE-LinkSchedule hdsehgpatial reusecompared to
all other algorithms. This is because PoE-LinkSchedulephalsability of error as scheduling
metric while all the other algorithms have SNR as schedulgimeHence, thespatial reuse
which is the function of probability of error is higher in thbeoposed PoE-LinkSchedule.

The spatial reusds also plotted against the transmission range for a fixee mighsity.
From Fig. 5.3, we can see that tepatial reuseincreases for increasing transmission range
(transmission power) till it reaches the maximum range. el@w, after it reaches the maximum,
it starts decreasing. This is because at lower transmisaioges the received signal strength
will be minimum and receiver noise dominates the receivgdai Therefore, as we increase
the transmission range received signal strength will alsceiase and so does thjeatial reuse
However, after some level of transmission range, the iaterfce dominates the received signal.

Hence, thespatial reusalecreases as shown in Fig. 5.3.
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We have also plotted the lower bound on end-to-end throughypselecting a random
source and random destination and using minimum hop couningpalgorithm. The lower
bound on end-to-end throughput is calculated using (5.88)averaged over atleasio dif-
ferent source-destination pairs. Thus obtained lower Baumend-to-end throughput is plotted
in Fig. 5.4 for various SNRs. We can conclude from Fig. 5.4 thatproposed algorithm has
better end-to-end throughput. This is because the endddfgoughput metric is defined as a
function of probability of error and the proposed algorithas lower probability of error in all

links due to probability of error constraint.

5.8 Conclusion

In this work, we have developed PoE-LinkSchedule algoritomSCDMA MCNs. An em-
pirical modeling shows that, on an average, our algorithiies®s highespatial reuseand
end-to-end throughput compared to the ConflictFreeLink&alee ArboricalLinkSchedule and
TruncatedGraphSchedule algorithms. Furthermore, PoESdhedule algorithm has complex-
ity comparable to that of ArboricalLinkSchedule algoritamd much lower than that of Trun-
catedGraphSchedule algorithm. Since the statistics afttaenel varies slower than the channel
coefficients itself, computing PoE metric and schedulirggitiks offline in a centralized fashion
is feasible. Thus, in cognizance gfpatial reuseand end-to-end throughput PoE-LinkSchedule
Is a good candidate for efficient link scheduling algoriti@nce the scheduling information is
available the source to destination path for multihop via&a communication can be estab-

lished through the scheduled links using some standardhgpatgorithms.
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Chapter 6

On Optimal Transmission Range for

Multihop Cellular Networks

In this chapter analytical relationship between transimmssange and network connectivity
is obtained as a function of number of nodes for CDMA based ikt Cellular Network
(MCN). We show that for a network of uniformly distributed nodes in a single cell of unit
radius, the transmission rangshould be sufficiently larger th f}%{‘ to achieve asymptotic
full connectivity. The distribution of the nodes may not b@farm in case of mobility. In such
case a mobility model dependent lower bound on transmisaioge is obtained. We show that
for Random Waypoint (RWP) model the lower bound for the nodesiwire completely inside
the cell is same as the corresponding uniform node distobutase. However, for nodes on
boundary the transmission range lower bour(cﬂ?) v which is larger than the corresponding
uniform node distribution case. Our findings show that moragmission range is required at
the boundary to establish better connectivity and henceayiable transmission range control
mechanism is necessary. In addition to the lower bound, seegabpose a method to choose the
optimal value of transmission range using a scheduling ar@sm and ensure that the optimal
value is always greater than the lower bound. Thus obtana@dinission range could be used to
select the transmission power of the nodes in a meaningfyland hence, the nodes’ isolation
could be avoided and the spectral efficiency can be incrededlemonstrate empirically, that
the proposed transmission range control mechanism iresehas network connectivity as well

asspatial reuse of the resources.
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6.1 Introduction

In Multihop Cellular Network (MCN) mobile terminals transmpiackets to base stations as well
as to other mobile stations using multiple hops with lessamgission range. Such a system en-
hances the throughput, user capacity and energy effici&&dy However, the issue of optimal
selection of the transmission range in MCN is yet to be addcedsr MCN, obtaining optimal
transmission range assumes quite significance due to maltipleashort range transmissions
instead of single long range transmission [88]. This chaatielresses the transmission range
control problem for CDMA based MCN. The motivation and maintcitions of this chapter

are

1. In CDMA-MCN to obtain highspatial reuse of resources the transmission range of
mobile nodes have to be decreased. While, the transmisgige tia decreased beyond
certain threshold the connectivity of the network will be@questionable [79]. We de-
rive an analytical relationship between transmission eaangd connectivity as a function
of number of nodes in the network and thus obtain a lower baimglansmission range

as a function of number of nodes.

2. For better connectivity of the nodes the transmissioigeant the nodes has to be in-
creased well above the lower bound. However, more the trgsgm range more the
interference seen in the systems and hence sjegsal reuse of the resources. We pro-
pose an optimal choice for the transmission range usgimngial reuse metric in the case
of MCN. When the optimal range is below the connectivity loweubd then the closest
suboptimal value, which satisfies lower bound as well asige®spatial reuse close to
the maximum, will be chosen. With thus obtained transmissange, the transmission
power of the mobiles could be better controlled to reduceritexference [104] as well

as to achieve high connectivity.

3. We also derive the minimum required transmission rangeedisas optimal transmission
range in case of nodes’ mobility. RWP mobility model is usedlfostration. The results
show that the transmission range in case of RWP model is sathatasf uniform node
distribution when the nodes lie completely inside the célbwever, it is higher than
the corresponding uniform node distribution scenario wiemode lies in the boundary

regions.
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6.2 Related Work

A transmission range strategy to maximize throughput forrecttsequence spread-spectrum
multihop packet radio network is proposed in [105]. An indial variable-range transmission
power control on the physical and network connectivitywek capacity and power savings of
wireless multihop networks is presented in [106]. For umfly distributed nodes the required
transmission range that creates an almost surely k corthegielogy for a given node density
is proposed in [107]. A transmission range assignment seifemwireless sensor node such
that a multihop communication path exists between eaclosemsle and a super node (base
station) is derived in [108]. A heuristic approach basederference efficient topology control
is proposed for wireless ad-hoc networks in [109]. [110kpreés a method to adjust the powers
of mobile stations to control/improve the topology of thelket radio network. [111] proposes a
transmission range selection method by considering thengidading effect. We considerably
differ from all the above work by considering the boundaryvad as non boundary scenarios

and also the mobility in the network which is prevalent in tase of MCN.

6.3 Lower Bound on Transmission Range

We derive the lower bound on transmission range such thaheheork is fully connected.
Disconnectivity is defined as probability of at least oneenbding out of coverage region of all
other nodes in a given cell. Consider a single cell with undiua andn nodes distributed as
uniform point process and a single nadeawith transmission range(r < 1) at the boundary of
the cell. The scenario of node being isolated is shown in Fig. 6.1. We wish to find the lower
bound on value of to avoid the node’s isolation. The probability of nodebeing in isolation
could be found by calculating the intersection of area afleiof radiusl and circle of radius.

Now the area of sector ABC which is shown with dotted lines igp 6.2 is given by

T 0

Aapc = <§ - §>T2 (6.1)

Therefore, the area of shaded regibn...q= Area of sector AOC centered at O- Area of OABC

(two back to back triangle with OB as common side) which iggiby

1 1 0
Ashaded = 3 X 20 — 2 % 3 X 1 X COS <§> (6.2)

from (6.1), (6.2) the area of portion of cell within the tramssion range of node: (A,) is
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Figure 6.1: An extreme case scenario where a node m lies atlaoyof a cell

Figure 6.2: A zoomed view of the cell to look at the coveredorg
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given by

A, =0 — 1 cos (g) + (g - g)(r2) (6.3)

Now consider first and second term in the RHS of above equatism.is less than in MCN
we can neglect the area of shaded region of Fig. 6.2. Thisciause of the reason thabeing
small, cos 6 tends to 1 and tends tor. Hence, both of these terms vanish and we can obtain

the following approximation

A, ~ (g _ g)ﬂ (6.4)

Therefore, probability of a particular nodeamongn nodes being isolatedH) is given by

probability that alln—1 nodes lie in uncovered region. As we have assumed uniformialison

of nodes, ) )
A—AN\" AN
whereA = 7 is the area of circle of radius Therefore, from (6.4), (6.5)
1 0 O\
p=(1-(G-5) <) (6.6)

Now, the probability of at least one node being isolatgd) (s given byP! = |J;_, ;. Upper
bound onP! could be obtained by using the union bound property as

n

BlZOBSiPiZZ(l—erz)”‘l (6.7)
=1 =1

=1

where,k = < — % Sincef < 7, k < 0.5. For dense network (i. e large n) using Poisson

1
2
approximation [103]
Pil < Z e—(n—l)er2 —n X 6—(n—1)l~::><r2 (68)
=1
We define the probability of disconnectioR{) as probability of at least one node being isolated

(Ph). Therefore, from (6.8)

—(n—1)kxr?

Pp<nxe _ 6lnn—(n—l)er2 (69)

Finally,

(n—1)

2
py < n(-emEt) :n(m( =) (6.10)

In the above expressionifdecreases slower tha{y,%, then Pp will asymptotically ap-

proach zero. Hence, the network will become fully connedtedsufficiently largen. As
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k < 0.5 we can further say that > % in order to achieve asymptotic connectivity. This

result is in agreement with a landmark result by Gupta and &l 2] which states that when

= % then the network is connected with probabilitprovided that, fom — oo,

mr?(n)
C(n) — 0.
In case the mobile node is completely inside the cell as shovilg. 6.3 then in (6.5)

A,./A will becomer? hencek will becomel. Therefore, the lower bound on transmission range

for the node completely inside the ceII,i#(jL{ﬁ). For dense network this lower bound can be

approximated as
Inn

— (6.11)

n

6.3.1 Lower bound on transmission range due to mobility

RWP model is a commonly used model for mobility in ad-hoc neksoUniform distribution
for nodes’ location may not be true in case of mobility of n@d€&he distribution of the nodes
will dependent on the mobility model chosen. For instanasaise of RWP model under steady
state conditions the probability density function of nodeshown in Fig. 6.4. The occurrence
of node at a distance from the origin with RWP model is given by the mean-squarererro
approximation [113]

6

f(s) = E(27 — 3557 + 8s5) (6.12)

We can find the probability density function of node occuceeim a ring of radiuss with

reference to the origin by multiplying the above equatior2by :

fs(s) = %(2? — 355% + 8s") (6.13)

Above distribution is used for the connectivity analysisha subsequent section.

Lets look at the worst case scenario for the isolation of nede RWP model which,
again, should be looked at boundary of the cell. We can stdlect the shaded region in Fig.
6.2 and consider sectoral area ABC. Lets define a polar codedgystem(x, ) with B as
center and OB as the axis in Fig 6.2. Fox 1, radial distance of any point in the sector from

O can be stated as

s =1+ 22 — 2xcosa (6.14)
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Figure 6.3: General case of a node lying completely in thieatelistance y from the origin

0.8+

Probability density

Y coordinates of nodes X coordinates of nodes

Figure 6.4: Steady state probability density of the nodethéncircular cell of radius 1 with
RWP mobility model
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Using this in (6.12) the probability density function of RWdel can be stated as

6
Yz, o) = ﬁ(%xcosa — 1922 + 322%cos’a — 3223 cosa + 8x*) (6.15)

Now the probability that a node lies within the sector ABC aj .F6.2 is,

(r=6)

p= 2/2 /T f(z, a)rdrdo (6.16)
0 0

On solving with approximations (consideringnd ~ 6 ~ r and neglecting terms of with

degree higher than 4) above equation yields

(6.17)

Now, the mean number of nodes within the transmission raagebe given asp (Poisson
approximation for large n [103]), so that the probability fm node lying within the range of a
given node is

P=e (6.18)

Hence, in this case by union bound

substitutingp from (6.17) in (6.18) and then using (6.18) in (6.19)

P - 61nn<1—]€(3\/1,;1_n>3> (6.20)

wherek = %—i Comparing with (6.10) this result suggests us that the tngsson range value
1/3
at boundary should be greater théﬁf) .

In case when the node completely lies in the cell

p= /27T /7” f(z, a)xdrdo (6.21)
o Jo

In order to look at the transmission range requirement nesatee, lets generalize the analysis
considering that node is located at distapdeom origin, wherey; < y < 1 — r as shown in

Fig. 6.3. Clearly, the substitution required for this caseifa6.14)) is

s* = 1% + y* — 2xycosa (6.22)

here it is defined only for the region covered by node
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Hence, calculating requiref{z, «) and using (6.21), the following general probability expres

sion can be obtained
1
p= g[(162 — 210y° + 48y™)r? + (96y* — 105)r* + 1679 (6.23)
Fory = r, this probability of coverage converges to

1 ,
p= ﬁ[162r2 — 315r* + 160r°) (6.24)

which suggests that near center the transmission rangeeazivoken of the order qf 2. This
result matches with the case for uniform node distributi®sl@wn in (6.11). Foy = 1 —r the
expression fop has minimum degree 3 confirming that lower bound on transamsacreases

at the boundary for high probability of connectivity.

6.4 Variation of Connectivity with Transmit Energy

Monte Carlo simulations have been performed to observe theteff transmit range variation
on the connectivity of a network. A 1000m radius circularaangth 1000 uniformly distributed
nodes have been considered. For illustration purpose hopt ¢® taken as routing metric to
select a path between a source node and destination nodeeveighe algorithm is routing
independent. Source and destination nodes are selectepursform distribution from the set
of nodes. The probability of end-to-end connectivity (tisgprobability of establishing a path
between any two nodes using a minimum hop count routing) lsutzded for a given node
transmission range. A plot is obtained between averageswbinity versus transmission range.
The experiment is repeated for various number of hop countstlerstand the relationship
between connectivity and hop count. Fig. 6.5 illustratesplots. Note that the probability
of connectivity is getting higher when hop count increasBsis is because as the hop count
increases we can establish the path with multiple smallps leven though the transmission
range is less.

In the second phase nodes are assumed to be distributediagctar RWP model which
Is carried out by an inverse mapping of cumulative distigutunction corresponding to prob-
ability density given in (6.13) on to cumulative distrilbanifor uniform distribution in circular
area. Fig. 6.6 shows the steady state nodes distributidRViéfP mobility model and its corre-
sponding uniform distribution. The probability of conneity in case of RWP model is shown

in Fig. 6.7 against transmission range for various hop unt
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Figure 6.7: Connectivity analysis with RWP mobility model

6.4.1 Inferences drawn from the plots

We observe the effect of hop count on our analysis. For 10d@$dhe minimum transmission
range should be well above 0.08m, where we have not condideedimit on number of hops
for transmission. Therefore, simulation results, consemaximum hop constraint show that
a higher transmission range will be required for achieviigh lprobability of connectivity. If
we make the network more delay tolerant (in terms of hop &)uatlesser transmission range
lower bounded by threshold value will be required. For saom dount, average connectivity

of RWP model is found to be higher than the uniform model.

6.5 Optimal Value of Transmission Range

We have seen that the connectivity increases with the trgsgmn range. However, it is es-
sential that the transmit range of each user in MCN-CDMA systamast be reduced to limit
interference so that thepatial reuse can be increased. To evaluate the performance of the

MCN-CDMA systems with respect to transmission range, we défiespatial reusemetric in
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the same way as in (5.32) i.e., the average number of sucdgssteived packets per time slot.
However, we repeat it here for continuity. The transmis$iom nodet; ; using CDMA code
at jth time slot is successful at receiving node only if PE”_], < B whereg is probability of

error threshold and;,,  is the probability of error at receivey ;. Thus

S, S 1Py, < )

spatial reuse- o0 = -

(6.25)

where! (A) denotes the indicator function for evetiti.e.,/(A) = 1 if eventA occurs,/(A) =

0 if event A does not occur and' is total number of available orthogonal CDMA codes arid

Is the number of transmit and receive pairs which can suftdgssommunicate in a given time
slot using the same CDMA code The essence of MCN-CDMA is to have a reasonably large
number of concurrent and successful transmissions. Frd2b)@e can see that transmission
range (power) of each node must be reduced to limit intemferehowever, the range (power)
should be sufficient enough to maintain the probability abegat the desired receiver for a
satisfactory call quality as well as to maintain the connégtin the network. Therefore, the
optimal transmission range should be chosen such thatwer lmound on transmission range

Is satisfied as well as theatial reuse (which is a function of probability of error) is increased.

We consider a single circular cell of radius = 1000m with 1000 nodes distributed as
uniform point process as well as distribution of RWP modell tAé nodes are assumed to
transmit with a constant poweét. Our aim is to find the optimal transmit range for each node.
Spatial reusing of CDMA codes is carried out using the PoB<&ohedule algorithm proposed
in Chapter 5. Once the reusing strategy is plannedspgh&al reuse metric is computed using
(6.25). Thespatial reuse is plotted against the transmission range in Fig. 6.8 afteraging
over 100 nodes distributions. From Fig. 6.8 we can see thastla¢ial reuse increases for in-
creasing transmission range (transmission power) tidaches the maximum range. However,
after it reaches the maximum it starts decreasing. Thisdaumse at lower transmission ranges
the received signal strength will be minimum and receivesedominates the received signal.
Therefore, as we increase the transmission range recegmal strength will also increase and
hence, thepatial reuse. However, after some level of transmission range the ieterfce will
start dominating the received signal. Hence,dh&1ial reuse will start decreasing as shown in
Fig. 6.8. In case of dense network the optimal transmissaoge corresponding to maximum

spatial reuse will always be greater than the lower bound. However, in spaetwork it may
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not true. In such case a suboptimal value which is greater tiwa lower bound and in the

neighbourhood of the optimal transmission range will becteld.

6.6 Conclusion

In this work we have analyzed the relationship between octivigy and transmission range for
both uniform distribution as well as RWP distribution of neder MCN. We have observed that
with a given hop count there exists a minimum transmit enalipwe which the connectivity in-
creases significantly. Later, we have also proposed a smiesttategy for optimal transmission
range to increase both theatial reuse of the resources as well as the network connectiv-
ity. Employing such a transmission range, the communinoaiitk can be better established

between any pair of nodes using multiple hops with improvetivork capacity.
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Chapter 7

Access Mechanism for Multinop Cellular

Networks

A CDMA-OFDM access mechanism is proposed for Multihop Cefldlatworks in this chap-

ter. Source node, destination node and intermediate reldgsxconstitute a group and a CDMA
spreading sequence is assigned to each such group. In@fargroup, a single OFDM catrrier
is assigned to each intermediate hop, hence the proposeI@-BDMA in nature. The sub

carriers assigned to the intermediate hops in a given graumatually orthogonal and also the
CDMA codes assigned to different groups. The sub carrierdrandmit power levels to the re-
lay nodes are assigned in such a way as to maximize the eswldttiroughput. The end-to-end
throughput is formulated by assuming a Rayleigh flat fadingnciel between nodes. Simula-
tion results show that the proposed access mechanism ashietter end-to-end throughput
and Bit Error Rate (BER) performance compared to standard aooessanisms like CDMA

and OFDM-FDMA. Furthermore, the BER performance with migtijpansmit sources is also

considerably higher in the case of the proposed access menha

7.1 Introduction

This chapter addresses the issue of access mechanism fitndpuCellular Networks (MCN).
The primary objectives of the MCN wireless systems are efftdmndwidth utilization, low
implementation complexity and higher data rates. To aehibese objectives, the two primary

contending technologies are
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e Orthogonal Frequency-Division Multiplexing (OFDM), whidas higher spectral effi-

ciency and very low implementation complexity.
e Code Division Multiple Access (CDMA), which promises highatal rate.

The combination of CDMA and OFDM is a promising candidate faCN We will derive the
mechanisms for using OFDM-CDMA in multihop cellular netwsiik the subsequent sections
of this chapter.

The main contributions of this chapter are as follows:

1. We propose a strategy to use CDMA-OFDM access mechanismltihop cellular net-
works. Our proposed OFDM is FDMA in nature. We propose a suberaallocation
scheme to the intermediate hops such that the end-to-emwgiyput is maximized with

the constraint that the interference is maintained belawaethreshold.

2. The end-to-end throughput is formulated by assuming:ahRayleigh flat fading prop-
agation channel between nodes instead of the commonly etered distance-decay law

in literature.

7.2 Related Work

There has been a significant amount of research work going ecdess mechanism design
for MCN. MC-CDMA access mechanism is proposed for MCN in [114)wbkeer, the system
model assumes fixed relays and the proposed algorithm iganiplink communications. Sub
carrier allocation scheme to maximize the information th&o capacity of an OFDM based
multihop network is proposed in [115]. An OFDM relaying sofee by taking into account
the propagation channel is proposed in [116]. Optimal nurobsub-carriers into which the
bandwidth should be split in order to maximize the throudhgfuhe OFDM based MCN is
analyzed in [117]. There are many literature on CDMA based MCN8{120]. However, to
the best of our knowledge, there is no literature availalbleC® MA-OFDM for MCN with

generic system model and Rayleigh fading channel to maxithezend-to-end throughput.
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Figure 7.1: Proposed access mechanism

7.3 Proposed Access Mechanism and System Model

7.3.1 Proposed access mechanism

The underlying system model is shown in Fig 7.1. Let us asghate¢he source node, destina-
tion node and intermediate relay nodes in the routing forimgles group as shown in Fig 7.1.
There could be many such groups in a cell. Each group is assigith a CDMA spreading
code and the spreading codes assigned to different groamsthogonal. In a particular group
each node uses a single OFDM sub carrier to forward the calhckl, the proposed OFDM is
FDMA in nature. Moreover, FDMA based OFDM has higher thrqugththan TDMA based
OFDM [115]. The receiver is a simple matched filter receiveoiider to reduce the complex-
ity. The message packets are CDMA spreaded and OFDM modwathd source node. The
relay nodes are assumed to be of demodulate and forwarditgpeelay nodes demodulate the
OFDM packet and modulate them again with a different OFDMieaand forward it to the
next node in the path. Note that CDMA spreading/despreaditi¢p@vdone only at the source

node and/or destination node (end nodes) and not at themetigs (intermediate nodes).
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7.3.2 System model

We consider an CDMA-OFDM system with groups transmitting at a given instant. Assume
Binary Phase Shift Keying (BPSK) constellation for genegtime input bits with equal prob-
ability for bits +1 and -1. Let us consider a grogponsisting of source node, destination node
and set of intermediate relay nodes. Assume that saurs@ssigned with a spreading wave-
form ¢,(.) whose support isO] 7] ands, = [s40, 541, - - -, Syv—1) denotes the corresponding
spreading sequence with spreading g&inThen,

N-1

cy(t) = Z Sgnrect(t —nT], (7.1)

n=0
whererect(t) is a rectangular waveform with unit amplitude in [I.] andT.. is the chip period.
Let us assume, (i) is transmitted bit in groupg. The kth relay node in group transmits bit
by () with amplitudeA,, in ith bit interval and the length of signaling interval for eaer is
Tyi:. The baseband signal of th¢h transmitting node igth group can now be expressed as

J2mkt

bit

Try(t) = Ak.gbg(z’)exp( )cg(t — iThit),

Ty <t < (i+ 1)Th,

(7.2)

Processing at relay nodes

Assume perfect synchronization at the relay nodes in thenyidg CDMA-OFDM model and
there arg5 number of groups communicating simultaneously. The recksrgnal at any relay
nodel from any other nodé in groupg at any instant is given by

G

Dia(t) = Argby(Deg(t —iThie) + Y Augg(i)eg(t — iThi) +n(t) (7.3)
g=1,G#g

whered ¢—1(.) is the signal received at nodérom some node of groupG which uses same
G#g

carrier as that of node andr(t) is zero mean Additive White Gaussian Noise (AWGN). Once

the OFDM demodulation is complete the signals are again OrRddulated with a different

carrier and transmitted to the next relay node.

Processing at end nodes

The processing at the end node consists of OFDM demodulatidrCDMA despreading. Let

us assumel is the end node which receives signal from nede The OFDM demodulated
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signaly,,4(t) at noded can also be derived in a similar fashiongagt). After matched filtering

and despreading af,.4(t), the received symbaj,[:] in bit intervali at noded can be written as,

G
vali] = pAmgby (1) + D Augbg()pgg +11 (7.4)
G=1G4g

Thit

wherepg, = [,

cg(t — Ty )cy(t — 1Ty )dt is the correlation factor due to loss in spreading
codes’ orthogonality between groypand groupg, p is the correlation factor due to synchro-

nization loss of waveform, and is the noise added to the symbol over one bit interval.

7.4 Resources Allocation

7.4.1 Sub carrier and power allocation

We allocate the sub carriers and transmit powers to thenmr@éiate nodes such that the end-to-
end throughput is maximized with the condition that therifeence caused to other nodes in
the network is bounded. The end-to-end throughput is defaisetie probability of successful
transmission of packets from source to destination. Wewviothe similar procedures of (4.8)-
(4.16). However, we repeat the same here for continuityc&sful transmission from source
to destination involves successful transmission at eadhesary intermediate nodes. A node
throughput is defined as the probability of successfullggraitting its packet in a given slot to
its immediate neighbour in the path. The successful singtettransmission from nodeto its
neighbour node: occurs when the received power at nedérom node! (r;,,) is stronger than
interference plus noise power by a factorofi.e SINR > [3). The probability of successful

transmission from nodeto nodem is

P(Cim) = P(SINRy, > B)

= Mg 29

= P(rpm > 6.(Im + 1)) (7.5)

where I;,,, is the interference at node from other communicating entitie$,/ N R;,,, is the
signal to interference plus noise ratio at link betwéamdm, 5 is the SIN R threshold andy
is the noise power. Let;,,, G = 1,...,G (G # g) be the received power at nodefrom the

interferer in grou;. The total interference at node from the interferers in allz — 1 groups
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which use the same carrier as the hop betwesardm is given by

= (5 ) (76)

G=1,G#g

Erroneous detection occurs wh8iN R,,,, < 3, and this probability’( E;,,,) is given by
P(Elm) = P(?”lm < ﬁ(Ilm + 77)) (77)

The propagation channel between mobile node to mobile readiéférent from the conventional
wireless channel. However, the envelope still follows Rayialistribution [82]. Using the fact
that if Y is Rayleigh distributed and X=% then X will follow exponential distribution, we can
conclude that;,, follows exponential distribution. Hence, the probabilitgnsity function of
Tim IS given by

1 “"im
P(rin) = 3, —¢ i (7.8)

where R;,,, denotes the average received poviy, = ’CZT*: mm being the transmitted power
from nodel to nodem and~ is the path loss coefficient [83]. Lat,, = {1, 2, 3,...,h} be
the path selected to relay the communication from source hdd the destination node in
groupg, with h — 1 number of hops. The probability(C,,) that the message is successfully

transmitted from sourcéto destinatiorh is given by

h—1
P(Cin) = P(ﬂ Ciit1)

h—1
= 1- P(U Eiis1)
-
>1-) P(Ei) (7.9)

=1
where the last inequality is obtained by using the union ldoiote that(C;;4) is dependent
on correct detection of all its previous nodes. Let us cardite communication between node

i andi + 1 in groupg.

P(Eii+1) = P(SINR;1 < 5)

= P(rip < B.(Liiy1 +1))
1 B-(Lii+1+m) B ;n‘+1 p
= e Rii+1)dry,
Rii+l /0 ( ) i
—BIji41+m)

= 1—(¢ FRat1 ) (7.10)
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wherel;; . itself is a random variable, therefore, by analyzing aldmggimilar lines of [83],

P(F;11) can be written as

o o ’ [% Zg:1g¢g pégrgi+l+"}
P(Eiiz1) = / / (1 — (e Riit1 ))
0 0
G

x I Plram)dronm (7.12)
G=1G#g

By substitutingP (r¢;1) from (7.8) and by invoking independencelfrg; . ) the above equa-

tion can be written as

<7 Bn = ) G 1

- _ . Piit1d;;

P(E”.H) 1 [ e H 1 B PGi41PGi+1 [ diita 7} (7.12)
G=1G#g 1 + N pis1 (dgi+1)

Using (7.9) and (7.12), the lower bound on end-to-end thnpugy(P;(C,)) can be written as

P(Chp) > 1 — hi (1 - {@(‘pii+f3“11> ﬁ ! ) D (7.13)

2
PGi+1PGi+1 / dy;
P G=1G4g 1 + % Git1 ( iit1

Piit1 dgit+1

Now the sub carriers and power allocation functjin) is derived as follows

flei,co,n oo schon, P12, D23y - Dh—1n) = Maz Pi(cip)
ST

Ij < lnaVi,j€h (7.14)

7.5 Simulation and Results

We simulate a single cell system with the simulation paransepresented in Table 7.1. To
validate the performance of the proposed model, a MontesGanhulation was carried out
by randomly selecting the source and destination nodesthenksults were averaged over at
least100 realizations of the nodes distribution. We employ Genetgofthm (GA) to solve
the constrained optimization of (7.14) [121]. Chromosomieies of GA are generated from
uniformly distributed random number generator. Maximuamgmit power (maximum value of
chromosomes) from any node is assumed td bett. We use).95 asP;(cy,) threshold. The
mean square error between the valu®dt:,) obtained by substituting chromosomes’ values
of GA and0.95 is taken as fitness function. Cross over probability is assuimée0.5 while

mutation probability i€).01.
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Table 7.1: Simulation Parameters to show the effectiveoktse proposed access mechanism

Parameters Value

Cell radius 1 Km

Number of nodes in the cell | 1000

Propagation loss exponent)(| 4

SINR threshold ) 0.25dB
Interference threshold,,,...) | -80 dB
Spreading factor/{) 32

Thermal noise at receiver -90 dB
Antenna Gain in MT 0 dB (Omni directional)

7.5.1 BER performance

BER performances of various access mechanisms is compakégl 2. For comparison pur-
pose we consider a CDMA access mechanisms which has simif@taigon properties as that

of our proposed CDMA-OFDM mechanism. We also consider a OHEIMAA access mech-
anism proposed in [115]. We allod) number of randomly placed groups to transmit at the
same time i.e.(7 = 50. We examine a single group communication and assume a ndatche
filter receiver at the end node as explained in (7.4). Fron¥Eigve can infer that the proposed
CDMA-OFDM access mechanism has better BER performance ceapaiother algorithms.
This is because the interference in the network in the cageapfosed access mechanism is
much lower compared to remaining access mechanisms duetievel of orthogonal modu-
lations. Therefore, the BER performance is much better irctise of proposed access mecha-

nism.

7.5.2 Multiple access interference analysis

The effect of increasing the number of active groups (trattsig groups) in the system for a
SNR 0of20 dB at each node is shown in Fig 7.3. It is evident that more thelurof active

groups (+), more the interference in the system. Therefore, as thébeumwi active groups
increases the BER performances of the access mechanisnte r@esishown in Fig 7.3. How-

ever, in the proposed algorithm due to the two levels of @timal modulations (OFDM and
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Figure 7.2: BER performance comparison

CDMA), interference at the nodes will be at tolerable leveénkle, the performance is signif-

icantly better in the proposed algorithm compared to CDMA é@xDM-FDMA algorithms.

7.5.3 End-to-end throughput analysis

We have plotted lower bound on end-to-end throughput byingrhe number of active groups
in Fig 7.4. From (7.13) itis clear that the end-to-end thitgugs is a function of transmit powers
of nodes(p;;+1). In the proposed algorithm the power levels are optimizexh shat the end-
to-end throughput is maximized. Therefore, the minimunrgageed throughput in the case of
proposed algorithm is considerably higher compared toratgorithms as shown in Fig 7.4.
Moreover, as the number of active group increases the eeddahroughput reduces due to

increase in interference in the system.
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7.5.4 Convergence analysis

The mean square convergence of GA in power and sub carrieniagtion of (7.14) is shown
in Fig 7.5. From Fig 7.5 we can deduce that the GA convergestiean square error of about

10~2 within 50 generations.

7.6 Conclusion

We have proposed a hovel CDMA-OFDM access mechanism for MCNhade used a simple
Genetic algorithm to solve the constrained optimizatiorpodfver and sub carrier allocation.
Our proposed algorithm is simple in implementation and hetteb BER and throughput per-
formance compared to the CDMA and OFDM-FDMA.
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Chapter 8

Conclusions: Summary and Future Work

8.1 Summary

Multiuser transmission techniques and multihop commurdna enhance the performance of
cellular systems. In this work, we have proposed two entinglv multiuser transmission al-
gorithms. We have employed the simplest possible recetvactare and a new optimization
criterion for finding the filter weights at the transmittere\Wave considered the most general

channel conditions with both ISI and MAI effecting the syste

e The problem of channel estimation at the transmitter wagesolising the statistical es-
timates for the channel rather then actual channel coeifsieThis greatly reduces the
control overhead and saves bandwidth as well as power attke/er (which is expended
in estimating the channel and then communicating it backéottansmitter) both of

which are deficient in a mobile wireless system.

e To reduce the computational complexity the conditionahtjgrobability of error and
conditional joint norm were minimized. This also gives th#imal filter for each sce-
nario rather than the best filter for the average case. Thiststal channel model based
algorithms provide acceptable performance as comparédztiully known channel case

even when the channel variations are large.

e We have simulated both the MPOE and the MMSE algorithms ftreeely fast fad-
ing channels and observed the performance to be much bediethe case without the
presence of prefiltering. The MPOE algorithms performeaiscantly better than the
MMSE algorithms as expected.
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On the basis of this work, it is cogent that transmitter bgsediltering is a promising direction
to explore in order to improve the performance on the dovwntiihwireless communication
systems. Prefiltering techniques are used in many wire@sys{e.g. DSL) and even in FM
broadcasting (pre-emphasis, de-emphasis). This workepdarward in their logical extension
to wireless systems. In fact, the results from the staéistbannel model algorithms prove that
an extensive potential exists in transmitter based prefijdechniques for application to real-
life practical systems.

In addition to prefiltering we have also explored the optibesiablishing multihop relay
communications in cellular network. Relaying has potertbaleduce transmitted power and
subsequent interference in the network by breaking longemeunication path into a number
of smaller hops. A conventional cellular approach, howepesvents capacity gains due to
interference, as all traffic must be routed through the BS (Exagon). A network topology
where traffic may be routed between users, without requitiiegBS to take part in all calls,
may avoid the capacity limits resulting from all calls ragivia a single BS transceiver.

In multihop cellular networks (MCN) finding an optimal souricedestination path is an
important issue to be addressed. Routing based solely upomining path loss/distance is un-
able to achieve these potential capacity gains. A noveimgatigorithm based upon cross layer
parameters is presented in this thesis. The proposed goptotocol was shown to increase
end-to-end throughput and reduce the end-to-end delaynégrdarence in the network.

Resource scheduling is the another method of further miiganterference. The ad-hoc
nature of the proposed architecture means that we canncrgea successful transmissions
over all the links if all of them are simultaneously involviedcalls. To mitigate this problem
we have proposed a scheduling scheme where CDMA codes candsglra a given cell with
the constraint that at a given instant, communications allégransmitting links are successful
in the probability of error sense. The proposed MPOE baskediding scheme increases the
spatial reuse and also the end-to-end throughput.

We have also derived the lower bound on transmission rangerwarious conditions and
proposed a method to choose optimal transmission rangasththnetwork is fully connected
simultaneously maximizing the spatial reuse.

In addition to routing, resource scheduling and transmissange control we have also
proposed an OFDM-CDMA access mechanism for multihop comaatioins in the cellular

network. From the throughput and interference analysiscavesee that the proposed access

129



mechanism contributes not only power reductions but alsceases the number of users to
attain a high throughput.

Our proposed solutions solve most of the issues which caur edalle incorporating mul-
tihop feature in cellular network. Therefore, we can codelthat multihop communications in
cellular network can successfully be established. We &rsimmarize from our findings that
multihop communications increase spatial reuse redued@nence and also ensure end-to-end
communication with minimum delay and sufficiently high thghput. Also due to reduced
transmission range and high spatial reuse multihop rejagan increase the user capacity to
large extent and reduce the transmission power expenslitOmrethe basis of this work, it can be
stated without apprehension that multihop relaying hasdrelous potential to be considered

as candidate for future generation cellular communication

8.2 Future Work

The following are some future work suggestions which may behy of further exploration in

the case of prefiltering system:

¢ In the prefiltering model the deployment of the statistidedrnel algorithm in a real-life
system will depend on the channel statistics and the ratiwdsn the channel mean and
the channel variance. A proper mathematical charactesizaif this relationship will
surely help in taking decisions about systems in which thgssical channel model can

be used.

¢ In prefiltering system, the extension of the analysis to a Klrefiltering system may

also be investigated.

e For a given mean and variance of the channel, finding the optirprefilter lengthZ_,
depends on the balance of MAI and ISI in the system. This tcdfleould be studied
further so as to gain a deeper understanding of the role dfahemitter prefilter. Using
this understanding, a better demodulation scheme couldidgigested which treats both

the MAI as well as the ISl in the system separately therebyavipg performance.

The following are some of the issues which need further aterin the case of multihop cel-

lular networks:
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¢ In the MCN model most of the scenarios examined are staticpggaulation. Mobility
between users will cause changes in the metrics. More irapibyt routing based upon
metrics that have changed is likely to show impaired pertoroe. The impact of mobility

upon the various algorithms presented for MCN is currentlgm@a for investigation.

e The concept of relaying enables a greater number of commtmirclinks permutations
than has previously been possible in centralized CDMA nékwdrhe formulation of
simultaneous routing, resource allocation and power obfir FDMA and TDMA are
well analyzed in the literature. This approach with regart/tCN in a mobile environ-

ment with OFDM-CDMA access mechanism is an area for futureanes.

e Cooperative diversity is an another area which can be wéitedi in the MCN to max-
imize the end-to-end performance. However, MCN has heteemes and dynamic en-
vironment. Therefore, cooperative diversity in such aniremvnent with the goal of

effective resource utilization is a major challenge to beradsed.
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