
COLLABORATIVE DATA SHARING WITH MAPPINGS AND

PROVENANCE

Todd J. Green

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2009

Zachary G. Ives
Supervisor of Dissertation

Val Tannen
Supervisor of Dissertation

Jianbo Shi, Associate Professor, Computer and Information Science
Graduate Group Chairperson

Dissertation Committee

Susan B. Davidson, Professor, Computer and Information Science

Sanjeev Khanna, Professor, Computer and Information Science

Jeffrey F. Naughton, Professor, Computer Science, University of Wisconsin-Madison

Benjamin C. Pierce, Professor, Computer and Information Science

COPYRIGHT

Todd J. Green

2009

To Elisabeth

iii

ABSTRACT

COLLABORATIVE DATA SHARING WITH MAPPINGS AND PROVENANCE

Todd J. Green

Supervisors: Zachary G. Ives and Val Tannen

A key challenge in science today involves integrating data from databases managed by differ-

ent collaborating scientists. In this dissertation, we develop the foundations and applications of

collaborative data sharing systems (CDSSs), which address this challenge. A CDSS allows collab-

orators to define loose confederations of heterogeneous databases, relating them through schema

mappings that establish how data should flow from one site to the next. In addition to simply

propagating data along the mappings, it is critical to record data provenance (annotations describ-

ing where and how data originated) and to support policies allowing scientists to specify whose

data they trust, and when. Since a large data sharing confederation is certain to evolve over time,

the CDSS must also efficiently handle incremental changes to data, schemas, and mappings.

We focus in this dissertation on the formal foundations of CDSSs, as well as practical issues

of its implementation in a prototype CDSS called Orchestra. We propose a novel model of data

provenance appropriate for CDSSs, based on a framework of semiring-annotated relations. This

framework elegantly generalizes a number of other important database semantics involving an-

notated relations, including ranked results, prior provenance models, and probabilistic databases.

We describe the design and implementation of the Orchestra prototype, which supports update

propagation across schema mappings while maintaining data provenance and filtering data ac-

cording to trust policies. We investigate fundamental questions of query containment and equiv-

alence in the context of provenance information. We use the results of these investigations to

develop novel approaches to efficiently propagating changes to data and mappings in a CDSS.

Our approaches highlight unexpected connections between the two problems and with the prob-

lem of optimizing queries using materialized views. Finally, we show that semiring annotations

also make sense for XML and nested relational data, paving the way towards a future extension

of CDSS to these richer data models.

iv

Contents

1 Introduction 1

1.1 Overview of CDSS and Orchestra . 3

1.2 Overview of Technical Contributions . 12

1.3 Roadmap . 25

2 Provenance Semirings 27

2.1 Queries on Annotated Relations . 28

2.2 Positive Relational Algebra . 30

2.3 Polynomials for Provenance . 34

2.4 A Hierarchy of Provenance . 36

2.5 Datalog on K-Relations . 39

2.6 Formal Power Series for Provenance . 44

2.7 Computing Provenance Series . 46

2.8 Application to Incomplete/Probabilistic Databases 49

2.9 Provenance-Annotated Queries . 49

3 Update Exchange in Orchestra 53

3.1 CDSS Update Exchange . 55

3.2 Update Exchange Formalized . 60

3.3 Performing Update Exchange . 67

3.4 Implementation . 75

3.5 Experimental Evaluation . 77

4 Optimizing Queries on Annotated Relations 85

4.1 Preliminaries . 87

4.2 Containment Mappings . 89

4.3 Bounds from Semiring Homomorphisms . 90

v

4.4 Main Results . 91

4.5 Datalog . 103

5 Ring-Annotated Relations and Differences 106

5.1 Applications of Differences . 109

5.2 Z-Relations . 111

5.3 Reformulation Using Views . 114

5.4 Finding Query Rewritings . 123

5.5 Applications to Bag and Set Semantics . 125

5.6 Built-in Predicates . 128

5.7 Z[X]-relations . 129

6 Semiring-Annotated XML 131

6.1 Semiring Annotations . 133

6.2 Annotated and Unordered XML . 134

6.3 A Security Application . 142

6.4 Incomplete and Probabilistic K-UXML . 144

6.5 Semantics via Complex Values . 146

6.6 Commutation with Homomorphisms . 152

6.7 Semantics via Relations . 154

7 Related Work 158

7.1 Paradigms for Data Integration . 158

7.2 Provenance and Annotated Data Models . 164

7.3 Update Exchange . 165

7.4 Query Containment and Equivalence . 166

7.5 Ring-Annotated Relations and Updates . 167

7.6 Semiring-Annotated XML . 168

7.7 Further Work on Orchestra . 168

8 Conclusions and Future Directions 170

8.1 Immediate Next Steps . 171

8.2 Longer-Term Directions . 172

Bibliography 174

vi

List of Figures

1.1 Mappings among three bioinformatics databases . 5

1.2 Bioinformatics database instances before and after data exchange 7

1.3 Two views of provenance for bioinformatics example . 11

1.4 Tabular provenance representation using system of equations 16

1.5 Complexity of containment and equivalence with provenance annotations 21

1.6 Update propagation and query reformulation . 22

1.7 Mapping evolution and query reformulation . 22

1.8 Representing and computing updates with ring-annotated relations 23

1.9 Semiring-annotated XML example. 25

2.1 A maybe-table and a query result . 29

2.2 Result of Imielinski-Lipski computation . 29

2.3 Bag semantics example . 30

2.4 Probabilistic example . 30

2.5 Lineage and provenance polynomials . 34

2.6 Comparison of provenance annotations . 37

2.7 Provenance hierarchy . 39

2.8 Datalog with bag semantics . 39

2.9 Datalog example . 42

2.10 Derivation trees for Datalog example . 43

2.11 Probabilistic data integration example . 52

3.1 Mappings among three bioinformatics databases . 55

3.2 Dataflow at a single peer in a CDSS . 57

3.3 Local edit logs and update translation . 59

3.4 Provenance graph for bioinformatics example . 60

3.5 Effects of a peer’s edit log . 61

vii

3.6 Provenance graph for derivability testing example. 71

3.7 Example provenance graph showing relationships between tuples. 74

3.8 Relative performance of deletion propagation algorithms 80

3.9 Time to join and relation instance sizes . 81

3.10 Scalability of incremental update propagation algorithms 82

3.11 Scalability for increasing base data sizes . 83

3.12 Effects of mapping fan-in/fan-out on storage overhead and performance 84

4.1 Complexity of containment and equivalence . 86

4.2 Logical implications of containment and equivalence . 88

5.1 Algebraic identities for the difference operator under Z-semantics 113

6.1 Simple for Example. 135

6.2 K-UXQuery Syntax. 135

6.3 K-UXQuery Typing Rules. 136

6.4 XPath Example. 137

6.5 Relational (encoded) example. 138

6.6 Extended Annotations Example. 139

6.7 Translation from positive relational algebra to K-UXQuery 140

6.8 Security Clearance Example. 143

6.9 Syntax and Typing rules for NRC . 147

6.10 Semantic Equations for NRCK + srt . 150

6.11 Compilation of UXQuery . 151

6.12 Compilation of XPath to NRCK + srt . 151

7.1 Data warehouse architecture . 159

7.2 Feature comparison of data integration paradigms . 160

7.3 Virtual data integration architecture . 161

7.4 Peer-to-peer data integration architecture . 162

7.5 Data exchange architecture . 163

viii

Acknowledgments

I would like to thank my advisers, Zack Ives and Val Tannen, for their generous support and

guidance during my studies at Penn. It was a privilege to have been able to work with them.

Most of the work described in this dissertation was performed in collaboration with others,

including my advisors and my fellow PhD students Grigoris Karvounarakis and Nate Foster. I

would like to thank them here, and emphasize that many of the contributions presented in the

present document were shaped by several of us working together. In particular, the material in

Chapter 2 is based on a paper [62] by the author with Grigoris Karvounarakis and Val Tannen,

as part of the larger Orchestra project headed by Zack Ives; Chapter 3 is based on a paper [60]

by the author with Grigoris Karvounarakis, Zack Ives, and Val Tannen; Chapter 5 is based on a

paper [59] by the author with Zack Ives and Val Tannen; and Chapter 6 is based on a paper [48]

by the author with Nate Foster and Val Tannen.

The work described in this dissertation benefited at many points from useful feedback and

suggestions from others. I would like to thank in particular Olivier Biton, James Cheney, Jan

Chomicki, Sarah Cohen-Boulakia, Nilesh Dalvi, Floris Geerts, Giorgio Ghelli, Renée Miller, Tova

Milo, Kristoffer Rose, Jérôme Siméon, Nicholas Taylor, Stijn Vansummeren, and the members of

the Penn database group. I also would like to thank the members of my dissertation committee

for their thoughtful feedback and comments that helped improve this document.

Finally, I would like to thank my wife, Elisabeth Dubin, for her love and support over the past

six years.

ix

Chapter 1

Introduction

Sharing structured data is one of the most basic yet persistently vexing problems of data manage-

ment, and has been studied since the earliest days of database research. In recent years, with the

growth of the Internet and explosion of data on the Web, there has been a renewed and sustained

push to develop solutions for integrating data from heterogeneous sources, translating data be-

tween different schemas, and other forms of data sharing. Much progress has been made in both

establishing solid theoretical foundations and developing practical systems. These efforts range

from pre-loading all data into a single database instance after transforming it to a common for-

mat, then answering queries over this instance (as with data exchange [45]); to transforming data

“on demand” or “on the fly” to answer specific queries (as with virtual data integration [135]).

Commercially available tools using these techniques are available in several forms, including data

warehousing systems and enterprise information integration systems.

Despite this progress, the practical impact of data sharing solutions proposed to date has been

surprisingly modest, limited mainly to relatively small-scale efforts centralized inside a single

corporation or controlling entity. At the same time, the need for sharing data across broader

communities is increasing, especially in the sciences, which have become highly data-driven as

they attempt to tackle larger questions. In bioinformatics, for example, there is a plethora of

different databases, each providing a different perspective on a collection of organisms, genes,

proteins, diseases, and so on. The data in these databases is highly interrelated — e.g., there are

links between genes and proteins, and gene homologs between species — but the databases have

proved very difficult to integrate using existing technologies.

One major reason for this is that conventional data integration tools require the development

of a single global schema and assume that the data is globally consistent. In practice, both require-

ments are unrealistic. Designing a single schema for an entire community is arduous, involves

1

many revisions, and requires a central administrator. Data from different sources can be often

contradictory, reflecting different points of view, while current data integration tools assume there

should be a consensus or “clean” version of the data. Moreover, users of integrated data often

prefer to carefully curate it, manually or semi-automatically, rejecting some items and modifying

others. The goals of curation are to eliminate inconsistencies, to fit data to user assumptions, as

well as to enforce different degrees of trust in the sources. Tolerating inconsistency and support-

ing curation requires a measure of decentralization in data sharing.

Another key requirement in many data sharing scenarios, not supported by current tools, is

to track and record where data has come from and how it has come to be where it is, in other

words, its provenance. In scientific data sharing scenarios, this is not optional: data provenance

is an essential part of the scientific record as well as crucial information used in curation. How-

ever, as data sharing typically involves complex transformations across the different schemas of

participants, formulating the “right” notion of data provenance to capture these complexities is a

challenging problem in itself.

Finally, most data sharing scenarios have important dynamic aspects. Data is constantly being

updated – refined, corrected, expanded – and the participants naturally desire the most recent

version of it. As has been observed since the earliest data integration investigations, this creates

a tension between the efficiency of answering queries and the freshness of the obtained answers,

with data warehousing favoring the former and virtual integration the latter. Moreover, it is not

just the data that is dynamic, but also the set of participants, their schemas, and the relationships

among them (as we shall see, the mappings which relate data sources). Especially in the “boot-

strapping” phase of a collaboration — where the complex relationships among participants and

data are only partially understood — such changes can occur as often as changes to the source

data. We need a platform which copes with changes both to data and to the mappings among

data sources.

To address these practical requirements, Ives, Khandelwal, and Kapur [82] described a vision

for a collaborative data sharing system (CDSS), an approach that supports looser, decentralized

confederations of participants (peers) with local curation abilities and tolerates inconsistencies in

the data while still preserving a notion of semantic consistency. The goal of this dissertation is to

realize this vision through a host of novel concepts and algorithms, developing both theoretical

foundations and implementation techniques for supporting data provenance, dealing efficiently

with the dynamic aspects of data and mappings through incrementality and optimization, and

finally, evaluating these ideas in a prototype system called Orchestra.

The main contributions of the dissertation are as follows:

2

• We develop a powerful formal model of provenance for relational data that fulfills CDSS

requirements and captures as special cases many other provenance models proposed in

earlier work.

• We implement these ideas in the Orchestra prototype CDSS, solving key engineering chal-

lenges such as the representation of provenance and efficient propagation of data updates in

an off-the-shelf DBMS, and we also validate experimentally the feasibility of our approach.

• We make a systematic study of the fundamental questions of query containment and equiv-

alence in the presence of provenance information, and obtain positive decidability results

and complexity characterizations for five different models of provenance.

• We use these results to develop algorithms for efficient propagation of updates to mappings

in a CDSS. The algorithms highlight unexpected connections with the problem of data up-

date translation, and make fundamental use of provenance information. We also implement

and evaluate these algorithms in the Orchestra prototype.

• We show that our provenance model extends to richer data models such as XML and nested

relations, giving further evidence of the robustness of our approach and paving the way

towards a future extension of CDSS to these data models.

The development of Orchestra and CDSS has itself been a collaborative effort, and we em-

phasize that most of the contributions described here were developed in collaboration with others,

including Nate Foster, Zack Ives, Grigoris Karvounarakis, Val Tannen, and the members of the

Penn database group. We provide a more detailed attribution of the shared contributions in

Section 1.2.

In the remainder of this chapter, we will give an informal overview of the the main function-

alities of the Orchestra CDSS, touching on the key issues mentioned above (Section 1.1), then

elaborate on the technical contributions of the dissertation (Section 1.2). We finish with an outline

of the rest of this dissertation (Section 1.3).

1.1 Overview of CDSS and Orchestra

The CDSS model builds upon the fundamentals of data integration, peer data management sys-

tems [73] (PDMS), and data exchange [45], while incorporating major new functionalities. As in

a PDMS, the CDSS contains a set of peers, each representing an autonomous domain of control.

Each peer’s administrator has full control over a local DBMS, its schema, and the conditions un-

der which the peer trusts data from other peers. In most of this dissertation we assume relational

3

schemas, but our model extends naturally to other data models such as XML or nested relations

(see Chapter 6). In this section, we give first an overview of how the peers’ data is related by

schema mappings, as used in PDMS and data exchange. Then we discuss the semantics of query

answers where Orchestra follows the principles of data exchange [45]. Most importantly, we de-

scribe Orchestra’s fundamentally novel features regarding update exchange, data provenance,

and dynamic update strategies through incrementality and optimization.

The topology of data sharing: specifying how peers are related

Earlier work on PDMS pioneered the notion of supporting multiple mediated schemas, thereby

relaxing some aspects of administration, and we adopt this perspective as a starting point in

CDSS. As in PDMS, a CDSS collaboration begins with a set of peer databases, each with their own

schema and local data instance.

Example 1.1. Consider (see Figure 1.1) a bioinformatics collaboration scenario based on databases

of interest to affiliates of the Penn Center for Bioinformatics. In general, GUS, the Genomics

Unified Schema1 covers gene expression, protein, and taxon (organism) information; BioSQL,

affiliated with the BioPerl project2, covers very similar concepts; and a third schema, uBio3, es-

tablishes synonyms among taxa. Instances of these databases contain taxon information that is

autonomously maintained but of mutual interest to the others. For the purposes of our exam-

ple we show only one relational table in each of the schemas, as follows. Peer GUS associates

taxon identifiers, scientific names, and what it considers canonical scientific names via relation

G(gid, nam, can); peer BioSQL associates its own taxon identifiers with scientific names via rela-

tion B(bid, nam); and peer uBio records synonyms of scientific names via relation U(nam1, nam2).

Again as in PDMS, the participants of the CDSS collaboration specify the relationships among

their databases using schema mappings.

Example 1.2. Continuing with Example 1.1, suppose it is agreed in this collaboration that certain

data in GUS should also be in BioSQL. This represented in Figure 1.1 by the arc labeled m1. The

specification G(g, n, c) → ∃b B(b, n) associated with m1 is read as follows: if (g, n, c) in table G,

the value n must also be in some tuple (b, n) of table B, although the value b in a such a tuple is

not determined. The specification just says that there must be such a b and this is represented by

the existential quantification ∃b. Here m1 is an example of schema mapping. Two other mappings

appear in Figure 1.1. Peer uBio should also have some of GUS’s data, as specified by m2. Mapping

1http://www.gusdb.org
2http://bioperl.org
3http://www.ubio.org

4

G(gid, nam, can)

GUS

B(bid, nam)

BioSQL

U(nam1, nam2)

uBio

m3

m1

m2

(m1) G(g, n, c)→ ∃b B(b, n)
(m2) G(g, n, c)→ U(n, c)
(m3) B(b, n1) ∧U(n1, n2)→ B(b, n2)

Figure 1.1: Mappings among three bioinformatics databases

m3 is quite interesting: it stipulates data in BioSQL based on data in uBio but also on data already

in BioSQL. As seen in m3, relations from multiple peers may occur on either side. We also see that

individual mappings can be “recursive” and that cycles are allowed in the graph of mappings.

Schema mappings are logical assertions that the data instances at various peers are expected

to jointly satisfy. We shall see (Section 1.2) that they correspond to the well-known formalism of

tuple-generating dependencies (tgds) [7]. We shall also see (Chapter 3) that, as in data exchange [45],

a large class of mapping graph cycles can be handled safely, while certain complex examples

cause problems.

Thus, every CDSS specification begins with a collection of peers/participants, each with its

own relational schema, and a collection of schema mappings between some of these peers. Like

the schemas, the mappings are designed by the participants’ administrators. By joining Orches-

tra, the participants agree to share the data from their local databases. The sharing can be further

modulated through the mappings, which should therefore be subject to agreement between par-

ticipants.

The semantics of query answers

Given a CDSS configuration of peers and schema mappings, the question arises of how data

should be propagated using the mappings, and what should be the answer to a query asked by

one of the peers. The whole point of data integration is for such an answer to use data from

all the peers. In CDSS, we wish to accomplish this by materializing at every peer an instance

containing not only the peer’s locally contributed data, but also additional facts that must be true,

given the data at the other peers along with the constraints specified by the mappings. Queries

at a peer will be answering using this local materialized instance. However, while the mappings

relating the peers tell us which peer instances are together considered “acceptable,” they do not

fully specify the complete peer instances to materialize.

5

In CDSS we follow established practice in data integration, data exchange and incomplete

information databases [1, 45] and use certain answers semantics: a tuple is “certain” if it appears

in the query answer no matter what data instances (satisfying the mappings) we apply the query

to. In virtual data integration, the certain answers to a query are computed by reformulating the

query across all peer instances using the mappings, and combining the answers together from the

local results computed at each peer. In CDSS, as in data exchange, we materialize special local

instances that can be used to compute the certain answers. This makes query evaluation a fast,

local process.

We illustrate this with our running example.

Example 1.3. Suppose the contents of G, U, and B are as shown in Figure 1.2(a). Note that the

mappings of Figure 1.1 are not satisfied: for example, G contains a tuple

(828917, “Oscinella frit”, “Drosophila melanogaster”)

but B does not contain any tuple with “Oscinella frit” which is a violation of m1. Let us patch

this by adding to B a tuple (⊥1, “Oscinella frit”) where ⊥1 represents the unknown value specified

by ∃b in the mapping m1. We call ⊥1 a labeled null. Adding just enough patches to eliminate

all violations results in the data in Figure 1.2(b). (Note that sometimes patching one violation

may introduce a new violation, which in turn must be patched; hence this process is generally

an iterative one, however under certain constraints it always terminates.) Observe that we can

replace ⊥1 and the other labeled nulls with combinations of arbitrary values and we get an entire

class of data instances that satisfy the mappings.

Now, consider two relational algebra queries:

Q1
def= σ

nam=“Oscinella frit”(B)

Q2
def= πnam(σ

nam=“Oscinella frit”(B))

and let us see which answers are certain when we apply these queries to the data instances ob-

tained by replacing the labeled nulls with various values. There is no tuple in common among the

various answers Q1 produces, hence its certain answer semantics is empty. However, all answers

produced by Q2, have the tuple (“Oscinella frit”) in common. This is a certain answer for Q2.

The procedure we used in the example to resolve mapping violations by patching instances is

intuitive but it is not clear that (1) it always works, and (2) the data instances obtained by replacing

labeled nulls with arbitrary values are representative of all instances satisfying the mappings and

therefore give us the certain answers. In fact, the theory of data exchange [45] has resolved

both these problems (see Section 1.2 and Chapter 3). Moreover, it has established the following

6

G :
gid nam can

828917 Oscinella frit Drosophila melanogaster
2616529 Musca domestica Musca domestica

U : nam1 nam2

B :
bid nam

4472 Periplaneta americana

(a) Tables from GUS, uBio, and BioSQL before data exchange (U is empty)

U :
nam1 nam2
Oscinella frit Drosophila melanogaster
Musca domestica Musca domestica

B :

bid nam

4472 Periplaneta americana
⊥1 Oscinella frit
⊥1 Drosophila melanogaster
⊥2 Musca domestica

(b) Updated tables after data exchange. Shaded rows indicate newly-inserted tuples. (G is unchanged.)

Figure 1.2: Bioinformatics database instances before and after data exchange

convenient query answering algorithm: to obtain the certain answers to a query it suffices to

evaluate the query over a specifically computed data instance with labeled nulls (as if the labeled

nulls were ordinary values) and then to discard any tuples in the result containing labeled nulls.

As a consequence, Orchestra works with peer instances in which tuples may contain labeled

nulls (actually, in the slightly more complicated form of Skolem terms; see Section 1.2).

Dynamic operation and update exchange

We have seen that Orchestra performs query answering on locally stored instances rather than

on-the-fly. This raises the question of data freshness in the peer instances built via data exchange.

Data exchange is essentially a static procedure: it focuses on the one-time computation of entire

peer instances satisfying the mappings. Across an entire CDSS this can be disruptive, as not all

peers may wish to refresh their data at the same time.

In contrast, the CDSS design sees data sharing as a fundamentally dynamic process, with

frequent “refreshing” data updates that need to be propagated efficiently. This process of dynamic

update propagation is called update exchange. It is closely related to the classical view maintenance

problem, and we shall discuss these connections at length in later chapters.

Operationally, CDSS functions in a manner reminiscent of revision control systems, but with

peer-centric conflict resolution strategies. The users located at a peer P query and update the

local instance in an “offline” fashion. Their updates are recorded in a local edit log. Periodically,

upon the initiative of P’s administrator, P requests that the CDSS perform an update exchange

operation. This publishes P’s local edit log — making it globally available via central or distributed

storage [131]. This also subjects P to the effects of the updates that the other peers have published

7

(since the last time P participated in an update exchange). To determine these effects, the CDSS

performs incremental update translation using the schema mappings to compute corresponding

updates over P’s local instance: the translation finds matches of incoming tuples to the LHS of

the mapping, and applies these matchings to the RHS to produce outgoing tuples (recall the

“patching” process in Example 1.3).

Doing this only on updates means performing data exchange incrementally, with the goal of

maintaining peer instances satisfying the mappings. Therefore, in CDSS the mappings are more

than just static specifications. They can be seen as underlying the dynamic process of propagation

of updates.

Example 1.4. Refer again to Figure 1.2(b), and suppose now that the curator of uBio updates her

database by adding another synonym for the fruit fly: U(“Oscinella frit”, “Oscinella frit Linnaeus”).

When this update is published, it introduces a violation of mapping m3 that must again be

“patched.” The update translation process therefore inserts a corresponding tuple into BioSQL:

B(⊥1, “Oscinella frit Linnaeus”).

Local curation and trust policies

The CDSS paradigm also differs from traditional data exchange in its incorporation of mechanisms

allowing local curation of database instances. This allows CDSS users to “override” the system

and modify or delete any data in their local database, even data that has been imported from

elsewhere via schema mappings. In this way, CDSS users retain full control over the contents

of their local database. The technical obstacle in supporting such a feature is how to preserve

a notion of semantic consistency with respect to the mappings, when such modifications may

introduce violations of the mappings.

Example 1.5. Refer again to Figure 1.2(b), and suppose that the curator of BioSQL decides that

she is not interested in house flies, and wishes to delete tuple B(⊥2, “Musca domestica”) from her

local instance. Since as we have seen, the presence of this tuple was forced by the mappings, the

deletion of the tuple leads to a violation of the mappings.

To allow such local curation, CDSS stores deleted tuples in rejection tables, and converts user-

specified mappings into internal mappings that take the rejection tables explicitly into account.

The notion of “solution” adopted in CDSS is with respect to these converted mappings. Details

are discussed in Chapter 3. Note that, sometimes, local curation corrects mistakes in the imported

data, and it is desirable for the corrections to be propagated back to the sources from which

the data came. To support this, the Orchestra prototype incorporates facilities for bidirectional

8

mappings. We do not discuss bidirectional mappings in this dissertation, but the interested reader

can refer to [87, 61, 86] for details.

CDSS incorporates a second mechanism for local control of database instances in the form of

provenance-based trust policies. These are essentially selection predicates, but of a special kind that

operates on data provenance. They allow CDSS administrators to specify which data is “trusted,”

depending on its provenance (Orchestra’s mechanism for managing data provenance is dis-

cussed in Section 1.2).

Example 1.6. Some possible trust policies in our bioinformatics example:

• Peer BioSQL distrusts any tuple B(b, n) if the data came from GUS and n = “Musca domestica”,

and trusts any tuple from uBio.

• Peer BioSQL distrusts any tuple B(b, n) that came from mapping m2.

Once specified, the trust policies are incorporated in the update exchange process: when the

updates are being translated into a peer P’s schema they are accepted or rejected based on P’s

trust conditions.

The example above illustrates Boolean trust policies, which specify a black-or-white classification

of tuples as either (completely) trusted or (completely) untrusted, depending on their provenance

and contents. In fact, CDSS also allows richer forms of ranked trust policies in which trust scores are

computed for tuples indicating various “degrees of trust.” When a conflict is is detected among

data from multiple sources (for example, by a primary key violation), these scores can be used

to resolve the conflict by selecting the tuple with the highest trust score and discarding those

with which it conflicts. We focus mainly on Boolean trust policies in this dissertation, but briefly

discuss ranked trust policies in Chapter 3.

Provenance

A major novel feature of CDSS, and a central focus of this dissertation, is the tracking of data

provenance. This is the information which records “how data was propagated” during the update

exchange process. Data provenance is needed for several purposes in CDSS: as the foundation of

provenance-based trust policies, for update exchange itself, as a means of guiding efficient incremen-

tal algorithms, and as additional information that can be displayed and searched by CDSS users

as they perform data curation and other manual tasks. Chapter 2 develops the formal machinery

of the provenance model used in CDSS; here we just give an informal overview highlighting the

main features.

9

The most intuitive way to picture CDSS provenance is as a graph having two kinds of nodes:

tuple nodes, one for each tuple in the system, and mapping nodes, where several such nodes can be

labeled by the same mapping name. Edges in the graph represent derivations of tuples from other

tuples using mappings. Special mapping nodes labeled “+” are used to identify original source

tuples.

Example 1.7. Refer to Figure 1.3, which depicts the provenance graph corresponding to the bioin-

formatics example from Figure 1.2 (we have abbreviated the data values to save space). Ob-

serve there is a “+” mapping node pointing to G(26, Musc., Musc.); this indicates that it is one

of the source tuples from Figure 1.2(a), present before data exchange was performed. Next, ob-

serve that G(26, Musc., Musc.) is connected to U(Musc., Musc.) via a mapping node labeled m2.

This indicates that U(Musc., Musc.) was derived using G(26, Musc., Musc.) with m2. Also, notice

that B(⊥2, Musc.) has a derivation from G(26, Musc., Musc.) via mapping m1. Finally, note that

B(⊥2, Musc.) also has a second derivation, from itself and U(Musc., Musc.) via mapping m3. The

graph is thus cyclic, with tuples involved in their own derivations. In general, when mappings

are recursive, the provenance graph may have cycles.

The graphical model of provenance is convenient for several purposes in CDSS, including the

system implementation that we shall describe in Chapter 3. However, most of the theoretical

development in this dissertation will focus on another, equivalent perspective on CDSS prove-

nance based on a powerful framework of semiring-annotated relations. As we will explain in

Section 1.2 (and Chapter 2), semirings are algebraic structures that arise naturally with database

provenance. This framework has the virtue of uniformly capturing as special cases many other

provenance models that have been proposed in the literature (such as the why-provenance of [17],

the data warehousing lineage of [35], the Trio lineage of [8], and the event tables used in probabilistic

databases [50, 138]), as well as the traditional set and bag semantics. By putting all these models

on equal footing, we are able to make precise comparisons of various kinds — we can compare

their relative informativeness, for example, or study their various interactions with the query opti-

mization process. In particular, it allows us to explain precisely why the Orchestra provenance

is strictly more informative than any of these. Provenance annotations also turn out to be useful

in formulating efficient algorithms for update exchange and mapping evolution (as overviewed

in Section 1.2).

Briefly, the main idea in the semiring-annotations framework is as follows. Tuples in source

relations are annotated with elements from some domain of annotations K. During query process-

ing, when tuples are joined together to produce another tuple, their annotations are combined us-

ing an abstract ⊗ operation. When output tuples are produced by alternative combinations (such

10

+

+

G :

82 Osci. Dros.

26 Musc. Musc.

m2

m2

U :

Osci. Dros.

Musc. Musc.

m1

m1

m3

m3

B :

44 Peri.

⊥1 Osci.

⊥1 Dros.

⊥2 Musc.

+

(a) Graphical provenance representation

G :
gid nam can

82 Osci. Dros. g1
26 Musc. Musc. g2

U :
nam1 nam2
Osci. Dros. m2 ⊗ g1
Musc. Musc. m2 ⊗ g2

B :

bid nam

44 Peri. b1
⊥1 Osci. m1 ⊗ g1
⊥1 Dros. m3 ⊗ (m1 ⊗ g1)⊗ (m2 ⊗ g1)
⊥2 Musc. (m1 ⊗ g2)⊕ (m3 ⊗ (m1 ⊗ g2)⊗ (m2 ⊗ g2))⊕ · · ·

(b) Tabular provenance representation

Figure 1.3: Two views of provenance for bioinformatics example

as via union or projection operators), the alternatives are recorded using an abstract ⊕ operation.

Example 1.8. Refer to Figure 1.3(b), which shows the tables corresponding to Figure 1.3(a) with

their semiring provenance annotations. Observe that the annotation of G(26, Musc., Musc.) is g2,

indicating that this is a source tuple (cf. the “+” in Figure 1.3(a)). Next observe that the annota-

tion of U(Musc., Musc.) is m2 ⊗ g2, indicating that the tuple was derived from G(26, Musc., Musc.)

using mapping m2. Finally, observe that the annotation of B(⊥2, Musc.) is an infinite sum (us-

ing ⊕), one term for each of the (infinitely many) derivations of that tuple (cf. the cycle in the

provenance graph for that tuple). The first term in the sum, m1 ⊗ g2, indicates its derivation

from G(26, Musc., Musc.) using mapping m1. The rest of the terms in the sum correspond to the

derivations using the tuple itself and U(Musc., Musc.) repeatedly with mapping m3.

Mapping evolution

One of the most difficult tasks for users of a CDSS is to formulate the mappings that relate the

peers. In practice, mappings are not static, but are subject to frequent revisions, corrections,

additions, etc. which occur as peers join and leave the system, as the schemas of peers evolve over

11

time, and as the understanding of relationships among peers becomes clarified over time. This

phenomenon has been referred to as mapping evolution in [136], and handling mapping evolution

efficiently (i.e., updating instances in an incremental fashion as mappings change) is another key

requirement in CDSS. In early phases of a collaboration’s development, changes to mappings can

occur at least as often as changes to data in the peers, while in later phases, changes are less

frequent but potentially even more disruptive (we would prefer to avoid recomputing instances

from scratch every time, e.g., a new peer joins a collaboration).

Example 1.9. Consider the bioinformatics example from Figure 1.1, and suppose that the adminis-

trator of BioSQL notices that mapping m1 is incorrect, because the “id” field of GUS needs to be

translated into the style used in BioSQL. To accomplish this, she introduces a correspondence table4

T(gid, bid) and modifies mapping m1 to translate ids using T:

(m′1) G(i, n, c) ∧ T(i, b)→ B(b, n)

In order to process this update, note that some – but not all! – of the data in B will need to be

updated (only those tuples which came from G), and since the mapping from B to U drops the id

field, the data in U should be wholly unaffected.

Handling mapping evolution efficiently in a CDSS is closely related to the so-called view adap-

tation problem [65], in which a materialized view must be updated after the view definition

changes.

1.2 Overview of Technical Contributions

Having surveyed the main functions of Orchestra and CDSS in the previous section, let us

now examine some of the details of how these functionalities are accomplished. These details

constitute the novel technical contributions of this dissertation. For the contributions resulting

from joint work, we give paper references in each section below.

Before covering the technical contributions, we first need to recall some necessary background

concepts from previous work on data exchange.

Background: data exchange, chase, and universal solutions

We saw in Example 1.3 that a basic task in data exchange and CDSS involves “patching” database

instances related by schema mappings, in order to satisfy the mappings. We begin this section by

4In practice, correspondence tables are often implemented using user-defined functions; but conceptually a user-
defined function may be viewed as a relation.

12

explaining more about the kind of schema mappings used in CDSS, and how this fundamental

task of “patching” is accomplished.

Tuple-generating dependencies (tgds) are a widely-used means of specifying constraints and

mappings [45, 38] in data integration and data exchange.5 A tgd is a first-order logical assertion

of the form

∀x̄ ∀ȳ (ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),

where the left hand side (LHS) of the implication, ϕ, is a conjunction of relational atoms over

variables x̄ and ȳ, and the right hand side (RHS) of the implication, ψ, is a conjunction of relational

atoms over variables x̄ and z̄. For readability, we will generally omit the universal quantifiers and

simply write

ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄),

as in the mappings in Figure 1.1. The tgd expresses a constraint about the existence of tuples in

the relations on the RHS, given a particular combination of tuples satisfying the constraint of the

LHS.

Tgds by themselves merely describe the database instances which together are considered

“acceptable.” To put the mappings to work in data sharing, CDSS builds upon earlier work

in data exchange where the well-known chase procedure can be used to propagate data among

databases, in accordance with the schema mappings, until the mappings are satisfied. Essentially,

this procedure involves repeatedly looking for violations of mappings, and adding new tuples

to the database instances to repair the violations. If mappings contain existentially quantified

variables, the new tuples will contain special placeholder labeled null values. The addition of new

tuples may in turn introduce new violations, so the procedure must be repeated until all the

mappings are satisfied. This process is guaranteed to terminate in time polynomial in the size of

the input database instances, so long as the topology of the mappings is weakly acyclic (explained

in Chapter 3).

The peer database instances computed by the chase together constitute a solution: a (joint)

database instance satisfying the mappings which is obtained from the starting (joint) database

instance by adding tuples to it.6 In general, for a given starting joint instance and set of mappings,

there are infinitely many possible solutions. The one that is computed by the chase, however, has

a special property: it is a universal solution, essentially, a solution that can be homomorphically

embedded in any other solution. Because of this, a universal solution can be used to obtain the

certain answers to positive relational algebra queries (Section 1.1).
5Tgds are related to so-called global-local-as-view or GLAV mappings [49, 73], which in turn generalize the earlier

global-as-view (GAV) and local-as-view (LAV) mapping formulations [100].
6CDSS does not draw the sharp distinction between source and target instances that is usually made in data exchange.

We justify this perspective in Chapter 3.

13

Contribution 1: mappings as Datalog programs

(with Karvounarakis, Ives, and Tannen [60])

Although so far we have focused on mappings as logical constraints, another point of view proves

useful in developing much of the theoretical machinery for CDSS, as well as its practical imple-

mentation. This is the perspective where we interpret a set of tgds as a Datalog program. Recall

the tgds of Figure 1.1(b):

(m1) G(g, n, c)→ ∃b B(b, n)

(m2) G(g, n, c)→ U(n, c)

(m3) B(b, n1) ∧U(n1, n2)→ B(b, n2)

We can interpret these tgds as Datalog rules (possibly with Skolem functions), where the RHS of the

implication becomes the head of the rule, and the LHS becomes the body. Thus the set of mappings

above corresponds to the Datalog program:

(r1) B(f (n), n) :- G(g, n, c)

(r2) U(n, c) :- G(g, n, c)

(r3) B(b, n2) :- B(b, n1), U(n1, n2)

Note that rule r1 contains a Skolem function f . This corresponds to the existential quantifier in

m1. Intuitively, the Skolem function introduces a unique labeled null f (n) whose value depends

on f and n.

Although it was not illustrated in the above example, some tgds may have multiple relational

atoms in the RHS. For example, we could have written a mapping like

(m4) G(g, n, c)→ ∃b B(b, n), C(b, c)

where C is also a relation of peer BioSQL, used to store canonical names. In this case, m5 would

be interpreted as a pair of Datalog rules

(r4) B(g(n, c), n) :- G(g, n, c)

(r5) C(g(n, c), c) :- G(g, n, c)

where g is a Skolem function. Note that both rules use the same Skolem function g, with the same

parameters; this ensures that the association between scientific names and canonical names in G

and C is recorded and can be recovered later by a query joining G with C.

The key fact supporting this Datalog-based perspective on mappings is that, given a set of

tgds, evaluating the corresponding Datalog program also produces a universal solution. This

14

enables us to move freely between the two perspectives. Most of this dissertation will adopt the

Datalog-based perspective.

Contribution 2: semiring-annotated relations and provenance

(with Karvounarakis and Tannen [62])

Provenance information plays a central role in many of the basic tasks of collaborative data shar-

ing, including the specification of trust policies and algorithms for efficient propagation of updates

to data and mappings. Here we outline some more of the details of the novel semiring-based

model used in Orchestra.

As already mentioned in Section 1.1, the main idea in the semiring-annotations framework is

to decorate tuples in source relations with annotations from a domain K and combine these anno-

tations during relational algebra query processing using abstract ⊗ (joint use) and ⊕ (alternative

use) operators. Additionally, to model selection predicates, the ⊗ operation is used together with

distinguished elements 0 and 1 from K. Finally, we observe that certain identities on relational

algebra queries (needed for compatibility with standard DBMS query optimizers) hold exactly

when the structure (K,⊕,⊗, 0, 1) is a commutative semiring.

By plugging in the Boolean semiring (B,∨,∧, false, true) we obtain the usual set semantics

(where tuples “in” a relation are annotated true, and tuples “not in” a relation are annotated

false). By plugging in the semiring of natural numbers (N, +, ·, 0, 1), we obtain the usual bag

semantics (where a relation with duplicate entries is modeled as a set relation with annotations

representing tuple multiplicities). Still other semirings can be used to capture the various prove-

nance models listed earlier. The “most informative” kind of provenance annotations in this frame-

work is the semiring of provenance polynomials: this is the commutative semiring (N[X], +, ·, 0, 1)

of polynomials with natural number coefficients over a set of uninterpreted variables X.

For recursive queries, such as Datalog programs corresponding to cyclic sets of tgds, a technical

difficulty arises because provenance annotations may become infinite. Indeed, we have already

seen this phenomenon illustrated in Example 1.8. The annotations in that example (cf. Figure 1.3)

are not polynomials; rather they are formal power series.

As a practical matter, working directly with infinite formal power series is infeasible. However,

as we shall see in Chapter 2, it turns out that the formal power series which arise in provenance

computations have a natural, finite representation as a system of algebraic equations. The main idea

is fairly intuitive. For each tuple t in the output of a recursive Datalog query, we associate a

variable x and write an equation x = . . . whose RHS represents the alternative ways in which

t can be produced as an immediate consequence of other tuples. By doing this for all tuples in

15

G :
gid nam can

82 Osci. Dros. g1 = g1
26 Musc. Musc. g2 = g2

U :
nam1 nam2
Osci. Dros. u1 = m2 ⊗ g1
Musc. Musc. u2 = m2 ⊗ g2

B :

bid nam

44 Peri. b1 = b1
⊥1 Osci. b2 = m1 ⊗ g1
⊥1 Dros. b3 = m3 ⊗ b2 ⊗ u1
⊥2 Musc. b4 = (m1 ⊗ g2)⊕ (m3 ⊗ b4 ⊗ g2)

Figure 1.4: Tabular provenance representation using system of equations

the output, we obtain a system of algebraic equations whose least fixpoint is exactly the (possibly

infinite) formal power series annotations.

Example 1.10. Refer to Figure 1.4, which shows the same provenance-annotated tables of Fig-

ure 1.3(b), but this time represented using a system of equations. Note that the annotation for the

source tuple G(82, Osci., Dros.) is now g1, which is trivially equal to g1. Tuple U(Osci., Dros.) was

obtained as an immediate consequence of G(82, Osci., Dros.) using mapping m2, so the equation

for its annotation is u1 = m2 ⊗ g1; by plugging in g1 = g1 we obtain the annotation m2 ⊗ g1, as

in Figure 1.3(b). The interesting case in the example is the annotation b4 for B(⊥2, Musc.), whose

equation involves the tuple itself: b4 = (m1 ⊗ g2)⊕ (m3 ⊗ b4 ⊗ g2) (representing the two alterna-

tive ways of deriving the tuple as an immediate consequence). The solution for b4 is the infinite

formal power series

b4 = (m1 ⊗ g2)⊕ (m3 ⊗ (m1 ⊗ g2)⊗ (m2 ⊗ g2))⊕ · · ·

shown in Figure 1.3(b).

The representation of provenance annotations as a system of algebraic equations is equivalent

to the graphical representation we saw earlier in this section.

Note that in the examples, variables representing mapping names themselves participate in the

provenance calculations. To support this, the semiring framework includes a scalar multiplication

construct that can be used freely in mappings and queries. Thus, for the tgd

(m2) G(g, n, c)→ U(n, n)

from the example above, we would employ the corresponding Datalog rule

(r2) m2 ⊗U(n, n) :- G(g, n, c)

which multiplies its output in the head by the uninterpreted variable m2. This effectively “tags”

the output by the mapping name.

16

Contribution 3: Orchestra system implementation

(with Karvounarakis, Ives, and Tannen [60])

The Orchestra prototype described in this dissertation consists of two main components: a client

layer, installed at each peer, which performs functions including update translation, provenance

recordkeeping, and transaction log crawling (in order to extract edit logs); and a distributed

storage component, used to keep catalog-level information such as mapping definitions, as well

as archives of published updates.

Orchestra uses a modified distributed hash table implementation for its distributed storage

component [131, 132], hence most of the complexity of the implementation is in the client compo-

nent. This is a middleware layer implemented in around 100,000 lines of Java code that sits atop

each peer’s local DBMS. Chapter 3 describes this layer in detail, but we overview here how one

of the key implementation issues is addressed, namely the encoding and storage of provenance

information.

A basic philosophy in the Orchestra implementation is to push as much work as possible

down into the underlying DBMS, with the Java layer acting mainly as a coordinator for its activ-

ities. This allows the system to benefit from the existing DBMS facilities for storage and scalable

query processing over large data sets. At the same time, Orchestra attempts to remain rela-

tively agnostic as to the particular DBMS implementation underneath — in particular, it avoids

as much as possible the use of user-defined functions, which are generally not portable across

implementations.

In keeping with this philosophy, Orchestra uses an relational encoding schema for prove-

nance that allows the information to be maintained using only SQL queries (without user-defined

functions). This is done by adopting the graph-based perspective on provenance (cf. Figure 1.3(a)),

and encoding the graph using provenance tables. For each mapping mi, we use a separate prove-

nance table Pi recording the edges through nodes labeled mi.

For example, to store the graph in Figure 1.3(a), Orchestra uses three edge tables P1, P2, and

P3. P3 contains one tuple for each occurrence of m3 in the graph:

P3 :

b1.bid b1.nam u.nam1 u.nam2 b2.bid b2.nam

⊥1 Osci. Osci. Dros. ⊥1 Dros.

⊥2 Musc. Musc. Musc. ⊥2 Musc.

Note that the table above contains a number of redundancies, due to the fact that the mapping

forces equivalences among some of the columns. In particular, the values in columns b1.bid and

b2.bid are always the same, as are those in b1.nam and u.nam1, and those in u.nam2 and b2.nam.

Orchestra actually stores a compressed version of the edge table with such redundancies elimi-

17

nated, producing (in the case of P3 above):

b1.bid b1.nam u.nam2

⊥1 Osci. Dros.

⊥2 Musc. Musc.

Additional information such as key constraints can be used to compress these tables even further.

A major benefit of this encoding scheme is that the mapping tables can be constructed and

maintained using ordinary queries which are derived from the mapping definitions. Continuing

with the example, recall that mapping m3 corresponds to the Datalog rule:

(r3) B(b, n2) :- B(b, n1), U(n1, n2)

From this, we derive two rules:

(r′3) P3(b, n1, n2) :- B(b, n1), U(n1, n2)

(r′′3) B(b, n2) :- P3(b, n1, n2)

The first rule joins tuples from B and U, putting the result in P3 (the compressed version); the

second takes tuples from P3 and projects the relevant columns, putting the result in B.

The translated rules for all the mappings together form a Datalog program that can be executed

to populate the peer instances and their mapping tables. Since mainstream commercial database

systems support only limited forms of recursive queries, the Orchestra client layer also includes

a Datalog engine, which uses the ordinary DBMS query and update facilities in combination with

Java control logic for iteration to fixpoint.

Contribution 4: algorithms for incremental update exchange

(with Karvounarakis, Ives, and Tannen [60])

A major technical challenge in CDSS is how to implement update exchange incrementally. In-

tuitively, the CDSS operating mode resembles deferred view maintenance across a set of views;

and indeed, as we shall see, classical techniques from view maintenance can be applied usefully

in update exchange. However, the presence of provenance information also provides a kind of

“index” that can be exploited to improve on the classical techniques.

Classical view maintenance techniques are essentially based on query reformulation. The pre-

mier examples of this approach in view maintenance are the count and DReD algorithms of [66],

each of which is based the so-called delta rules for a Datalog program. These are another Data-

log program, obtained from the original, that can be used used to compute sets of insertions or

deletions to a materialized view, given sets of insertions or deletions to base relations. We shall

18

discuss delta rules further in the next section (and later in Chapters 3 and 5); for now, we illustrate

with a simple example that gives the flavor of the technique.

Example 1.11. Let Q be the conjunctive query

Q(x, y) :- R(x, z), S(z, y)

which returns paths of length 2 through R and S. Suppose that R and S are modified by inserting

some tuples, stored in relations R+ and S+. The delta rules query for Q is the following union of

conjunctive queries, which computes the set Q+ of corresponding insertions in Q:

Q+(x, y) :- R+(x, z), S(z, y)

Q+(x, y) :- R(x, z), S+(z, y)

Q+(x, y) :- R+(x, z), S+(z, y)

These rules compute all combinations of joins of tuples in R and S with newly-inserted tuples

from R+ and S+, and also joins of newly-inserted tuples from R+ and S+.

As we show in Chapter 3, count and DReD can be adapted to perform CDSS update exchange

as well. (A priori, this fact is not obvious, because in CDSS we are not just maintaining materialized

views, but also their accompanying provenance information.)

Classical techniques such as DReD do not perform very well, however, in one important case:

incremental propagation of tuple deletions with recursive mappings. For DReD, this is because

the approach involves computing a loose over-estimate of the corresponding deletions in mate-

rialized views (using delta rules), then attempting to re-derive those tuples from other existing

tuples (hence its name: DReD stands for “delete and re-derive”). This over-estimate can be large,

leading to poor performance as many tuples may need to be re-derived.

To overcome this limitation, we observe that provenance annotations can be exploited as the

basis of a much more efficient algorithm for propagating tuple deletions in the presence of re-

cursive mappings. Intuitively, the idea is quite simple: the provenance annotations explain how

output tuples were derived from source tuples; hence the effects of a source tuple deletion can be

computed by examining the provenance annotations of output tuples. Roughly speaking, given a

deletion of source tuple with provenance token p, we replace all occurrences of p by 0 in prove-

nance expressions of derived tuples, and then simplify the expressions. Derived tuples whose

provenance expressions simplify to 0 are then discarded.

Example 1.12. Suppose R(a, b) is a derived output tuple with provenance u ⊗ v, and we delete

the source tuple corresponding to u. To propagate the deletion, we evaluate 0⊗ v = 0 and find

that R(a, b) should be deleted as well. On the other hand, suppose R(a, c) is a derived tuple with

19

provenance (u ⊗ v) ⊕ r. After the deletion, its provenance expression becomes (0⊗ v) ⊕ r = r,

hence we see that the tuple should not be deleted because it has another derivation.

For recursive views, the procedure also involves an extra step needed to detect and delete

tuples whose provenance expressions do not seem to simplify to 0 only because of cycles in

the provenance graph. This extra step carries some cost; still, the provenance-based algorithm

turns out to be the method of choice for propagating tuple deletions in CDSS, as validated by

experimental results in Chapter 3.

Contribution 5: query containment and equivalence

Semiring annotated relations are compatible with the standard optimizations used in DBMS query

optimizers, as we show in Chapter 2. However, for more advanced optimizations based on elim-

inating redundant joins from conjunctive queries [22] (or redundant conjunctive queries from unions

of conjunctive queries [123]), this is not necessarily the case. Indeed, this phenomenon was al-

ready observed for the case of bag semantics, where eliminating a “redundant” self-join from a

query actually changes the query’s meaning [24]. As a simple example, consider the following

two conjunctive queries:

Q1(x, y) :- R(x, y), R(x, z) Q2(x, y) :- R(x, y)

Under set semantics, these two queries are equivalent; hence Q1 can be optimized by eliminating

the redundant join predicate, producing Q2. However, under bag semantics, the queries are not

equivalent: the “redundant” join predicate in Q1 has the effect of increasing the multiplicities of

output tuples.

Motivated by these observations, we make a thorough study of the interplay between prove-

nance annotations and the fundamental problems of checking query containment and equivalence,

which underly advanced query optimizations (Chapter 4). We study these problems for conjunc-

tive queries and unions of conjunctive queries, for five different kinds of provenance information

that can be captured using semiring annotations (including the provenance polynomials used

in CDSS), leading to four different hierarchies among these semantics. We show that, for each

form of provenance we consider, all four problems turn out to be decidable, and we identify the

complexity in each case (see Figure 1.5). Several of these results are surprising because, for exam-

ple, provenance polynomials are closely related to bag semantics, and containment of unions of

conjunctive queries under bag semantics is known to be undecidable [81]. We also identify a fun-

damental tradeoff between informativeness of provenance information and query optimization:

the richer the provenance information, the fewer optimizations possible. However, even for the

20

B PosBoolX Lin(X) Why(X) Trio(X) B[X] N[X] N

CQs cont np-c np-c np-c np-c np-c np-c np-c ? (Πp
2 -hard)

equiv np-c np-c np-c gi-c gi-c gi-c gi-c gi-c

UCQs cont np-c np-c np-c np-c in pspace np-c in pspace undec
equiv np-c np-c np-c np-c gi-c np-c gi-c gi-c

In the table, non-shaded boxes indicate contributions of this dissertation. np-c is short for np-complete.
gi-c is short for gi-complete (i.e., complete for the class of problems polynomial time reducible to graph
isomorphism).

Figure 1.5: Complexity of containment and equivalence with provenance annotations

most informative model possible in the framework, provenance polynomials, we show that equiv-

alence of unions of conjunctive queries with provenance polynomial annotations holds exactly

when bag equivalence holds, hence any query reformulation which is sound for bag semantics

(and therefore might be employed by a commercial DBMS optimizer) is sound with respect to all

forms of semiring annotations. As a corollary, we also obtain a new proof of the decidability of

bag equivalence of unions of conjunctive queries.

The theoretical results on the decidability of query equivalence with provenance annotations

play a crucial role in the subsequent development of techniques for handling CDSS evolution in

Chapter 5.

Contribution 6: ring-annotated relations for updates

(with Ives and Tannen [59])

We have already seen that a major focus of CDSS is on the efficient handling of the dynamic

aspects of data sharing, in particular, handling updates to data (update exchange) and to mappings

(mapping evolution). And we have already mentioned that for update exchange, Orchestra adapts

techniques based on the so-called delta rules technique [66], and improves upon them by exploiting

the presence of provenance annotations.

Mapping evolution seems on the face of it a very different problem than update exchange.

Somewhat surprisingly, then, it turns out that both problems (along with their classical cousins,

view maintenance and view adaptation) can be attacked uniformly by the same approach, where

we view each as a special case of a more general problem of optimizing queries using materialized

views [101, 23]. This is the problem which asks, given a query Q and a set V of materialized views,

to find a reformulation of Q using the materialized views which can be executed more efficiently.

Example 1.13. To illustrate update exchange / view maintenance, consider a source relation R

21

R′(x, y) :- R(x, y)
R′(x, y) :- R∆(x, y)

V(x, y) :- R(x, y), R(y, z)
(a) Materialized view definitions

V′(x, y) :- R′(x, y), R′(y, z)

V∆(x, y) :- V′(x, y)
−V∆(x, y) :- V(x, y)

(b) New view definition, and difference with
old

V∆(x, y) :- R∆(x, z), R(z, y)
V∆(x, y) :- R(x, z), R∆(z, y)
V∆(x, y) :- R∆(x, z), R∆(z, y)

(c) A delta-rules style reformulation

Figure 1.6: Update propagation and query reformulation

Q(x, y) :- R(x, u), R(u, v), R(v, y)
Q(x, y) :- R(x, z), R(z, y)

(a) Old mappings

Q′(x, y) :- R(x, u), R(u, v), R(v, y)
Q′(x, y) :- R(x, y)

(b) New mappings

Q∆(x, y) :- Q(x, y)

−Q∆(x, y) :- Q′(x, y)
(c) Their difference

Q∆(x, y) :- R(x, y)

−Q∆(x, y) :- R(x, z), R(z, y)
(d) A reformulated plan

Figure 1.7: Mapping evolution and query reformulation

and a collection R∆ of updates to R (consisting of tuple insertions and deletions), which when

applied to R yields the relation R′. R′ can be thought of as a materialized view over R and R∆

whose definition is given in Figure 1.6(a). Now, consider the materialized view V over R whose

definition is also given in Figure 1.6(a). To reflect the updates made to R, we need to compute the

new version V′ of V, shown in Figure 1.6(b). Moreover, to perform this computation incrementally,

we would like to compute just the difference V∆ between V′ and V, also defined in Figure 1.6(b),

where the leading “−” indicates a difference operation. This could then be applied to V to produce

V′. Note that the definition of V∆ involves first computing V′, then subtracting V from it, a rather

inefficient approach! A better plan is the delta rules reformulation of V∆ shown in Figure 1.6(b),

which we can imagine as having been produced via a general process of reformulating V∆ using

the materialized views V and R′.

Example 1.14. To illustrate mapping evolution / view adaptation, Figure 1.7(a) shows a materi-

alized view definition Q which is modified (by changing its second rule) to produce the view

definition Q′ shown in Figure 1.7(b). To compute Q′ incrementally, we might prefer to compute

the difference Q∆ between Q and Q′, shown in Figure 1.7(c). As with the previous example, the

definition does not produce a very efficient plan! Instead, we can reformulate Q∆ using material-

ized view Q, producing the plan shown in Figure 1.7(d).

These two examples suggest certain requirements that need to be addressed. First, they both

22

R :

a b 2
b c 1
a d 1
d c 1
d e 3

R∆ :
a b −2
b c −1
e f 1

R′ :

a d 1
d c 1
d e 3
e f 1

V : a c 3
a e 3 V∆ : a c −2

d f 3 V′ :
a c 1
a e 3
d f 3

(a) Delta rules example with Z-relations

R :
a b p
b c r
c d s

Q :
a d p · r · s
a c p · r
b d r · s

Q′ :

a d p · r · s
a b p
b c r
c d s

Q∆ :

a c −p · r
b d −r · s
a b p
b c r
c d s

(b) Mapping evolution example with Z[X]-relations

Figure 1.8: Representing and computing updates with ring-annotated relations

make essential use of the difference operator, not present in the framework of semiring-annotated

relations, and not usually considered in previous work on optimizing queries using material-

ized views. Second, both involve updates (tuple insertions and deletions) being represented and

manipulated as ordinary relations.

To handle these requirements, we propose the use of ring-annotated relations to represent data

and updates uniformly, and with the difference operator defined in the natural way using inverses

in the ring. We study two concrete instantiations of this framework. The first is Z-relations, where

tuples are annotated with (positive or negative) integers. This is the ring-annotated analog of

bag semantics, with positive multiplicities representing insertions and negative ones representing

deletions. The second is Z[X]-relations, the ring-annotated analog of the provenance polynomials,

where we allow positive or negative integer coefficients.

Example 1.15. Figure 1.8(a) shows an example of Z-annotated relations corresponding to Exam-

ple 1.13. Note that R∆ has tuples with positive and negative multiplicities, e.g., the annotation of

(a, b) is −2 indicating that a deletion of two copies of that tuple. V∆ corresponds to the result of

evaluating the query from Figure 1.6(c) over R, R′, and V under the Z-semantics, and note that

V∆ also has tuples with positive and negative multiplicities. By applying V∆ to V via a union

operation (which sums tuple multiplicities), we obtain V′.

Example 1.16. Figure 1.8(b) shows an example of Z[X]-annotated relations corresponding to Ex-

ample 1.14. Note that Q∆ shows the result of evaluating the plan in Figure 1.7(d) over the Z[X]-

relations Q and R, and by applying Q∆ to Q (by union, which again sums tuple annotations), we

obtain the table Q′ shown in the figure.

The extension to ring-annotated relations and relational queries using difference gives us a

rich framework for representing and computing updates, but we still need a general procedure

for optimizing queries using materialized views in this new context. Herein lies the big surprise:

23

we are able to give a sound and complete procedure for enumerating query reformulations under

the Z and Z[X] annotated semantics, for relational algebra queries and views. This is in sharp

contrast to traditional set and bag semantics, where it can be shown that no such procedure exists.

The enumeration procedure is based on a simple term rewrite system, the details of which are

described in Chapter 5. We also show that equivalence of relational algebra queries under these

new semantics is decidable (in pspace). This also stands in contrast to the situation for set and

bag semantics, where allowing the difference operator in queries leads to undecidability of equiv-

alence. Thus, the ring-annotated relations framework gives us benefits both in expressiveness (for

representing and computing updates), but is also surprisingly tractable.

Contribution 7: provenance for XML and nested relations

(with Foster and Tannen [48])

The Orchestra prototype in its current incarnation handles only relational data. However, other

kinds of data, such as XML and nested relational data, are also used commonly in the sciences

and other collaborative domains. Thus an important longer-term goal of CDSS involves extending

the paradigm to work with these richer data models as well. As a key first step towards this

goal, we develop an extension of the theoretical framework of semiring annotations to unordered

XML (UXML) and nested relational data. For UXML, this involves decorating XML elements in

a tree with semiring annotations, and extending the semantics of a positive fragment of XML’s

premier query language, XQuery, to operate on semiring-annotated, unordered trees. For nested

relations, we decorate both tuples and elements of nested collections with semiring annotations,

and extend the semantics of the positive nested relational calculus to work with these annotated

nested relations.

Example 1.17. To illustrate the flavor of this model for XML, Figure 1.9(a) shows an example of an

XML tree, some of whose elements are annotated with provenance polynomials. Now consider

the XPath query Q def= $T//c which picks out the set of subtrees of elements of $T whose label is c.

The result of evaluating Q on the source tree in Figure 1.9(a) is shown in Figure 1.9(b). Note that

the annotation of the root element of the first tree in the output is x1 · y3 + y1 · y2. This indicates

that the tree was produced in two different ways: one by traversing a path through elements in

the input tree with annotations x1 and y3, and the other via a path through elements annotated

y1 and y2.

We show that this semantics is conservative with respect to the semantics of positive relational

algebra on semiring-annotated relations, and that key properties underlying the relational version

of the framework continue to hold for annotated XML and nested relations. Hence, we give strong

24

$T =

a

bx1

a

cy3 d

cy1

d

a

cy2 bx2

(a) A provenance-annotated XML tree

(cx1·y3+y1·y2 ,

cy1

d

a

cy2 bx2)
(b) XPath query result

Figure 1.9: Semiring-annotated XML example.

evidence that provenance annotations for XML and nested relations fundamentally “make sense,”

paving the way towards a future extension of CDSS implementations to these data models. We

also propose novel applications of independent interest, including incomplete XML and XML with

access control policies, which are enabled by the framework.

1.3 Roadmap

The remainder of the thesis is structured as follows:

• Chapter 2 introduces semiring-annotated relations and develops the formal foundations of

provenance needed for CDSS. We also discuss connections with bag (multiset) semantics,

incomplete and probabilistic databases, and other models of provenance such as lineage [34]

and why-provenance [17] which can be captured using semiring annotations.

• Chapter 3 describes in more detail the formal model and prototype implementation of the

Orchestra CDSS, including the implementation of provenance storage, incremental update

exchange, and trust policies.

• Chapter 4 examines the fundamental issues of query containment and equivalence for

provenance-annotated relations. These problems turn out to be highly sensitive to the

presence of provenance information. We give positive decidability results for contain-

ment/equivalence of conjunctive queries and unions of conjunctive queries for several forms

of provenance information. We also highlight connections with the same problems for set

and bag semantics.

• Chapter 5 explains how incremental view maintenance, view adaptation, and mapping evo-

lution can be seen as special cases of a more general problem of answering queries using

materialized views. We argue for signed ring-annotated relations as a natural representation

of both data and updates to data, and for the incorporation of the difference operator to en-

able more rewritings. We show that, surprisingly, equivalence of relational algebra queries is

25

decidable for two instantiations of this framework relevant to CDSS and traditional database

systems. We also present a sound and complete procedure for reformulating queries with

materialized views under these semantics.

• Chapter 6 extends the semiring provenance model of Chapter 2 to work with unordered

XML and nested relational data. We show that the key properties of Datalog queries on

semiring-annotated relations carry over to (positive) XQuery queries on semiring-annotated

unordered XML, and to nested relational calculus queries on semiring-annotated complex

values. This paves the way towards a future extension of CDSS to XML and nested relational

data.

• We discuss related work in Chapter 7, and we conclude in Chapter 8.

26

Chapter 2

Provenance Semirings

A major component of the vision for CDSS [82] is the recording of data provenance as data and

updates are transformed according to schema mappings. We begin, therefore, by developing a

suitable formal model of data provenance for CDSS. The particular provenance model we use

emerges as a by-product of the development of a more general theory of queries on annotated

relations.

Several forms of annotated relations have appeared in various contexts in the literature. Query

answering in these settings involves generalizing the relational algebra (RA) to perform corre-

sponding operations on the annotations. The seminal paper in incomplete databases [79], for ex-

ample, generalized RA to conditional tables (c-tables), where relations are annotated with Boolean

formulas. In probabilistic databases, [50] and [138] generalized RA to event tables, also a form

of annotated relations. In data warehousing, [34] and [35] compute lineages for tuples in the

output of queries, in effect generalizing RA to computations on relations annotated with sets of

contributing tuples. Finally, RA on bag semantics can be viewed as a generalization to annotated

relations, where a tuple’s annotation is a number representing its multiplicity. We shall examples

of all of these kinds of annotated relations in Section 2.1.

We observe that in all of these cases, the calculations with annotations are strikingly similar.

This suggests looking for an algebraic structure on annotations that captures the above as particu-

lar cases. We propose using commutative semirings for this purpose. In fact, we can show that the

laws of commutative semirings are forced by certain expected identities in RA. Having identified

commutative semirings as the right algebraic structure, we argue that a symbolic representation

of semiring calculations is just what is needed to record, document, and track RA querying from

input to output for applications such as CDSS which require rich provenance information. It is

a standard philosophy in algebra that such symbolic representations form the most general such

27

structure. In the case of commutative semirings, just as for rings, the symbolic representation is

that of polynomials. We therefore propose to use polynomials to capture provenance. Next we

look to extend our approach to recursive Datalog queries (needed in CDSS when mappings have

cycles). To achieve this we combine semirings with fixed point theory.

The outline of this chapter is as follows:

• We introduce K-relations, in which tuples are annotated (tagged) with elements from K. We

define a generalized positive algebra on K-relations and argue that K must be a commutative

semiring (Section 2.2).

• For recording data provenance, we propose polynomials with integer coefficients, and we

show that positive algebra semantics for any commutative semirings factors through the

provenance semantics (Section 2.3).

• We discuss other forms of provenance information, previously proposed in the literature,

which can be captured using semirings, and show that they can be organized in a prove-

nance hierarchy (Section 2.4).

• We extend these results to Datalog queries by considering semirings with fixed points (Sec-

tion 2.5).

• For the (possibly infinite) provenance in Datalog query answers we propose semirings of

formal power series that are shown to be generated by finite algebraic systems of fixed

point equations (Section 2.6).

• We give algorithms for deciding the finiteness of these formal power series, for computing

them when finite, and for computing the coefficient of an arbitrary monomial otherwise

(Section 2.7).

• We show how to specialize our algorithms for computing full Datalog answers when K is

a finite distributive lattice, in particular for incomplete and probabilistic databases (Sec-

tion 2.8).

2.1 Queries on Annotated Relations

We motivate our study by considering three important examples of query answering on annotated

relations and highlighting the similarities between them.

The first example comes from the study of incomplete databases, where a simple representation

system is the maybe-table [124, 63], in which tuples annotated with a ‘?’ may or may not be in

28

a b c

a b c ?
d b e ?
f g e ?

a b c

a b c b1
d b e b2
f g e b3

{
∅,

a c

a c ,
a c

d e ,
a c

f e ,

a c

a c
a e
d c
d e

,
a c

d e
f e

,
a c

a c
f e

,

a c

a c
a e
d c
d e
f e

}

(a) (b) (c)

Figure 2.1: A maybe-table and a query result

a c

a c (b1 ∧ b1) ∨ (b1 ∧ b1)
a e b1 ∧ b2
d c b1 ∧ b2
d e (b2 ∧ b2) ∨ (b2 ∧ b2) ∨ (b2 ∧ b3)
f e (b3 ∧ b3) ∨ (b3 ∧ b3) ∨ (b2 ∧ b3)

a c

a c b1
a e b1 ∧ b2
d c b1 ∧ b2
d e b2
f e b3

(a) (b)

Figure 2.2: Result of Imielinski-Lipski computation

the instance, independently from each other. An example is given in Figure 2.1(a). Such a table

represents a set of possible worlds, and the answer to a query over such a table is the set of instances

obtained by evaluating the query over each possible world. Thus, given a query like

Q def= πac

(
πabR 1 πbcR ∪ πacR 1 πbcR

)
the query result is the set of possible worlds shown in Figure 2.1(c). The second table in the query

result, for example, is obtained by evaluating Q over R with optional tuples (d, b, e) and (f , g, e)

omitted.

Unfortunately, this set of possible worlds cannot itself be represented by a maybe-table, in-

tuitively because whenever the tuples (a, e) and (d, c) appear, then so do (a, c) and (d, e), and

maybe-tables cannot represent such a dependency.

To overcome such limitations, Imielinski and Lipski [79] introduced c-tables, where tuples are

annotated with Boolean formulas called conditions. A maybe-table is a simple kind of c-table,

where the annotations are distinct Boolean variables, as shown in Figure 2.1(b). In contrast to

weaker representation systems, c-tables are expressive enough to be closed under RA queries, and

the main result of [79] is an algorithm for answering RA queries on c-tables, producing another

c-table as a result. On our example, this algorithm produces the c-table shown in Figure 2.2(a),

which can be simplified to the c-table shown in Figure 2.2(b); this c-table represents exactly the

set of possible worlds shown in Figure 2.1(c).

Another kind of table with annotations is a multiset or bag. In this case, the annotations are

29

a b c

a b c 2
d b e 5
f g e 1

a c

a c 2 · 2 + 2 · 2 = 8
a e 2 · 5 = 10
d c 2 · 5 = 10
d e 5 · 5 + 5 · 5 + 5 · 1 = 55
f e 1 · 1 + 1 · 1 + 5 · 1 = 7

(a) (b)

Figure 2.3: Bag semantics example

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x∩ y

d c x∩ y

d e y

f e z

(a) (b)

Figure 2.4: Probabilistic example

natural numbers which represent the multiplicity of the tuple in the multiset. (A tuple not listed

in the table has multiplicity 0.) Query answering on such tables involves calculating not just the

tuples in the output, but also their multiplicities.

For example, consider the multiset R shown in Figure 2.3(a). Then Q applied to R, where Q is

the same query from before, produces the multiset shown in Figure 2.3(b). Note that for projection

and union we add multiplicities while for join we multiply them. There is a striking similarity

between the arithmetic calculations we do here for multisets, and the Boolean calculations for the

c-table.

A third example comes from the study of probabilistic databases, where tuples are associated

with values from [0, 1] which represent the probability that the tuple is present in the database.

Answering queries over probabilistic tables requires computing the correct probabilities for tuples

in the output. To do this, Fuhr and Röllecke [50] and Zimányi [138] introduced event tables, where

tuples are annotated with probabilistic events, and they gave a query answering algorithm for

computing the events associated with tuples in the query output.1

Figure 2.4(a) shows an example of an event table with associated event probabilities (e.g., x

represents the event that (a, b, c) appears in the instance, and x, y, z are assumed independent).

Considering again the same query Q as above, the Fuhr-Rölleke-Zimányi query answering algo-

rithm produces the event table shown in Figure 2.4(b). Note again the similarity between this

table and the example earlier with c-tables. The probabilities of tuples in the output of the query

can be computed from this table using the independence of x and y.

2.2 Positive Relational Algebra

In this section we attempt to unify the examples above by considering generalized relations in

which the tuples are annotated (tagged) with information of various kinds. Then, we will define

1The Fuhr-Röllecke-Zimányi algorithm is a general-purpose intensional algorithm. Dalvi and Suciu [36] give a sound
and complete algorithm which returns a “safe” query plan, if one exists, which may be used to answer the query correctly
via a more efficient extensional algorithm. For instance, our example does not admit a safe plan.

30

a generalization of the positive relational algebra (RA+) to such tagged-tuple relations. The

examples in Section 2.1 will turn out to be particular cases.

We use here the named perspective [2] of the relational model in which tuples are functions

t : U → D with U a finite set of attributes and D a domain of values. We fix the domain D for

the time being and we denote the set of all such U-tuples by U-Tup. (Usual) relations over U are

finite subsets of U-Tup.

A notationally convenient way of working with tagged-tuple relations is to model tagging by

a function on all possible tuples, with those tuples not considered to be “in” the relation tagged

with a special value. For example, the usual set-theoretic relations correspond to functions that

map U-Tup to B = {true, false} with the tuples in the relation tagged by true and those not in the

relation tagged by false.

Definition 2.1. Let K be a set of annotations (or tags) containing a distinguished element 0. A

K-relation over a finite set of attributes U is a function R : U-Tup → K such that its support

defined by supp(R) def= {t | R(t) 6= 0} is finite. A K-instance I is a mapping which associates

each predicate symbol R with a K-relation RI .

In generalizing RA+ we will need to assume more structure on the set of tags. To deal with

selection we assume that the set K contains two distinct values 0 6= 1 which denote “out of”

and “in” the relation, respectively. To deal with union and projection and therefore to combine

different tags of the same tuple into one tag we assume that K is equipped with a binary operation

“⊕.” To deal with natural join (hence intersection and selection) and therefore to combine the tags

of joinable tuples we assume that K is equipped with another binary operation “⊗.”

Definition 2.2. Let (K,⊕,⊗, 0, 1) be an algebraic structure with two binary operations and two

distinguished elements. The denotation JQKI of a positive relational algebra query Q on a K-

instance I, a K-relation of finite support, is defined inductively as follows:

empty relation For any set of attributes U, there is ∅ : U-Tup→ K such that J∅KI(t) def= 0.

predicate If R is a predicate symbol with attributes U then JRKI : U-Tup→ K is simply RI .

union If JQ1KI , JQ2KI : U-Tup→ K then JQ1 ∪Q2KI : U-Tup→ K is defined by

JQ1 ∪Q2KI(t) def= JQ1KI(t)⊕ JQ2KI(t)

Notice that if JQ1KI and JQ1KI have finite support then so has JQ1 ∪Q2KI , provided we have

0⊕ 0 = 0.

31

projection If JQ1KI : U-Tup→ K and V ⊆ U then JπV Q1KI : V-Tup→ K is defined by

JπV Q1KI(t) def=
⊕

t=t′ on V and
JQ1KI(t′) 6=0

JQ1KI(t′)

Here t = t′ on V means t′ is a U-tuple whose restriction to V is the same as the V-tuple t.

Note also that the sum is finite, assuming JQ1KI has finite support; and JπV Q1KI also has

finite support, again provided 0⊕ 0 = 0.

selection If JQ1KI : U-Tup → K and the selection predicate P maps each U-tuple to either 0 or 1

then JσPQ1KI : U-Tup→ K is defined by

JσPQ1KI(t) def= JQ1KI(t)⊗ P(t)

Which {0, 1}-valued functions are used as selection predicates is left unspecified, except that

we assume that false—the constantly 0 predicate, and true—the constantly 1 predicate, are

always available. Note that if JQ1KI has finite support, then so does JσPQ1KI , provided that

0⊗ 0 = 0 and 0⊗ 1 = 0.

natural join If JQiKI : Ui-Tup → K for i = 1, 2 then JQ1 1 Q2KI is the K-relation over U1 ∪U2

defined by

JQ1 1 Q2KI(t) def= JQ1KI(t1)⊗ JQ2KI(t2)

where t1 = t on U1 and t2 = t on U2 (recall that t is a U1 ∪U2-tuple). Notice that if JQ1KI

and JQ2KI have finite support, then so does JQ1 1 Q2KI , provided a⊗ 0 = 0⊗ a = 0, for all

a ∈ K.

renaming If JQ1KI : U-Tup→ K and β : U → U′ is a bijection then JρβQ1KI is a K-relation over U′

defined by

JρβQ1KI(t) def= JQ1KI(t ◦ β)

and notice that if JQ1KI has finite support then so does JρβQ1KI .

This definition generalizes the definitions ofRA+ for the motivating examples we saw. Indeed,

for (B,∨,∧, false, true) we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1) it is RA+

with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider the set of Boolean expressions over

some set B of variables which are positive, i.e., they involve only disjunction, conjunction, and

constants for true and false. Then we identify those expressions that yield the same truth-value

for all Boolean assignments of the variables in B.2 Denoting by PosBool(B) the result and applying
2in order to permit simplifications; it turns out that this is the same as transforming using the axioms of distributive

lattices [33]

32

Definition 2.2 to the structure (PosBool(B),∨,∧, false, true) produces exactly the Imielinski-Lipski

algebra. Finally, for (P(Ω),∪,∩, ∅, Ω) we obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semirings.

Definition 2.3. An algebraic structure (K,⊕,⊗, 0, 1) is called a commutative semiring if (K,⊕, 0)

and (K,⊗, 1) are commutative monoids, ⊗ is distributive over ⊕, and ∀a ∈ K, 0⊗ a = a⊗ 0 = 0.

Further evidence for requiring K to form such a semiring is given by

Proposition 2.4. The following RA identities:

• union is associative, commutative and has identity ∅;

• join is associative, commutative and distributive over union;

• projections and selections commute with each other as well as with unions and joins (when applicable);

• σfalse(Q1) = ∅ and σtrue(Q1) = Q1.

hold for the positive algebra on K-relations if and only if (K,⊕,⊗, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are the idempotence of union and of

(self-)join. Indeed, these fail for the bag semantics, an important particular case of our general

treatment.

Any function h : K1 → K2 which maps 0K1 to 0K2 can be used to transform K1-relations

to K2-relations simply by applying h to each tag (note that the support may shrink but never

increase). Abusing the notation a bit we denote the resulting transformations from K1-relations

to K2-relations and from K1-instances to K2-instances also by h. The RA+ operations we have

defined work nicely with semiring structures:

Proposition 2.5. Let h : K1 → K2 and assume that K1, K2 are commutative semirings. The transfor-

mation given by h from K1-relations to K2-relations commutes with any RA+ query Q and K-instance I,

JQKh(I) = h(JQKI), if and only if h is a semiring homomorphism.

Example 2.6. If B is a set of Boolean variables, any Boolean valuation ν : B → B extends uniquely

to a semiring homomorphism Evalν : PosBool(B) → B such that Evalν(b) = ν(b). The possible

worlds of a Boolean c-table T (a PosBool(B)-annotated relation) can be formally defined as follows:

Rep(T) def= {Evalν(T) | ν is a Boolean valuation ν : B→ B}

Using Proposition 2.5, we see that for any positive relational query Q ∈ RA+, Boolean c-table T,

and Boolean valuation ν, we have

JQKEvalν(T) = Evalν(JQKT)

33

a b c

a b c p
d b e r
f g e s

a c

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

a c

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

(a) (b) (c)

Figure 2.5: Lineage and provenance polynomials

The correctness of the Imielinski-Lipski algebra on c-tables with respect to the possible worlds

semantics follows as a corollary.

Example 2.7. Commercial relational database systems typically implement bag semantics, but in-

clude a DISTINCT operator which may be used to eliminate duplicates from a query result. This

operator can be viewed as the semiring homomorphism δ : N → B which maps 0 to false and

everything else to true. Using Proposition 2.5, we see that for any bag instance I and positive

relational query Q ∈ RA+, we have

JQKδ(I) = δ(JQKI)

Hence eliminating duplicates as a last step yields (not surprisingly) the same answer that would

have been obtained by first eliminating duplicates from source tables, then evaluating the query

under set semantics.

2.3 Polynomials for Provenance

Lineage was defined in [34, 35] as a way of relating the tuples in a query output to the tuples in

the query input that “contribute” to them. The lineage of a tuple t in a query output is in fact the

set of all contributing input tuples.

Computing the lineage for queries in RA+ turns out to be exactly Definition 2.2 for the semir-

ing [13] (Lin(X), +, ·,⊥, ∅) where X consists of the ids of the tuples in the input instance, where

Lin(X) = P(X)∪⊥, ⊥+ S = S +⊥ = S, ⊥ · S = S · ⊥ = ⊥, and S + T = S · T = S∪ T if S, T 6= ⊥.

For example, we consider the same tuples as in relation R used in the examples of Section 2.1 but

now we tag them with their own ids p,r,s, as shown in Figure 2.5(a). The resulting R can be seen

as a Lin(p, r, s)-relation by replacing p with {p}, etc. Applying the query Q from Section 2.1 to R

we obtain according to Definition 2.2 the Lin(p, r, s)-relation shown in Figure 2.5(b).

For example, in the query result in Figure 2.5(b) (f , e) and (d, e) have the same lineage, the

input tuples with id r and s. However, the query can also calculate (f , e) from s alone and (d, e)

34

from r alone. In a provenance application in which one of r or s is perhaps less trusted or less

usable than the other the effect can be different on (f , e) than on (d, e) and this cannot be detected

by lineage. This example illustrates the limitations of lineage (also recognized in [25]). It seems

that we need to know not just which input tuples contribute but also how they contribute.

On the other hand, by using the different operations of the semiring, Definition 2.2 appears to

fully “document” how an output tuple is produced. To record the documentation as tuple tags

we need to use a semiring of symbolic expressions. In the case of semirings, as in ring theory,

these are the polynomials.

Definition 2.8. Let X be a set of indeterminates, which can be thought of as tuple identifiers.

The positive algebra provenance semiring for X is the semiring of polynomials with variables

(a.k.a. indeterminates) from X and coefficients from N, with the operations defined as usual3:

(N[X], +, ·, 0, 1). We refer to the elements of N[X] has provenance polynomials.

Example 2.9. Start again from the relation R in Figure 2.5(a) in which tuples are tagged with their

own id. R can be seen as an N[p, r, s]-relation. Applying to R the query Q from Section 2.1

and doing the calculations in the provenance semiring we obtain the N[p, r, s]-relation shown

in Figure 2.5(c). The provenance of (f , e) is 2s2 + rs which can be “read” as follows: (f , e) is

computed by Q in three different ways; two of them use just the input tuple s, but twice; the third

uses input tuples r and s. We also see that the provenance of (d, e) is different from that of (f , e)

and we see how it is different!

The following standard property of polynomials captures the intuition that N[X] is as “gen-

eral” as any semiring:

Proposition 2.10. Let K be a commutative semiring and X a set of variables. For any valuation v : X → K

there exists a unique homomorphism of semirings Evalv : N[X] → K such that for the one-variable

monomials we have Evalv(x) = v(x).

As the notation suggests, Evalv(P) evaluates the polynomial P in K given a valuation for its

variables. In calculations with the integer coefficients, na (where n ∈ N and a ∈ K) is the sum in

K of n copies of a. Note that N is embedded in K by mapping n to the sum of n copies of 1K.

Using the Eval notation, for any P ∈ N[x1, . . . , xn] and any K the polynomial function fP :

Kn → K is given by:

fP(a1, . . . , an) def= Evalv(P) v(xi) = ai, i = 1..n

3These are polynomials in commutative variables so their operations are the same as in middle-school algebra, except
that subtraction is not allowed.

35

Putting together Propositions 2.5 and 2.10 we obtain Theorem 2.11 below, a conceptually im-

portant fact that says, informally, that the semantics of RA+ on K-instances for any semiring K

factors through the semantics of the same in provenance semirings.

Indeed, let K be a commutative semiring, let I be a K-instance, and let X be the set of tuple ids

of the tuples in supp(I). There is an obvious valuation v : X → K that associates to a tuple id the

tag of that tuple in I.

We associate to I an “abstractly tagged” version, denoted ab(I), which is an X ∪ {0}-relation.

ab(I) is such that supp(ab(I)) = supp(I) and the tuples in supp(ab(I)) are tagged by their own

tuple id. For example, in Figure 2.9(d) we show an abstractly-tagged version of the relation in

Figure 2.9(b). Note that as an X ∪ {0}-relation, ab(I) is a particular kind of N[X]-relation.

Theorem 2.11 (factoring). For any RA+ query Q and K-instance I we have JQKI = Evalv ◦ JQKab(I).

To illustrate an instance of this theorem, consider the provenance polynomial 2r2 + rs of the

tuple (d, e) in Figure 2.5(c). Evaluating it in N for p = 2, r = 5, s = 1 we get 55 which is indeed

the multiplicity of (d, e) in Figure 2.3(a).

The factoring theorem thus allows pre-computing of provenance polynomial annotations, then

evaluation of them under a particular semantics in a specific K for various applications. As we

shall see in Chapter 3, this is precisely the strategy employed by Orchestra.

2.4 A Hierarchy of Provenance

Besides the provenance models discussed so far, several other forms of provenance information

proposed in the literature can also be captured using semiring annotations. As we shall see,

the various models also turn out to be related in a precise manner, namely by surjective semiring

homomorphisms, as summarized in Figure 2.7.

One such provenance model is obtained from the provenance polynomials by replacing natural

number coefficients with Boolean coefficients:

Definition 2.12 (Boolean Provenance Polynomials). The Boolean provenance polynomials semiring for

X is the semiring of polynomials over variables X with Boolean coefficients: (B[X], +, ·, 0, 1).

Considering the same positive relational algebra query Q as in Section 2.1, Figure 2.6(c) shows

the result of applying Q to R, where R is interpreted as a B[X]-relation. Note that the annotations

in Figure 2.6(c) can be obtained from those in Figure 2.6(b) by simply dropping the numeric

coefficients. In fact, one can check that the operation f : N[X]→ B[X] which “drops coefficients”

(i.e., by replacing non-zero coefficients with true) is a surjective semiring homomorphism.

36

a b c

a b c p
d b e r
f g e s
(a) Source R

a b

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

(b) N[X]

a b

a c p2

a e pr
d c pr
d e r2 + rs
f e s2 + rs

(c) B[X]

a b

a c 2p
a e pr
d c pr
d e 2r + rs
f e 2s + rs

(d) Trio(X)

a b

a c {{p}}
a e {{p, r}}
d c {{p, r}}
d e {{r}, {r, s}}
f e {{s}, {r, s}}

(e) Why(X)

a b

a c p
a e p ∧ r
d c p ∧ r
d e r
f e s

(f) PosBool(X)

a b

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

(g) Lin(X)

Figure 2.6: Comparison of provenance annotations

The Trio system [8] has recently proposed a form of annotated relation suitable as a repre-

sentation system for incomplete bag databases (i.e., where the possible worlds are bag instances

rather than set instances). Trio-style tables can also be captured using annotations from a semiring

we shall denote Trio(X). Like B[X], this semiring can be viewed as being obtained from N[X], but

instead of “dropping coefficients,” this time we “drop exponents.” This is most conveniently for-

malized using the notion of quotient semirings (see Appendix for definition). Let f : N[X]→N[X]

be the mapping that “drops exponents,” e.g., f maps 2x2y + 3xy + 2z3 + 1 to 5xy + 2z + 1. Denote

by ≈ f the equivalence relation on N[X] defined by a ≈ f b def⇐⇒ f (a) = f (b). One can check that

≈ f is a congruence relation (see Appendix for definition). This justifies the following:

Definition 2.13 (Trio Semiring). The Trio semiring for X is the quotient semiring of N[X] by ≈ f ,

denoted Trio(X).

As an example, considering again the same query Q, Figure 2.6(d) shows the result of applying

Q to R, where R is interpreted as a Trio(X)-relation, and an annotation a is understood to represent

its equivalence class a/≈ f in ≈ f . Note that the mapping h : N[X] → Trio(X) defined by h(a) 7→

a/≈ f is a surjective semiring homomorphism.

Still another provenance model that can be captured using semirings is the why-provenance

of [17]. The why-provenance of a tuple is the set of sets of “contributing” source tuples, which is

called the proof witness basis in [17]. This can be captured using a semiring [13] (called the proof

why-provenance semiring in [13]):

Definition 2.14 (Why-Provenance). The why-provenance semiring for X is

37

(Why(X),∪,d, ∅, {∅}) where Why(X) def= P(P(X)) and d denotes pairwise union:

Ad B def= {a ∪ b : a ∈ A, b ∈ B}

Considering again the same query Q, we can interpret the source relation in Figure 2.6(a) as

a why-provenance relation by doubly-nesting the variables (e.g., p becomes {{p}}). Figure 2.6(e)

shows the query output and the resulting why-provenance annotations. Note that these annota-

tions can be obtained from the B[X]-annotations by dropping exponents (and writing the result

as a set of sets rather than sum of monomials). One can check that the corresponding operation

g : B[X] → Why(X) which “drops exponents” is in fact a surjective semiring homomorphism.

Note also that the annotations can be obtained from the Trio(X)-annotations by dropping coeffi-

cients, and it is easy to verify that the corresponding operation h : Trio(X)→ Why(X) which does

this is also a surjective semiring homomorphism.

Note that the lineage for an output tuple can be obtained from the why-provenance of the

tuple by flattening the set of sets, i.e., applying the function h : Why(X) → Lin(X) defined by

h(I) =
⋃

S∈I S. Once again, we can show that h is a surjective semiring homomorphism.

Finally, an interesting variation on the why-provenance semiring is obtained by requiring that

the witness basis for an output tuple be minimal. Here the domain is irr(P(X)) the set of irre-

dundant subsets of P(X), i.e., W is in irr(P(X)) if for any A, B in W neither is a subset of the

other. We can associate with any W ⊆ P(X) a unique irredundant subset irr(W) by repeatedly

looking for elements A, B such that A ⊆ B and deleting B from W. Then we define a semiring

(irr(P(X)), +, ·, 0, 1) as follows:

I + J def= irr(I ∪ J) I · J def= irr(I d J)

0 def= ∅ 1 def= {∅}

This is the semiring in which we compute the minimal witness basis [17]. It is a well-known

semiring: the construction above is the construction for the free distributive lattice generated by

the set X. Moreover, it is isomorphic to a semiring we have already seen, PosBool(X).

These various models of provenance can be neatly arranged in the diagram of Figure 2.7,

where a path downwards from K1 to K2 indicates that there exists a surjective semiring homomor-

phism h : K1 → K2. Coupled with Proposition 2.5, this gives a clear picture of the relative “informa-

tiveness” of the various provenance models, since provenance computations for models lower in

the hierarchy can always be factored through computations involving models above them in the

hierarchy. The existence of such homomorphisms also turns out to be useful in Chapter 4 where

we shall use them to derive some easy bounds on the relative behavior of the provenance models

with respect to query containment.

38

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

B

most informative

least informative

Figure 2.7: Provenance hierarchy

Q(x, y) :- R(x, z), R(z, y)
(a)

a a 2
a b 3
b b 4

(b)

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(c)

Figure 2.8: Datalog with bag semantics

2.5 Datalog on K-Relations

We now seek to give semantics on K-relations to Datalog queries. It is more convenient to use the

unnamed perspective here. We also consider only “pure” Datalog rules in which all subgoals are

relational atoms. Also, to simplify the presentation, we shall focus on Datalog programs with a

single idb-and-output predicate, and we shall identify a Datalog program by its output predicate

name.

First observe that for conjunctive queries over K-instances the semantics in Definition 2.2 sim-

plifies to computing tags as sums of products, each product corresponding to a valuation of the

query variables that makes the query body hold. For example, consider the conjunctive query

and N-relation shown in Figure 2.8(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b): {x 7→ a, y 7→ a, z 7→ b} yields

the body R(a, a), R(a, b) while {x 7→ a, y 7→ b, z 7→ b} yields the body R(a, b), R(b, b). The sum of

products of tags is 2 · 3 + 3 · 4 which is exactly what the equivalent RA+ query yields according

to Definition 2.2. If we think of this conjunctive query as a Datalog program, the two valuations

above correspond to the two derivation trees of the tuple Q(a, b).

This suggests the following generalized proof-theoretic semantics for Datalog on K-relations:

the tag of an answer tuple is the sum over all its derivation trees of the product of the tags of the

leaves of each tree, stated formally in Definition 2.15. Indeed, this generalizes the bag semantics

of Datalog considered in [113, 114] when the number of derivation trees is finite. In general, a tuple

39

can have infinitely many derivation trees (an algorithm for detecting this appears in [115]) hence

we need to work with semirings in which infinite sums are defined.

Closed semirings [133] have infinite sums but their “⊕” is idempotent which rules out the bag

and provenance semantics. We will adopt the approach used in formal languages [95] and later

show further connections with how semirings and formal power series are used for context-free

languages. By assuming that D is countable, it will suffice to define countable sums.

Let (K,⊕,⊗, 0, 1) be a semiring and define a ≤ b def⇔ ∃x a⊕ x = b. When ≤ is a partial order

we say that K is naturally ordered. B, N, N[X] and the other semiring examples we gave so far

are all naturally ordered.

We say that K is an ω-complete semiring if it is naturally ordered and ≤ is such that ω-chains

have least upper bounds. In such semirings we can define countable sums:

⊕
n∈N

an
def= sup

m∈N

(⊕m
i=0ai)

Note that if ∃N s.t. ∀n > N, an = 0 then ⊕n∈Nan = ⊕N
i=0ai. All the semiring examples we gave so

far are ω-complete with the exception of N and N[X]. We show below how to “complete” them.

An ω-continuous semiring is an ω-complete semiring in which the operations ⊕ and ⊗ are

ω-continuous in each argument. It follows that countable sums are associative and commutative,

that ⊗ distributes over countable sums and that countable sums are monotone in each addend.

Examples of commutative ω-continuous semirings:

• (B,∨,∧, false, true)

• (N∞, +, ·, 0, 1) where we add ∞ to the natural numbers and define ∞ + n = n + ∞ = ∞

and ∞ · n = n ·∞ = ∞ except for ∞ · 0 = 0 ·∞ = 0. We can think of N∞ as the ω-continuous

“completion” of N.

• (PosBool(B),∨,∧, false, true) with B finite. This commutative semiring is in fact a distributive

lattice [33] and the natural order is the lattice order. Since we identify those expressions that

yield the same truth-value for all boolean assignments for the variables, B finite makes

PosBool(B) finite, hence ω-continuous.

• (P(Ω),∪,∩, ∅, Ω), used for event tables which is also an example of distributive lattice.

• (N∞, min, +, ∞, 0), the tropical semiring [95].

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [137] so we will call it the fuzzy semiring.

40

Definition 2.15. Let (K,⊕,⊗, 0, 1) be a commutative ω-continuous semiring, and let Q be a Data-

log query. For any K-instance I, define

JQKI(t) =
⊕

τ yields t

(⊗
R(t′)∈leaves(τ)

RI(t′)
)

where τ ranges over all Q-derivation trees for t and R(t′) ranges over all the leaves of τ.

Proposition 2.16. For any K-instance I, JQKI has finite support and is therefore a K-relation. Hence,

Definition 2.15 gives us a semantics for Datalog queries on K-instances.

Proof. (sketch) Let J be the set instance corresponding to the support of I, and let t′ be an output

tuple such that JQKI(t′) 6= 0. By Definition 2.15, this implies that there is a derivation tree τ for

t′ (such that the tags of the tuples in its leaves are non-zero and correspond to this product). But

then t′ ∈ JQKJ . Since JQKJ is finite, JQKI has finite support.

Example 2.17. As an example, consider the Datalog program Q defined by the rules shown in

Figure 2.9(c), applied on N-relation R shown in Figure 2.9(a). Since any N-relation is also a

N∞-relation and N∞ is ω-continuous we can answer this query4 and we obtain the table s0hown

in Figure 2.9(b). Observe that the annotation of (a, b) in the output is 8. Figure 2.10(a) shows

how this value was computed as the sum of products of the annotations of the leaves of the two

derivation trees for Q(a, b) On the other hand, observe that (b, d) has annotation ∞ in the output.

Figure 2.10(b) illustrates the computation of this value, which involves infinitely many derivation

trees.

A couple of sanity checks follow.

Proposition 2.18. Let Q be anRA+ query in which the selection predicates only test for attribute equality

and let Q′ be the (non-recursive) Datalog query obtained by standard translation from Q. Then Q and Q′

produce the same answer when applied to the same K-instance.

Proposition 2.19. For any Datalog query Q and any B-instance I, supp(JQKI) is the same as the result

of applying Q to the standard set instance supp(I).

The definition of Datalog semantics given above is not so useful computationally. However,

we can think of it as a proof-theoretic definition, and as with standard Datalog, it turns out that

there is an equivalent, fixpoint-theoretic definition that is much more workable.

Intuitively, this involves representing the possibly infinite sum of products above as a system of

fixpoint equations that reflect all the ways that a tuple can be produced as a result of applying the

4This particular query computes transitive closure with bag semantics.

41

Q(x, y) :- R(x, y)
Q(x, y) :- Q(x, z), Q(z, y)

a b 2
a c 3
c b 2
b d 1
d d 1

a b 8
a c 3
c b 2
b d ∞
d d ∞
a d ∞

(a) (b) (c)

a b m
a c n
c b p
b d r
d d s

a b x
a c y
c b z
b d u
d d v
a d w

x = m + yz
y = n
z = p
u = r + uv
v = s + v2

w = xu + wv
(d) (e) (f)

Figure 2.9: Datalog example

immediate consequence operator TQ (for a Datalog query Q) on other tuples. Since such an immediate

consequence can involve other tuples in idb relations, that may themselves have infinitely many

derivations, we introduce a new variable for each tuple in the idb relation and use that variable

to refer to that tuple when calculating its immediate consequences. Thus, for every tuple there is

an equation between the variable for that tuple and a polynomial over all the variables.

To make this precise we consider polynomials with coefficients in an arbitrary commutative

semiring K. If the set of variables is X we denote the set of polynomials by K[X]. We have

already used N[X] for provenance but K[X] also forms a commutative semiring. We saw in

Section 2.3 that because N can be embedded in any semiring K the polynomials P in N[X] define

polynomial functions fP over K. Similarly, if X = {x1, . . . , xn} then any polynomial P ∈ K[X]

defines a polynomial function fP : Kn → K. Most importantly, if K is ω-continuous then fP is

ω-continuous in each argument.

Definition 2.20. Let K be a commutative ω-continuous semiring. An algebraic system over K

with variables X = {x1, . . . , xn} consists of a list of polynomials P1, . . . , Pn ∈ K[X] and is written

x1 = P1(x1, . . . , xn)
· · ·

xn = Pn(x1, . . . , xn)

Together, fP1 , . . . , fPn define a function fP : Kn → Kn. Kn has a component-wise commutative

ω-continuous semiring structure such that fP is ω-continuous. Hence, the least fixed point

lfp(fP) = sup
m∈N

f m
P (0, . . . , 0)

42

Q(a, b)

R(a, b)

2

Q(a, b)

Q(a, c)

R(a, c)

3

Q(c, b)

R(c, b)

2+ · = 8
(a) Derivation trees for Q(a, b)

Q(b, d)

R(b, d)

1

Q(b, d)

Q(b, d)

R(b, d)

1

Q(d, d)

R(d, d)

1

Q(b, d)

Q(b, d)

R(b, d)

1

Q(d, d)

Q(d, d)

R(d, d)

1

Q(d, d)

R(d, d)

1+ · + · · + · · · = ∞
(b) Derivation trees for Q(b, d)

Figure 2.10: Derivation trees for Datalog example

exists, and we call it the solution of the algebraic system above.

As an example, consider the one-variable equation x = ax + b with a, b ∈ K. This is closely

related to regular language theory and its solution is x = a∗b where

a∗ def= 1 + a + a2 + a3 + · · ·

For example, in N∞ we have 1∗ = ∞ while in PosBool(B) we have e∗ = true for any e.

Consider a Datalog program Q and to simplify notation assume just one edb predicate R

(and one idb-and-output predicate Q). Given an edb K-relation R we can effectively construct

an algebraic system over K as follows. Denote by Q also the K-relation that is the output of the

program and let ab(Q) be the abstractly-tagged (as in Theorem 2.11) version of Q where X is the

set of ids of the tuples in supp(Q). Since ab(Q) is a X ∪ {0}-relation and R is a K-relation both

can be seen also as K[X]-instances. The immediate consequence operator TQ is in fact a union

of conjunctive queries, hence Definition 2.2 shows how to calculate effectively TQ(R, ab(Q)) as

a K[X]-relation of finite support. By equating the tags of ab(Q) with those of TQ(R, ab(Q)) we

obtain the promised algebraic system. We will denote this system as ab(Q) = TQ(R, ab(Q))

(although it only involves the tags of these relations).

Theorem 2.21. With the notation above, for any tuple t, the tag Q(t) given by Definition 2.15, when not

43

0, equals the component of the solution (Definition 2.20) of the algebraic system ab(Q) = TQ(R, ab(Q))

corresponding to the id of t.

To illustrate with an example, consider again the Datalog program Q in Figure 2.9(a) applied

to the same N-relation R shown in Figure 2.9(b). In Figure 2.9(e) we have the abstractly-tagged

version of the output relation, ab(Q) in which the tuples are tagged with their own ids. The

corresponding algebraic system is the one obtained from Figure 2.9(f) by replacing m = 2, n =

3, p = 2, r = 1, s = 1. (Note that TQ(R, ab(Q)) = R ∪ ab(Q) 1 ab(Q).) Calculating its solution we

get after two fixed point iterations x = 8, y = 3, z = 2, u = 2, v = 2, w = 2. In further iterations

x, y, z remain the same while u, v, w grow unboundedly (in Section 2.7 we show how unbounded

growth can be detected). Hence the solution is the one shown in Figure 2.9(c).

Note that semiring homomorphisms are monotone with respect to the natural order. However,

to work well with the Datalog semantics more is needed.

Proposition 2.22. Let K1, K2 be commutative ω-continuous semirings and let h : K1 → K2 be an

ω-continuous semiring homomorphism. Then, the transformation given by h from K1-instances to K2-

instances commutes with Datalog query evaluation: for any Datalog query Q and K1-instance I,

JQKh(I) = h(JQKI).

2.6 Formal Power Series for Provenance

In Section 2.3 we showed how to use N[X]-relations to capture an expressive notion of provenance

for the tuples in the output of an RA+ query. However, polynomials will not suffice for the

provenance of tuples in the output of Datalog queries because the semiring N[X] does not define

infinite sums. As with the transition from N to N∞ we wish to “complete” N[X] to a commutative

ω-continuous semiring. This problem has been tackled in formal language theory and it led to

the study of formal power series [95].

Note that when we try to apply naively Definition 2.15 to Datalog queries on N[X]-relations

we encounter two kinds of infinite summations. First, it is possible that we have to sum infinitely

many distinct monomials. This leads directly to formal power series. Second, it is possible that we

have to sum infinitely many copies of the same monomial. This means that we need coefficients

from N∞, not just N.

Let X be a set of variables. Denote by X⊕ the set of all possible monomials over X. For

example, if X = {x, y} then X⊕ = {xmyn | m, n ≥ 0} = {ε, x, y, x2, xy, y2, x3, x2y, . . .} where ε is

the monomial in which both x and y have exponent 0.

44

Let K be a commutative semiring. A formal power series with variables from X and coeffi-

cients from K is a mapping that associates to each monomial in X⊕ a coefficient in K. A formal

power series S is traditionally written as a possibly infinite sum

S = ∑
µ∈X⊕

S(µ) µ

and we denote the set of formal power series by K[[X]]. As with K[X], there is a commutative

semiring structure on K[[X]] given by the usual way of adding and multiplying formal power

series (which generalizes the same operations for polynomials):

(S1 ⊗ S2)(µ) = ∑
µ1µ2=µ

S1(µ1)⊗ S2(µ2)

(S1 ⊕ S2)(µ) = ∑
µ1µ2=µ

S1(µ1)⊗ S2(µ2)

But the real reason we use formal power series is

Theorem 2.23. (e.g., [95]) If K is ω-continuous then K[[X]] is also ω-continuous.

Definition 2.24. Let X be the set of tuple ids of a database instance I. The Datalog provenance

semiring for I is the commutative ω-continuous semiring of formal power series N∞[[X]].

Let us calculate, using the fixed point semantics, the provenance for the output of the Dat-

alog query in Figure 2.9(a). The input, with tuple ids as tags, is R in Figure 2.9(d). Note that

we have two sets of variables here. The tuple ids of R forms one set of variables and the prove-

nance semiring in which we compute is N∞[[m, n, p, r, s]]. At the same time, the ids of the tu-

ples in ab(Q) are used as variables in the algebraic system, whose right-hand sides belong to

N∞[[m, n, p, r, s]][x, y, z, u, v, w], i.e., they are polynomials in the variables {x, y, z, u, v, w}, with

coefficients in the semiring of formal power series N∞[[m, n, p, r, s]]. The v component of the

solution can be calculated separately:5

v = s + s2 + 2s3 + 5s4 + 14s5 + · · ·

Also, one can see that x = m + np, u = rv∗, w = r(m + np)(v∗)2. For example the coefficient of

rnps3 in the provenance w of Q(a, d) is 5, which means this tuple can be obtained in 5 distinct

ways using R(a, c), R(c, b) and R(b, d) once and R(d, d) three times.

Algebra provenance, N[X], is embedded in Datalog provenance, N∞[[X]], by regarding poly-

nomials as formal power series in which all but finitely many coefficients are 0. Here is the

corresponding sanity check:

5[26] shows that the coefficient of sn+1 is 2n!
n!(n+1)! .

45

Proposition 2.25. Let Q be anRA+ query in which the selection predicates only test for attribute equality,

let Q′ be the (non-recursive) Datalog query obtained by standard translation from Q and let I be an N[X]-

instance. Modulo the embedding of N[X] in N∞[[X]] we have JQKI = JQ′KI .

Formal power series can be evaluated in commutative ω-continuous semirings:

Proposition 2.26. Let K be a commutative ω-continuous semiring and X a set of variables. For any

valuation v : X → K there exists a unique ω-continuous homomorphism of semirings

Evalv : N∞[[X]]→ K

such that for the one-variable monomials we have Evalv(x) = v(x).

Therefore, just like polynomials, formal power series define series functions on any commu-

tative ω-continuous semiring. Finally, we have the analog of Theorem 2.11.

Theorem 2.27. The semantics of Datalog on K-relations for any commutative ω-continuous semiring K

factors through the semantics of the same in provenance semirings (of formal power series).

Although the coefficients in the provenance series may be ∞, we can characterize exactly when

this happens. In this theorem, the instantiation of a Datalog query is the set of rules obtained by

considering all satisfying valuations for the variables in rules of Q.

Theorem 2.28. A Datalog query Q has provenance series in N[[X]] for some tuple t if and only if the

instantiation of Q has no cycle of unit rules (rules whose body consists of a single idb) such that t is part

of the cycle (i.e., appears on the head of one of those unit rules and the body of another) and t is in the result

of Q.

2.7 Computing Provenance Series

We show here that several natural questions that one can ask about the computability of formal

power series in N∞[[X]] can in fact be decided and all finitely representable information can in

fact be computed.

Given a Datalog program Q and an abstractly-tagged N[X]-instance I, consider the formal

power series provenance of some tuple t in the output JQKI , i.e., JQKI(t) where the Datalog se-

mantics is taken in N∞[[X]] (X is the set of ids of the tuples in I). We show that it is decidable

whether JQKI(t) is in fact a polynomial in N[X]. Algorithm 1 (inspired by [115]) decides this for

all output tuples and computes the polynomial when the answer is affirmative.

For an output tuple t for which the answer given by Algorithm 1 is ∞, we can use Theorem 2.28

to decide whether JQKI(t) is in N[[X]]. The remaining question is whether JQKI(t) is in N∞[X],

46

Algorithm 1 All-Trees(Datalog query Q, N[X]-instance I) returns the power series P(t) for every
tuple t ∈ JQKI

All-Trees
1: Initialize F ← {t : t ∈ supp(I)}
2: Initialize Ω← ∅
3: repeat
4: Fν ← Tν

Q(F, Ω)
5: for every tree τ ∈ Fν do
6: if any child of root(τ) is in Ω or any proper descendant of root(τ) to a node associated

with the same tuple then
7: Ω← Ω ∪ {root(τ)}
8: else
9: F ← F ∪ {τ}

10: end if
11: end for
12: until nothing added to either F or Ω in last iteration
13: for every t ∈ JQKsupp(I) do
14: if t ∈ Ω then
15: P(t)← ∞
16: else
17: P(t)← ∑ τ∈F s.t.

root(τ)=t
∏R(t′)∈fringe(τ) RI(t′)

18: end if
19: end for
20: return P

i.e., it is a polynomial instead of a formal power series. We can decide this by checking if there is

any cycle in the instantiation of the query involving at least one non-unit rule, s.t. t is part of that

cycle; otherwise, JQKI(t) is in N∞[[X]]. In Algorithm 1:

• F is the set of derivation trees computed thus far; Ω is the set of tuples with infinitely many

derivations; fringe(τ) is the bag of labels of leaves of the tree τ.

• Tν
Q(F, Ω) = {τ | τ 6∈ F ∧ τ ∈ TQ(F) ∧ root(τ) 6∈ Ω}, where TQ(F) is the set of trees

produced by applying a rule on tuples in {root(τ) | τ ∈ F} ∪Ω.

Algorithm 1 terminates because at every iteration only trees which are not there already are

produced and moreover, for every tuple that has infinitely many derivations, as soon as it is

identified and inserted in Ω, no more trees for it are produced. Note also that by Theorem 2.27

this algorithm will also give us, in particular, an algorithm for evaluating Datalog queries on bag

semantics, similar to the one in [115].

If the answer of Algorithm 1 for an output tuple t is ∞, we can also use Algorithm 2 to

compute the coefficient of a particular monomial µ in JQKI(t), even when that coefficient is ∞. In

this algorithm:

47

• M is the set of tuples whose ids appear in µ, a monomial represented as a bag of labels that

appear in it; P∞ is a set of pairs (t, µ), representing tuples t for which infinite derivation

trees whose leaves are equal to the monomial µ have been found.

• Ti
Q(F, P∞, µ) = {τ | τ 6∈ F ∧ τ ∈ TQ(F) ∧ fringe(τ) ≤ µ ∧ (root(τ), m) 6∈ P∞}, where

TQ(F) is the set of trees that can be produced by applying a rule on tuples in {root(τ) | τ ∈

F} ∪ {t | (t, m) ∈ P∞} it, where the multiplicity of each is the corresponding exponent in the

monomial.

Algorithm 2 Monomial-Coefficient(Datalog query Q, monomial µ, tuple t)
returns C, the coefficient of µ in the power series P(t)
Monomial-Coefficient

F ← {t() : t ∈ M}
P∞ ← ∅
repeat

Fi ← Ti
Q(F, Ω)

for every tree τ ∈ Fi do
if for any child tree τ′ of root(τ), (root(τ′), fringe(τ′)) ∈ P∞ or there is a chain from root(τ)
to a node associated with the same tuple then

P∞ ← P∞ ∪ {(root(τ), fringe(τ))}
else

F ← F ∪ {τ}
end if

end for
until nothing added to either F or Ω in last iteration
if (t, µ) ∈ P∞ then

C ← ∞
else

for every τ ∈ F s.t. root(τ) = t and fringe(τ) = µ do
C ← C + 1

end for
end if
return C

If n is the length of the longest acyclic path of unit rules, then every n + 1 iterations Algorithm 2

either has produced a tree τ with larger fringe(τ) than the ones that were combined to produce it,

or it has identified a pair (t′, µ′) whose derivation trees involve a cycle of unit rules. The algorithm

then is guaranteed to terminate, because for all such tuples t′ with infinitely many derivations, no

trees for t′ with fringe(τ) = µ′ are used in any subsequent derivations, and moreover, the set of

trees τ s.t. τ does not involve nodes marked as infinite and fringe(τ) ≤ µ is finite.

48

2.8 Application to Incomplete/Probabilistic Databases

Theorem 2.27 suggests using algorithm 1 for evaluating Datalog queries in various semiring. We

already noted in Section 2.7 that this will work fine for N∞. How about PosBool(B), P(Ω), and,

as a sanity check, B? When Algorithm 1 returns ∞, the evaluation on these semirings will return

a normal value! We show that we can compute this value in the more general case when the

semiring K is a finite distributive lattice. We do so with some simple modifications to algorithm 1:

• Redefine Tν
Q to take only F as a parameter, and return all τ in TQ(F) such that for all τ′ in

F, if root(τ) = root(τ′), then fringe(τ) < fringe(τ′).

Thus a derivation tree for a tuple is considered “new” only when its associated monomial is

smaller than any yet seen for that tuple. This modified algorithm always returns a polynomial for

each tuple. Evaluating these polynomials in K gives the K-relation output.

The sanity check that for K = B the output tuples get the tag true is easy to verify. For

K = PosBool(B), after also checking that for any valuation ν : B → B we have Evalν(JQKI) =

JQKEvalν(I), we get a Datalog on Boolean c-tables semantics. This is new for incomplete databases.

In probabilistic databases we restrict ourselves, as usual, to the case when the domain D is

finite, hence the sample space Ω of all possible instances is finite. K = P(Ω) is a finite distribu-

tive lattice so we get an effective semantics for Datalog on event tables. After checking that the

resulting event tagging a tuple t does in fact say that t is in JQKI for the random instance I, we

conclude that our algorithm also generalizes that of [51].

2.9 Provenance-Annotated Queries

Sometimes, one would like to know not just which source tuples were involved in producing an

output tuple, but also which part of the query. In CDSS, for example, we need a mechanism that

can be used to “tag” output tuples with information which mapping rules were used to produce

those output tuples (in addition to the information about the source tuples which were used). We

close this chapter with an extension to the framework that can accomplish this by means of a scalar

multiplication construct which may be used freely in relational algebra or Datalog queries. The idea

is to decorate portions of a relational algebra or Datalog query with query provenance annotations,

and combine these annotations with the source level provenance in the query output.

While motivated by our immediate concerns in CDSS, query provenance has some wider

applications that we shall discuss at the end of the section.

Definition 2.29. For a semiring K, the language K-RA+ extends the positive relational algebra

49

(Definition 2.2) with a scalar multiplication operation a⊗ Q1, where a ∈ K, whose denotation on a

K-instance I is defined as follows:

scalar If JQ1KI : U-Tup→ K and a ∈ K then Ja⊗Q1KI is defined

Ja⊗Q1KI def= a⊗ JQ1KI

(where ⊗ is multiplication in K) and notice that if JQ1KI has finite support, then so does

Ja⊗Q1KI , provided a⊗ 0 = 0.

It is straightforward to verify that the key properties of RA+ on K-instances — namely,

commutation with semiring homomorphisms (Proposition 2.5), and factoring of computations

through N[X] (Theorem 2.11) — continue to hold for K-RA+. The statement of the commutation

with homomorphisms changes slightly as now we lift a homomorphism h : K1 → K2 to also map

K1-RA+ queries to K2-RA+ queries, by replacing every scalar a occurring in the K1-RA+ query

with h(a), and show that for any semiring homomorphism h : K1 → K2, query Q in K1-RA+, and

K1-instance I, we have

Jh(Q)Kh(I) = h(JQKI)

Similarly, to obtain K-Datalog, we extend the syntax of Datalog to allow the heads of Datalog

rules to be decorated with scalar multiplications. For example, the transitive closure query Q

from Figure 2.9(a) might be decorated with fresh variables m1 and m2 from X to obtain the N[X]-

Datalog query

m1 ·Q(x, y) :- R(x, y)

m2 ·Q(x, y) :- Q(x, z), Q(z, y)

We then generalize the proof-theoretic semantics on Datalog on K-instances (Definition 2.15) to

take these into account. We omit the details which are straightforward. Correspondingly, we

extend the fixpoint-theoretic semantics (Section 2.5) to include these scalar multiplications in the

provenance annotations produced by the immediate consequence operator. For example, the

result of applying the N[X]-Datalog query Q above to the N[X]-instance containing the single

table R from Figure 2.9(d) using the fixpoint-theoretic semantics:

a b x = m1m + m2yz

a b y = m1n

c b z = m1 p

b d u = m1r + m2uv

d d v = m1s + m2v2

a d w = m2xu + m2wv

50

As with K-RA+, we can show that key properties of Datalog on K-instances (commutation with

homomorphisms, factoring, conservativeness with respect to RA+ on K-relations) are preserved

under the extension to K-Datalog.

Wider applications of provenance-annotated queries

We close the section by mentioning some further applications of query provenance outside of

CDSS worth exploring in future work. One interesting application involves “debugging” a query

by annotating portions of a query in order to determine which “parts” of the query were involved

in producing a tuple of interest in the output.

Example 2.30. Consider again the N[X]-instance containing a single table R shown in Figure 2.5,

and suppose now that we wish to determine which “side” of the union of the query Q from

Section 2.1 was involved in producing the various output tuples. To accomplish this, we annotate

Q itself with fresh tags u1 and u2 from X, producing the following N[X]-RA+query Q′:

Q′ def= πac

(
u⊗ (πabR 1 πbcR) ∪ v⊗ (πacR 1 πbcR)

)
The annotation of (a, e) in JQ′KR, for example, becomes pru (rather than pr as in Figure 2.5(c));

hence we see that this tuple was produced using the left side of the union (and source tuples p

and r).

Indeed, data provenance has been proposed before for debugging schema mappings in the Spi-

der system [25], which uses a kind of provenance called route-provenance. Route provenance is

related to our semiring-based Datalog provenance (see further discussion in Chapter 7). Query

provenance seems to nicely complement data provenance for such applications.

Another promising application of query provenance is in probabilistic data integration [41]. Here,

the queries (or schema mappings) used for data integration are themselves uncertain, for example,

because the relationships between databases are not yet well understood. Such uncertainties

may be modeled in a number of ways, for example by assigning probabilities to Datalog rules

corresponding to the likelihood that the rule is correct. The goal, as with probabilistic databases,

is to compute the corresponding probabilities of output tuples.

Example 2.31. Consider a source relation R and a target relation S, and suppose that there are two

possibilities for a mapping relating them, shown in Figure 2.11(a), but we are not sure which is

the correct mapping. Instead, we suspect that the first rule is the correct one with probability

0.4, say, and the other with probability 0.6. We can model this situation using query provenance

annotations from the event tables semiring (P(Ω),∪,∩, ∅, Ω), as shown in Figure 2.11(b), where

the head of the first rule is annotated with event r, and the other with its complementary event

51

S(x, y) :- R(x, y, z)
S(x, y) :- R(x, z, y)

(a)

r∩ S(x, y) :- R(x, y, z)
r∩ S(x, y) :- R(x, z, y)

(b)

E Pr
r 0.6
x 0.6
y 0.5
z 0.1

(c)

a b c x

a b d y

a e c z

(d)

a b r∩ (x∪ y)
a e r∩ z

a c r∩ (x∪ z)
a d r∩ y

(e)

Figure 2.11: Probabilistic data integration example

r. The probability of event r is 0.6, as indicated in Figure 2.11(c). Now, consider the decorated

query applied to the event table R shown in Figure 2.11(d); the result is the table in Figure 2.11(e).

Note that the annotations in the output combine query provenance and data provenance, and the

probabilities of output tuples can be computed using these annotations and the independence of

the event probabilities in Figure 2.11(c).

The use of query provenance in the example above models the so-called per-table semantics

of uncertain mappings described in [41]. However, unlike in [41], here we were able to simulta-

neously model uncertainties in both data and mappings, using semiring annotations as a unifying

framework.

52

Chapter 3

Update Exchange in Orchestra

One of the most elusive goals of the data integration field has been supporting sharing across

large, heterogeneous populations. While data integration and its variants (e.g., data exchange [45]

and warehousing) are being adopted in corporations or small confederations, little progress has

been made in integrating broader communities. Yet the need for sharing data across large commu-

nities is increasing: most of the physical and life sciences, especially those related to biology and

astronomy, have become data-driven as they have attempted to tackle larger questions. The field

of bioinformatics, for instance, has a plethora of different databases, each providing a different

perspective on a collection of organisms, genes, proteins, diseases, and so on. Associations exist

between the different databases’ data (e.g., links between genes and proteins, or gene homologs

between species). Unfortunately, data in this domain is surprisingly difficult to integrate, primar-

ily because conventional data integration techniques require the development of a single global

schema and complete global data consistency. Designing one schema for an entire community

like systems biology is arduous, involves many revisions, and requires a central administrator1.

Even more problematic is the fact that the data or associations in different databases are often con-

tradictory, forcing individual biologists to choose values from databases they personally consider

most authoritative [112]. Such inconsistencies are not handled by data integration tools, since

there is no consensus or “clean” version of the data. Thus, scientists simply make their databases

publicly downloadable, so users can copy and convert them into a local format (using custom Perl

scripts or other ad hoc measures). Meanwhile the original data sources continue to be edited. In

some cases the data providers publish weekly or monthly lists of updates (deltas) to help others

keep synchronized. Today, few participants, except those with direct replicas, can actually exploit

such deltas — hence, once data has been copied to a dissimilar database, it begins to diverge from

1Even recent architectures like peer data management [10, 89, 110, 73], which relax administration by supporting
multiple mediated schemas, assume data is consistent.

53

the original.

To address the needs of scientists, we have been developing an extremely flexible scheme

for sharing data among different participants, the collaborative data sharing system (abbreviated

CDSS) [82]. Rather than providing a global view of all data, this scheme instead facilitates im-

port and export among autonomous databases. The CDSS provides a principled architecture that

extends the data integration approach to encompass today’s scientific data sharing practices and

requirements: Our goal with the CDSS is to provide the basic capability of update exchange, which

publishes a participant’s updates to “the world” at large, and then maps others’ updates to the

participant’s local schema. As part of the mapping process, update exchange should also filter

which updates to apply according to the local administrator’s unique trust policies. Data sharing

occurs among loosely coupled confederations of participants (peers). Each participant controls a

local database instance, encompassing all data it wishes to manipulate, including data imported

from other participants. As edits are made to this database, they are logged. Declarative schema

mappings specify one database’s relationships to other participants, much as in peer data manage-

ment systems [73]; each peer operates in “offline” mode for as long as it likes, but it occasionally

performs an update exchange operation, which propagates updates to make its database con-

sistent with the others according to the schema mappings and local trust policies. The update

exchange process is bidirectional and involves publishing any updates made locally by the partic-

ipant, then importing new updates from other participants (after mapping them across schemas

and filtering them according to trust conditions). As a prerequisite to assessing trust, the CDSS

records the derivation of the updates, i.e., their provenance or lineage [17, 34, 25, 9]. After the

update exchange, the participant has an up-to-date data instance, incorporating trusted changes

made by participants transitively reachable via schema mappings. Update exchange introduces a

number of novel challenges that we address in this paper:

• Building upon techniques for exchanging data using networks of schema mappings, we

map updates across participants’ schemas: this facilitates incremental view maintenance in

a CDSS, and it also generalizes peer data management [73] and data exchange [118, 45].

• We allow each participant to perform modifications that “override” data imported from

elsewhere (i.e., remove or replace imported data in the local instance), or add to it (i.e., add

new data to the local database instance).

• We address additional situations in which a set of participants wants greater sharing, such

that an update (including a deletion) by any participant should be propagated to all partici-

pants — i.e., updates affect both source and derived data.

54

G(gid, nam, can)

GUS

B(bid, nam)

BioSQL

U(nam1, nam2)

uBio

m3

m1

m2

(m1) G(g, n, c)→ ∃b B(b, n)
(m2) G(g, n, c)→ U(n, c)
(m3) B(b, n1) ∧U(n1, n2)→ B(b, n2)

Figure 3.1: Mappings among three bioinformatics databases

• In order to allow CDSS participants to specify what data they trust and wish to import, we

propose the use of semiring provenance [62] to trace the derivation of each mapped update,

and we filter updates with participant-specified trust conditions.

• We develop a complete implementation of update exchange in our Orchestra CDSS pro-

totype, with novel algorithms and encoding schemes to translate updates, maintain prove-

nance, and apply trust conditions. We provide a detailed experimental study of the scalabil-

ity and performance of our implementation.

Roadmap. Section 3.1 provides an overview of the CDSS update exchange process. Section 3.2

formalizes the system operation and our data model. Section 3.3 presents algorithms for support-

ing update exchange, and Section 3.4 describes how we implemented our techniques within the

Orchestra system. We experimentally evaluate our work in Section 3.5.

3.1 CDSS Update Exchange

The CDSS model builds upon the fundamentals of data integration and peer data manage-

ment [73], but adds several novel aspects. As in a peer data management system, the CDSS

contains a set of peers, each representing an autonomous domain of control. Each peer’s admin-

istrator has full control over a local DBMS, its schema, and the conditions under which the peer

trusts data. Without loss of generality, we assume that each peer has a schema disjoint from the

others. In the Orchestra implementation we assume relational schemas, but our model extends

naturally to other data models such as XML and nested relations (see Chapter 6).

Example 3.1. Figure 3.1 illustrates an example bioinformatics collaborative data sharing system,

based on a real application and databases of interest to affiliates of the Penn Center for Bioin-

formatics. GUS, the Genomics Unified Schema, contains gene expression, protein, and taxon (or-

55

ganism) information; BioSQL, affiliated with the BioPerl project, contains very similar concepts;

and a third schema, uBio, establishes synonyms and canonical names for taxa. Instances of these

databases contain taxon information that is autonomously maintained but of mutual interest to

the others. Suppose that a peer with BioSQL’s schema, BioSQL, wants to import data from an-

other peer, GUS, as shown by the arc labeled m1, but the converse is not true. Similarly, peer uBio

wants to import data from GUS, along arc m2. Additionally, BioSQL uses the taxon synonyms in

U to infer new entries in its database, via mapping m3. Finally, each participant may have a certain

trust policy about what data it wishes to incorporate: e.g., BioSQL may only trust data from uBio

if it was derived from GUS entries. The CDSS facilitates dataflow among these systems, using

mappings and policies developed by the independent participants’ administrators.

The arcs between participants in the example are formally a set of schema mappings. These are

logical assertions that relate multiple relations from different peer schemas. We adopt the well-

known formalism of tuple-generating dependencies (tgds). Tgds are a popular means of specifying

constraints and mappings [38, 45] in data sharing, and they can express so-called global-local-

as-view or GLAV mappings [49, 73]. (In turn, GLAV generalizes the earlier global-as-view and

local-as-view mapping formulations [100].) A tgd is a logical assertion of the form:

∀x̄, ȳ (ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄))

where the left hand side (LHS) of the implication, ϕ, is a conjunction of atoms over variables x̄

and ȳ, and the right hand side (RHS) of the implication, ψ, is a conjunction of atoms over variables

x̄ and z̄. The tgd expresses a constraint about the existence of a tuple in the instance on the RHS,

given a particular combination of tuples satisfying the constraint of the LHS.

Notation. We use Σ for the union of all peer schemas and ΣP for the schema of peer P. We use

M for the set of all mappings, which we can think of as logical constraints on Σ. When we refer to

mappings we will use the notation of tgds. For readability, we will omit the universal quantifiers

for variables in the LHS. When we later refer to queries, including queries based on mappings,

we will use the similar notation of Datalog (which, however, reverses the order of implication,

specifying the output of a rule on the left).

Example 3.2. Refer to Figure 3.1. Peers GUS, BioSQL, uBio have one-relation schemas describing

taxa IDs, names, and canonical names:ΣGUS = {G(id, can, nam)}, ΣBioSQL = {B(id, nam)}, ΣuBio =

{U(nam, can)}. Among these peers are mappingsM = {m1, m2, m3}, shown as arcs in the figure,

with their definitions on the right. Observe that m1 has an existentially-quantified variable: the

value of b is unknown (and not necessarily unique). The first two mappings all have a single

source and target peer, corresponding to the LHS and the RHS of the implication. In general,

56

Updates from
peer’s edit log

Updates
for this peer

Publication

Update
Translation

Publish
updates

CDSS Versioned,
Replicated

Storage

Other Peers’
Updates from

CDSS Storage

Translate
through

mappings with
provenance

Apply trust
policies,

filtering using
data &

provenance

Overlay locally
contributed

updates

Reconcile
conflicts

Figure 3.2: Dataflow at a single peer in a CDSS

relations from multiple peers may occur on either side, as in mapping m3, which defines data in

the BioSQL relation based on its own data combined with tuples from uBio.

CDSS operation. Each peer P represents an autonomous domain with its own unique schema

and associated local data instance. The users located at P query and update the local instance

in an “offline” fashion. Their updates are recorded in a local edit log. Periodically, upon the

initiative of P’s administrator, P requests that the CDSS perform an update exchange operation. This

publishes P’s local edit log — making it globally available via central or distributed storage [131].

This also subjects P to the effects of the updates that the other peers have published (since the

last time P participated in an update exchange). To determine these effects, the CDSS performs

update translation (overview in Section 3.1), using the schema mappings to compute corresponding

updates over P’s schema. As the updates are being translated, they are also filtered based on P’s

trust conditions that use the provenance (overview in Section 3.1) of the data in the updates. As

a result, only trusted updates are applied to P’s database, whereas untrusted data is rejected.

Additional rejections are the result of manual curation: If a local user deletes data that was not

inserted by P’s users (and hence must have arrived at P via update exchange), then that data

remains rejected by P in future update exchanges of the CDSS. See Figure 3.2 for a diagram

summarizing these dataflow steps.

After update exchange, P’s local instance will intuitively contain data mapped from other

peers, “overlaid” by any updates made by P’s users and recorded in the local edit log. If P’s

instance is subsequently updated locally, then P’s users will see the effects of these edits. Other

peers in the CDSS will only see data that resulted from the last update exchange, i.e., they will

not see the effects of any unpublished updates at P. This situation continues until P’s next update

exchange.

Intuitively, this operating mode resembles deferred view maintenance across a set of views

— but there are a number of important differences, in part entailed by the fact that instances are

related by schema mappings rather than views, and in part entailed by peers’ ability to specify

local edits and trust policies. In the remainder of this section, we provide a high-level overview

of these characteristic aspects of update exchange. Section 3.2 will revisit these aspects in order to

57

define our model formally.

Application of updates. The result of update translation, once trust policies have been enforced

over provenance and data values, is a set of updates to the local instances. In this chapter, for

simplicity of presentation we assume that these updates are mutually compatible. In our actual

implementation, we treat them as candidate updates and use the CDSS prioritization and conflict

reconciliation algorithm of [131] to determine which updates to apply.

Update Translation and Query Answers

To formalize the semantics of computing instances and query answers, we begin with a a static

description of what should appear in each peer’s data instance. Later, we will see how a practical

implementation can be developed with a dynamic, incremental method to achieve this semantics

(see Section 3.3).

The “source” or “base” data in a CDSS, as seen by the users, are the local edit logs at each

peer. These edit logs describe local data creation and curation in terms of insertions and dele-

tions/rejections. Of course, a local user submitting a query expects answers that are fully con-

sistent with the local edit log. With respect to the other peers’ edit logs the user would expect to

receive all certain answers inferable from the schema mappings and the tuples that appear in the

other peers’ instances [73]. Indeed, the certain answers semantics has been validated by over a

decade of use in data integration and data exchange [45, 49, 73, 89, 102].

Queries are answered in a CDSS using only the local peer instance. Hence, the content of

this instance must be such that all and only answers that are certain (as explained above) and

consistent with the local edit log are returned. As was shown in the work on data exchange [45,

104, 76], the certain answer semantics can in fact be achieved through a form of “data translation”,

building peer instances called canonical universal solutions. In our case, the source data consists

of edit logs so we generalize this to update translation. A key aspect of the canonical universal

solutions is the placeholder values or labeled nulls for unknown values that are nonetheless needed

in order to validate mappings with existentials (such as m3 in Example 3.2). The labeled nulls are

internal bookkeeping (e.g., queries can join on their equality), but tuples with labeled nulls are

discarded in order to produce certain answers to queries. (We can additionally optionally return

tuples with labeled nulls, i.e., a superset of the certain answers, which may be desirable for some

applications.)

Example 3.3. Continuing our example, assume that the peers have the local edit logs shown in

Figure 3.3(a) (where “+” signifies insertion). The update translation constructs the local instances

58

∆G
+ 1 2 3
+ 4 5 6

∆B
+ 7 8

∆U
+ 6 5

(a) Local edit logs

G
1 2 3
4 5 6

B
7 8
⊥1 2
⊥1 3
⊥2 5
⊥2 6
⊥2 9

U
6 5
2 3
5 6

(b) Local instances after update translation

Figure 3.3: Local edit logs and update translation

shown in Figure 3.3(b).

Examples of certain answers query semantics at BioSQL:

• query ans(y, z) :- B(x, y), B(x, z) returns {(8, 8), (2, 2), (2, 3), (3, 2), (3, 3), (5, 5), (5, 6), (6, 5), (6, 6)}

• query ans(x, y) :- B(x, y) returns {(7, 8)}

Moreover, if the edit log ∆U would have also contained the curation deletion −(2, 3) then after

update translation, not only would U be missing (2, 3), but also B would be missing (⊥1, 3).

The challenge in the CDSS model is that peer instances cannot be computed merely from

schema mappings and data instances. The ability of all peers to do curation deletions and trust-

based rejections requires a new formalization that takes edit logs and trust policies into account.

We outline in Section 3.2 how we can do that and still take advantage of the techniques for

building canonical universal solutions.

Trust Policies and Provenance

In addition to schema mappings, which specify the relationships between data elements in dif-

ferent instances, the CDSS supports trust policies. These express, for each peer P, what data from

update translation should be trusted and hence accepted. The trust policies consist of trust con-

ditions that refer to the other peers, to the schema mappings, and even to selection predicates on

the data itself. Different trust conditions may be specified separately by each peer, and we discuss

how these compose in Section 3.2.

Example 3.4. Some possible trust conditions in our CDSS example:

• Peer BioSQL distrusts any tuple B(i, n) if the data came from GUS and n ≥ 3, and trusts

any tuple from uBio.

• Peer BioSQL distrusts any tuple B(i, n) that came from mapping m3 if n 6= 2.

59

+

+

G :

1 2 3

4 5 6

m2

m2

+
U :

6 5

2 3

5 6

m1

m1

m3

m3

m3

B :

7 8

⊥1 2

⊥1 3

⊥2 5

⊥2 6

+

Figure 3.4: Provenance graph for bioinformatics example

Since the trust conditions refer to other peers and to the schema mappings, the CDSS needs a

precise description of how these peers and mappings have contributed to a given tuple produced

by update translation. Information of this kind is commonly called data provenance. As we saw at

the end of Example 3.3, provenance can be quite complex in a CDSS. In particular, we need a more

detailed provenance model than why-provenance [17] and lineage [34] (including the extended

model recently proposed in [9]). Informally, we need to know not just from which tuples a tuple

is derived, but also how it is derived, including separate alternative derivations through different

mappings. We present this model more formally in Section 3.2 while here we illustrate our

running example with a graphical representation of provenance.

Example 3.5. Consider the update translation from Example 3.3. The provenance graph shown

in Figure 3.4 has two kinds of nodes: tuple nodes, shown as rectangles, and mapping nodes,

shown as rounded boxes. Arcs connect tuple nodes to mapping nodes and mapping nodes to

tuple nodes. In addition, we have nodes labeled “+” indicating insertions from the local edit logs.

From this graph we can analyze the provenance of, say, B(⊥2, 5) by tracing back along the edges

of the graph — in this case through m1 to G(4, 5, 6), and through m3 to U(6, 5) and B(⊥2, 6).

3.2 Update Exchange Formalized

We first explain how the system automatically expands the user-level schemas and mappings into

“internal” schemas and mappings. These support data exchange and additionally capture how

edit log deletions and trust conditions are used to reject data translated from other peers. First, we

state two fundamental assumptions we make about the form of the mappings and the updates.

We allow the set of mappings in the CDSS to only form certain types of cycles (i.e., mappings

60

Ri x

R x

Rr x

Rl x

Ro x

“Incoming”
mappings

“Outgoing”
mappings

“Incoming”
mappings

“Outgoing”
mappings

Local
rejections

Local
contributions

∆R x
Edit
log

Original relation and edit log Internal view separates input data,
rejections, contributions, and output

To capture the effects of the edit log on each relation (left), we internally encode them
as four relations (right), representing incoming data, local rejections and local contri-
butions, and the resulting (“output”) table.

Figure 3.5: Effects of a peer’s edit log

that recursively define relations in terms of themselves). In general, query answering is undecid-

able in the presence of cycles [73], so we restrict the topology of schema mappings to be at most

weakly acyclic [39, 45]. Mapping (m3) in Example 3.2 completes a cycle, but the set of mappings is

weakly acyclic.

We also assume that within the set of updates published at the same time by a peer, no data

dependencies exist (perhaps because transient operations in update chains were removed [82]).

These updates are stored in an edit log. For each relation R(x̄) in the local instance we denote

by ∆R(d, x̄) the corresponding edit log. ∆R is an ordered list that stores the results of manual

curation at the peer, namely the inserted tuples whose d value is ‘+’ and the deleted tuples whose

d value is ‘−’.

Internal peer schemas. For each relation R in Σ, the user-level edit log ∆R and the local instance

R are implemented internally by four different relations, all with the same attributes as R.

We illustrate these relations in Figure 3.5. Their meaning is as follows:

• R+, the peer’s local contributions table, contains the tuples inserted locally, unless the edit log

shows they were later deleted.

• R−, the peer’s rejections table, contains tuples that were not inserted locally and that are

rejected through a local curation deletion. (Deletions of local contributions are dealt with

61

simply by removing tuples from R+).

• Ri is the peer’s input table. It contains tuples produced by update translation, via mappings,

from data at other peers.

• Ro is the peer’s curated table and also its output table. After update exchange, it will contain

the local contributions as well as the input tuples that are not rejected. This table is the

source of the data that the peer exports to other peers through outgoing mappings. This

is also the table that the peer’s users query, called the local instance in Section 3.1 and

Example 3.3.

Internal schema mappings. Along with expanding the original schema into the internal schema,

the system transforms the original mappings M into a new set of tgds M′ over the internal

schema, which are used to specify the effects of local contributions and rejections.

• For each tgd m inM, we have inM′ a tgd m′ obtained from m by replacing each relation R

on the LHS by Ro and each relation R on the RHS by Ri;

• For each R in Σ,M′ is extended with rules to remove tuples in R− and add those in R+:

(iR) Ri(x̄) ∧ ¬R−(x̄)→ Ro(x̄)

(R̀) R+(x̄)→ Ro(x̄).

Note that the previous description and Figure 3.5 do not incorporate the treatment of trust

conditions. We show how to incorporate them at the end of Section 3.2.

Some of the new mappings inM′ contain negation, and thus one might wonder if this affects

the decidability of query evaluation.

Note that the negated atoms occur only on the LHS of the implication and every variable in

the LHS also occurs in a positive atom there: we call such an assertion a tgd with safe negation. The

results of [45, 104, 76] generalize to tgds with safe negation.

Theorem 3.6. LetM be weakly acyclic and I be an instance of all local contributions and rejections tables.

ThenM′ is also weakly acyclic, hence chaseM′(I) terminates in polynomial time. Moreover, if the rejections

tables are empty it yields an instance of the of input and output tables that is a canonical universal solution

for I with respect toM′.

To recompute the relation input and output instances based on the extensional data in the local

contributions and rejection tables, we use a procedure based on the chase of [45].

62

Definition 3.7 (Consistent system state). An instance (I, J) of Σ′, where I is an instance of the

local rejections and contributions tables and J of the input and output tables, is consistent if J is

equal to the output of applying chaseM′(I).

To recap, publishing a peer P’s edit log means producing a new instance of P’s local rejections

and contributions tables, while holding the other peers’ local rejections and contributions tables

the same2. Recomputing P’s instance means computing a new instance of P’s input and output

tables that matches the results of applying the chase with respect to the internal mappings M′.

By definition, after each update exchange the system must be in a consistent state. (The initial

state, with empty instances, is trivially consistent.)

Provenance Expressions and Graphs

As explained in Section 3.1, CDSS operation needs a data provenance model that is more ex-

pressive than why-provenance or lineage. We base the model implemented in this chapter on

the provenance semiring model proposed in Chapter 2, which has been characterized as “how-

provenance” and provides provenance annotations whose properties closely mirror the relational

algebra. While Chapter 2 used systems of equations to describe provenance, for the system imple-

mentation, an equivalent graph-based provenance formalism turns out to be more convenient. We

will describe the graph-based formalism shortly.

Following the model of Chapter 2, the provenance of a source (base) tuple is represented by its

own tuple id (we call this a provenance token), and that of a tuple computed through update trans-

lation is an expression over the Datalog provenance semiring (N∞[[X]], +, ·, 0, 1) of formal power

series with coefficients from N∞ over the set X of provenance tokens. Intuitively, · is used to

combine the provenance of tuples in a join operation, mapping functions reflect the fact that the

corresponding mapping was involved in the derivation, and + is used in cases when a tuple

can be derived in multiple ways (e.g., through different mappings). Using the terminology of

proof-theoretic Datalog evaluation semantics (cf. Chapter 2, Definition 2.15), every summand in a

provenance expression corresponds to a derivation tree for that tuple in the result of the Datalog

program corresponding to the mappings.

Notation. Recall from Chapter 2 that a provenance-annotated relation is formally a mapping

from tuples to their provenance annotations. Hence we write R(t) for the provenance expression

from N∞[[X]] of the tuple t in relation R. We sometimes omit · and use concatenation.

2This easily generalizes to updates over multiple instances.

63

Example 3.8. To illustrate how the provenance expressions are formed, consider the mappings

from Figure 3.1. If G(1, 2, 3) = g then U(2, 3) = m2 · G(1, 2, 3) = m2 · g and B(⊥1, 2) = m1 ·

G(1, 2, 3) = m1 · g. Moreover, B(⊥1, 3) = m3 · B(⊥1, 2) · U(2, 3) = m3 · m1 · g · m2 · g Note that

the expressions allow us to detect when the derivation of a tuple is “tainted” by a peer or by

a mapping. Distrusting u and m1 leads to rejecting B(3, 2) but distrusting u alone does not.

Note also that B(⊥2, 5) = m1 · G(4, 5, 6) + m3 · B(⊥2, 6) ·U(6, 5) = m1 · g + m3 · B(⊥2, 6) · u while

B(⊥2, 6) = m3 · B(⊥2, 5) ·U(5, 6) = m3 · B(⊥2, 5) ·m2 · g, a circular dependency corresponding to

the cycle in the provenance graph. Expanding B(⊥2, 5) leads to an infinite provenance expression,

however, we can still perform derivation testing and trust policy enforcement using the finite

graphical representation.

When the mappings form cycles, it is possible for a tuple to have infinitely many derivations,

as well as for the derivations to be arbitrarily large. In general, as explained in Chapter 2, the

provenance of a tuple is akin to infinite formal power series. Nonetheless an instance’s provenance

is finitely representable through a system of equations: on the head of each equation we have a

unique provenance variable t for every tuple t (base or derived), while in the body we have all

semiring expressions that represent derivations of this tuple as an immediate consequent from other

tuples (or provenance tokens, if t is a base tuple). Then, according to Chapter 2, the provenance

of a tuple t is the value of t in the least fixpoint of the system formed by all these equations.

We can alternatively look at the system of provenance equations as forming a graph just like

the one in Example 3.5.

Definition 3.9 (Provenance Graph). The graph has two types of nodes: tuple nodes, one for each

tuple in the system and mapping nodes where several such nodes can be labeled by the same

mapping name. We represent an inserted value using a ’+’ mapping node. Every other mapping

node corresponds to an instantiation of the mapping’s tgds. This instantiation defines some

tuples that match the LHS of the tgd and we draw edges from the corresponding tuple nodes to

the mapping node (this encodes conjunction among source tuples). It also defines some tuples

that match the RHS of the tgd and we draw edges from the mapping node to the tuple nodes

that correspond to them. Multiple incoming edges to a tuple node encode the fact that a tuple

may be derived multiple ways. Finally, some tuples are the result of direct user insertions; these

are annotated with globally unique provenance tokens, which we represent as extra labels on the

tuple nodes.

One can generate provenance expressions from the provenance graph, by traversing it re-

cursively backwards along the arcs as in Example 3.5. It is easy to prove formally that these

expressions are the same as the solutions of the system of equations.

64

Assigning Trust to Provenance

The provenance graph intuitively specifies the set of possible explanations for a given tuple. It is

possible that a given peer not trust certain aspects of the CDSS: perhaps data from certain relations

is of questionable value, or certain schema mappings may be judged to be of poor quality. We

formalize this intuition with the notion of trust conditions. Section 1.1 presented several examples

of trust conditions over provenance and data.

Within a CDSS, every tuple must either be a base insertion within a local contributions table,

or a tuple derived from a combination of such base insertions. We assume that each peer specifies

a set of tuples to initially trust; in effect, each tuple is annotated with T, representing that it is

trusted, or D, indicating it is not. Additionally, each peer annotates each schema mapping mi with

T or D. As tuples are derived during update exchange, those that derive only from trusted tuples

and using trusted mappings are marked as trusted. All other tuples are distrusted.

A finite provenance expression can simply be evaluated for “trustworthiness” as follows. For

expressions of the form m · p1 · p2, we can simply map T to boolean true and D to false, then

evaluate the provenance expression as a Boolean formula, where · represents conjunction and +

represents disjunction.

Trust composes along a mapping path as follows: if peer Pi has a schema mapping mij from its

neighbor Pj, then Pi will receive updates via mapping mij if (1) they derive from updates trusted

by Pj, and (2) the updates additionally satisfy the trust conditions imposed by Pi. In essence,

the trust conditions specified by a given peer are combined (via conjunction) with the additional

trust conditions specified by anyone mapping data from that peer. A peer delegates the ability to

distrust tuples to those from whom it maps data.

Example 3.10. In Example 3.8 we calculated the provenances of some exchanged tuples. Suppose

now that peer BioSQL trusts data contributed by GUS and itself, and hence assigns T to the prove-

nance token p3 and p1, but does not trust uBio’s tuple (2, 5) and so assigns D to p2. Assuming

that all mappings are assigned T, the provenance of (3, 2) evaluates as follows:

T · T + T · T ·D = T

therefore BioSQL should indeed have accepted (3, 2).

In general the solutions of provenance equations may be infinite formal power series. Nonethe-

less Algorithm 3 evaluates them correctly with respect to Boolean trust assignments. We describe

how the algorithm works in terms of the provenance graph.

We can now fully specify the mappings necessary to perform update exchange — which com-

bines update translation with trust. For each relation R, the trust conditions are applied during

65

Algorithm 3 Provenance-Trust-Eval(trust assignment α)
Provenance-Trust-Eval

1: for every mapping node labeled m do
2: if α(m) = Dm then
3: replace the node label with D
4: end if
5: if α(m) = Tm then
6: erase the mapping node and connect incoming edges directly to outgoing edges
7: end if
8: end for
9: for every tuple node labeled with provenance token a do

10: replace node label with α(a)
11: end for
12: Set OUTPUT← ∅
13: repeat
14: for every tuple node N do
15: if N has an incoming edge from a T label then
16: replace N’s label with T, erase incoming edges, and add N = T to OUTPUT
17: end if
18: end for
19: until no more changes are made to OUTPUT
20: for every remaining tuple node N do
21: add N = D to OUTPUT
22: end for
23: return OUTPUT

update exchange to the input instance Ri of the peer, thus selecting the trusted tuples from among

all the tuples derived from other peers. The result is an internal relation we can denote Rt. So

instead of the internal mappings (iR) described in Section 3.2 we actually have inM′:

(iR) Rt(x̄) = trusted(Ri(x̄))

(tR) Rt(x̄) ∧ ¬R−(x̄)→ Ro(x̄)

and the definition of consistent state remains the same.

Enhanced trust models. Our implementation as described in this paper makes use of a Boolean

trust model: all tuples are either trusted or distrusted. Our architecture in fact naturally expands

to more complex trust models. In recent work [129] built atop Orchestra, we have shown that

one can develop an extended model in which trust is modeled as a real number (where larger

numbers mean greater distrust) and one can use feedback on query answers to learn how much to

distrust each source. This builds upon one of the provenance semirings mentioned in Chapter 2,

the so-called tropical semiring. Here a conjunction in a schema mapping is converted to a sum

of distrust levels of the tuples being joined, and a disjunction in a schema mapping returns the

66

minimum level of distrust of the tuples being unioned. This requires ranked query processing and

is beyond the scope of this paper.

3.3 Performing Update Exchange

We now discuss how to actually compute peer data instances in accordance with the model of the

previous section. We begin with some preliminaries, describing how we express the computations

as queries and how we model provenance using relations. Then we describe how incremental

update exchange can be attained.

In order to meet participants’ needs for anonymity (they want all data and metadata to be

local in order to prevent others from snooping on their queries), our model performs all update

exchange computation locally, in auxiliary storage alongside the original DBMS (see Section 3.4).

It imports any updates made directly by others and incrementally recomputes its own copy of all

peers’ relation instances and provenance — also filtering the data with its own trust conditions

as it does so. Between update exchange operations, it maintains copies of the data it trusts, for

each relation in the system, enabling future operations to be incremental. In ongoing work, we

are considering more relaxed models in which portions of the computation may be distributed.

Computing Instances with Provenance

In the literature [45, 104, 76], chase-based techniques have been used for computing candidate

universal solutions. However, these are primarily of theoretical interest and cannot be directly

executed on a conventional query processor. In constructing the Orchestra system, we imple-

ment update exchange using relational query processing techniques, in order to take advantage

of robust existing DBMS engines, as well as to ultimately leverage multi-query optimization and

distributed query execution. We encode the provenance in relations alongside the data, making

the computation of the data instances and their provenance a seamless operation. The Clio sys-

tem [118] used similar techniques to implement data exchange but did not consider updates or

provenance.

Datalog for Computing Peer Instances

Work in data integration has implemented certain types of chase-like reasoning with relational

query processors for some time [44, 118]: Datalog queries are used to compute the certain an-

swers [20] to queries posed over integrated schemas. Our goal is to do something similar. How-

ever, when computing canonical universal solutions for the local peer instances, we face a chal-

lenge because the instance may contain incomplete information, e.g., because not all attributes may

67

be provided by the source. In some cases, it may be known that two (or more) values are actually

the same, despite being of unknown value3. Such cases are generally represented by using exis-

tential variables in the target of a mapping tgd (e.g., (m3) in Example 3.2). This requires placeholder

values in the canonical universal solution. Chase-style procedures [45, 104, 76] use labeled nulls to

encode such values. In our case, since we wish to use Datalog-like queries, we rely on Skolem

functions to specify the placeholders, similarly to [118]. Each such function provides a unique

placeholder value for each combination of inputs; hence two placeholder values will be the same

if and only if they were generated with the same Skolem function with the same arguments.

Normal Datalog does not have the ability to compute Skolem functions; hence, rather than

converting our mapping tgds into standard Datalog, we instead use a version of Datalog extended

with Skolem functions, denoted Datalog. (Section 3.4 discusses how these queries can in turn be

executed on an SQL DBMS.)

Notation. Throughout this section, we will use the syntax of Datalog to represent queries. Dat-

alog rules greatly resemble tgds, except that the output of a Datalog rule (the “head”) is a single

relation and the head occurs to the left of the body. The process of transforming tgds into Datalog

rules is the same as that of the inverse rules of [44]:

ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄) becomes ψ(x̄, f̄ (x̄)) :- ϕ(x̄, ȳ)

We convert the RHS of the tgd into the head of a Datalog rule and the LHS to the body. Each

existential variable in the RHS is replaced by a Skolem function over the variables in common

between LHS and RHS: z̄ is replaced by f̄ (x̄).4

Our scheme for parameterizing Skolem functions has the benefit of producing universal solu-

tions (as opposed, e.g., to using a subset of the common variables) while guaranteeing termination

for weakly acyclic mappings (which is not the case with using all variables in the LHS, as in [76]).

If ψ contains multiple atoms in its RHS, we will get multiple Datalog rules, with each such atom

in the head. Moreover, it is essential to use a separate Skolem function for each existentially

quantified variable in each tgd.

Example 3.11. Recall schema mapping (m3) in Example 3.2. Its corresponding internal schema

mapping:

Bo(i, n)→ ∃c Ui(n, c) becomes Ui(n, f (n)) :- Bo(i, n)

3This enables joins on tuples on unknown values that may result in additional answers.
4Although the term has been occasionally abused by computer scientists, our use of Skolemization follows the standard

definition from mathematical logic.

68

We call the resulting Datalog rules mapping rules and we use PM to denote the Datalog

program consisting of the mapping rules derived from the set of schema mappingsM.

Theorem 3.12. IfM is a weakly acyclic set of tgds, then PM terminates for every edb instance I and its

result, PM(I), is a canonical universal solution.

This basic methodology produces a program for recomputing CDSS instances, given a Datalog

engine with fixpoint capabilities.

Incorporating Provenance

We now show how to encode the provenance graph together with the data instances, using ad-

ditional relations and Datalog rules. This allows for seamless recomputation of both data and

provenance and allows us to better exploit conventional relational processing.

We observe that in a set-based relational model, there exists a simple means of generating a

unique ID for each base tuple in the system: within any relation, a tuple is uniquely identified by

its values. We exploit this in lieu of generating provenance IDs: for the provenance of G(3, 5, 2),

instead of inventing a new value p3 we can use G(3, 5, 2) itself.

Then, in order to represent a product in a provenance expression, which appears as a result of

a join in the body of a mapping rule, we can record all the tuples that appear in an instantiation

of the body of the mapping rule. However, since some of the attributes in those tuples are always

equal in all instantiations of that rule (i.e., the same variable appears in the corresponding columns

of the atoms in the body of the rule), it suffices to just store the value of each unique variable in a

rule instantiation. To achieve this, for each mapping rule

(mi) R(x̄, f̄ (x̄)) :- ϕ(x̄, ȳ)

we introduce a new relation Pi(x̄, ȳ) and we replace mi with the mapping rules

(m′i) Pi(x̄, ȳ) :- ϕ(x̄, ȳ)

(m′′i) R(x̄, f̄ (x̄)) :- Pi(x̄, ȳ)

Note that m′i mirrors mi but does not project any attributes. Note also that m′′i derives the actual

data instance from the provenance encoding.

Example 3.13. Since tuples in B (as shown in the graph of Example 3.5) can be derived through

mappings m1 and m3, we can represent their provenance using two relations P1 and P3, using the

69

mapping rules:

P1(i, c, n) :- G(i, c, n)

B(f (n), n) :- P1(i, c, n)

P3(i, n1, n2) :- B(i, n1), U(n1, n2)

B(i, n2) :- P3(i, n1, n2)

Recall from Example 3.8 that B(⊥2, 5) = m1 · G(4, 5, 6) + m3 · B(⊥2, 6) ·U(6, 5). The first part of

this provenance expression is represented by the tuple P1(4, 5, 6) and the second by the tuple

P3(⊥2, 6, 5). (P1(4, 5, 6) can be obtained by assigning i = 1, n = 2, c = 3 in the rules above,

and P3(⊥2, 6, 5) by i = ⊥2, n1 = 6, n2 = 5.) In general, after applying mapping rules such as

the ones shown above, for every node labeled by a mapping m in a provenance graph there is a

tuple representing it in the provenance relation P. In the case of the graph from Example 3.8, the

contents of P1 and P3 are as follows:

P1 :
1 2 3

4 5 6
P3 :

⊥1 2 3

⊥2 5 6

⊥2 6 5

A Primitive Operation on Provenance: Derivation Testing

In addition to computing instances and their provenance, we can use Datalog rules to determine

how a tuple was derived. This is useful in two contexts: first, to assess whether a tuple should be

trusted, which requires that it be derivable only from trusted sources and along trusted mappings;

and second, to see if it is derivable even if we remove certain tuples, which is necessary for

performing incremental maintenance of CDSS instances.

The challenge is to compute the set of base insertions (i.e., the union of their lineages) from

which a tuple (or set of tuples) was derived in a goal-directed way. In essence, this requires reversing

or inverting the mappings among the provenance relations. We do this by first creating a new

relation R′ for each R, and populating each R′ with the tuples whose derivation we wish to check.

Then, for each mapping rule specifying how to derive R from Pi:

(m′′i) R(x̄, f̄ (x̄)) :- Pi(x̄, ȳ)

we define an inverse rule that uses the existing provenance table to fill in the possible values for

f̄ (x̄), namely the ȳ attributes that were projected away during the mapping. This results in a new

70

+

+

G :

3 5 2

1 2 3

m1

m1

B :

3 2

1 3

m3

m3

m2

m2

U :

2 5

2 ⊥2

3 ⊥3

3 2

Figure 3.6: Provenance graph for derivability testing example.

relation P′i with exactly those tuples from which R can be derived using mapping Pi:

P′i (x̄, ȳ) :- R′(x̄), Pi(x̄, ȳ)

If we run the program starting with the tuples whose derivability we want to check in the

corresponding R′ relations, its fixpoint will contain the set of tuples involved in some derivation

of some of those tuples. If we filter the R′ relations to only include values from local contributions

tables, the result would be the union of all lineages of all tuples whose derivability we wanted

to check. In general, we will perform one final step to identify these base tuples, as well as to

ensure we only include trusted tuples. Finally, we essentially run a goal-directed variation5 of the

original Datalog program over the filtered R′ instances to identify the tuples that can indeed be

re-derived.

Example 3.14. Consider a CDSS with the following mappings resembling those in Example 3.2:

(m1) G(i, c, n)→ B(i, n)

(m2) G(i, c, n)→ U(n, c)

(m3) B(i, n)→ ∃c U(n, c)

and the provenance graph shown in Figure 3.6. The corresponding mapping rules are:

(m′1) P1(i, c, n) :- G(i, c, n)

(m′′1) B(i, n) :- P1(i, c, n)

(m′2) P2(i, c, n) :- G(i, c, n)

(m′′2) U(n, c) :- P2(i, c, n)

(m′3) P3(i, n) :- B(i, n)

(m′′3) U(n, f (n)) :- P3(i, n)
5to check only for tuples of interest, instead of producing all possible tuples

71

From these we compute the following inverse rules:

(r1) P′1(i, c, n) :- B′(i, n), P1(i, c, n)

(r2) P′2(i, c, n) :- U′(n, c), P2(i, c, n)

(r3) P′3(i, n) :- U′(n, c), P3(i, n)

(r4) G′(i, c, n) :- P′1(i, c, n)

(r5) G′(i, c, n) :- P′2(i, c, n)

(r6) B′(i, n) :- P′3(i, c, n)

Since B is an idb relation, we replace the atom in the head of (r6) using rules with B in the target,

namely (m′′1), to get:

(r1
6) P′1(i, c, n) :- P′3(i, n), P1(i, c, n)

Rules (r1) − (r5), (r1
6) form the derivation testing program. In particular, if we set U′ =

{(2,⊥2), (3, 2)} and run this program, its fixpoint will also contain: P′2(1, 2, 3), P′3(3, 2), B′(3, 2),

P′1(3, 5, 2), G′(3, 5, 2), G′(1, 2, 3). Of these, only G′(3, 5, 2) and G′(1, 2, 3) are base tuples. We use

those to check which of the tuples in U′ are still derivable. For example, if G′(1, 2, 3) has been

deleted or is untrusted, we can run a goal-directed variation of the original program on the only

remaining base tuple G′(3, 5, 2) to infer that U′(2,⊥2) is still derivable but U′(3, 2) is not.

Incremental Update Exchange

One of the major motivating factors in our choice of provenance formalisms has been the ability

to incrementally maintain the provenance associated with each tuple, and also the related data

instances. We now discuss how this can be achieved using the relational encoding of provenance

of Section 3.3.

Following [66] we convert each mapping rule (after the relational encoding of provenance) into

a series of delta rules. For the insertion delta rules we use new relation names of the form R+, Pi
+,

etc. while for the deletion delta rules we use new relation names of the form R−, Pi
−, etc.

For the case of incremental insertion in the absence of peer-specific trust conditions, the al-

gorithm is simple, and analogous to the counting and DRed incremental view maintenance algo-

rithms of [66]: we can directly evaluate the insertion delta rules until reaching a fixpoint and then

add R+ to R, Pi
+ to Pi, etc. Trust combines naturally with the incremental insertion algorithm: the

starting point for the algorithm is already-trusted data (from the prior instance), plus new “base”

insertions which can be directly tested for trust (since their provenance is simply their source).

72

Then, as we derive tuples via mapping rules from trusted tuples, we simply apply the associated

trust conditions to ensure that we only derive new trusted tuples.

Incremental deletion (also called decremental maintenance) is significantly more complex.

When a tuple is deleted, it is possible to remove any provenance expressions and tuples that are

its immediate consequents and are no longer directly derivable. However, the provenance graph

may include cycles: it is possible to have a “loop” in the provenance graph such that several tuples

are mutually derivable from one another, yet none are derivable from edbs, i.e., local contributions

from some peer in the CDSS. Hence, in order to “garbage collect” these no-longer-derivable tu-

ples, we must test whether they are derivable from trusted base data in local contributions tables;

those tuples that are not must be recursively deleted following the same procedure.

Algorithm 4
Propagate-Delete

1: for every Pi do
2: Set R0 ← R
3: end for
4: Set c← 0
5: repeat
6: Compute all Pi

− based on their delta rules
7: {Propagate effects of deletions}
8: for each idb R do
9: update each associated Pi, by applying Pi

− to it
10: Define new relation Rc+1 to be the union of all Pi, projected to the x̄ attributes.
11: end for
12: {Check tuples whose provenance was affected}
13: for each idb R do
14: Let R′ be an empty temporary relation with R’s schema
15: for each tuple Rc(ā) not in Rc+1(ā) do
16: if there exists, in any provenance relation Pi associated with R, a tuple (ā, ȳi) then
17: add tuple (ā) to R′

18: else
19: add tuple (ā) to R−

20: end if
21: end for
22: Test each tuple in R′ for derivability from edbs; add it to R− if it fails
23: end for
24: Increment c
25: until no changes are made to any R−

26: return the set of all Pi
− and R−

Suppose that we are given each list of initial updates R̄− from all of the peers. Our goal is

now to produce a set of R̄i update relations for the peer relations and a corresponding set Pi
−

to apply to each provenance relation Pi. Algorithm 4 shows pseudocode for such an algorithm.

First, the algorithm derives the deletions to apply to the provenance mapping relations; based on

73

1 2

2

1

n3 4 n+2

n1 2

Figure 3.7: Example provenance graph showing relationships between tuples.

these, it computes a new version of the peer schema relations and their associated provenance

relations (Lines 6–10). Next, it must determine whether a tuple in the instance is no longer

derivable (Lines 13-22): such tuples must also be deleted. The algorithm first handles the case

where the tuple is not directly derivable (Line 16), and then it performs a more extensive test

for derivability from edbs (Line 22). The “existence test” is based on the derivation program

described in Section 3.3, which determines the set of edb tuples that were part of the original

derivation. Given that set, we must actually validate that each of our R′ tuples are still derivable

from these edbs, by re-running the original set of schema mappings on the edb tuples.

These two steps may introduce further deletions into the system; hence it is important to

continue looping until no more deletions are derived.

Example 3.15. Revisiting Example 3.5 and the provenance graph there, suppose that we wish to

propagate the deletion of the tuple T(3, 2). This leads to the invalidation of the mapping node

labeled m4 and then the algorithm checks if the tuple S(1, 2) is still derivable. The check succeeds

because of the inverse path through (m1) to U(1, 2, 3).

We note that a prior approach to incremental view maintenance, the DRed algorithm [66],

has a similar “flavor” but takes a more pessimistic approach. (DRed was formulated for view

maintenance without considering provenance, but it can be adapted to our setting.) Upon the

deletion of a set of tuples, DRed will pessimistically remove all tuples that can be transitively

derived from the initially deleted tuples. Then it will attempt to re-derive the tuples it had

deleted. Intuitively, we should be able to be more efficient than DRed on average, because we

can exploit the provenance trace to test derivability in a goal-directed way. Moreover, since our

algorithm proceeds one step at a time, if it finds that a tuple is still derivable and does not need

to be deleted, it will not need to test for derivability any other tuples transitively derived from

it. Finally, DRed’s re-derivation should typically be more expensive than our test for derivability,

because insertion is more expensive than querying. In Section 3.5 we validate this hypothesis.

However, to provide an intuition of the differences, we give a brief example.

Example 3.16. Consider Figure 3.7, where nodes represent tuples and arrows represent the immediate-

74

consequence relationship. The diagram corresponds to the mappings:

(m1) R→ T1,

(m2) S→ T1,

(m3) T1 → T2,

(m4) T2 → T3,

. . .

(mn+2) Tn−1 → Tn,

and an instance where R and S contain one tuple each.

Now suppose r is deleted. This is a bad case for DRed, because it initially takes n iterations

to erroneously delete all ti-tuples, and subsequently takes another n iterations to re-derive them.

On the other hand, our algorithm would find that t1 is still reachable after deleting r and stop

immediately, without affecting any other ti-tuples. The behavior is similar if only s is deleted.

On the other hand, suppose both r and s are deleted. Then this is a good case for DRed since

all ti-tuples in fact need to be deleted, so no re-derivation is required. On the other hand, our

algorithm would require a derivation test before deleting each ti-tuple, although each of these

tests would only take one step to find that the corresponding tuple is not derivable.

3.4 Implementation

The Orchestra system is a full implementation of a CDSS. Our initial prototype version in [131]

focused on issues unrelated to update exchange (primarily those related to peer-to-peer commu-

nication and persistent storage), and hence for this paper we had to extend the system in many

fundamental ways. Atop the existing catalog, communications, and persistence layers, we devel-

oped the following components in order to support incremental update exchange:

• Wrappers connect to DBMS data sources, obtain logs of their updates, and apply updates to

them.

• Auxiliary storage holds and indexes provenance tables for peer instances.

• The update exchange engine performs the actual update exchange operation, given schemas,

mappings, and trust conditions.

Orchestra performs two different but closely related tasks. When a peer first joins the system,

the system imports its existing DBMS instance and logs, and creates the necessary relations and

indices to maintain provenance. Later, when the peer actually wishes to share data, we (1) obtain

75

its recent updates via a wrapper and publish these to the CDSS, and (2) perform the remaining

steps of update exchange in an incremental way. To review, these are update translation, prove-

nance recomputation, and application of trust conditions. The final resulting instance is written to

Orchestra’s auxiliary storage, and a derived version of it is recorded in the peer’s local DBMS.

The majority of our technical contributions were in the update exchange engine, which com-

prises approximately one half of the 90,200 lines of code in Orchestra. The engine parses tgds

and transforms them into inverse rules, then delta rules, as described in Section 3.3. These rules

are then precompiled into an executable form, resembling Datalog which we map down to a

query engine through a pluggable back-end.

Provenance storage. We considered several alternative encodings for provenance relations, along

the lines of 3.3. Our first approach was to convert mapping tgds into rules with a single atom in

the head, and create one provenance relation for each such rule (i.e., essentially one relation for

each pair of mapping tgd and relation in its RHS). However, we found that we needed to find

strategies for reducing the number of relations (and thus the number of operations performed by

the query engine). For this reason, we experimented with the so-called “outer union” approach

of [21] — which allows us to union together the output of multiple rules even if they have different

arity.

However, we found that in practice an alternate approach, which we term the composite mapping

table, performed better. Rather than creating a separate provenance table for each source relation,

we instead create a single provenance table per mapping tgd, even if the tgd has multiple atoms

on its RHS. This approach essentially takes advantage of the fact that tuples produced by different

atoms in the head of the same mapping tgd have common provenance derivations. Thus, instead

of redundantly storing such common provenance information in separate relations for each source

relation, it stores the shared provenance once.

Our main prototype implementation consists of a Java compilation and runtime system, which

makes calls to an external query engine. The results in this paper target a SQL-based back-end.

Using an off-the-shelf relational DBMS as a basis for the update exchange component is attractive

for several reasons: (1) each peer is already running an DBMS, and hence there is a resource that

might be tapped; (2) much of the data required to perform maintenance is already located at the

peer (e.g., its existing instance), and the total number of recent updates is likely to be relatively

small; (3) existing relational engines are highly optimized and tuned.

However, there are several ways in which our requirements go beyond the capabilities of a

typical DBMS. The first is that the Datalog rules are often mutually recursive, whereas commercial

engines such as DB2 and Oracle only support linearly recursive queries. The second is that our

76

incremental deletion algorithm involves a series of Datalog computations and updates, which

must themselves be stratified and repeated in sequence. Finally, DBMSs do not directly support

Skolem functions or labeled nulls.

Hence, we take a Datalog program and compile it to a combination of Java objects and SQL

code. The control flow and logic for computing fixpoints is in Java,6 using JDBC to execute SQL

queries and updates on the DBMS (which is typically on the same machine). To achieve good

performance, we make heavy use of prepared statements and keep the data entirely in DBMS

tables. Queries return results into temporary tables, and the Java code only receives the number

of operations performed, which it uses to detect fixpoint. Support for Skolem functions was

implemented by adding user-defined functions and extending the schema with extra columns for

each function and parameter.

As part of the process of building the system, we experimented with several different DBMSs;

the one with the best combination of performance and consistency was DB2, so we report those

numbers in Section 3.5.

3.5 Experimental Evaluation

In this section, we investigate the performance of our incremental update exchange strategies,

answering several questions. First, we consider the impact of different strategies for computing

the effects of updates: complete recomputation from an updated set of base tuples, the DRed

strategy of [66], and our new provenance-based propagation strategy. (The latter two only differ

with respect to propagation of deletions and use the same insertion propagation techniques.) Next

we consider scalability with respect to several factors: number of peers, number of base tuples,

and relative size of attributes in the tuples. Finally, we study the effects of mappings: what

happens as we vary the number of mappings among a set of peers, change from unidirectional to

bidirectional mappings, and change our deletion policies.

Experimental Setup

We conducted all experiments on our full Orchestra implementation, which consists of the

previously-discussed Java layer running atop a relational DBMS engine. We used Java 6 (JDK

1.6.0 07) and Windows Server 2008 on a Xeon ES5440-based server with 8GB RAM. Our underly-

ing DBMS was DB2 UDB 9.5 with 6GB of RAM.

6We chose to use Java over SQL rather than user-defined functions for portability across different RDBMSs.

77

Experimental CDSS Configurations

To test the system at scale, we developed a synthetic workload generator based on bioinformatics

data and schemas to evaluate performance, by creating different configurations of peer schemas,

mappings, and updates. The workload generator takes as input a single universal relation based

on the SWISS-PROT protein data`base [6], which has 25 attributes.

For each peer, it randomly partitions the 26 attributes from SWISS-PROT’s schema into 2

relations, and adds a shared key attribute to preserve losslessness. Next, full mappings7 are

created among the relations via their shared attributes: a mapping source is the join of all relations

at a peer, and the target is the join of all relations with these attributes in the target peer. Typically

for a set of n nodes, we generate a spanning tree containing n− 1 edges. For experiments where

we increase the fan-in or fan-out (Section 3.5) we start with this spanning tree and add edges until

we satisfy the fan-in and fan-out constraints. We emphasize that this was a convenient way to

synthesize mappings; no aspect of our architecture or algorithms depends on this structure.

Finally, we generate fresh insertions by sampling from the SWISS-PROT database and gen-

erating a new key by which the partitions may be rejoined. We generate deletions similarly by

sampling among our insertions. The SWISS-PROT database, like many bioinformatics databases,

has many large strings, meaning that each tuple is quite large. Clearly, the size of tuples (and at-

tributes) makes a significant difference in performance, as does, e.g., whether non-key attributes

are stored as CLOBs or as strings.

To study a range of different possible input workloads, we conduct most of our experiments

with two different sizes for the initial database instance (2,000 and 10,000 original insertions over

each of the base tables at every peer). We also use two different sizes for the tuples: “integer,”

where we substituted integer hash values for each string, providing the properties of CLOBs

or other small attribute types; and “string”, where we use 1KB VARCHAR strings to directly

encode the data from SWISS-PROT. We vary the number of peers and mappings, as well as their

properties. Apart from our first experiment in the next section (where we consider the effects

of tuples with multiple derivations), we keep a disjoint set of tuples in the base instances of our

peers.

Terminology

We refer to the base size of a workload to mean the number of SWISS-PROT entries inserted

initially into each peer’s local tables and propagated to the other peers before the experiment is

run. Thus, in a setting of 10 peers, a base size 2000 begins with 20000 SWISS-PROT entries split

7A full mapping is one that preserves all source attributes in the target.

78

into 40000 tuples in peer relations, but as these are normalized into each of the peers’ schemas,

this results in 176,000 total tuples in peer and mapping relations, for a setting with one incoming

and one outgoing mapping per peer. When we discuss update sizes, we mean the number of

SWISS-PROT entries per peer to be updated (e.g., 200 deletions in the setting above translates to

2000 SWISS-PROT entries, or a total of about 15000 base and derived tuples).

Experimental Methodology

Each individual experiment was repeated seven times, with the final number obtained by discard-

ing the best and worst results and computing the average of the remaining five numbers.

Incremental vs. Complete Recomputation

Our first experiment investigates where our incremental maintenance strategy provides benefits,

when compared with simply recomputing all of the peers’ instances from the base data. The

interesting case here is deletion (since incremental insertion obviously requires a subset of the

work of total recomputation). Moreover, our rationale for developing a new incremental deletion

algorithm, as opposed to simply using the DRed algorithm, was that our algorithm should provide

superior performance to DRed in these settings.

Figure 3.8(a) shows the relative performance of recomputing from the base data after it is up-

dated (“Non-incremental”), our incremental deletion algorithm, and the DRed algorithm, for a

setting of 10 peers, full mappings, and 10,000 base tuples in each peer. One important differenti-

ation between DRed and our algorithm is how they perform when a tuple is derivable multiple

ways. Hence in this set of experiments we allow each tuple to exist in multiple base instances (as

opposed to all remaining experiments). As a result, in this case some of the derived tuples have

multiple alternative derivations, and even though some of the source tuples get deleted, the output

tuples may still be derivable from other sources. We note several key facts: first, our deletion

algorithm is faster than a full recomputation even when deleting up to approximately 50% of the

instance. Second, in comparison DRed performs worse in all measured settings — in fact, only

outperforming a recomputation for delete settings of under 30%. One reason for these results is

that, when a tuple t has alternative derivations and some other tuples are derived from it, DRed

transitively deletes all of them and then rederives them. In contrast, our algorithm identifies the

existence of alternative derivations for t and thus avoids deleting t, as well as other tuples tran-

sitively derived from it. Moreover, our algorithm does the majority of its computation while only

using the keys of tuples (to trace derivations), whereas DRed (which does reinsertion) needs to

use the complete tuples.

79

30

40

50

e
(s
ec
)

non‐incremental deletions
DRed deletions
incremental deletions

0

10

20

10% 20% 30% 40% 50% 60% 70%

Ti
m

Deletion ratio

(a) Varying ratio of deleted tuples

15

20

25

30

e
(s
ec
)

non‐incremental deletions 10%
incremental deletions 50%
DRed deletions 50%
non‐incremental deletions 50%
incremental deletions 10%
DRed deletions 10%

0

5

10

2k 4k 6k 8k 10k

Ti
m
e

Number of tuples

(b) Varying base data set size

Figure 3.8: Relative performance of deletion propagation algorithms

Figure 3.8(b) shows the relative performance of these algorithms, for a setting of 10 peers with

disjoint data at each peer, for different base sizes when deleting either 10% or 50% of the base data

at each peer. We note that in this case our algorithm and DRed perform and scale very similarly,

even though this case is ideal for DRed, because it never needs to rederive any tuples. Moreover,

both algorithms vastly outperform a full recomputation when deleting 10% of the base data at

each peer, and perform similarly to it when deleting 50% of those data.

Cost and Overhead of Computing Instances

In our second experiment, we look at how the algorithms scale, with respect to the number of

peers, the complexity of the tuples, and the base size. Our parameters of interest include both

running times and storage overhead.

In this set of experiments (and all subsequent ones), we assume a setting with n− 1 mappings

among n peers (in the form of a spanning tree, generated as described above). In general, the

spanning tree is somewhat irregular, but we can expect the size of the joint instances across the

peers will grow at an approximately quadratic rate.

We compare the instance sizes, provenance overhead, and running for our different configura-

tions: Figure 3.9(a) shows the results for 2,000 tuples of integer data; Figure 3.9(b) for a larger set

of base instances with 10,000 tuples of integer data; and Figure 3.9(c) shows what happens if we

increase the tuple size (using 2,000 tuples of large strings) instead of the number of tuples. The left

y-axis shows time and is used for the time-to-join plot. The right y-axis indicates the number of

tuples and is used for the other line plots.

We see that the instance size indeed grows roughly quadratically in all cases (with some minor

variance). The cost of computing these instances grows roughly correspondingly with the number

of tuples that must be created. We observe that the size of the provenance relations (in terms of

80

2

3

600

800

(s
ec
)

time to join
peer relations size
provenance relations size

0

1

0

200

400

20 40 60 80 100

Ti
m
e

N b fNumber of peers

(a) Integer dataset - 2k base size

2

100

150

200

(s
ec
)

time to join
peer relations size
provenance relations size

0

1

0

50

4 8 12 16 20

Ti
m
e

N b fNumber of peers

(b) Integer dataset - 10k base size

0.6

0.9

1.2

600

800

1000

1200

(s
ec
)

time to join

peer relations size

provenance relations size

0

0.3

0

200

400

10 20 30 40

Ti
m
e

N b fNumber of peers

(c) String dataset - 2k base size

Figure 3.9: Time to join and relation instance sizes

tuples) is relatively small compared with the total instance size, averaging around 25% of the total

number of tuples in the relations. In Section 3.5 we examine the overhead for storing provenance

in settings with more mappings/peer. The size of a tuple in a provenance relation is roughly the

same as that of a peer relation tuple.

Overall, the 2,000-tuple relation cases show running times on the order of 13-15 minutes to

materialize all instances in a 100-peer configuration. We feel this is a reasonable startup cost for

a system that will be initialized once and incrementally maintained during off-hours. For the

10,000-tuple instance, as one would expect, running times increase by approximately by a factor

of 5 from the equivalent 2,000-tuple case. Here we only show scalability to 20 peers because

our original SWISS-PROT dataset did not contain enough unique tuples for us to create non-

overlapping base instances for more than 20 peers. In any case, it is evident that, even with these

large sizes, we can scale well beyond 20 peers (since running times are in the 3 minute range).

We note that most real bioinformatics data sharing confederations are much smaller than 20 peers

today.

Incremental Update Exchange vs. Number of Peers

Next, we look at how incremental insertion and deletion scale with the number of peers. Fig-

ure 3.10(a) begins with the integer/2,000-tuple base instances. We see that insertion and deletion

in these cases (with single derivations for every tuple) is often significantly faster than the time

necessary to recompute from scratch (equivalent, for a small update ratio, to the time to join the

system, shown as the top-most line plot). The performance of insertions and deletions is quite

comparable, with deletions running slightly faster because they reduce the table sizes used in

the computation as they are applied (whereas insertions increase the size of the tables). Given

that our target application domain is one where updates are only occasionally propagated (likely

81

400

600

800

e
(s
ec
)

time to join
incremental insertions 50%
incremental deletions 50%
incremental insertions 10%
incremental deletions 10%
incremental insertions 1%
incremental deletions 1%

0

200

20 40 60 80 100

Ti
m
e

b fNumber of peers

(a) Integer dataset - 2k base size

80

120

160

e
(s
ec
)

time to join
incremental insertions 50%
incremental deletions 50%
incremental insertions 10%
incremental insertions 1%
incremental deletions 10%
incremental deletions 1%

0

40

4 8 12 16 20

Ti
m
e

Number of peers

(b) Integer dataset - 10k base size

600

800

1000

e
(s
ec
)

time to join
incremental insertions 50%
incremental deletions 50%
incremental insertions 10%
incremental deletions 10%
incremental insertions 1%
incremental deletions 1%

0

200

400

10 20 30 40

Ti
m

Number of peers

(c) String dataset - 2k base size

Figure 3.10: Scalability of incremental update propagation algorithms

during off-hours), performance seems entirely acceptable: we can propagate updates to 50% of

the tuples in 100 peers with running times in the range of 6 minutes.

Increasing the size of the base data to 10,000 tuples (Figure 3.9(b)) increases the running times

by approximately a factor of 5 — as with our previous time-to-join experiment. Again, we only

show scalability to 20 peers because our original SWISS-PROT dataset did not contain enough

unique tuples for us to create non-overlapping base instances for more than 20 peers.

Our experiments to this point considered data with “small” attributes — integers or CLOBs. If

we consider large attributes (long VARCHARs), the cost of insertions goes dramatically up (since

insertions must contain all attributes), whereas the cost of deletions can remain similar (since

deletions can be done purely with key attributes). We see this validated in Figures 3.10(c), where

the gap between deletion and insertion cost widens.

Performance vs. Base Data Size

The previous experiments studied the effects of increasing the number of peers. We now see what

happens if we fix the number of peers (10 peers with 9 mappings among them) and vary the base

size. Integer data is shown in Figure 3.11(a), and string data in Figure 3.11(b). We observe that

in both cases the running times of the incremental algorithms scale at a slightly-more-than-linear

rate with the number of tuples. Moreover, propagation of incremental deletions is generally faster

than that of equal insertion loads. The difference is more extreme for the string dataset, due to

the use of keys by the deletion algorithm, as explained above.

Performance vs. Mappings

Our last experiment focuses on the impact of adding more mappings among a fixed number of

peers. More mappings result in more individual Datalog rules in the update exchange process,

82

15

20

25

30

e
(s
ec
)

time to join
incremental insertions 50%
incremental deletions 50%
incremental insertions 10%
incremental deletions 10%
incremental insertions 1%
incremental deletions 1%

0

5

10

2k 4k 6k 8k 10k

Ti
m
e

Number of tuples

(a) Integer dataset

120

160

200

e
(s
ec
)

time to join
incremental insertions 50%
incremental deletions 50%
incremental insertions 10%
incremental deletions 10%
incremental insertions 1%
incremental deletions 1%

0

40

80

2k 4k 6k 8k

Ti
m
e

Number of tuples

(b) String dataset

Figure 3.11: Scalability for increasing base data sizes

more alternative derivations and hence provenance values, and often more overall tuples in the

resulting instance. Hence we expect the cost of computation to go up significantly.

Here we focused simply on the cost of joining the system, computing peer instances from

scratch, for a case where each base instance contains 2,000 tuples with integer data. As Fig-

ure 3.12(a) shows, we varied the fan-in and fan-out values from the default of 1 all the way up to

3 — this results in 9, 18, and 27 mappings, respectively, with the mappings distributed uniformly

among the 10 peers. We see that, especially for more than 10 peers, increasing the fan-in dramat-

ically increases the rate of growth of the computation times. However, for up to 20 peers and a

fan-in/fan-out of 2 mappings the running times are quite reasonable.

Moreover, we measured the impact of adding more mappings to the size of provenance and

peer relations, with a particular interest in the relative overhead incurred by storing provenance.

As shown in Figure 3.12(b), the number of tuples in provenance relations is around 25% of that

in peer relations for a fan-in/fan-out of 1, but increases to more than 50% for fan-in/fan-out of

2, while for a fan-in/fan-out of 3 the number of tuples in peer relations and provenance relations

is about equal. This is expected, since the addition of more mappings results in more alternative

derivations for each tuples that need to be recorded in provenance relations.

83

300

400

500

e
(s
ec
)

fan‐in/fan‐out: 1
fan‐in/fan‐out: 2
fan‐in/fan‐out: 3

DNC in 10 min

0

100

200

5 10 15 20 25

Ti
m
e

Number of peers

(a) Effect on instance size and performance

1

1.5

2

f t
up

le
s
(M

)

fan‐in/fan‐out: 3 ‐ peer relations
fan‐in/fan‐out: 3 ‐ provenance relations
fan‐in/fan‐out: 2 ‐ peer relations
fan‐in/fan‐out: 2 ‐ provenance relations
fan‐in/fan‐out: 1 ‐ peer relations
fan‐in/fan‐out: 1 ‐ provenance relations

0

0.5

5 10 15 20

N
um

be
r
of

N b fNumber of peers

(b) Effect on provenance storage size

Figure 3.12: Effects of mapping fan-in/fan-out on storage overhead and performance

84

Chapter 4

Optimizing Queries on Annotated Relations

The use of annotated relations in CDSS presents new challenges in query reformulation and op-

timization as queries that are semantically equivalent when posed over ordinary relations may

become inequivalent when posed over annotated relations. Indeed, this phenomenon was already

observed for the case of bag semantics [24, 81], where, e.g., adding a “redundant” self-join to a

query actually changes the query’s meaning. The need to compare query equivalence for dif-

ferent kinds of provenance annotations was also emphasized from early on in [17, 18] and re-

iterated in [13]. A central theme of this chapter is to compare different provenance-annotated

semantics among themselves and with the standard set and bag semantics. The comparison is

done w.r.t. containment1 and equivalence of conjunctive queries (CQs) and unions of conjunctive

queries (UCQs), leading to four different hierarchies among these semantics. Whether the steps

in these hierarchies are strict or not is always informative and sometimes surprising.

We consider in this chapter five different kinds of provenance information that can be captured

using semiring annotations. These range from the very simple lineage of [35], in which a tuple

in the output is annotated with a set of tuple ids of all “contributing” source tuples, to the why-

provenance of [17], in which output tuples are annotated with a set of sets of contributing source

tuples, to the provenance polynomials N[X] used in Orchestra. Recall that provenance polynomials

are as “general” as any other commutative semiring, hence this is the most informative form of

provenance annotations.

Another central theme of this chapter is to establish the complexity of containment and equiv-

alence of CQs/UCQs for various semirings. Some of these are classical results [22, 123] and one

other (for distributive lattices) has been established already in [62]. This chapter focuses primarily

on the provenance semirings.

1We define inclusion of K-relations by the natural order present in the semirings of interest to us (see Section 4.1).

85

B PosBool(X) Lin(X) Why(X) Trio(X) B[X] N[X] N

CQs cont np-c np-c np-c np-c np-c np-c np-c ? (Πp
2 -hard)

equiv np-c np-c np-c gi-c gi-c gi-c gi-c gi-c

UCQs cont np-c np-c np-c np-c in pspace np-c in pspace undec
equiv np-c np-c np-c np-c gi-c np-c gi-c gi-c

In the table, non-shaded boxes indicate contributions of this dissertation. NP is short for NP-complete.
GI is short for GI-complete (i.e., complete for the class of problems polynomial time reducible to graph
isomorphism).

Figure 4.1: Complexity of containment and equivalence

A priori, it is not clear that containment and equivalence for queries on relations with prove-

nance annotations should even be decidable, as bag containment is known to be undecidable for

UCQs [81], and N[X] seems related to bags. Nevertheless, we are able to show that containment

is decidable for all the forms of provenance annotations we consider, for both CQs and UCQs

(with the exception of containment of UCQs with Trio-style lineage, which we leave open). We

also establish interesting connections with the same problems for bag semantics. In particular our

contributions are:

• We show that the various forms of provenance annotations we consider are related by sur-

jective semiring homomorphisms, which yields easy bounds on their relative behavior with

respect to query containment.

• We show that for UCQs, N[X]- containment implies K-containment for any semiring K,

and for any positive K (a very large class that includes all the semirings we consider in

this dissertation, see Section 4.1), K-containment implies containment under the usual set

semantics.

• For the case of CQs without self-joins, we show that for any positive K, K-equivalence is

the same as isomorphism, and thus its complexity is complete for the class gi of problems

polynomial time reducible to graph isomorphism.2

• We show that containment of CQs and UCQs is decidable for lineage, why-provenance,

B[X], and N[X] annotations. The decision procedures involve interesting variations on

the concept of containment mappings, or (in the case of N[X]-containment and Trio(X)-

containment of UCQs) establishing a small counterexample property (see Sections 4.4 and 4.4).

2Graph isomorphism is known to be in np, but is not known or believed to be either np-complete or in ptime, see [92].

86

We also identify the complexity in each case as np-complete (with the exception of N[X]-

containment and Trio(X)-containment of UCQs, where we give pspace upper bounds).

• We show that for why-provenance, B[X], and N[X], equivalence of CQs implies isomor-

phism, and the complexity is therefore somewhat lower than for containment (gi-complete).

N[X]-equivalence of UCQs is also shown to be the same as isomorphism and gi-complete.

Lineage-equivalence of CQs and why-prov. and B[X]-equivalence of UCQs are shown to

remain np-complete.

• We show that for CQs, why-prov. containment implies bag-containment, and bag contain-

ment implies lineage-containment. We also show that for UCQs N[X]-equivalence is the

same as bag equivalence hence providing a proof that the latter is the same as isomorphism

and therefore GI-complete.

Figure 4.1 summarizes the complexity results mentioned above (for completeness we include

previously known results in the shaded boxes). Figure 4.2 summarizes the logical relationships

for containment/equivalence among the various semirings we consider.

The rest of this chapter is organized as follows. We define containment of queries on K-

relations in terms of the natural order in Section 4.1 and discuss the connections with semiring

homomorphisms. We review the background concepts of containment mappings and canonical

databases in Section 4.2. We derive the bounds on containment based on surjective semiring

homomorphisms in Section 4.3. We present the main results on containment and equivalence in

Section 4.4. We finish with a discussion of containment and equivalence for Datalog queries in

Section 4.5.

4.1 Preliminaries

We assume a Datalog-style representation of CQs and UCQs. We use single letters P, Q, . . . for

CQs and overlined letters P̄, Q̄, . . . for UCQs. The semantics of CQs and UCQs on K-relations

can be given by translating them (via a standard procedure) to RA+ queries, then applying Def-

inition 2.2 (Chapter 2). However, it will be more convenient here to use an equivalent definition

based on the notion of valuations. A valuation is a function ν : vars(Q) → D extended to be the

identity on constants. Valuations operate component-wise on tuples in the expected way. Let Q

be a CQ

Q(ū) :- R1(ū1), . . . , Rn(ūn)

87

B[X] ⇔ N[X]

⇓̀̀⇓
Why(X) ⇔ Trio(X)

⇓̀
N

⇓̀
Lin(X)

⇓̀
PosBool(X) ⇔ B

(a) CQ containment

B[X] ⇔ N[X]

m
N

m
Trio(X)

m
Why(X) ⇔
⇓̀

Lin(X)

⇓̀
PosBool(X) ⇔ B

(b) CQ equivalence

B[X] ⇐̀ N[X]

⇓̀
Trio(X)

⇓̀
⇐̀

N⇐̀

⇓̀
Why(X)

⇓̀
Lin(X)

⇓̀
PosBool(X) ⇔ B

(c) UCQ containment

N ⇔ N[X]

m
Trio(X)

⇓̀̀⇓
B[X]

⇓̀
Why(X)

⇓̀
Lin(X)

⇓̀
PosBool(X) ⇔ B

(d) UCQ equivalence

In the figures above, K1 ⇒ K2 indicates that K1-containment (equivalence) implies K2-containment
(equivalence). A ticked arrow “⇒́” indicates that the implication is strict.

Figure 4.2: Logical implications of containment and equivalence

and let I be a K-instance of the same schema. The result of evaluating Q on I is the K-relation

defined

JQKI(t) def=
⊕
ν s.t.

ν(ū)=t

n⊗
i=1

Ri
I(ν(ūi)) (4.1)

and the sums and products are in K. A valuation ν which maps ū to t such that the product in

(4.1) is non-zero is called a derivation of t, and we say that it justifies the associated product. The

meaning of (4.1) is unchanged if we assume the sum ranges only over derivations of t.

We extend this semantics to UCQs as follows. If Q̄ = (Q1, . . . , Qn) is a UCQ, then the result of

evaluating Q̄ on a K-instance I is the K-relation defined

JQ̄KI(t) def=
n⊕

i=1

JQiKI(t) (4.2)

88

We define containment of K-relations and queries over K-instances in terms of the natural order.

Let (K,⊕,⊗, 0, 1) be a semiring and define a ≤ b def⇐⇒ ∃c a⊕ c = b. When ≤ is a partial order

we say that K is naturally-ordered. B, N, PosBool(X), and all of the semirings for provenance

from Chapter 2 are naturally ordered. For PosBool(X) the natural order corresponds to logical

entailment: ϕ ≤ ψ iff ϕ |= ψ. For B[X] we have a ≤ b iff every monomial in a also appears in

b. For N[X] we have a ≤ b iff every monomial in a also appears in b with an equal or greater

coefficient. Thus 2x2y ≤ 5x2y + 2z but x + 2y 6≤ 5x + 3y2. For lineage and why-provenance the

natural order corresponds to set inclusion (n.b. for why-provenance, this is only set inclusion “at

the outer level” – e.g., {{x}} ≤ {{x}, {y, z}} but {{x}, {y, z}} 6≤ {{x, y}, {y, z}}).

Definition 4.1. Let K be a naturally-ordered semiring and let R1, R2 be two K-relations. We define

containment of R1 in R2 by

R1 ≤K R2
def⇐⇒ ∀t R1(t) ≤ R2(t)

We define containment of queries P, Q with respect to K-relation semantics by

P vK Q def⇐⇒ for every K-instance I, JPKI ≤K JQKI

When K = B (K = N) we get the usual notion of query containment with respect to set (bag)

semantics. For PosBool(X), we get the structural containment and structural equivalence of [126].3

4.2 Containment Mappings

In characterizing K-containment of CQs we will use variations on the notion of containment map-

pings. Let P, Q be conjunctive queries, and let h be a mapping h : vars(Q) → vars(P) ∪Const(P)

extended to be the identity on constants (we will typically use the shorthand h : Q → P). We

define h to operate component-wise on tuples, atoms, and CQs by replacing each occurrence of a

variable x with h(x). We say that h : Q → P is a containment mapping if h(head(Q)) = head(P)

and for every atom Ri(ū) in the body of Q the atom Ri(h(ū)) occurs in the body of P.

We will also make use of the notion of the canonical database (or tableau) for a query. This is

the instance can(Q) obtained by viewing the body of a CQ Q as a database; i.e., can(Q) |= R(x̄)

iff R(x̄) ∈ body(Q). In doing this we blur the distinction between variables and domain values.

When a query has duplicate atoms in the body, this does not result in duplicate tuples in the

canonical database.

The classical result of [22] relates containment mappings, canonical databases, and contain-

ment of CQs under set semantics:

3There are reasonable alternatives to the natural order for incomplete databases, such as considering various orders
on the sets of possible worlds they represent.

89

Theorem 4.2 ([22]). For CQs P, Q the following are equivalent:

1. P vB Q

2. JPKcan(P) ≤B JQKcan(P)

3. there is a containment mapping h : Q→ P

We will also exploit the device of canonical databases, but for the provenance models we will

use various abstractly-tagged versions. The abstractly-tagged version abK(R) of a K-relation R is

obtained by annotating each tuple in the support of R with its own tuple id from X. For N[X],

B[X], and Trio(X) this is simply a fresh variable x from X. For lineage the variable is nested in

a singleton set, {x}, and for why-provenance the variable is doubly-nested, {{x}}. We will use

the shorthand canK(Q) to mean abK(can(Q)). Abstractly-tagged instances will also play a role

outside of the context of canonical databases (cf. Lemmas 4.20 and 4.31).

4.3 Bounds from Semiring Homomorphisms

Recall from Section 2.4 that the provenance models considered here are related by surjective

semiring homomorphisms, as summarized there in Figure 2.7. It turns out that we can use this

fact to yield some easy bounds on their “relative behavior” with respect to query containment

(and therefore also equivalence). To make this precise, we write K1 ⇒ K2 to mean that for all

UCQs Q̄1, Q̄2, if Q̄1 vK1 Q̄2 then Q̄1 vK2 Q̄2. Then we have the following:

Lemma 4.3. For naturally-ordered semirings K1, K2, if there exists a surjective homomorphism h : K1 →

K2, then K1 ⇒ K2.

Proof. Suppose that h : K1 → K2 is a surjective semiring homomorphism and that Q̄1 vK1 Q̄2.

Consider an arbitrary K2-instance J. We want to show that JQ̄1KJ) ≤K2 JQ̄2KJ . Since h is surjective,

there exists a K1-instance I such that J = h(I). Since Q̄1 vK1 Q̄2 we have that JQ̄1KI ≤K1 JQ̄2KI .

By Proposition 4.37, this implies h(JQ̄1KI) ≤K2 h(JQ̄2KI). But by Proposition 2.5, h(JQ̄1KI) =

JQ̄1Kh(I) = JQ̄1KJ , and likewise, h(JQ̄2KI) = JQ̄2Kh(I) = JQ̄2KJ . It follows that JQ̄1KJ ≤K2 JQ̄2KJ .

Since J was chosen arbitrarily, it follows that Q̄1 vK2 Q̄2, as required.

This immediately yields the following:

Theorem 4.4. If there is a path downward from K1 to K2 in Figure 2.7, then K1 ⇒ K2.

We shall see in Section 4.4 which of the implications are strict (as indicated by the ticked

arrows “⇒́” in Figure 4.2).

90

We also note that using similar reasoning, it is possible to establish bounds for contain-

ment/equivalence of UCQs for arbitrary semirings:

Theorem 4.5. For all K, N[X]⇒ K. For all positive K, K ⇒ B.

Proof. N[X] ⇒ K follows from similar reasoning as in Proposition 4.3, but using the universality

of the provenance polynomials rather than the existence of surjective semiring homomorphisms

to establish the relationship. K ⇒ B follows immediately from Proposition 4.3 using the definition

of positive semiring.

The definition of positive semiring is given in the Appendix. This is a large class of semirings:

B, N, PosBool(X), and all of the semirings for provenance we have considered so far in this

dissertation are positive. For the special case of CQs containing no self-joins, the bounds of

Theorem 4.5 collapse to a uniform condition for equivalence:

Corollary 4.6. If CQs P, Q contain no self-joins, then for any positive K, we have P ≡K Q iff P ∼= Q.

Therefore, for conjunctive queries without self-joins, every “⇒́” in Figure 4.2(b) becomes a

“⇔”.

4.4 Main Results

We are now ready to present our main results on containment and equivalence.

For all but the provenance polynomials, the decision procedures for containment of CQs (and

the accompanying complexity results) extend easily to UCQs because of the following general fact

which was first noted for the case of set semantics in [123]:

Proposition 4.7. If a semiring K is idempotent (i.e., addition in K is idempotent), then for all UCQs P̄, Q̄,

we have P̄ vK Q̄ iff for every CQ P in P̄ there is a CQ Q in Q̄ such that P vK Q. As a consequence,

checking K-containment of UCQs is polynomially equivalent to checking K-containment of CQs.

The semirings for lineage, why-provenance, minimal witness provenance, and B[X]-provenance

are all idempotent. N[X] and Trio(X) are not idempotent, nor is the semiring of natural numbers

used for bag semantics (and the failure of Proposition 4.7 for bag semantics was noted in [24]).

We also note that for idempotent semirings, containment and equivalence of UCQs are easily

inter-reducible (and polynomially equivalent). This again generalizes a well-known fact for set

semantics [123]:

Proposition 4.8. For UCQs Q̄1, Q̄2 and idempotent K we have

91

1. Q̄1 vK Q̄2 iff Q̄1 ∪ Q̄2 ≡K Q̄2

2. Q̄1 ≡K Q̄2 iff Q̄1 vK Q̄2 and Q̄2 vK Q̄1

(The second item is just the definition of K-equivalence of UCQs.)

Lineage

Theorem 4.9. For CQs P, Q the following are equivalent:

1. P vLin(X) Q

2. JPKcanLin(X)(P) ≤Lin(X) JQKcanLin(X)(P)

3. for every atom A(x̄) ∈ body(P) there is a containment mapping h : Q→ P with A(x̄) in the image

of h

Proof. (1) ⇒ (2) is trivial. For (2) ⇒ (3), let t = head(P) and let I = canLin(X)(P). Observe

that JPKI(t) = {x1, . . . , xn} where {x1}, . . . , {xn} are all the annotations occurring in I. Since

JPKI ≤Lin(X) JQKI , and {x1, . . . , xn} is the top element in the subsemiring of Lin(X) generated by

{x1}, . . . , {xn}, it follows that JQKI(t) = {x1, . . . , xn} as well. Now, for each such xi, there must be

a justifying valuation ν : Q → I mapping some atom R(ū) in the body of Q to a tuple R(x̄) such

that RI(x̄) = {xi}. But this valuation ν may also be viewed as a containment mapping from Q to

P with R(x̄) in the image.

For (3) ⇒ (1), consider an arbitrary Lin(X)-instance I and output tuple t. We want to show

that for all x ∈ X, if x ∈ JPKI(t), then x ∈ JQKI(t). If x ∈ JPKI(t), then there exists a derivation

ν : vars(P) → D of t in JPKI such that x ∈ RI(ν(ū)) for some atom R(ū) in the body of P.

By assumption, there exists a containment mapping h : Q → P such that R(ū) = R(h(v̄)) for

some atom R(v̄) in the body of Q. But then ν ◦ h is a derivation of t in JQKI , and moreover,

x ∈ R((ν ◦ h)(v̄)). It follows that x ∈ JQKI(t), as required.

It is easy to find examples of CQs P, Q such that there is a containment mapping h : Q → P,

but condition (3) above is not satisfied, e.g.:

P(x, y) :- R(x, y) Q(x, y) :- R(x, y), R(x, z)

There is no containment mapping h : P → Q with R(x, z) in the image of h, so P 6vLin(X) Q.

However, one can find containment mappings h′ : P→ Q and h′′ : Q→ P in both directions, so by

Theorem 4.2, P ≡B Q. This justifies the “⇒́” between lineage and PosBool(X)/B in Figures 4.2(a)–

(d).

92

Note that the above example seems to contradict4 Theorem 4.8 of [35] which claims that

P ≡Lin(X) Q iff P ≡B Q. In fact, the contradiction is explained by the fact that the definition

of lineage given in that paper only makes sense for CQs without self-joins. We have already seen

(Corollary 4.6) that for this class of queries, K-equivalence is the same as isomorphism, for any

positive K (including the lineage semiring).

Also, condition (3) of Theorem 4.9 was identified previously in [24] as a necessary (but not

sufficient) condition for bag containment of CQs. This justifies the “⇒́” between N and lineage in

Figure 4.2(a).

While the conditions for checking lineage containment and set containment of CQs or UCQs

are different, the complexity turns out to be the same:

Corollary 4.10. Checking Lin(X)-containment or Lin(X)-equivalence of CQs or UCQs is np-complete.

Proof. For CQs, membership in np follows from part (3) of Theorem 4.9. To establish np-hardness,

we use a variation on the reduction from graph 3-coloring showing np-hardness of ordinary

set-containment of CQs [22]. As there, we use the fact that a directed graph G = (V, E) is 3-

colorable iff there exists a graph homomorphism h : G → C, where C is the complete directed

graph (without self-loops) on 3 vertices. Next, given a directed graph G = (V, E), we encode

G as the Boolean CQ QG whose body contains an atom E(u, v) for each edge in the graph, and

we similarly encode C as a Boolean CQ QC. To complete the reduction showing np-hardness of

ordinary set containment, it suffices to observe that there exists a graph homomorphism h : G → C

iff there exists a containment mapping h′ : QG → QC. With Lin(X)-containment, there is one more

step: we assume w.l.o.g. that vars(QG) and vars(QC) are disjoint, and we let Q′G be the Boolean

CQ whose body is the conjunction of the bodies of QG and QC. It is clear that there exists a

containment mapping h : QG → QC iff there exists a containment mapping h′ : Q′G → QC.

Moreover, any containment mapping h′ : Q′G → QC has in its image every atom in the body of

QC, thus satisfying condition (3) of Theorem 4.9. It follows that checking Lin(X)-containment

of CQs is np-hard. The extensions to UCQs and Lin(X)-equivalence follow immediately using

Proposition 4.7.

Why-Provenance

To characterize Why(X)-containment of CQs, we define the concept of onto containment map-

pings. A mapping h : Q → P is an onto containment mapping if it is a containment mapping

and body(P) ≤N h(body(Q)).

4The example and this observation are due to James Cheney and Wang-Chiew Tan.

93

Theorem 4.11. For CQs P, Q the following are equivalent:

1. P vWhy(X) Q

2. JPKcanWhy(X)(P) ≤Why(X) JQKcanWhy(X)(P)

3. there is an onto containment mapping h : Q→ P

Proof. (Sketch) Similar to the proof of Theorem 4.9.

The existence of an onto containment mapping is a strictly stronger requirement than condition

(3) of Theorem 4.9. For example, consider the queries

P(x) :- R(x, y), R(x, x)

Q(u) :- R(u, v)

There is no onto containment mapping from Q to P, hence P 6vWhy(X) Q, but one can find contain-

ment mappings satisfying condition (3) of Theorem 4.9 in both directions, so P ≡Lin(X) Q. This

justifies the “⇒́” between why-prov. and lineage in Figure 4.2(a)-(d).

We note that the existence of onto containment mappings was identified in [24] as a sufficient

(but not necessary) condition for bag containment of CQs. This justifies the “⇒́” between Why(X)

and N in Figure 4.2(a).

The existence of onto containment mappings in both directions leads to a simple characteriza-

tion of Why(X)-equivalence of CQs:

Theorem 4.12. For CQs P, Q, P ≡Why(X) Q iff P ∼= Q.

Proof. Clearly isomorphism implies K-equivalence for any K, in particular for why provenance. In

the other direction, if P ≡Why(X) Q by Theorem 4.11 there must exist onto containment mappings

h : Q → P and g : P → Q. But since both mappings are surjective they must also be injective. It

follows that P ∼= Q.

It was shown in [24] that bag equivalence of CQs is also the same as isomorphism, hence the

“⇔” between N and Why(X) in Figure 4.2(b). Also, note that there are Lin(X)-equivalent CQs

which are not isomorphic, for example:

P(x) :- R(x, y) Q(x) :- R(x, y), R(x, z)

Thus we have the “⇒́” between Why(X) and Lin(X) in Figure 4.2(b).

For UCQs P̄, Q̄, we note that Theorem 4.12 does not imply that for UCQs P̄ ≡Why(X) Q̄ iff

P̄ ∼= Q̄ (and indeed this is not the case).

94

Corollary 4.13. Checking Why(X)-containment for CQs or UCQs and Why(X)-equivalence for UCQs is

np-complete. Checking Why(X)-equivalence for CQs is gi-complete.

Proof. (Sketch) Similar to the proof for Corollary 4.10.

B[X]-Provenance

To characterize B[X]-containment of CQs we will need another variation on containment map-

pings, which we call exact containment mappings. A mapping h : Q → P is an exact containment

mapping if h(Q) = P, i.e., h(head(Q)) = head(P), and the bag of atoms h(body(Q)) is identical to

the bag of atoms body(P). Note that there is an exact containment mapping from Q to P iff P can

be obtained from Q (up to isomorphism) by unifying variables in Q.

Theorem 4.14. For CQs P, Q, the following are equivalent:

1. P vB[X] Q

2. JPKcanB[X](P) ≤B[X] JQKcanB[X](P)

3. there is an exact containment mapping h : Q→ P

Proof. (1) ⇒ (2) is trivial, and (3) ⇒ (2) is straightforward to check. For (2) ⇒ (3), we assume

for simplicity that body(P) contains no duplicate atoms (the argument can be extended to work

without this assumption). Now suppose

JPKcanB[X](P) ≤B[X] JQKcanB[X](P).

Then in particular

JPKcanB[X](P)(t) ≤ JQKcanB[X](P)(t),

where t is the tuple of distinguished variables in head(P). Also, the polynomial

JPKcanB[X](P)(t) contains as a term (i.e., with Boolean coefficient true) the product x1 · · · xn of all tu-

ple ids in canB[X](P). Since containment holds, the polynomial JQKcanB[X](P)(t) must also contain

the same term. Working backwards, there must be some valuation ν : vars(Q) → D justifying

the term. Moreover, in order to yield all variables x1, . . . , xn in the term, ν must map the atoms of

body(Q) surjectively onto the tuples of canB[X](P); and in order for all the exponents in the term

to all equal one, the mapping of atoms to tuples must be injective. It follows that ν is an exact

containment mapping from Q to P.

Every exact containment mapping is also an onto containment mapping, but the converse is

not true. For example, the mapping h : Q → P which sends w to u, z to v, and everything else to

95

itself in
P(x, y) :- R(x, y), S(u, v)

Q(x, y) :- R(x, y), S(u, v), S(w, z)

is an onto containment mapping, but not an exact containment mapping. This justifies the “⇒́”

between B[X] and Why(X) in Figure 4.2(a),(c). To justify the “⇒́” between B[X] and Why(X)

in Figure 4.2(d), consider P, Q as above and define the UCQs P̄ = (P) and Q̄ = (P, Q). Then

P̄ ≡Why(X) Q̄ but P̄ 6≡B[X] Q̄.

Like Why(X)-equivalence, B[X]-equivalence of CQs turns out to be the same as isomorphism:

Theorem 4.15. For CQs P, Q, P ≡B[X] Q iff P ∼= Q.

This justifies the “⇔” between Why(X) and B[X] in Figure 4.2(b).

Checking for the existence of an exact containment mapping turns out to have the same com-

plexity as checking for the existence of a containment mapping:

Corollary 4.16. Checking B[X]-containment of CQs or UCQs, or B[X]-equivalence of UCQs, is np-

complete. Checking B[X]-equivalence of CQs is gi-complete.

Proof. (Sketch) gi-completeness of checking B[X]-equivalence of CQs follows from Theorem 4.15

and the fact that we can view directed graphs as Boolean CQs (and vice versa), as in the proof of

Corollary 4.10. The proofs of the other results are again variations on the proof of Corollary 4.10.

Provenance Polynomials

We now prove the results for N[X]-containment. For CQs, this turns out to be the same as for

B[X]-containment (thus justifying the “⇔” between N[X] and B[X] in Figure 4.2(a)):

Theorem 4.17. For CQs P, Q the following are equivalent:

1. P vN[X] Q

2. JPKcanN[X](P) ≤N[X] JQKcanN[X](P)

3. there is an exact containment mapping h : Q→ P

Proof. (1) ⇒ (2) is trivial, and (2) ⇒ (3) is exactly the same as in Theorem 4.14. For (3) ⇒ (1)

some additional care is required because addition in N[X] is not idempotent. We need to make

sure that the coefficient of an arbitrary term in the polynomial JQKI(t), for some arbitrary N[X]-

instance I and tuple t, is at least as large as the coefficient of the same term in the polynomial

JPKI(t). To check this, it suffices to observe that for any valuations ν, ν′ : vars(P)→ D justifying a

96

term in JPKI(t), the valuations ν ◦ h and ν′ ◦ h justify the same monomial in JQKI(t); and moreover

if ν 6= ν′ then ν ◦ h 6= ν′ ◦ h. Hence every justification for JPKI(t) corresponds to a unique

justification for JQKI(t). Since addition in N is monotone this implies the required inequality for

the term coefficients.

Since N[X]-containment of CQs holds exactly when B[X]-containment holds, the same is true

for N[X]-equivalence:

Theorem 4.18. Let P, Q be two CQs. Then P ≡N[X] Q iff P ∼= Q.

This justifies the “⇔” between N[X] and B[X] (and therefore also Why(X) and N) in Fig-

ure 4.2(b).

Next we consider N[X]-containment of UCQs. Using similar reasoning as in Theorem 4.17, it

is not hard to see that a weaker version of the Sagiv-Yannakakis property for set-containment of

UCQs [123] holds for N[X]:

Lemma 4.19. For UCQs P̄, Q̄, if P̄ vN[X] Q̄, then for every Pi ∈ P̄ there exists Qj ∈ Q̄ s.t. Pi vN[X] Qj.

Proof. (Sketch) Similar reasoning as in Theorem 4.17, using the abstractly-tagged canonical database

for P̄.

A natural question to ask is whether the lemma above can be strengthened to require that each

Pi ∈ P̄ correspond to a unique Qj ∈ Q̄; as this is clearly also a sufficient condition for containment,

this would therefore yield a decision procedure for containment. However, the strengthened

version is not true: consider the UCQs P̄ = (P1, P2) and Q̄ = (Q1, Q2) where

P1 :- R(x, y), R(x, x) Q1 :- R(x, y), R(u, u)

P2 :- R(x, y), R(y, y) Q2 :- R(x, x), R(x, x)

Both P1 and P2 are N[X]-contained in Q1, but neither is N[X]-contained in Q2; nevertheless, one

can show that P̄ vN[X] Q̄.

Another natural idea is to check containment of P̄ in Q̄ by evaluating both queries on the

canonical database for P̄, in analogy with Theorem 4.17; unfortunately, one can easily find coun-

terexamples showing that this procedure is unsound.

However, we are able to show that N[X]-containment of UCQs is decidable in pspace by

establishing a “small counterexample” property. In particular we show that if P̄ 6vN[X] Q̄, then

JP̄KI 6≤N[X] JQ̄KI for some N[X]-instance I whose size is bounded by the sizes of P̄ and Q̄.

We begin by bounding the sizes of the annotations of the required counterexample, by observ-

ing that if a counterexample exists, then its abstractly-tagged version is also a counterexample:

97

Lemma 4.20. For any naturally-ordered semiring K, if P̄, Q̄ ∈ UCQ and P̄(I) 6≤K Q̄(I) for some K-

instance I, then P̄(abN[X](I)) 6≤N[X] Q̄(abN[X](I)).

Proof. Straightforward argument using Proposition 2.5, the universality property of N[X], and

Proposition 4.37.

Of course, the lemma holds in particular for K = N[X]. Next, we show that the number of

tuples in a counterexample can also be bounded:

Theorem 4.21. P̄ 6vN[X] Q̄ iff JP̄KI 6≤N[X] JQ̄KI for some abstractly-tagged N[X]-instance I containing

at most k tuples, where k is the maximum number of atoms occurring in the body of a CQ in Q̄.

Proof. “⇐” is trivial. For “⇒”, suppose P̄ 6vN[X] Q̄. Then for some N[X]-instance I, we have

JP̄KI 6≤N[X] JQ̄KI . By Lemma 4.20, we may assume that I is abstractly-tagged. Choose some tuple

t such that JP̄KI(t) 6≤ JQ̄KI(t). There must be some monomial µ in the polynomial JP̄KI(t) with

coefficient a such that the same monomial µ in the polynomial JQ̄KI(t) has coefficient b and a > b.

Now let I′ be the N[X]-instance obtained from I by discarding any tuples whose annotations

do not occur in µ. Note that I′ has at most k tuples. Moreover, the coefficients for µ in the

polynomials for JP̄KI′(t) and JQ̄KI′(t) are unchanged. Hence JP̄KI′(t) 6≤ JQ̄KI′(t), and therefore,

P̄(I) 6≤N[X] Q̄(I). This completes the proof.

Theorem 4.21 leads immediately to a decision procedure for checking N[X]-containment of

UCQs: simply test P̄(I) ≤N[X] Q̄(I) for all instances I containing at most k tuples over, say, the

first nk values of the domain, where n is the maximum arity of a relation in the schema. (If P̄ and

Q̄ contain constants, these must be included among the values considered as well.) Moreover, one

can check that this can be done using only polynomial space:

Corollary 4.22. N[X]-containment of UCQs is decidable in pspace.

The exact complexity of the problem remains open.

Finally, what about N[X]-equivalence of UCQs? Theorem 4.21 tells us that it is decidable, but

not much else. However, it turns out we can use Theorem 4.17 along with Lemma 4.19 to show

that, as with CQs, N[X]-equivalence of UCQs is the same as isomorphism.

Theorem 4.23. For UCQs P̄, Q̄, we have P̄ ≡N[X] Q̄ iff P̄ ∼= Q̄.

In the proof we make use of the following simple proposition which states that removing

N[X]-equivalent CQs from N[X]-equivalent UCQs yields N[X]-equivalent UCQs:

Proposition 4.24. Let P̄, Q̄ ∈ UCQ and suppose P̄ ≡N[X] Q̄. Then for all P ∈ P̄, Q ∈ Q̄, if P ∼= Q, then

P̄′ ≡N[X] Q̄′, where P̄′ (Q̄′) is the UCQ obtained from P̄ (Q̄) by removing P (Q).

98

Proof. (of Theorem 4.23) “⇐” is trivial. For “⇒” we argue by induction on |P̄| + |Q̄|. In the

base case, |P̄| + |Q̄| = 0, and the queries are trivially N[X]-equivalent and isomorphic. In the

inductive case, consider P̄ = (P1, . . . , Pn) and Q̄ = (Q1, . . . , Qm) with n + m > 0, and assume

inductively that for all P̄′, Q̄′ s.t. |P̄′| + |Q̄′| < n + m, if P̄′ ≡N Q̄′ then P̄′ ∼= Q̄′. If P̄ ≡N Q̄,

then using Lemma 4.19, one can show that there exists some non-empty sequence i1, . . . , i2k such

that Pi1 vN[X] Qi2 vN[X] · · · vN[X] Pi2k−1
vN[X] Qi2k and Qi2k vN[X] Pi1 . It follows that all the

CQs in the sequence are N[X]-equivalent, and hence (by Theorem 4.21) isomorphic. In particular,

we have Pi1
∼= Qi1 . Denote by P̄′ the UCQ obtained by removing Pi1 from P̄, and denote by Q̄′

the UCQ obtained by removing Qi1 from Q̄. By Proposition 4.24, we have P̄′ ≡N Q̄′. Using the

induction hypothesis, this implies P̄′ ∼= Q̄′. Since P̄′ ∼= Q̄′ and Pi1
∼= Qi1 , it follows that P̄ ∼= Q̄ as

required.

Since B[X] is idempotent, but N[X] is not, it is easy to find examples of P̄, Q̄ where P̄ ≡B[X] Q̄

but P̄ 6≡N[X] Q̄, e.g., P̄ = (P) and Q̄ = (P, P) where P is an arbitrary CQ. This justifies the “⇒́”

between N[X] and B[X] in Figure 4.2(c) and Figure 4.2(d).

Bag Semantics

In this section, we discuss some further connections between provenance annotations and bag

semantics.

We note that by Theorem 4.5, N[X]-containment of UCQs implies bag-containment. Since

the former is decidable and the latter is not, it follows that there exist UCQs for which bag-

containment holds but N[X]-containment does not. This justifies the “⇒́” between N[X] and N

in Figure 4.2(d). Also, we can show that:

Proposition 4.25. For containment of UCQs, we have

1. N 6⇒ B[X] and B[X] 6⇒N

2. N 6⇒ Why(X) and Why(X) 6⇒N

3. N⇒́ Lin(X)

This justifies the “⇒́” between N and lineage in Figure 4.2(c) and shows that N is incomparable

there with B[X] and Why(X).

Next, the “⇔” between N and N[X] in Figure 4.2(d) follows from the following result:

Theorem 4.26. For UCQs P̄, Q̄ we have P̄ ≡N Q̄ iff P̄ ≡N[X] Q̄

99

Proof. N[X] ⇒ N follows from Theorem 4.5. We prove N ⇒ N[X] by contrapositive. Suppose

P̄ 6≡N[X] Q̄. Then for some N[X]-instance I and tuple t, we have P̄(I)(t) = A and Q̄(I)(t) = B and

A 6= B. Since A and B are non-identical polynomials, one can always find a valuation ν : X → N

such that Evalν(A) 6= Evalν(B). By Proposition 2.5, we have P̄(ν(I)(t)) 6= Q̄(ν(I)(t)). Since ν(I)

is an N-instance, it follows that P̄ 6≡N Q̄. Therefore N[X] 6⇒N, as required.

By Theorem 4.23 it follows from the above that bag equivalence of UCQs is also the same as

isomorphism. Prior to receiving the reviews of the paper upon which this chapter is based, it

seemed to us that the community considers the decidability of equivalence of UCQs under bag

semantics an open problem. However, one of the referees pointed out (as related work on bag-set

semantics) the papers [30, 31]. [30] stated the result that bag-set equivalence of UCQs (called

disjunctive queries there) is the same as isomorphism, and added as an observation that this also

holds for bag semantics. The outline of the proof of the bag-set semantics result is provided in [27]

and although bag semantics is not discussed further there we have observed that, in fact, results

on bag-set semantics do correspond to results on bag semantics via the following transfer lemma:

Lemma 4.27. There exists a mapping ϕ : CQ → CQ (which we extend to UCQs by applying it compo-

nentwise on CQs), a mapping f from bag instances to set instances, and a mapping g from set instances to

bag instances, such that for any UCQ Q̄, bag instance I, and set instance J, we have

1. JQ̄KI = JϕQ̄K f (I)

2. JϕQ̄KJ = JP̄Kg(J)

where ϕQ̄ is the result of ϕ applied to Q̄.

Proof. We first define ϕ : CQ → CQ, as follows. Let Q be a CQ over schema Σ, and let Σ′ be the

schema obtained from Σ by replacing each n-ary relational predicate R with an n + 1-ary relational

predicate R′. Then ϕ maps Q to the CQ ϕQ over schema Σ′ obtained from Q by replacing each

join atom R(x1, . . . , xk) with an atom R′(x1, . . . , xk, u) where u is a fresh variable. For example, if

Q is the CQ

Q(x, y) :- R(x, y), R(y, z)

then ϕQ is the CQ

ϕQ(x, y) :- R(x, y, u), R(y, z, v)

We extend ϕ to map a UCQ Q̄ to a UCQ ϕQ̄ by applying it componentwise on CQs.

Next we define an encoding f of bag-instances over schema Σ to bag-set instances over schema

Σ′, and an encoding g of bag-set instances over Σ′ to bag-instances over Σ, as follows:

100

• f maps a tuple t in relation R with multiplicity k to k distinct tuples t′1, . . . , t′k in R′ each

obtained from t by appending a fresh constant in the last column

• g assigns to tuple t in R the multiplicity k where k is the number of tuples t′ in R′ such that

t and t′ agree on all columns of t

It is straightforward to verify that ϕ, f , and g satisfy the conditions required by the Lemma.

Lemma 4.27 implies that bag-containment (bag-equivalence) of CQs/UCQs is polynomial time

reducible to bag-set containment (bag-set equivalence). Moreover, for UCQs P̄, Q̄, the transforma-

tion ϕ defined in the proof of Lemma 4.27 satisfies P̄ ∼= Q̄ iff ϕ(P̄) ∼= ϕ(Q̄). Thus Lemma 4.27

transfers to bag semantics the isomorphism results for equivalence under bag-set semantics.

Trio

For CQs, Trio(X)-containment turns out to coincide with Why(X)-containment:

Theorem 4.28. For CQs P, Q we have P vTrio(X) Q iff P vWhy(X) Q.

Therefore, Theorem 4.11 (Theorem 4.12) applies to Trio(X)-containment (equivalence) as well,

and we have a “⇔” between Trio(X) and Why(X) in Figure 4.2(a) and Figure 4.2(b).

To establish the decidability of Trio(X)-equivalence of UCQs, we note that Trio(X) contains an

embedded copy of N, hence Trio(X)⇒N for UCQs. Combined with Theorem 4.26 this implies:

Theorem 4.29. For UCQs P̄, Q̄ we have P̄ ≡Trio(X) Q̄ iff P̄ ∼= Q̄.

This justifies the “⇔” between Trio(X) and N in Figure 4.2(d).

To establish decidability in pspace of Trio(X)-containment of UCQs, we follow a similar ar-

gument as used for N[X] in Section 4.4. However, this time the argument is complicated by the

fact that unlike N[X], Trio(X) cannot easily “simulate its own computations” by factoring them

through calculations involving abstractly-tagged databases. As a simple example, consider the

CQs

Q1(x, y) :- R(x, z), R(z, y) Q2(x, y) :- R(x, y)

and consider the following Trio(X)-relation R and its abstractly-tagged version:

R def=
a a 2

b c pq
abTrio(X)(R) =

a a r

b c s

Note that JQ1KR(a, a) = 4 while JQ2KR(a, a) = 2. On the other hand, JQ1K
abTrio(X)(R)(a, a) =

JQ2K
abTrio(X)(R)(a, a) = p (recall that Trio(X) “drops exponents” in its computations). Hence we do

not have enough information to recover the answers over the original table.

101

To overcome this limitation, we introduce variation of abstractly-tagged instances called k-

abstractly tagged instances. The tags in these instances are sums of k fresh variables from X. As we

shall see, these turn out to suffice for Trio(X) to “simulate its own computations” for UCQs of

degree ≤ k.

To make this precise, we order the variables of X = {x1, x2, . . . }, and we define the set Sk ⊆

Trio(X) of sums of k fresh variables from X:

Sk
def= {(x1 + · · ·+ xk), (xk+1 + · · ·+ x2k), . . . }

The k-abstractly tagged version abk(I) of a Trio(X)-instance I is the Trio(X)-instance obtained by

replacing each tuple’s annotation in I with a fresh element of Sk. For example, considering again

the Trio(X)-relation R from earlier, we have

abk(R) =
a a r + s

b c u + v

Now, we define Triok(X) ⊆ Trio(X) to be the set of annotations from Trio(X) obtained via calcula-

tions of degree ≤ k involving elements of Sk:

Triok(X) def= {Evalν(a) : a ∈N[X], ν : X → Sk s.t. a has degree ≤ k and ν is injective }

Proposition 4.30. Suppose valuation ν : X → Sk is injective. Then for any a, b ∈ N[X] of degree ≤ k,

a = b iff Evalν(a) = Evalν(b). As a consequence, any element c ∈ Triok(X) decomposes uniquely into a

sum of products of elements of Sk.

To illustrate, consider the previous example, and note that JQ1Kabk(R)(a, a) = r + 2rs + s which

decomposes uniquely to the expression (r + s)(r + s) involving only tags from abk(R). On the

other hand, JQ2Kabk(R)(a, a) = r + s and now we have enough information to recover the results

of JQ1KR and JQ2KR (by replacing r + s with 2 in the calculations).

We are now ready to state the analog of Lemma 4.20 for Trio(X):

Lemma 4.31. Suppose P̄, Q̄ ∈ UCQ have degree ≤ k, and suppose I is a Trio(X)-instance such that

JP̄KI 6≤Trio(X) JQ̄KI . Then JP̄Kabk(I) 6≤Trio(X) JQ̄Kabk(I).

Proof. (Sketch) Let I′ = abk(I) and let ν : Sk → Trio(X) be the valuation which records how the

annotations from I were replaced by elements of Sk. (Thus ν(I′) = I.) We claim that ν extends to

a mapping hν : Triok(X) → Trio(X) that behaves like a semiring homomorphism, so long as the

computations stay within Triok(X):

1. hν(0) = 0 and hν(1) = 1

102

2. for all a, b ∈ Triok(X), hν(a + b) = hν(a) + hν(b)

3. for all a, b ∈ Triok(X), if a · b ∈ Triok(X) then hν(a · b) = hν(a) · hν(b)

Using Lemma 4.31, we can show that hν exists and is uniquely determined by the above properties.

Since P̄, Q̄ have degree ≤ k, it is not hard to see that all annotations in JP̄KI′ and JQ̄KI′ are in

Triok(X). Also, it is not hard to show that hν enjoys two relevant properties of proper semiring

homomorphisms with respect to query evaluation:

• hv is compatible with the natural order: ∀a, b ∈ Triok(X), if a ≤Trio(X) b then hν(a) ≤Trio(X)

hν(b)

• Query evaluation commutes with hν: hν(JP̄KI′) = JP̄Khν(I′) = JP̄KI and hν(JQ̄KI′) = JQ̄Kh(I′) =

JQ̄KI

As a consequence, we have that JP̄KI′ ≤Trio(X) JQ̄KI′ implies JP̄KI ≤Trio(X) JQ̄KI .

Thus, we have established a bound on the size of annotations of the counterexamples that need

to be considered. The last step is to additionally bound the number of tuples and establish our

“small counterexample property”:

Theorem 4.32. For UCQs P̄, Q̄ of degree ≤ k, if P̄ 6vTrio(X) Q̄, then JP̄KI 6≤Trio(X) JQ̄KI for a k-abstractly

tagged Trio(X)-instance I containing at most ` tuples, where ` is the maximum number of atoms occurring

in a CQ in Q̄.

Proof. (Sketch) Very similar to the proof for Theorem 4.21.

Corollary 4.33. Trio(X)-containment of UCQs is decidable in ptime.

Finally, we note that one can find examples of UCQs showing that N[X] ⇒́ Trio(X) and

Trio(X)⇒́N, as indicated in Figure 4.2(d).

4.5 Datalog

We have seen that for UCQs, containment under various provenance semantics turns out to be

decidable, even for models such as N[X] and Trio(X) which are closely related to bag semantics.

Is it possible that these decidability results extend to Datalog? We leave this question open for

most of the provenance models considered in this dissertation, but give two results in this section

suggesting that the answer is likely negative, even for the easier question of the two, equivalence.

103

Under set semantics, Shmueli [128] has shown that equivalence (and therefore also contain-

ment) of Datalog queries is undecidable. This result immediately extends to K-containment and

K-equivalence of Datalog programs for K a distributive lattice by dint of the following observation:

Theorem 4.34. For any distributive lattice K and Datalog programs Q1, Q2, we have Q1 vK Q2 iff

Q1 vB Q2.

This generalizes an earlier result [56] (later rediscovered in [62]) from UCQs to Datalog pro-

grams. Since PosBool(X) is a distributive lattice, this settles the question negatively for that

provenance model.

For the other provenance models, it is possible that undecidability of Datalog-equivalence

may be established by reduction from the same problem for set semantics, along the lines of the

following:

Theorem 4.35. N∞-equivalence of Datalog programs is undecidable.

Proof. By reduction from the same problem for set semantics. If Q is a Datalog program, let Q′ be

the Datalog obtained from Q by renaming the output predicate to Q′, and adding one more rule:

Q′(x1, . . . , xn) :- Q′(x1, . . . , xn)

where n is the arity of the output predicate. This rule effectively “amplifies” the multiplicity of

any output tuple in the query result to ∞. Now given Datalog programs Q1, Q2, let Q′1 and Q′2
be the corresponding Datalog programs derived from them as above. We claim that Q1 ≡B Q2 iff

Q1 ≡N∞ Q2. To see this, consider an arbitrary input N∞-instance I, and let J be the set instance

corresponding to its support. For any output tuple t, observe that

JQiKJ(t) = 0 ⇐⇒ JQ′iK
I(t) = 0

JQiKJ(t) = 1 ⇐⇒ JQ′iK
I(t) = ∞

Since any set instance J corresponds to the support of some N∞-instance I, this establishes the

claim.

Appendix

Definition 4.36 (Semiring homomorphism). Let K1, K2 be semirings. A mapping h : K1 → K2 is

called a semiring homomorphism if h(0) = 0, h(1) = 1, and for all a, b ∈ K1, we have h(a + b) =

h(a) + h(b) and h(a · b) = h(a) · h(b).

104

Proposition 4.37. Let K1, K2 be naturally-ordered commutative semirings. If h : K1 → K2 is a semiring

homomorphism then for all a, b ∈ K1, a ≤K1 b =⇒ h(a) ≤K2 h(b). If h is also surjective, then for all

a, b ∈ K1, a ≤K1 b ⇐⇒ h(a) ≤K2 h(b).

Proof. Straightforward calculation.

Given a semiring K define † : K → B as follows:

†(0) def= false

†(a) def= true when a 6= 0

Proposition 4.38. The following are equivalent:

1. † is a semiring homomorphism

2. K satisfies

a) 0 6= 1

b) a + b = 0 implies a = 0 or b = 0

c) ab = 0 implies a = 0 or b = 0

A semiring K is called positive if it satisfies either of the (equivalent) statements in Proposi-

tion 4.38.

Definition 4.39 (Congruence relation). If K is a semiring and ≈ is an equivalence relation on K,

then we say that ≈ is a congruence relation on K if a ≈ a′ and b ≈ b′ implies a + b ≈ a′ + b′ and

a · b ≈ a′ · b′.

Definition 4.40 (Quotient semiring). Let K be a semiring and let ≈ be a congruence relation on

K. If a ∈ K then denote the equivalence class of a in ≈ by a/≈. Then the quotient of K by ≈ is

the semiring whose domain is the set K/≈ of equivalence classes of ≈, 0 def= 0K/≈, 1 def= 1K/≈,

(a/≈) + (b/≈) = (a + b)/≈, and (a/≈) · (b/≈) def= (a · b)/≈.

105

Chapter 5

Ring-Annotated Relations and Differences

In this chapter we study the reformulation (rewriting) of relational queries that contain the differ-

ence operator. Our goal for query reformulation is to optimize by reusing existing information,

such as materialized views. Since the objective is optimization, we focus on exact reformulation,

which finds only equivalent rewritings of the query. 1

Query reformulation using views is well understood for positive fragments of relational lan-

guages, such as conjunctive queries (CQs) or unions of CQs (UCQs), under both set and bag

semantics (see, e.g., [23, 101]). As we shall discuss in more detail in the preamble to Section 5.3 in

both cases (bag and set semantics), complete procedures for finding UCQ rewritings using UCQ

views exist, using finite search spaces. Also, in both cases UCQ equivalence is decidable. In fact,

in the same discussion we argue that whenever a (reasonable) finite search space procedure exists,

query equivalence must also be decidable.

It follows that the initial outlook on doing reformulations involving the difference operator

is glum because even without views the equivalence of relational algebra (RA) queries is unde-

cidable, for both set and bag semantics. 2 Hence, we cannot hope for the approaches to UCQ

reformulation under bag or set semantics to extend to the entire RA.

However, here are at least three reasons not to give up easily. With reformulation of queries

that include difference:

• Optimization using materialized views could be done over a broader space of plans (even if the

original query and view were just CQs/UCQs!). Rewritings could subtract one view from a

larger view in order to return a query answer.

• View adaptation [65], the act of updating a materialized view instance when the view defini-

1In data integration, one is also interested in maximally contained rewritings, see e.g., [71].
2The latter follows, e.g., from the undecidability of bag-containment of unions of conjunctive queries (UCQs) [81],

since for UCQs Q, Q′ we have Q is contained in Q′ iff Q−Q′ is equivalent to the empty answer query.

106

tion has changed, could be seen as a reformulation using views. Here, the updated view can

be recomputed based on the old contents of the view, by adding and/or subtracting queries

over the base data and possibly other views.

• Incremental view maintenance [66] could be seen as a reformulation using views, since inser-

tions and deletions could be treated as unions and differences.

• Mapping evolution and update exchange in CDSS could be attacked using reformulation-based

techniques, as the two problems are closely related to view adaptation and incremental view

maintenance.

These are all highly relevant problems in databases.

Thus we ask the following natural question: is there a slightly less expressive class of queries

than RA, — still including difference, and hence still providing the benefits cited above — for

which reformulation can be handled effectively. In this chapter we do this via an excursion

through a non-standard semantics that is of interest in its own right: what we term Z-relations.

These are relations whose tuples are annotated with integers (positive or negative) and the positive

RA operators are defined on them according to the semiring-annotated semantics introduced in

Chapter 2. In addition, difference has an obvious, natural definition on Z-relations.

Z-relations are a natural representation for the updates to source relations (collections of tuple

insertions and deletions, a.k.a. deltas) which must be propagated in incremental view maintenance

applications. Indeed, both data and updates can be uniformly represented using Z-relations, and

“application” of a delta to a relation corresponds to simply computing a union. We discuss this

further in Section 5.1.

It turns out that reformulation of RA queries using RA views can be solved effectively with

respect to the Z-semantics since here equivalence of RA queries with respect to a set of RA

views is decidable. Moreover, we obtain practically useful results about the class of RA queries

for which the reformulation with respect to Z-semantics remains valid with respect to bag se-

mantics. Although membership in this class of queries is necessarily undecidable, there are many

useful cases with simple sufficient conditions for membership, in the three classes of applications

outlined above.

For applications such as CDSS which require rich provenance information, we propose the

use of another kind of ring-annotated relation, N[X]-relations, for uniformly representing data

and updates. These are like the provenance polynomials N[X] of Chapter 2, but with integer

coefficients.

The main contributions of the chapter are:

107

• We show that under Z-semantics every RA query is equivalent to the difference of two

queries in RA+. The latter are selection/projection/join/union queries, forming the positive

relational algebra, and equivalent in expressiveness to UCQs. Then the decidability of equiv-

alence of RA queries under Z-semantics is a corollary of the decidability of equivalence of

UCQs.

• It follows that in reformulation using views under Z-semantics we can work with differences

of unions of conjunctive queries (DUCQs). We give a terminating, confluent, sound and

complete rewrite system such that if two DUCQs are equivalent under a set of views then

they can be rewritten to the same query (modulo isomorphism). This leads to our procedure

for exploring the space of reformulations (using the opposites of the rewrite rules).

• In contrast to CQs/UCQs under set semantics, there is no inherent or natural, instance-

independent notion of “minimality” for DUCQs under Z-semantics that would yield a finite

reformulation search space. We bound the search under a simple cost model, which is an

abstraction of the one used in a query optimizer.

• Next we examine when we can use the Z-semantics reformulation strategy to obtain results

that work for the bag semantics. We show that the reformulation procedure is closed for

queries/views in this class. We also give simple membership conditions.

• We also show how to extend our results to queries with built-in predicates, i.e., inequalities

and non-equalities.

• Finally, we discuss the use of N[X]-relations for updates, and we show that Z-equivalence

and Z[X]-equivalence of relational algebra queries coincide. A consequence is that our Z-

semantics reformulation strategy is also sound and complete for Z[X]-semantics.

The chapter is structured as follows. We discuss motivating applications in Section 5.1. We

define the semantics of RA on Z-relations, establish the decidability of Z-equivalence of RA

queries and introduce DUCQs in Section 5.2. We introduce the rewrite system for queries using

views in Section 5.3. We present reformulation algorithms and strategies in Section 5.4. We

discuss reformulation for bag semantics/set semantics via Z-semantics in Section 5.5. We extend

our Z-equivalence results to RA with built-in predicates in Section 5.6. We discuss Z[X]-relations

in Section 5.7.

108

5.1 Applications of Differences

In this section, we illustrate the three motivating applications mentioned in the introduction, and

show how these problems are closely related. Given a uniform way of representing data along

with changes to the data, we can consider each of these problems to be a case of query reformulation

or query rewriting. We shall propose Z-relations as a unifying representation for this purpose.

Optimizing queries using views [23, 101]. Given a query Q and a set of materialized views V ,

the goal is to speed up computation of Q by (possibly) rewriting Q using views in V . Sometimes,

a view may be “nearly” applicable for answering a query, but cannot be used unless difference is

allowed in the rewriting. For example, consider a view V with paths of length 2 and 3 in R:

V(x, y) :- R(x, z), R(z, y)

V(x, y) :- R(x, u), R(u, v), R(v, y)

and a query Q for paths of length 3:

Q(x, y) :- R(x, u), R(u, v), R(v, y)

To answer Q using V, we might compute paths of length 2, then subtract those paths from V

under bag semantics. If our end goal is set semantics, we would add a duplicate elimination step

at the end.

View adaptation [65]. Here, we have a set of base relations, an existing materialized view, and

an updated view definition, and we want to refresh the materialized view instance to reflect the

new definition. For example, the materialized view:

V(x, y, z) :- R(x, y), R(x, z)

V(x, y, z) :- R(x, y), R(y, z)

V(x, y, z) :- R(x, y), R(y, z), y = z

might be redefined by deleting the second rule and projecting out the middle column:

V′(x, z) :- R(x, y), R(x, z)

V′(x, z) :- R(x, y), R(y, z), y = z

In this case, the computation of V′(x, z) might be sped up under bag semantics by computing the

second rule V(x, y, z) :- R(x, y), R(y, z), subtracting the tuples of the result, and projecting only x

and z. (Again, duplicate removal could be done at the end to get a set-semantics answer.)

109

Incremental view maintenance [66]. We are given a source database, a materialized view, and

a set of changes to be applied to the source database (tuple insertions or deletions), and the goal

is to compute the corresponding change to the materialized view. This can then be applied to the

existing materialized view to obtain the new version. For example, consider a source relation R

and materialized view V, with definitions and instances:

R :

a b

c b

b c

b a

V(x, y) :- R(x, z), R(z, y) :

a a

a c

b b

c c

Suppose we update R by deleting (b, a) and inserting (c, d); to maintain V, we must insert a new

tuple (b, d). Note that deleting (b, a) does not result in deleting (b, b) from V, because this tuple

can still be derived by joining (b, c) with (c, b). Yet if we now delete (c, b) from R, then (b, b) and

(c, c) must be deleted from V.

In order to solve the incremental view maintenance problem, Gupta et al. [66] proposed record-

ing in V along with each tuple the number of derivations of that tuple, i.e., the multiplicity of the

tuple under bag semantics. To represent changes to a (bag) relation, they introduced the concept

of delta relations, essentially bag relations with associated signs: “+” indicates an insertion and

“−” a deletion. Finally, in order to propagate updates, they proposed the device of delta rules. A

set of delta rules for V correspond to the UCQ:

V∆(x, y) :- R(x, z), R∆(z, y)

V∆(x, y) :- R∆(x, z), R′(z, y)

Here R′ denotes the updated version of R, obtained by applying the delta R∆ to R, i.e., computing

R′ def= R∆ ∪ R where union on delta relations sums the (signed) tuple multiplicities. By computing

V∆ and then applying it to V, we obtain the updated version of V, namely V′. Note that there

may actually be more than one possible set of delta rules for V, e.g.:

V∆(x, y) :- R∆(x, z), R(z, y)

V∆(x, y) :- R′(x, z), R∆(z, y)

We would like to choose among the possible delta rules sets, as well as simply computing V′

“from scratch” via the query:

V′(x, y) :- R′(x, z), R′(z, y)

based on the expected costs of the various plans. We model the relation R∆ with Z-relations,

presented in the next section. We consider this to again be a variant of optimizing queries using

110

views: the goal is to compute the view with deltas applied, V′, given not only the base data

R and R∆, but also the existing materialized view V, and the materialized view R′ resulting

from applying the updates in R∆ to R. (We can compute V′ either before or after updating R to

R′.) Since every delta relation includes deletions, this version of the reformulation problem also

incorporates a form of difference.

A unified treatment of these three applications requires methods for representing data and

changes via an excursion to an alternative semantics (Z-relations), performing query reformula-

tion in this context, and proving sufficient conditions for cases in which the results agree with bag

and set semantics.

5.2 Z-Relations

We use here the named perspective [2] of the relational model, in which tuples are functions

t : U → D with U a finite set of attributes and D a domain of values. We fix the domain D for

the time being and we denote the set of all such U-tuples by U-Tup. (Usual) relations over U are

subsets of U-Tup (we will also refer to these as B-relations).

A bag relation over attributes U is a mapping R : U-Tup→N from U-tuples to their associated

multiplicities. Tuples with multiplicity 0 are those “not present” in R, and we require of a bag

relation that its support defined by supp(R) def= {t | R(t) 6= 0} is finite.

A Z-relation over attributes U is a mapping R : U-Tup → Z of finite support. In other words,

it is a bag relation where multiplicities may be positive or negative.

A bag instance (Z-instance) is a mapping from predicate symbols to bag relations (Z-relations).

A set instance (or B-instance) is a mapping from predicate symbols to B-relations.

We define the semantics of the relational algebra on Z-instances in accordance with the

semiring-annotated semantics introduced in Chapter 2. The operations of the positive algebra

(RA+) are as in Definition 2.2. For the time being we assume selection predicates correspond to

equalities A = B of attributes or equalities A = c of attributes with domain values. (We extend

this to include inequality predicates in Section 5.6.)

Observe that if we start with Z-relations with just positive multiplicities, i.e. N-relations, the

results of the operations defined above are also N-relations (leading to Lemma 5.1 below) and the

resulting semantics is in fact the usual bag semantics. B-relations correspond to reading the “+”

as disjunction and the “·” as conjunction, essentially “eliminating duplicates”, hence we get the

usual set semantics.

We extend the above definition to the full relational algebra (RA) on Z-instances by defining

the difference operator in the obvious way:

111

difference If JQ1KI , JQ2KI : U-Tup→ K then JQ1 −Q2KI : U-Tup→ K is defined by

JQ1 −Q2KI(t) def= JQ1KI(t)⊕−JQ2KI(t)

For bag semantics, the subtraction in the definition above is replaced by proper subtraction

(negative numbers are truncated to 0). For B-relations this becomes the usual set difference in set

semantics.

Every bag instance is also a Z-instance. Relational queries on set or bag instances can be eval-

uated under bag semantics or under Z-semantics. To disambiguate we use the notation EvalKQI

to mean the evaluation of Q on bag instance I under K-semantics, for K ∈ {N, Z}.

For Q, Q′ ∈ RA and K ∈ {B, N, Z} we say that Q and Q′ are K-equivalent (denoted Q ≡K Q′)

if for every K-instance I, JQKI = JQ′KI . The following simple but useful observation relates N-

equivalence and Z-equivalence of positive queries:

Lemma 5.1. If Q, Q′ ∈ RA+ then Q ≡Z Q′ iff Q ≡N Q′

Proof. “⇒” follows from the fact that every bag instance is also a Z-instance and the two semantics

agree for positive queries on bag instances. “⇐” follows from the fact that bag equivalent positive

queries, when transformed into UCQs, are isomorphic (see Section 7.5 in [58]).

Normal Form and Decidability

Equivalence of relational queries under set semantics has long been known to be undecidable [123].

We have also seen (cf. footnote in the preamble to this chapter) that bag equivalence of relational

queries is undecidable, via an easy reduction from containment of UCQs (which makes essential

use of proper subtraction). In contrast, the form of subtraction used in Z-relations turns out to be

surprisingly well-behaved: we will show in this section is that Z-equivalence of relational queries

is actually decidable. The key idea is that in contrast to bag and set semantics, under Z-semantics,

every relational query is equivalent to a single difference of positive queries:

Theorem 5.2 (Normalization). For any Q ∈ RA we can effectively find A, B ∈ RA+ such that Q ≡Z

A− B.

Proof. For any Q ∈ RA we define a difference normal form denoted by diffNF(Q) by structural

recursion on Q as follows:

• If R is a predicate symbol then diffNF(R) = R−∅.

• If diffNF(Q) = A− B then

112

(A− B)− C ≡Z A− (B ∪ C)
A1(B− C) ≡Z (A 1 B)− (A 1 C)

(!) A− (B− C) ≡Z (A ∪ C)− B
(A− B) 1 C ≡Z (A 1 C)− (B 1 C)

(!) A ∪ (B− C) ≡Z (A ∪ B)− C

σP(A− B) ≡Z σP(A)− σP(B)
(!) (A− B) ∪ C ≡Z (A ∪ C)− B
(!) πX(A− B) ≡Z πX(A)− πX(B)

ρβ(A− B) ≡Z ρβ(A)− ρβ(B)

Figure 5.1: Algebraic identities for the difference operator under Z-semantics

– diffNF(πX(Q)) = πX(A)− πX(B), and

– diffNF(σP(Q)) = σP(A)− σP(B).

• If diffNF(Q1) = A1 − B1 and diffNF(Q2) = A2 − B2 then

– diffNF(Q1 1 Q2) = (A1 1 A2 ∪ B1 1 B2)− (A1 1 B2 ∪ B1 1 A2),

– diffNF(Q1 ∪Q2) = (A1 ∪ A2)− (B1 ∪ B2), and

– diffNF(Q1 −Q2) = (A1 ∪ B2)− (A2 ∪ B1).

Clearly diffNF(Q) has the form A− B with A, B ∈ RA+. It is straightforward to show by induction

on Q that Q ≡Z diffNF(Q) using the algebraic Z-semantics identities in Figure 5.1. Note that in

general diffNF(Q) may be of size exponential in the size of Q.

The given definition of diffNF(Q) proliferates redundant occurrences of ∅. We will assume

that simplifications are made based on identities such as A ∪ ∅ ≡ A or A 1 ∅ ≡ ∅ (true for Z-

semantics, bag semantics, set semantics, and in fact all semiring-annotated relations semantics).

As a result, it is easy to check that for RA+ queries Q we have diffNF(Q) = Q−∅.

Note that the identities in Figure 5.1 that are flagged by (!) fail in fact for both set and bag

semantics, and indeed Theorem 5.2 fails for set or bag semantics.

Corollary 5.3. Z-equivalence of RA queries is decidable.

Proof. Let Q, Q′ ∈ RA. By Theorem 5.2, Q ≡Z Q′ iff diffNF(Q) ≡Z diffNF(Q′). Let A, B, C, D ∈

RA+ such that diffNF(Q) = A− B and diffNF(Q′) = C− D. But A− B ≡Z C− D iff A ∪ D ≡Z

B ∪ C iff A ∪D ≡N B ∪ C. But A ∪D and B ∪ C are in RA+ and hence equivalent to UCQs so the

result follows from the decidability of UCQ bag equivalence [58].

113

Corollary 5.3 can be used to show a pspace upper bound on the complexity of checking Z-

equivalence of RA queries; however, the exact complexity remains open. A lower bound is given

by Proposition 5.4 which shows that the problem is at least gi-hard.3

DUCQs

As we shall below, our reformulation algorithm uses RA queries in difference normal form. In,

fact as with CQs and UCQs it is notationally convenient to use a Datalog-style syntax for the

queries on which reformulation operates directly. We define differences of unions of conjunctive

queries (DUCQs) for this purpose, for example:

Q(x, z) :- R(x, y), S(y, z)

Q(x, y) :- R(x, y), R(y, x), R(x, x)

−Q(x, y) :- R(x, y), T(y, y)

The − marks a “negated” CQ, so this example corresponds (roughly) to the algebraic form

Q = (π(R 1 S) ∪ (R 1 R 1 R))− (R 1 T)

DUCQs are related to the elementary differences of [123]. Under Z-semantics, anyRA query can be

written equivalently as a DUCQ; this follows from Theorem 5.2 and the fact that any RA+ query

can be rewritten as a UCQ. The semantics of DUCQs on bag relations/Z-relations/set relations

can be given formally by translation to RA.

Although we do not have a precise complexity for the Z-equivalence of RA queries, we can

fully characterize the complexity of checking Z-equivalence of DUCQs:

Proposition 5.4. For DUCQs Q, Q′ checking Q ≡Z Q′ is gi-complete.

Proof. Following similar reasoning as in the proof of Corollary 5.3, we have A ∪ −B ≡Z C ∪ −D

iff A ∪ D ≡Z B ∪ C iff A ∪ D ≡N B ∪ C. But by the results of [30], this holds iff A ∪ D and

B ∪ C are isomorphic. Thus Z-equivalence of DUCQs is polynomial time interreducible with the

gi-complete problem of checking isomorphism of UCQs.

5.3 Reformulation Using Views

Let Σ be a relational schema and V a finite set of views over Σ. Let ΣV be the schema consisting of

the view names (disjoint from Σ). A Σ ∪ ΣV instance is V-compatible if it consists of a Σ-instance I

3
gi is the class of problems polynomial time reducible to graph isomorphism. Graph isomorphism is known to be in

np, but is not known or believed to be either np-complete or in ptime.

114

and a ΣV -instance J such that J = JVKI . Orthogonally, these instances may consist of Z-relations,

N-relations or B-relations. For K ∈ {B, N, Z}we say that two relational queries Q, Q′ over Σ∪ΣV

are K-equivalent under V , denoted Q ≡VK Q′, if Q and Q′ agree on all cV-compatible K-instances.

Given a Σ-query Q, a reformulation of Q using V is a Σ ∪ ΣV-query Q′ such that Q ≡VK Q′. We

also call Q′ an equivalent rewriting using V .

Query reformulation algorithms typically work by effectively enumerating certain queries, call

this a search space, filtering the queries that are not equivalent rewritings, and finding a minimum-

cost query (according to some cost model). There are three requirements for designing such

algorithms; (1) the search space must be finite so the algorithm terminates, (2) the returned rewrit-

ing should be actually equivalent so the algorithm is sound, and (3) if equivalent rewritings exist

then at least one of them should be found so the algorithm is complete. A more subtle requirement

is that the returned rewriting has smaller cost than any rewriting, even when there are infinitely

many ones.

In the case of set semantics one can construct infinitely many rewritings of CQs even without

views, simply by adding to their bodies atoms that can be homomorphically mapped to existing

ones [2]. This can be dealt with by considering only queries that have no non-trivial endomor-

phism, call them locally minimal. It was shown in [101] that the space of locally minimal CQ

reformulations of a CQ query Q using CQ views V is finitely bounded. Further work focused

on pruning and efficiently exploring this search space (looking for not just equivalent rewritings

but also maximally contained rewritings) [102, 44, 119, 111]. Even if certain classes of integrity

constraints (capturing views and more) are considered, a corresponding notion of minimality can

be used to define a finite search space for rewritings, using the chase and backchase technique [38].

For CQs and bag semantics a finite search space exploration is described in [23]. Interestingly,

the UCQ and/or bag-semantics analogs of the complexity results in [101] do not seem to appear

anywhere (to the best of our knowledge). For bag semantics, we attempt to remedy this omission

in Subsection 5.3 below.

In the reformulation procedures we have mentioned, the search spaces are constructed and

enumerated combinatorially, thus including non-equivalent rewritings. One takes advantage of

the decidability of ≡VK to filter them out. But such decidability is not just sufficient, it is also

necessary. Indeed, all such reasonable approaches describe a total recursive function that associates

to each Σ-query Q a finite set searchSpace(Q) of Σ ∪ ΣV -queries. Moreover, procedures like local

minimization can be abstracted by another total recursive function that associates to each Σ-query

Q and each Σ ∪ ΣV -query Q′ another Σ ∪ ΣV -query µ(Q, Q′) such that Q′ ≡K µ(Q, Q′). And

finally, one shows that Q′ ≡VK Q if and only if µ(Q, Q′) ∈ searchSpace(Q). Since the latter is

decidable, so is ≡VK .

115

In particular, K-equivalence of Σ-queries must also be decidable which is why under bag or set

semantics we cannot hope to extend the ideas that have worked for positive queries to rewritings

of relational queries with difference.

We have seen that shifting to Z-semantics however leads to the decidability of Z equivalence

of RA queries (hence DUCQs). According to the discussion above, next we need to explore Z-

equivalence under a set of views and we do so in Section 5.3 using an uniquely terminating term

rewrite system.

In the same subsection we discuss adding the reverse of the term rewrite rules as the basis

for a reformulation algorithm. In the last two subsections we consider limiting our search to diff-

irredundant rewritings, and we develop a cost model and a procedure for limiting the search space

further.

Complexity of Bag Reformulation

In the case of bag semantics, UCQ queries and UCQ views there are only finitely many rewrit-

ings (modulo symbol renaming). This is essentially because under bag semantics, positive query

equivalence is the same as isomorphism (see [24] for CQs and [30] for UCQs). For CQs, that is,

select-project-join queries, an algorithm for exploring the resulting finite search space in conjunc-

tion with System-R style query optimization was given in [23].

We consider here, for UCQs and bag semantics, the analogs of the complexity results shown

in [101] for the the existence of rewritings of CQs using CQ views under set semantics.

Theorem 5.5. Given a query Q ∈ UCQ and set of views V ⊆ UCQ it is np-complete to determine

whether:

(i) There exists a UCQ rewriting under bag semantics of Q using at least one predicate in cV (the

problem is np-hard even for CQs).

(ii) There exists a UCQ rewriting under bag semantics of Q that is complete, i.e., using only predicates

in V (the problem is np-hard even for CQs).

Proof. (Sketch) Membership in np in both cases is easy to see.

(i) np-hardness when Q and V are CQs (and hence also for the case where Q and V are UCQs)

is established by a straightforward reduction from the subgraph isomorphism problem: given

graphs G1, G2 is there a subgraph of G1 which is isomorphic to G2? (In contrast to graph

isomorphism, the subgraph isomorphism problem is known to be np-complete.)

116

(ii) np-hardness when Q and V are CQs is again established by a reduction from the subgraph

isomorphism problem. This time, we work with a slightly specialized version of the prob-

lem: if n is the number of edges in G1, and m is the number of edges in G2, we assume

that m− n does not divide m. It can be shown that this version of the problem remains np-

complete. Next, given directed graphs G1 and G2 satsifying this assumption, we construct

a Boolean CQ Q encoding the edges of G2, a CQ view V1 encoding the edges of G1, and an

additional CQ view V2 defined

V2(x1, . . . , x2(m−n) :- E(x1, x2), E(x3, x4), . . . , E(x2(m−n)−1, x2(m−n)).

We finish the reduction by showing that there exists a complete rewriting of Q using {V1, V2}

iff there is a subgraph of G1 which is isomorphic to G2.

By the way, for DUCQs, the first question in the theorem has a trivial answer: a DUCQ Q

can always be rewritten as the equivalent (V ∪ −V) ∪ Q (equivalent under bag semantics, Z-

semantics, and even set semantics). As for the second question in the theorem, for DUCQs, we do

not even know if this problem is decidable.

Term Rewriting System and Decidability of Equivalence under Views

For the dual purposes of checking equivalence under views and — as we shall see later — enumer-

ating reformulations we introduce here a term rewriting system [91] for DUCQs under Z-semantics.

We fix a relational schema Σ and a set of views V given by DUCQs over the relations in Σ. The

terms of our rewrite system are the DUCQs over any combination of the source predicates in Σ

and the view predicates in V .

In the rewrite rules we use an auxiliary view unfolding relation on CQs, defined Q→V Q′, if Q′

can be obtained from a CQ Q by unfolding (in the standard way) a single occurrence of the view

predicate V in Q. We extend→V to work with UCQ views by unfolding repeatedly (once for each

CQ in the view) and producing a UCQ as output (with the same number of rules as the view).

For example, if V is the UCQ view:

V(x, y) :- R(x, z), R(z, y)

V(x, y) :- R(x, u), R(u, v), R(v, y)

and Q is the CQ:

Q(x, y) :- V(x, z), V(z, y)

117

then Q→V Q′ where Q′ is the UCQ:

Q′(x, y) :- V(x, z), R(z, w), R(w, y)

Q′(x, y) :- V(x, z), R(z, u), R(u, v), R(v, y)

Finally we extend →V to work with DUCQs by propagating the − marks (e.g., if the second CQ

in V above were marked −, then the second CQ in Q′ above would also be marked −).

Now we define a rewrite relation→ on terms as follows:

P, Q, R ∈ DUCQ V ∈ V P→V Q

P ∪ R→ Q ∪ R
(Unfold)

A, B ∈ CQ Q ∈ DUCQ A ∼= B

Q ∪ A ∪ (−B)→ Q
(Cancel)

Next we establish the salient properties of our rewrite system. We denote the transitive reflex-

ive closure of→ by ∗→. A term is a normal form if no rewrite rule applies to it. A reduction sequence

Q1 → · · · → Qn is terminating if Qn is a normal form.

Proposition 5.6. The rewrite system above is uniquely terminating, i.e., it satisfies the following two

properties:

1. (confluence) For all Q, Q1, Q2 ∈ DUCQ if Q ∗→ Q1 and Q ∗→ Q2 then there exist Q3, Q′3 ∈ DUCQ

such that Q1
∗→ Q3 and Q2

∗→ Q′3 and Q3 ∼= Q′3.

2. (termination) Every reduction sequence Q1 → Q2 → · · · eventually must terminate.

Proposition 5.7. The rewrite system above is sound and complete w.r.t. Z-equivalence with respect to

V , i.e., for any Q1, Q2 ∈ DUCQ we have

1. (soundness) If Q1
∗→ Q2 then Q1 ≡VZ Q2.

2. (completeness) If Q1 ≡VZ Q2 then there exist Q′1, Q′2 such that Q1
∗→ Q′1 and Q2

∗→ Q′2 and

Q′1 ∼= Q′2.

Corollary 5.8. Z-equivalence of DUCQs (and thus RA queries) with respect to a set of DUCQ (and thus

RA) views V is decidable.

The corollary holds for RA queries and views because we can always convert them first to

DUCQs. Note that converting them to DUCQs may increase the size exponentially, and there can

be a separate exponential blowup when unfolding the views in the DUCQs. We leave open the

exact complexity of the problems in Corollary 5.8.

118

In addition to their use for showing decidability, the term rewrite rules can be very valuable in

the search for reformulations. By the soundness property above, using the rules guarantees that

we only explore equivalent rewritings. By the completeness property, if an equivalent rewriting

exists, it will be reachable by a sequence of rewrite steps or — and this is the main difficulty we

will have to face — converse rewrite steps.

Thus, in Section 5.4 we develop an enumeration algorithm for Z-equivalent reformulations,

which uses the above rewrite system combined with the converse of the Unfold and Cancel

operations, called Fold and Augment, respectively. Fold rewrites a query by removing some of

its CQs and replacing them with an equivalent view (recall that under bag semantics two UCQs

are equivalent iff they are isomorphic.) In general we may need to Augment first before Fold is

applicable.

P, Q, R ∈ DUCQ V ∈ V P→V Q

Q ∪ R→ P ∪ R
(Fold)

A, B ∈ CQ Q ∈ DUCQ A ∼= B

Q→ Q ∪ A ∪ (−B)
(Augment)

We observe that in isolation Augment can add/subtract arbitrary CQsto the query, regardless

of whether this will turn out to be “useful” (by enabling a subsequent Fold). Hence we do not

use Augment directly, but rather define a compound Augment-Fold operation, which augments

the query only with the CQs necessary to perform a Fold operation with a given view. (The

Augment step of Augment-Fold may be skipped if Fold can be directly applied to the query.)

Additionally, we restrict Augment-Fold to apply only if there exists at least one rule in common

between the query and the view.

After applying Augment-Fold, we may be able to Cancel some rules introduced into the

query. Hence, we will also always apply Cancel after an Augment-Fold repeatedly until it is

no longer applicable. We denote the rule which corresponds to this sequence of Augment-Fold

followed by repeated Cancel by Augment-Fold-Cancel, and write Q ↼ Q′ if Q′ can be obtained

from Q by an application of Augment-Fold-Cancel. . We denote the reflexive transitive closure

of ↼ by ∗
↼. Note that Q ∗

↼ Q′ implies Q ∗← Q′ but the converse does not hold in general.

Proposition 5.9. If Q ∈ DUCQ then checking whether there exists Q′ ∈ DUCQ s.t. Q→ Q′ (resp. Q ↼

Q′) is gi-complete (resp. np-complete).

119

Diff-Irredundant Rewritings

While Unfold and Cancel only give terminating sequences of rewritings, the addition of the

converse rules destroys this property. For example Augment (which we denote ←) can be used

to “grow” a DUCQ arbitrarily by adding more and more CQs: for example, Q← Q ∪ A ∪−A←

Q ∪ A ∪ B ∪−A ∪−B← · · · .

Therefore the space of queries reachable in this way is infinite. How do we cut it down to a

finite size? Given the success of considering locally minimal rewritings for set semantics, we could

try to find a similar notion of minimality for DUCQs, hopefully one that is compatible with useful

cost models. In this subsection, we define such a notion based on removing certain redundant

computations, and we consider whether the space of non-redundant rewritings is finite.

Definition 5.10. A DUCQ Q = A− B is said to be diff-redundant if for some subset of CQs A′ ⊆ A

and B′ ⊆ B, we have A′ ≡VZ B′. In this case the pair of terms A′, B′ is said to be diff-redundant.

In the example above, Q ∪ A ∪−A and Q ∪ A ∪ B ∪−A ∪−B are both diff-redundant.

A diff-redundant DUCQ can be minimized by repeatedly finding and removing diff-redundant

pairs of terms until a diff-irredundant query is obtained. In the examples above, this leads back to

Q (assuming Q itself is irredundant). More generally:

Proposition 5.11. If Q, Q′ are DUCQs that do not contain view predicates and Q ≡Z Q′, then minimizing

Q and minimizing Q′ produces the same query (up to isomorphism).

However, when queries may contain view predicates, this property fails dramatically:

Theorem 5.12. The set irrV (Q) of diff-irredundant rewritings of a DUCQ Q with respect to a set of views

V is in general infinite.

Proof. If R and S are binary relations, then denote by RS the relational composition of R and S, i.e.,

the query:

Q(x, y) :- R(x, z), S(z, y)

We will use exponents to mean repeated relational composition (e.g., R3 = RRR), and to simplify

notation we use here + for union.

Now let Q = R2, and let V contain the single view V = R + R3. Then we have:

Q = R2

≡VZ VR− R4

≡VZ VR−VR3 + R6

≡VZ VR−VR3 + VR5 − R8

120

and more generally:

Q ≡VZ (−1)nR2(n+1) +
n

∑
i=1

(−1)i+1VR2i−1

for all n ≥ 0. Clearly, there are infinitely many rewritings of this form. Moreover, one can check

that every such rewriting is diff-irredundant. It follows that irrV (Q) is infinite.

Thus, considering diff-irredundant queries does not suffice to establish a finite bound on the

set of possible rewritings for a DUCQ.

A Cost Model

Another notion of minimality we might consider is the global minimality of [101], where the goal is

to minimize the total number of atoms in a CQ reformulated using views. We find this notion prob-

lematic for several reasons. First, in contrast to the classical CQ minimization techniques (where

minimizing the number of atoms coincides with computing the core of the query), the mathemat-

ical justification is unclear. Second, it is not clear how global minimality should be extended to

UCQs/DUCQs (total number of atoms in all CQs?). Third, in the practical applications of interest

to us, the real goal is to minimize the cost of executing a query, and the number of atoms is often

not indicative of query performance. This is because of many factors, especially the different costs

of computing with different source relations (which may be of drastically different cardinalities,

have different indexes, etc.).

To illustrate this last point, recall that in Section 5.1 we had a view maintenance example,

where the original view was defined as:

V(x, y) :- R(x, y), R(z, y)

and our updated view could be defined as:

V′(x, y) :- R′(x, y), R′(z, y)

where R′(x, y) represents R(x, y) ∪ R∆(x, y). The reformulation problem has two materialized

views: the original V in terms of the base R, and R′ (R after updates are applied, which we can

compute either before or after computing V′). If R∆ is large, then V′ may be most efficient to

compute in terms of R′, as specified in the second rule above. Alternatively, if R∆ is small, then it

may be more efficient to compute V′ using V and delta rules:

V′(x, y) :- V(x, y)

V′(x, y) :- R∆(x, z), R(z, y)

V′(x, y) :- R(x, z), R∆(z, y)

121

Note that the latter query has three rules compared to only one in the first case, and five atoms to

only two. Yet, intuitively, for small R∆s, the second case is more efficient.

In practical DBMS implementations, a cost model [125] predicts query performance given

known properties (such as cardinalities) of the input relations. Here we seek an abstract cost

model that captures the essence of the detailed models implemented in real optimizers. Our cost

model, cost : RA → N, is instance-dependent, and makes use of external calls to a cardinality

estimation function, card : RA →N, which returns the estimated number of tuples in the result of

a subquery (for the current database instance). We define cost inductively on RA expressions:

cost(R) = card(R)

cost(πE) = cost(E)

cost(σE) = cost(E)

cost(E1 ∪ E2) = cost(E1) + cost(E2)

cost(E1 − E2) = cost(E1) + cost(E2)

cost(E1 1 E2) = cost(E1) + cost(E2)

+ card(E1 1 E2)

This cost model intuitively focuses on the cost of producing new tuples in expensive operations,

namely joins and tablescans. (Union in Z-semantics is inexpensive, as it is in bag-semantics;

difference in Z-semantics is in fact a union operation that negates counts, and hence it is also

inexpensive.) Our cost model essentially computes a lower bound on the amount of work a join

must perform: it considers tuple creation cost but ignores the cost of matching tuples. (For an

index nested loops join or a hash join, matching is in fact inexpensive, so this is a fairly realistic

lower bound.) Our model satisfies the principle of optimality [32] required by a real query optimizer

cost model.

The cost model above is based on queries represented as relational algebra expressions (with

a specific order of evaluation). However it can be extended to CQs by defining the cost of a CQ as

the cost of the cheapest equivalent algebraic expression,4 and to UCQs and DUCQs by summing

the costs of all the CQs in the UCQ or DUCQ. Assuming every source relation is non-empty, a

simple observation is that any CQ has cost at least 1, and any DUCQ Q has cost at least n = |Q|

(where |Q| is the number of CQs in the DUCQ).

Now we can establish a bound on the search space in which we wish to look for rewritings of

minimum cost:

4This is in fact done by dynamic programming in real query optimizers.

122

Proposition 5.13 (completeness under cost). For Q ∈ DUCQ, let V be a set of views, let k = cost(Q),

and let w be the maximum number of CQs in Q or in a view in V . Assume w.l.o.g. that Q does not contain

any view predicates (they can always be removed by applying Unfold repeatedly). Then any DUCQ of

minimum cost among those equivalent to Q using V can be reached from Q in at most O(kwk) steps of

(Fold + Augment)-rewriting.

Proof. Suppose that Q′ is a DUCQ reformulation of Q of minimum cost. Then using our obser-

vations above, Q′ contains at most k CQs each containing at most k view predicates. We can

rewrite Q′ into Q by a sequence of u Unfold steps. (Read in the reverse direction, this will yield

a sequence of v Augment steps followed by a sequence of u Fold steps, rewriting Q into Q′.)

Consider a single CQ in Q′. We claim that Unfold can be applied repeatedly to it at most wk

times, replacing the single CQ with at most wk CQs. Doing this for all of the ≤ k CQs in Q′, we

have u ≤ kwk Unfold steps, and the result is a DUCQ containing ≤ kwk CQs.

Next, since each application of Cancel removes 2 CQs, it follows that Cancel can be applied

at most bkwk/2c times. Thus, the total length of the sequence rewriting Q′ to Q is at most

kwk + bkwk/2c = O(kwk).

This yields a finite bound (which can be effectively computed from Q, V , and cost) on the

region of the rewrite space that must be explored in order to find a rewriting of minimum cost

(for a given instance).

5.4 Finding Query Rewritings

Now that we understand the conditions under which reformulation can be bounded to a finite

search space, we develop an enumeration algorithm for exploring the space of possible query

reformulations, for the problems of optimizing queries using views, view adaptation, and view mainte-

nance. Recall from Section 5.1 that the optimizing queries using views problem takes a set of materi-

alized views, plus a query to be reformulated, as input. View adaptation takes a single materialized

view (the “old” view definition and materialized instance), with the modified view definition as

the query to be reformulated. View maintenance takes the pre-updated view instance and updated

versions of the base relations as input views, with the maintained view (i.e., the view computed

over the updated base relations) as the query to be reformulated.

Reformulation Algorithm

From Section 5.3 we have a set of rewrite rules, namely Unfold, Cancel, and Augment-Fold-

Cancel. Algorithm 5 shows how these can be composed to enumerate the space of plans. The

123

Algorithm 5 reformulate(query q, set of views V) returns query

1: for each view v in V do
2: v := normalize(v)
3: end for
4: Let qi := normalize(q)
5: Let Q := ∅
6: Let F := {(qi, 0)}
7: for each (q, k) in F do
8: Remove (q, k) from F and add it to Q
9: for each v in V do

10: Let q′ := Augment-Fold-Cancel(q,v)
11: if q′ not in Q and not prune(q′, k + 1) then
12: Add (q′, k + 1) to F
13: end if
14: end for
15: end for
16: return the q in Q with lowest cost

normalize function (omitted) repeatedly applies Unfold and Cancel to the input query until they

are no longer applicable. Next, the main loop simply applies Augment-Fold-Cancel to rewrite

portions of each “frontier” query q in F, in terms of any views that overlap with q.

The prune function determines whether the rewritten query q′ should be added to the frontier

set, or disregarded during exploration. For the rewrite algorithm to be guaranteed to terminate

and find an optimal rewriting according to the cost model, it suffices to define prune(q, k) to

return true iff k is less than the bound given by Proposition 5.13. (In practice, we would add

additional heuristics to prune to limit the search space, sacrificing the guarantee of a minimum-

cost rewriting.) Once the full space has been explored, reformulate returns the rewriting from Q

with the lowest cost according to our cost model.

Rewriting in a Query Optimizer

In principle, one could search the space of query rewritings by building a layer above the query

optimizer, which enumerates possible rewritings; then separately optimizes each. However, a

more efficient approach is to extend an existing optimizer to incorporate the rewriting system into its

enumeration. Unlike with rewriting of conjunctive queries, most existing cost-based optimizers

cannot easily be extended to DUCQ rewritings. The System-R optimizer [125] only does cost-

based optimization of joins, instead relying on heuristics for applying unions and differences.

Starburst [67] can rewrite queries with unions and differences, but only at its heuristics-based

query rewrite stage. Starburst only has limited facilities for cost-based comparison of alternative

rewritings.

124

Fortunately, the Volcano [55] optimizer generator (as well as its successors) can be modified to

incorporate our rewrite scheme within an optimizer. Volcano models a query initially as a plan

of logical operators representing the algebraic operations, including unions and differences; it uses

transformation rules to describe algebraic equivalences that can be used to find alternate plans.

Implementation rules describe how to rewrite a logical operator (or set of operators) into a series of

physical algorithms, which have associated costs.

Our rewrite rules of Section 5.3 can be expressed as transformation rules for Volcano, and we

would not need to change any implementation rules. However, we would also need to modify

Volcano’s pruning algorithm: we must place a finite bound on the size of the rewritings explored,

as with our prune function in the previous subsection.

5.5 Applications to Bag and Set Semantics

Having obtained a sound and complete algorithm for reformulation of RA queries using RA

views under Z-semantics, we wish to see for which RA queries/views this same algorithm ac-

tually provides reformulations under bag semantics. Thus we are naturally led to study the

following class of queries:

Definition 5.14. We denote by RA the class of all queries Q ∈ RA such that for all bag-instances

I, EvalNQI = EvalZQI.

Right away we see that:

Lemma 5.15. For any Q1, Q2 ∈ RA we have Q1 ≡Z Q2 implies Q1 ≡N Q2.

Then

Lemma 5.16. If A, B ∈ RA+ then A− B ∈ RA if and only if B vN A.

Proof. “⇒”: suppose A − B ∈ RA and consider an arbitrary bag instance I and tuple t. Since

EvalZ A− BI(t) = EvalN A− BI(t) ≥ 0, and by definition, EvalZ A− BI(t) = EvalZ AI(t) −

EvalZBI(t), it follows that EvalAZI(t) ≥ EvalZBI(t). Since A and B are positive queries, by

Lemma 5.1, EvalZ AI = EvalN AI and EvalZBI = EvalNBI and therefore EvalN AI(t) ≥ EvalNBI(t).

Since I and t were chosen arbitrarily, it follows that B vN A.

“⇐”: suppose A vN B and consider an arbitrary bag instance I. By Lemma 5.1 EvalN AI =

EvalZ AI and EvalNBI = EvalZBI. But since EvalNBI ≤ EvalN A, it follows that EvalZ A− BI =

EvalN A− BI ≥ 0. Since I was chosen arbitrarily, it follows that A− B ∈ RA.

Proposition 5.17. If Q ∈ RA then diffNF(Q) ∈ RA and Q ≡N diffNF(Q).

125

Proof. Suppose Q ∈ RA, let diffNF(Q) = A − B (with A, B ∈ RA+), and choose an arbitrary

bag instance I and tuple t. Then EvalNQI(t) = EvalZQI(t) = EvalZ A− BI(t) = EvalZ AI(t)−

EvalZBI(t) ≥ 0. It follows that EvalZ AI(t) ≥ EvalZBI(t) and therefore (using Lemma 5.1) that

EvalZ A− BI(t) = EvalN A− BI(t). Since I and t were chosen arbitrarily, it follows that Q ≡N A−

B, as required, and also that B vN A. By Lemma 5.16 this in turn implies that A− B ∈ RA.

Corollary 5.18. Bag-equivalence of RA queries is decidable.

Next we show that if we start with a DUCQ in RA and a set of DUCQ views also in RA, then

the exploration of the space of reformulations prescribed by the algorithm of Section 5.4 examines

only queries in RA which are ≡N under the views to the original DUCQ.

Suppose that V is a set of views in RA expressed as DUCQs.

Proposition 5.19. If Q is a DUCQ in RA and Q′ is a DUCQ obtained from Q either by a step of

augmentation or by a step of folding with a view from V then Q′ ∈ RA and Q′ is ≡N to Q under V .

Therefore, the reformulation algorithm can be used withRA queries and views. Unfortunately,

but not unexpectedly, it is undecidable whether an RA query or even a DUCQ is actually in RA

(Lemma 5.16 provides a reduction from bag-containment of UCQs). But there are interesting

classes of queries for which membership in RA is guaranteed. The simplest but still very useful

case is based on the observation that RA+ ⊂ RA. It follows that our algorithm is also complete

for finding DUCQ reformulations of UCQs using UCQ views, as in the example in Section 5.1.

Next we identify a subclass of RA for which, while still undecidable in general, membership

may be easier to check in certain cases.

Definition 5.20. We denote by R̂A the class of of all RA queries Q such that for every occurrence

A− B of the difference operator in Q, we have B vN A.

Theorem 5.21 (Normalization for R̂A). For any Q ∈ R̂A can find A, B ∈ RA+ such that Q ≡N

A− B.

Proof. Straightforward induction on Q, using the same algebraic identities as in Theorem 5.2.

Although these identities fail under bag semantics for RA queries, they hold for R̂A queries.

Corollary 5.22. Bag-equivalence of R̂A queries is decidable.

Theorem 5.23. R̂A ⊂ RA

Proof. Checking R̂A ⊆ RA is a straightforward application of Theorem 5.21. To see that the

inclusion is proper, consider the query Q def= (R− (R∪R))− (R− (R∪R)). Q is both Z-equivalent

126

and N-equivalent to the unsatisfiable query ∅; it follows that Q is in RA. However, since R ∪

R 6vN R, it is clear that Q 6∈ R̂A.

Although RA contains queries which are not in R̂A (because of their syntactic structure), it

turns out that, semantically, R̂A captures RA, as the following theorem makes precise:

Theorem 5.24. For all Q ∈ RA there exists Q′ ∈ R̂A such that Q ≡N Q′.

Proof. For any Q ∈ RA, we show that there must exist A, B ∈ RA+ such that B vN A and

Q ≡N A− B. Fix a Q ∈ RA. By Theorem 5.2, there exist A, B ∈ RA+ such that Q ≡Z A− B. We

argue by contradiction that B vN A. Suppose B 6vN A. Then there exists a bag instance I and

tuple t such that EvalN AI(t) < EvalNBI. Then EvalZ A− BI(t) < 0, i.e., EvalZ A− BI = EvalZQI

is not even a bag-instance. However, this is a contradiction, because by assumption (since Q ∈

RA), we must have EvalZQI = EvalNQI. Finally, we argue that Q ≡N A − B. To see this, fix

an arbitrary bag instance I. We want to show that EvalNQI = EvalN A− BI. Since Q ∈ RA,

we have EvalNQI = EvalZQI. Since Q ≡Z A − B we have EvalZQI = EvalZ A− BI. Finally,

since A− B ∈ R̂A, by Theorem 5.23 we have EvalZ A− BI = EvalN A− BI. This completes the

proof.

Membership in R̂A is also undecidable. However in some practical situations, such as incre-

mental view maintenance of RA+ views using delta rules [66], the difference operator is used in

a very controlled way where the containment requirement is satisfied (e.g., it is just necessary for

the system to enforce that only tuples actually present in source tables are ever deleted from the

sources).

We are also interested in reformulating and answering queries under Z-semantics, but then

“eliminating duplicates” to obtain the answer under set semantics. Even for R̂A queries, this

is not in general straightforward: for example, consider the query Q = (R ∪ R)− R. Under set

semantics, this is equivalent to the unsatisfiable query, while under bag semantics or Z-semantics,

it is equivalent to the identity query R. We can, however, restrict the use of negation in R̂A further,

to obtain another fragment of RA suitable for this purpose.

Definition 5.25. An RA query Q over a schema Σ is said to be a base-difference query if A− B can

appear in Q only when A and B are both base relations (names in Σ). Further, a base-difference

query Q is said to be positive-difference wrt a set-instance I if for each A− B appearing in Q we

have AI ⊇ BI (where AI is the relation in I that corresponds to A ∈ Σ.)

Although the use of negation in base-difference queries considered on instances wrt which

they are positive-difference is highly restricted, it still captures the form needed for incremental

127

view maintenance, where negation just relates old and new versions of source relations via the

tables of deleted and inserted tuples.

For conversion between bag semantics / Z-semantics and set semantics we also define the

duplicate elimination operator δ : Z → B which maps 0 to false and everything else (positive or

negative) to true. Conversely, we can view any set instance as a bag/Z instance by replacing false

with 0 and true with 1. With this we can state the salient property of base-difference queries:

Proposition 5.26. . Let Q ∈ RA be a base-difference query and let I be a set instance w.r.t. which Q is

positive-difference. Then, we can compute JQKI by viewing I as a Z-instance, computing JQKI under Z

semantics and finally applying δ.

Consequently, the optimization techniques in this chapter (which replaces a query with a Z-

equivalent one) will also apply to set semantics, provided we restrict ourselves to base-difference

queries applied to instances w.r.t. which they are positive-difference.

5.6 Built-in Predicates

To this point, our approach to query rewriting has assumed equality predicates only. Clearly, any

practical implementation would also consider inequality (<,≤) and non-equality (6=) predicates.

In this section we discuss the extensions necessary to support such built-in predicates.

We assume our domain D comes equipped with a dense linear order <, and we define RA<,

R̂A<
, CQ<, etc. as the previously defined classes of queries extended to allow use of the predicates

<, ≤, =, and 6=. In general, the predicates in a CQ< induce only a partial order on the variables.

We shall call a CQ< total if the predicates in the query induce a total order on the variables, and

partial otherwise. To facilitate syntactic comparison of queries we shall assume w.l.o.g. for total

CQ<s that a minimal number of predicate atoms are used, i.e., if the predicates induce the total

order x < y < z then the predicate atoms x < y and y < z and no others appear in the query. A

UCQ< or DUCQ< is total if all of its CQ<s are total, and partial if it contains a partial CQ<.

As in [30, 29], we note that a partial CQ< Q can always be converted into an equivalent total

UCQ<, denoted lin(Q), that contains one CQ< for each linearization of the partial order on the

variables. For example:

Q(x, y) :- R(x, y), R(y, z), x < y, x ≤ z

128

can be rewritten:

Q(x, y) :- R(x, y), R(y, z), x = z, x < y

Q(x, y) :- R(x, y), R(y, z), x < y, y = z

Q(x, y) :- R(x, y), R(y, z), x < y, y < z

Q(x, y) :- R(x, y), R(y, z), x < z, z < y

Likewise a partial UCQ< (DUCQ<) Q can be converted into an equivalent total UCQ< (DUCQ<)

lin(Q) by replacing each partial CQ< with its equivalent total UCQ<. Note that if Q is already

total, then Q = lin(Q).

Theorem 5.27. For all Q, Q′ ∈ UCQ< the following are equivalent:

1. Q ≡N Q′

2. Q ≡Z Q′

3. lin(Q) ∼= lin(Q′)

Proof. (2) ⇒ (1) because every bag instance is a Z-instance. (1) ⇒ (3) is stated in [30] for bag-set

semantics but it also holds for bag semantics (see Section 7.5 in [58]). (3) ⇒ (1) follows from the

observation that Q ≡Z lin(Q).

Corollary 5.28. Z-equivalence of RA< queries is decidable and so is bag-equivalence of R̂A<
queries.

This leads to an approach to enumerating rewritings of queries with predicates w.r.t. views:

linearize the queries and views into total UCQs/DUCQs as above and reformulate using the

linearized representations. As an optional final step, the reformulated query could then be “de-

linearized” to a partial query.

5.7 Z[X]-relations

We have seen that Z-relations are useful for reformulating and answering queries even when the

end goal is the result under bag semantics or set semantics.

For CDSS, where the end goal of reformulation is the query answer under provenance anno-

tated semantics, we find a natural ring-annotated counterpart to N[X]-relations in Z[X]-relations,

which are relations annotated with elements of the commutative ring (Z[X], +, ·, 0, 1) of poly-

nomials over variables X with (positive or negative) integer coefficients. Like Z-relations, Z[X]-

relations give a convenient way to uniformly represent data and updates. (See Example 1.16 in

Chapter 1 for an example.)

129

We extend the semantics of positive relational algebra queries on semiring-annotated relations

(Definition 2.2) to Z[X]-relations exactly as we did for Z-relations, using the usual subtraction of

polynomials.

Proposition 5.29. • If I is an N[X]-instance, and Q ∈ RA+, then evaluating Q on I under N[X]-

semantics yields the same result as evaluating Q on I under Z[X]-semantics.

• For Q, Q′ ∈ RA+, we have Q ≡N[X] Q′ iff Q ≡Z[X] Q′.

What about query equivalence, query reformulation, etc. with Z[X]-semantics? It turns out

that for such questions, Z[X]-semantics and Z-semantics are essentially interchangable:

Theorem 5.30. For Q, Q′ ∈ RA we have Q ≡Z Q′ iff Q ≡Z[X] Q′.

As a consequence, Z[X]-equivalence of RA queries is also decidable, as is Z[X]-equivalence

of RA queries with respect to a set V of RA views. Moreover, the term-rewrite system based

approach to reformulating RA queries under Z-semantics using materialized RA views is also

sound and complete with respect to Z[X]-semantics.

130

Chapter 6

Semiring-Annotated XML

In Chapter 2, we saw that many of the mechanisms for evaluating queries over annotated relations—

e.g., incomplete and probabilistic databases, databases with multiplicities (bags), and those carry-

ing provenance annotations—can be unified in a general framework based on commutative semir-

ings. Intuitively, one of the semiring operations models alternative uses of data while the other

models its joint (or dependent) use. Chapter 2 presented semantics for positive relational algebra

(i.e., unions of conjunctive queries) and positive Datalog for relations decorated with annotations

from a semiring. It also identified a canonical notation for provenance annotations using semiring

polynomials (and formal power series) that captures, abstractly, computations in arbitrary semir-

ings and therefore serves as a good representation for CDSS implementations such as Orchestra.

This work has opened up a number of interesting avenues for investigation but its restriction

to the relational model is limiting. One of the main areas that motivates work on provenance

and CDSS is scientific data processing. In these applications, relational data sources are often

combined with data extracted from hierarchical repositories of files. XML provides a natural

model for tree-structured, heterogeneous sources, but current systems for managing XML data

do not provide mechanisms for decorating XML with provenance annotations and for propagat-

ing annotated data through queries. A major goal of this work is to extend the framework for

semiring-annotated relations described in Chapter 2 to handle annotated XML data. This lays the

groundwork for a future extension of the CDSS paradigm to XML.

Besides provenance, our work is also motivated by applications to incomplete and probabilistic

XML data. Incomplete XML has not received much attention so far, but significant work has been

done on probabilistic XML. For example, in [126], the uncertainty associated with data obtained by

probing the “hidden web” (i.e., data hidden behind query forms and web services) is represented

using XML trees whose nodes are annotated with boolean expressions composed of independent

131

Bernoulli event variables.

Starting from these motivations, we develop an extension of the semiring annotation frame-

work to XML and its premier query language, XQuery [42]. Because dealing with lists and

ordered XML does not seem to be related to the way we use semirings, we focus on an unordered

variant of XML. Chapter 2 provided strong evidence that the idea of using semirings to repre-

sent annotations is robust. In this chapter, we describe two new results that add to this body of

evidence:

• We define the semantics for a large fragment of first-order, positive XQuery—practically all

of the features that do not depend on order—on semiring-annotated XML in two different

ways, and show that these agree. The first approach goes by translation to an extension of

the nested relational calculus [19] (NRC),1 while the second uses an encoding that “shreds”

XML data into a child relation between node identifiers, and a corresponding translation of

XPath into Datalog.

• We prove a general theorem showing that the semantics of queries commutes with the

applications of semiring homomorphisms.

By instantiating our semantics using annotations formulated as polynomials over a fixed set of

variables with coefficients in N, we obtain our main contribution: a provenance framework for

unordered XML data and a large class of XQuery views. We believe that this framework has

practical potential: it captures an intuitive notion of provenance useful for scientific applications,

and the size of the provenance polynomials is bounded by O(|D||q|) where D is the XML database

and q is the XQuery program that defines the view.

Additionally, we illustrate two important applications of annotated XML: a security applica-

tion that shows how to transfer confidentiality policies from a database to a view by organizing

the clearance levels as a commutative semiring, and general strong representation systems for in-

complete and probabilistic annotated databases that use the provenance polynomials themselves

as annotations. The correctness of these systems follows from the commutation with homomor-

phisms theorem.

In outline, the chapter is organized as follows. Section 6.1 reviews the notion of commutative

semiring annotations. Section 6.2 introduces the unordered XML data model (UXML) and the

corresponding fragment of XQuery (UXQuery), and describes our extension of these formalisms

with semiring annotations. We defer a formal discussion of the semantics of UXQuery to Sec-

tion 6.5, but illustrate its behavior on several examples. We describe applications to security and

1Since NRC is used by itself in various contexts [14, 77], this semantics is of interest even without the connection to
XML.

132

incomplete and probabilistic data in Sections 6.3 and 6.4. The main technical results are collected

in Section 6.5. There we review NRC, describe its extension to trees (6.5), define its semantics

(6.5), give the compilation of UXQuery into this language (6.5), and state the commutation with

homomorphism theorems (6.6). Section 6.7 presents an alternative definition for a fragment of

UXQuery, via an encoding of UXML into relations and a translation of XPath into Datalog.

6.1 Semiring Annotations

As shown in Chapter 2, commutative semirings and relational data fit together naturally: when

each tuple in a relation is tagged with an element of K, the semantics of standard query languages

can be generalized to propagate the annotations in a way that captures bag semantics, probabilistic

and incomplete relations, and standard notions of provenance. An (imperfect) intuition for the

meaning of these annotations is as follows: 0 means that the tuple is not present or available;

k1 + k2 means that the tuple can be produced from the data described by k1 or that described

by k2; and the annotation k1 · k2 means that it requires both the data described by k1 and that

described by k2. The annotation 1 means that exactly one copy of the tuple is available “without

restrictions.” In the relational setting, we have seen that the axioms of commutative semirings

are forced by standard equivalences on the (positive) relational algebra (Proposition 2.4). In this

chapter, we show that commutative semirings also suffice for a variety of annotated nested data

and their associated query languages.

We develop our theory for arbitrary commutative semirings, but use specific semirings in

various applications:

• (B,∨,∧, false, true): set-based data;

• (N, +, ·, 0, 1): bag-based data;

• Positive boolean expressions: incomplete/probabilistic data (see [62] and Section 6.4);

• Confidentiality levels: see Section 6.3;

• Lineage and why-provenance (it turns out that these are different and correspond to differ-

ent semirings, see [13]);

• (N[X], +, ·, 0, 1): a “universal” semiring of multivariate polynomials with coefficients in N

and indeterminates in X.

As we have already argued in this dissertation, the polynomials in N[X] provide a very gen-

eral and informative notion of provenanceand, in fact, capture the generality of all commutative

133

semiring calculations: any function X −→ K can be uniquely extended to a semiring homomor-

phism N[X] −→ K. This fact is relevant to querying since (as in Chapter 2) by Theorem 6.5

and Corollary 6.6 below, our semantics for query answering commutes with applying homomor-

phisms to annotated data. This yields the principal result of our framework: a comprehensive

notion of provenance for unordered XML and a corresponding fragment of XQuery.

6.2 Annotated and Unordered XML

We fix a commutative semiring K and consider XML data modified so that instead of lists of

trees (sequences of elements) there are sets of trees. Moreover, each tree belonging to such a set

is decorated with an annotation k ∈ K. Since bags of elements can be obtained by interpreting

the annotations as multiplicities (by picking K to be (N, +, ·, 0, 1)), the only difference compared

to standard XML is the absence of ordering between siblings.2 We call such data K-annotated

unordered XML, or simply K-UXML. Given a domain L of labels, the usual mutually recursive

definition of XML data naturally generalizes to K-UXML:3

• A value is either a label in L, a tree, or a K-set of trees;

• A tree consists of a label together with a finite (possibly empty) K-set of trees as its “chil-

dren”;

• A finite K-set of trees is a function from trees to K such that all but finitely many trees map

to 0.

In examples, we illustrate K-UXML data by adding annotations as a superscript notation on the

label at the root of the (sub)tree. By convention omitted annotations correspond to the “neutral” ele-

ment 1 ∈ K.4 Note that a tree gets an annotation only as a member of a K-set. To annotate a single

tree, we place it in a singleton K-set. When the semiring of annotations is (B,∨,∧, false, true) we

have essentially unannotated unordered XML; we write UXML instead of B-UXML.

In Figure 6.1, two K-UXML data values are displayed as trees. The source value can be written

in document style as

<az>

<bx1> dy1 < />

<cx2> dy2 ey3 < />

2For simplicity, we also omit attributes and model atomic values as the labels on trees having no children.
3In the XQuery data model, sets of labels are also values; it is straightforward to extend our formal treatment to

include this.
4Items annotated with 0 are allowed by the definition but are useless because our semantics interprets 0 as “not

present/available”.

134

Source:

(
az

bx1

dy1

cx2

dy2 ey3

)

Answer:

p

dz·x1·y1+z·x2·y2 ez·x2·y3

Figure 6.1: Simple for Example.

l ∈ L (labels)
k ∈ K (annotations)
p ::= l (label)

| $x (variable)
| () (empty set)
| (p) (singleton set)
| p,p (set union)
| for $x in p return p (iteration)
| let $x := p return p (binding)
| if (p=p) then p else p (conditional)
| element p {p} (tree)
| name(p) (tree label)
| annot k p (scalar multiplication)
| p/s (navigation)

s ::= ax::nt (step)
ax ::= self | child | descendant (axes)
nt ::= l | ∗ (test)

Figure 6.2: K-UXQuery Syntax.

< />

where we have abbreviated leaves <l>< /> as l.

We propose a query language for K-UXML called K-UXQuery. Its syntax, listed in Figure 6.2,

corresponds to a core fragment of XQuery [42] with one exception: the new construct annot k p

allows queries to modify the annotations on sets. With annot k p any K-UXML value can be built

with the K-UXQuery constructs.

We use the following types for K-UXML and K-UXQuery:

t ::= label | tree | {tree}

where label denotes L, tree denotes the set of all trees and {tree} denotes the set of all finite K-sets

of trees. Typing rules for the operators of K-UXQuery are given in Figure 6.3.

At the end of this section we discuss this syntax in more detail, and in Section 6.5 we present

a formal semantics that uses the operations of the semiring to combine annotations. In the rest of

135

Γ ` l : label
Γ(x) = t
Γ ` $x : t

Γ ` () : {tree}
Γ ` p : tree

Γ ` (p) : {tree}
Γ ` p1 : {tree} Γ ` p2 : {tree}

Γ ` p1,p2 : {tree}

Γ ` p1 : {tree} Γ, x : tree ` p2 : {tree}
Γ ` for $x in p1 return p2 : {tree}

Γ ` p1 : t1 Γ, x : t1 ` p2 : t2

Γ ` let $x := p1 return p2 : t2

Γ ` p1 : label Γ ` p2 : label Γ ` p3 : t Γ ` p4 : t
Γ ` if (p1=p2) then p3 else p4 : t

G ` p1 : label G ` p2 : {tree}
Γ ` element p1 {p2} : tree

Γ ` p1 : tree
Γ ` name(p1) : label

Γ ` p : {tree}
Γ ` p/ax::nt : {tree}

Γ ` k ∈ K Γ ` p : {tree}
Γ ` annot k p : {tree}

Figure 6.3: K-UXQuery Typing Rules.

this section, however, we illustrate the semantics informally on some simple examples to introduce

the basic ideas. We start with very simple queries demonstrating how the individual operators

work, and build up to a larger example corresponding to a translation of a relational algebra

query.

As a first example, define the following queries:

p1
def= element a1 {()} and p2

def= element a2 {()}

Each pi constructs a tree labeled with ai and having no children—i.e., a leaf node. The query

(p1) produces the singleton K-set in which p1 is annotated with 1 ∈ K. The query annot k1 (p1)

produces the singleton K-set in which p1 is annotated with k1 · 1 = k1. We can also construct a

union of K-sets:

q def= annot k1 (p1),annot k2 (p2)

The result computed by q depends on whether a1 and a2 are the same label or different labels. If

a1 = a2 = a, then p1 and p2 are the same tree and so the query then element b {q} produces the

left tree below. If a1 6= a2, then the same query produces the tree on the right.

b

ak1+k2

b

ak1
1 ak2

2

Next, let us examine a query that uses iteration:

p = element p { for $t in $S return

for $x in ($t)/∗ return

($x)/∗ }

136

Source:

(
a

bx1

a

cy3 d

cy1

d

a

cy2bx2)

Answer:

r

cq1 cy1

d

a

cy2bx2

where q1 =
x1 · y3 + y1 · y2

Figure 6.4: XPath Example.

If $S is the (source) set on the left side of Figure 6.1, then the answer produced by p is the tree

on the right in the same figure.5 Operationally, the query works as follows. First, the outer for-

clause iterates over the set given by $S. As $S is a singleton in our example, $t is bound to the

tree whose root is labeled a and annotation in $S is z. Next, the inner for-clause iterates over the

set of trees given by ($t)/∗:

(bx1

dy1 ,

cx2

dy2 ey3
)

It binds $x to each of these trees, evaluates the return-clause in this extended context, and

multiplies the resulting set by the annotation on $x. For example, when $x is bound to the b

child, the return-clause produces the singleton set (dy1). Multiplying this set by the annotation

x1 yields (dx1·y1). After combining all the sets returned by iterations of this inner for-clause, we

obtain the set (dx1·x1+x2·y2 , ex2·y3). The final answer for p is obtained by multiplying this set by z.

Note that the annotation on each child in the answer is the sum, over all paths that lead to that

child in $t, of the product of the annotations from the root of $t to that child, thus recording how

it arises from subtrees of $S.

Next we illustrate the semantics of XPath descendant navigation (shorthand //). Consider

the query

r = element r { $T//c }

which picks out the set of subtrees of elements of $T whose label is c. A sample source and

corresponding answer computed by r are shown in Figure 6.4. In Section 6.5 we define the

semantics of the descendant operator using structural recursion and iteration. It has the property

that the annotation for each subtree in the answer is the sum of the products of annotations for

each path from the root to an occurrence of that subtree in the source, like the answer shown here.

5Actually this query is equivalent to the shorter “grandchildren” XPath query $S/∗/∗; we use the version with a
for-clauses to illustrate the semantics of iteration.

137

Source and Answer as K-Relations:

R
a b c

a b c x1
d b e x2
f g e x3

S
b c

b c x4
g c x5

Q
a c

a c x2
1 + x1 · x4

a e x1 · x2
d c x1 · x2 + x2 · x4
d e x2

2
f c x3 · x5
f e x2

3

Query:
let $r := $d/R/∗,

$rAB := for $t in $r return <t> { $t/A,$t/B } < />,
$rBC := for $t in $r return <t> { $t/B,$t/C } < />,
$s := $d/S/∗

return
<Q> { for $x in $rAB,$y in ($rBC,$s)

where $x/B=$y/B
return <t> { $x/A,$y/C } < /> } < />

Source as UXML:
D

R

tx1

a

a

b

b

c

c

tx2

a

d

b

b

c

e

tx3

a

f

b

g

c

e

S

tx4

b

b

c

c

tx5

b

g

c

c

Answer as UXML:
Q

tx2
1+x1·x4

a

a

c

c

tx1·x2

a

a

c

e

tx1·x2+x2·x4

a

d

c

c

tx2
2

a

d

c

e

tx3·x5

a

f

c

c

tx2
3

a

f

c

e

Figure 6.5: Relational (encoded) example.

Now we turn to a larger example, which demonstrates how K-UXQuery behaves on an encod-

ing of a database of relations whose tuples are annotated with elements of K, i.e., the K-relations

of Chapter 2. As a sanity check, we verify that our semantics for K-UXQuery on this data agrees

with the semantics given for the positive relational algebra given earlier. Consider the following

relational algebra query

Q = πAC(πAB(R) ./ (πBC(R) ∪ S))

and suppose that we evaluate it over K-relations R(a, b, c) and S(b, c) shown at the top of Fig-

ure 6.5. The result is the K-relation Q(a, c), also shown at the top of Figure 6.5. For example, the

annotation on 〈d c〉 in Q is a sum of products x1 · x2 + x2 · x4, which records that the tuple can

be obtained by joining two R-tuples or, alternatively, by joining an R-tuple and an S-tuple. The

rest of Figure 6.5 shows the K-UXML tree that is obtained by encoding the relations R and S, the

138

Source:
D

Rw1

tx1

Ay1

a

By2

bz1

Cy3

c

tx2

Ay1

d

By2

bz2

Cy3

ez3

tx3

Ay1

f

By2

gz4

Cy3

ez5

S

tx4

By5

bz6

Cy6

c

tx5

By5

gz7

Cy6

c

Answer:

Q

tq1

Ay1

a

Cy6

c

tq2

Ay1

a

Cy3

c

tq3

Ay1

a

Cy3

ez3

tq4

Ay1

d

Cy6

c

tq5

Ay1

d

Cy3

c

tq6

Ay1

d

Cy3

ez3

tq7

Ay1

f

Cy6

c

tq8

Ay1

f

Cy3

ez5

where q1 = w1 · x1 · x4 · y2 · y5 · z1 · z6
q2 = w2

1 · x2
1 · y2

2 · z2
1

q3 = w2
1 · x1 · x2 · y2

2 · z1 · z2
q4 = w1 · x2 · x4 · y2 · y5 · z2 · z6
q5 = w2

1 · x1 · x2 · y2
2 · z1 · z2

q6 = w2
1 · x2

2 · y2
2 · z2

2
q7 = w1 · x3 · x5 · y2 · y5 · z4 · z7
q8 = w2

1 · x2
3 · y2

2 · z2
4

Figure 6.6: Extended Annotations Example.

corresponding translation of the view definition into K-UXQuery, and the K-UXML view that is

computed using K-UXQuery. Observe that the result is the encoding of the K-relation Q.

The next proposition shows that this equivalence holds in general. Fix a semiring K, a set of

attributes U, and domain of values D. Recall from Chapter 2 that a K-relation is a function from

tuples to K with finite support–i.e., such that all but finitely many tuples map to 0 ∈ K—where

a tuple t is a function from U to D. The K-UXML encoding of a tuple t ∈ U → D is a tree

with root labeled t (the label t is a fixed constant), and a child u for each u ∈ U leading to a

leaf labeled t(u) ∈ D. All of the annotations in the encoding of a tuple are 1 ∈ K. The K-UXML

encoding of a K-relation R is a tree with root labeled R (again, the label R is a fixed constant), and

a child for each tuple t. The annotation on each tuple is R(t) ∈ K. Finally, the corresponding

translation of positive relational algebra queries into K-UXQuery is given in Figure 6.7.6 (Note

that the translation assumes a translation of selection predicates P into K-UXQuery.)

Proposition 6.1. Let Q be be a query in positive relational algebra, and R a K-relation. Let v be the

K-UXML encoding of R, and let p = (|Q|) be the translation of Q into K-UXQuery. Then p(v), computed

6This translation works on a single relation; extending it to whole instances, as in the example in Figure 6.5, is
straightforward.

139

(|∅|) def= element R {()}
(|Q1 ∪Q2|)

def= element R {(((|Q1|))/∗,((|Q2|))/∗)}
(|π{v1,...,vk}(Q1)|)

def= element R {
for $t in ((|Q1|))/∗ return
(element t {
for $u in ($t)/∗ return
if name($u) = v1 then $u
else . . .
else if name($u) = vk then $u
else ()

})
}

(|σP(Q1)|)
def= element R {

for $t in ((|Q1|))/∗ return
if (|P|)($t) then $t else ()
})
}

(|Q1 ×Q2|)
def= element R {

for $t1 in ((|Q1|))/∗ return
for $t2 in ((|Q2|))/∗ return

(element t {(($t1)/∗,($t2)/∗)})
}

(|ρ(ui :=uj)(Q1)|)
def= element R {

for $t in ((|Q1|))/∗ return
(element t {
for $u in ($t)/∗ return
if (name($u)=ui) then element uj {($u)/∗} else $u

})
}

Figure 6.7: Translation from positive relational algebra to K-UXQuery

according to K-UXQuery, encodes JQKR, the K-relation computed according Definition 2.2.

Proof. By straightforward induction on Q.

In a K-relation, annotations only appear on tuples. In our model for annotated UXML data,

however, every internal node carries an annotation (recall that, according to our convention, every

node in Figure 6.5 depicted with no annotation carries the “neutral” element 1 ∈ K). Therefore, we

have more flexibility in how we annotate source values—besides tuples, we can place annotations

on the values in individual fields, on attributes on the relations themselves, and even on the whole

database! It is interesting to see how, even for a query that is essentially relational, these extra

annotations participate in the calculations. We have worked this out in the final example of this

section, see Figure 6.6. The query is the same as in Figure 6.5 but the source data has additional

140

annotations. Note how the expressions annotating the tuple nodes in the answer involve many

non-tuple annotations from the source.

So far we have assumed that the annotations belong to an arbitrary commutative semiring K

and we looked at the expressions that equate q1, . . . , q8 in Figure 6.6 as calculations in K. However,

if we work with the semiring of polynomials K = (N[X], +, ·, 0, 1) where we think of the source

annotations as indeterminates (“provenance tokens”) and take

X := {w1, x1, . . . , x5, y1, . . . , y6, z1, . . . , z7}

then the expressions that equate q1, . . . , q8 are the provenance polynomials that annotate the tuple

nodes in the answer. This kind of provenance shows, for example, that some of the tuples in the

answer use source data annotated with z1 or y5 although these do not appear explicitly in the an-

notations of the answer attributes or values in the tuples. The annotations in a particular semiring

K can then be computed by evaluating these polynomials in K. Corollary 6.6 (commutation with

homomorphisms) guarantees that the result will be the same as that obtained via the semantics

on K-UXML values.

Note also that we can obtain the answer shown in Figure 6.5 simply by setting all the in-

determinates except for x1, . . . , x5 to 1 and then simplifying using the semiring laws. When we

set these indeterminates to 1, some subtrees which were distinguished by annotations become

now identified (q1 and q2, q4 and q5); this explains the sums in the annotations of the answer in

Figure 6.5.

The semantics in Section 6.5 allows us to prove the following upper bound:

Proposition 6.2. If v is a UXML value annotated with indeterminates from a set X and p is a UXQuery,

then computing p(v) according to the N[X]-UXQuery semantics produces an N[X]-UXML value such

that the size of any of the provenance polynomials that annotate p(v) is O(|v||p|).

Proof.

K-UXQuery vs. XQuery

Although UXQuery only contains core operators, more complicated syntactic features such as

where-clauses that we used in the examples above can be normalized into core queries using stan-

dard translations [42]. For example, the where-clause where $x/B=$y/B from Figure 6.5 normal-

izes to:
for $a in $x/B/∗ return

for $b in $y/B/∗ return

if (name($a)=name($b)) then . . . else ()

141

Our language includes only the downward XPath axes, since the other axes can be compiled into

this fragment [117]. To simplify our formal system, we also do not identify a value with the

singleton set containing it. This is inessential but it simplifies the compilation in Section 6.5. In

examples we often elide the extra set constructor when it is clear from context—e.g., we wrote

$x/A above, not ($x)/A.

Unlike these minor differences, we made two essential restrictions in the design of K-UXQuery.

The first has to do with order—we omit orderby and other operators whose semantics depends

on position, since these do not make sense on unordered data. The second essential restriction is

to positive queries—e.g., the conditional expression only tests the equality of labels; see Section 6.5

for further discussion.

6.3 A Security Application

We can model confidentiality policies using commutative semirings. For example, the total order

C : P < C < S < T < 0 describes the following levels of “clearance”: P = public, C = confidential,

S = secret, and T = top-secret. It is easy to see that (C, min, max, 0, P) is a commutative semiring.7

We add 0 as a separate element. It is needed because items in a K-UXML set with annotation 0

are interpreted as not belonging to the set (i.e., 0 is so secret, it isn’t even there!), and we do not

want to lose data tagged as T completely.

Our framework solves the following problem. Suppose that an XML database has been man-

ually annotated with security information specifying what clearance one must have for each data

subtree they wish to see. Now we use XQuery to produce views of this database. We would like

to compute automatically clearance annotations for the data in a view, based on how that data

was obtained from the already annotated data in the original database. The two operations of the

clearance semiring correspond to alternatives in obtaining the view data, in which case the mini-

mum clearance among them suffices, and to joint necessities, in which case the maximum clearance

among them is needed.

We give an example that shows that our annotated XML model is a particularly flexible frame-

work for such clearance specifications. Consider the source data in Figure 6.6, which in fact

encodes a relational database but where we have much more annotation flexibility than in the [62]

model where only tuples are annotated. We annotate with elements from C as follows w1 := C

(the entire relation R is confidential), x2 := S (in addition, this tuple is secret), and y5 := T (all

values of attribute B in relation S are top-secret), and finally, the rest of the annotations are P

(which plays the role of 1 in this semiring).

7Note that the natural order (cf. Chapter 2) on this semiring is actually the opposite of the clearance order.

142

Q
a c

a c w1 · y5 + w2
1 = C ·T + C2 = C

a e w2
1 · x2 = C2 · S = S

d c w1 · x2 · y5 + w2
1 · x2 = C · S ·T + C2 · S = S

d e w2
1 · x2

2 = C2 · S = S

f c w1 · y5 = C ·T = T

f e w2
1 = C2 = C

Figure 6.8: Security Clearance Example.

The result of the view/query in Figure 6.5 when applied to this data is the C-UXML encoding

of a relation in which only the annotations on the tuples are different from 1 = P (this is because

the query projects out the attribute B, otherwise we could have had non-P annotations inside the

tuples). We show this answer as an annotated relation in Figure 6.8. We also show there the

polynomials that would annotate the tuples if we would do the calculations in the provenance

semiring N[w1, x2, y5]. These help understand how the resulting clearances are computed since

it is a consequence of Corollary 6.6 (commutation with homomorphisms) that by evaluating the

provenance polynomials in C under the valuation w1 := C, x2 := S, y5 := T we get the same result

as the C-UXQuery semantics.

Going back to the security application, for the data in the view, confidential clearance gives

access to the first and last tuple, secret clearance to all but the fifth tuple, etc. Note how the

top-secret annotation of the attribute B in S affects just three of the tuples in the answer and how

in two of those cases the tuples are still available to lower clearances because they can be also

produced with data from R only.

In the example above the semiring of clearances is a total order but this can be generalized to

non-total orderings, provided they form a distributive lattice. The distributivity ensures that views

that we consider equivalent actually compute the same clearance for the results. This follows from

the following proposition which generalizes a similar result in [56] (later rediscovered in [62]) for

relations and positive relational algebra.

Proposition 6.3. If two UXQueries are equivalent on all UXML inputs and K is a distributive lattice then

the queries are equivalent on all K-annotated UXML inputs.

Proof.

One way to establish the end-to-end correctness of an access control scheme is by proving

a non-interference property [122]. Informally, non-interference guarantees that the low-security

parts of the output of a computation will not depend on high-security data in the input. In our

143

framework, the non-interference property follows from Theorem 6.5, which shows that semiring

homomorphisms commutes with query evaluation. To see this, fix a clearance level l, and let

h be the “erasing” semiring homomorphism—i.e., from C to B—that maps clearances strictly

above l to 0 and everything else to 1. By Theorem 6.5 we have that, for an input K-UXML

document consisting of a mixture of high- and low-security data, erasing the high-security parts

and evaluating the query yields the same result as evaluating the query on the full document and

then erasing the high-security parts.

6.4 Incomplete and Probabilistic K-UXML

Commutative semirings can also be used to model incomplete and probabilistic databases for

unordered XML data, even with repetitions. An incomplete UXML database is a set of possible

worlds, each of which is itself a UXML (i.e. a B-UXML) database. For repetitions (multiplicities)

the possible worlds are N-UXML databases. More generally, we treat here incomplete K-UXML

databases for arbitrary commutative semirings K. It turns out that by using provenance anno-

tations we can construct a powerful system for representing and querying incomplete K-UXML

databases.

Recall that provenance polynomials are elements of the commutative semiring (N[X], +, ·, 0, 1)—

i.e. polynomial expressions over variables X with natural number coefficients. For any commuta-

tive semiring K, provenance polynomials are “universal” in the sense that any function f : X → K

(we call f a valuation) extends uniquely to a semiring homomorphism f ? : N[X]→ K. We exploit

this to construct a representation system for incomplete K-UXML data. We first fix a semiring K,

and a set of variables X. We call a v in N[X]-UXML a representation. Next we define a function

RepK that maps a representation v in N[X]-UXML to the set of K-UXML instances that can be

obtained by applying K-valuations to the variables in X—i.e., RepK(v) is { f ?(v) : f : X → K}, the

set of possible worlds v represents.

As an example, let v be the source tree in Figure 6.4. To streamline the example, we will set

the x1 and x2 annotations to 1, leaving just the annotations y1, y2, y3 on the subtrees labeled c.

For K = B, the set of possible worlds represented by v is the following set of UXML values:

RepB(v) =

a

b

a

c d

c

d

a

c b
,

a

b

a

c d

,

a

b

a

c d

c

d

a

b
,

a

b

a

d

c

d

a

c b
,

a

b

a

d

,

a

b

a

d

c

d

a

b

Each tree in RepB(v) is obtained using a valuation from the yis to B—e.g., for the rightmost tree

in this display, the valuation maps y1 to true and y2 and y3 to false.

144

Now consider querying such an incomplete UXML database. In general, given an XQuery

p, we would like the answer to be (semantically) the set of all K-UXML instances obtained by

evaluating p over each K-UXML instance in the set of possible worlds represented by v—i.e.,

p(RepK(v)) is {p(v′) : v′ ∈ RepK(v)}. Returning to the representation v above and using p, the

query in Figure 6.4, we have:

p(RepB(v)) =

Q

c c

d

a

c b
,
Q

c
,

Q

c c

d

a

b
,

Q

c

d

a

c b
,
Q

,

Q

c

d

a

b

As usual in incomplete databases, we do not wish to return this set, which may be large in

general. Instead, we would like a representation of it. By Corollary 6.6 below, it turns out that such

a representation is obtained by evaluating p over v with N[X]-UXQuery semantics. In general,

we have that p(RepK(v)) = RepK(p(v)). Indeed, the specific answer for this example shown in

Figure 6.4 is the representation of p(RepB(v)). Using the terminology of incomplete databases,

we say that N[X]-UXML is a strong representation system [79, 2] for K-UXQuery and K-UXML data.

For simpler K, the full power of N[X] may not be needed. For example, when K = B, we can

use annotations from the semiring (PosBool(B),∨,∧, false, true) of positive Boolean expressions

over a set B of variables (i.e., the expressions involve only B, disjunction, conjunction, and con-

stants for true and false).8 This corresponds to an XML analogue of the Boolean c-tables [79]

used in incomplete databases. Valuations ν : B → B extend uniquely to homomorphisms

ν? : PosBool(B) → B, so the definition above of RepB still makes sense. Indeed, it follows

(again from the commutation with homomorphisms in Section 6.6) that PosBool(B)-UXML is a

strong representation system for UXQuery and B-UXML (i.e., ordinary UXML) and that we can

transform an N[B]-UXML representation into PosBool(B)-UXML representation by applying the

obvious homomorphism. It can be shown that PosBool works not just for B but for incomplete

L-UXML for any distributive lattice L, in particular the ones used for the security application in

Section 6.3.

Another instance of our general result is that N[X]-UXML also provides a strong representa-

tion system for UXML with repetitions. For example, if we let v be the same tree as above, and

pick K = N, then the set of possible worlds is the following:

RepN(v) =

a

b

a

d

,

a

b

a

c d

,

a

b

a

c c d

, . . . ,

a

b

a

d

c

d

a

c b
, . . . ,

8We also identify those expressions which yield the same truth value for all Boolean assignments of the variables in B

(to permit simplifications).

145

Note that children may be repeated—e.g., the third tree in this display has a subtree with two

children c; this is obtained from a valuation that maps y2 to 2.

Probabilistic data can also be modeled using semiring annotations. Again we use as repre-

sentations N[X]-UXML values and all the worlds corresponding to valuations f : X → K. But

now we consider such a valuation as the conjunction of independent events, { f (x) = k} one

for each x. The probability of each independent event can be computed from some probability

distribution on K. For example, if K = B we can use Bernoulli distributions, if K = N we can

use Pr[f (x) = n] = 1/2n for n > 0, and 0 for f (x) = 0, etc. It follows again that we have a

strong representation system this time for probability distributions on all the possible instances. For

K = B, more generally for distributive lattices, it suffices again to use PosBool expressions. Since

tree pattern queries are expressible in UXQuery, we get the query evaluation algorithm in [126]

as a particular case.

6.5 Semantics via Complex Values

In this section we develop our formal semantics for K-UXQuery by translation into a data model

and query language for complex values. Trees can be understood as data values built recursively

using pairing and collection constructions (see e.g., [16, 121]). For UXML trees, the collections are

sets. This suggests defining trees as complex values, as data values built using pairing and sets,

nested arbitrarily.

We develop our semantics in several steps. First, we generalize the semantics of NRC to handle

semiring-annotated values. We then extend the calculus with a recursive tree type and structural

recursion operator on trees. This operator is needed to express the descendant operator of K-

UXQuery.9 Finally, we use this calculus as a compilation target for K-UXQuery.

Annotated Complex Values

We start from the (positive) Nested Relational Calculus [19]. The types of NRC are:

t ::= label | t× t | {t}

Complex values are built with the following constructors:

v ::= l | (v, v) | {v} | v ∪ v | {}

We abbreviate {v1}∪ · · · ∪ {vn} as {v1, . . . , vn}—e.g., (l1, {l2, l3}) is a complex value of type label×

{label}.
9When the nesting depth of the XML documents is bounded, the structural recursion operator (and the recursive tree

type) are not needed, see [37].

146

e ::= l (atom)
| x (variable)
| {} (empty set)
| {e} (singleton)
| e ∪ e (union)
| ∪(x ∈ e) e (big-union)
| let x = e in e (let)
| if e = e then e else e (if)
| (e, e) (pair)
| π1(e) (first projection)
| π2(e) (second projection)

Γ ` l : label
Γ(x) = t
Γ ` x : t

Γ ` {} : {t}
Γ ` e : t

Γ ` {e} : {t}
Γ ` e1 : {t} Γ ` e2 : {t}

Γ ` e1 ∪ e2 : {t}

Γ ` e1 : {t1} Γ, x : t1 ` e2 : {t2}
Γ ` ∪(x ∈ e1) e2 : {t2}

Γ ` e1 : label Γ ` e2 : label Γ ` e3 : t Γ ` e4 : t
Γ ` if e1 = e2 then e3 else e4 : t

Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2

Γ ` e : t1 × t2 i ∈ {1, 2}
Γ ` πi(e) : ti

Figure 6.9: Syntax and Typing rules for NRC

The syntax and typing rules for the fragment of NRC we consider is given in Figure 6.9.

The restriction to positive expressions is embodied in the typing rule for conditionals—we only

compare label values. It is shown in [19] that equality tests for arbitrary sets can be used to

define non-monotonic operations (i.e., difference, intersection, membership, and nesting). This

restriction is essential for the semantics of NRC on annotated complex values because semirings

do not contain features for representing negation.

The crucial NRC operation is the big-union operator: ∪(x ∈ e1) e2. It computes the union of

the family of sets defined by e2 indexed by x, where x takes each value in the set e1. For example,

the first relational projection is expressed as follows

project1 R def= ∪(x ∈ R) {π1(x)}.

Next we show how to decorate complex values with semiring annotations, and give a se-

mantics that works on annotated values. Again we fix a commutative semiring (K, +, ·, 0, 1).

Dealing with complex values annotated with elements from K requires a different semantics

for the type {t}. The usual semantics is the set of finite subsets of JtK. Instead, the seman-

tics of J{t}KK is defined as the set of functions f : JtKK → K with finite support, i.e., such that

supp(f) := {a ∈ JtKK | f (a) 6= 0} is finite. We call elements of J{t}KK K-collections. With K = B we

obtain the usual semantics as finite subsets; with K = N we get bags.

147

K-complex values are obtained by arbitrarily nesting pairing and K-collections. We define new

semantics for the NRC constructors: the singleton constructor J{v}KK is the function that maps

JvKK to 1 and everything else to 0; J{}KK is the constant function that maps everything to 0; and

Jv1 ∪ v2KK is the pointwise K-addition of Jv1KK and Jv2KK. In order to express all K-collections in

the calculus, we extend NRC with an operation for multiplying the annotations on the elements

of K-collections by the “scalar” k in K. It is written k e and has the following typing rule:

Γ ` k ∈ K Γ ` e : {t}

Γ ` k e : {t}

We call the calculus extended with this operator NRCK. The set of K-complex values are con-

structed using:

v ::= l | (v, v) | k {v} | v ∪ v | {}

and, as above, we abbreviate K-collections using the following notation: {vk1
1 , . . . , vkn

n }
def= k1 {v1}∪

· · · ∪ kn {vn}. Determining the right semantics for the ∪(x ∈ e1) e2 operation is more challenging.

Let e1 have type {t1} and e2 have type {t2} (whenever x has type t1). Let X = Jt1KK and

Y = Jt2KK. Then Je1KK is a function f : X → K with finite support supp(f) = {x1, . . . , xn}. In

general e2 depends on x so for each xi we have a corresponding semantics for e2, i.e., a function

gi : Y → K. Using this function we define for each y ∈ Y

J∪(x ∈ e1) e2KK(y) def=
n

∑
i=1

f (xi) · gi(y)

Since each gi has finite support, so does J∪(x ∈ e1) e2KK.

The semantics of the other operations inherited from positive NRC is straightforward (it is

essential that the equality test does not involve K-collections and therefore additional annotations).

For example,

flatten {{ap, br}u, {bs}v} = {au·p, bu·r+v·s}

{ap, br} × {cu} = {(a, c)p·u, (b, c)r·u}

where R × S def= ∪(x ∈ R) ∪(y ∈ S) (x, y).

We take the fact that the semantics of NRCK is an instance of the general approach to col-

lection languages promoted in e.g., [19, 99, 12] as evidence for the robustness of our semantics.

Appendix 6.7 gives a set of equational axioms for NRCK that follow from the general approach

just mentioned. These axioms also form a foundation for query optimization for NRCK and K-

UXQuery (e.g., see [120]).

As positive NRC strictly extends the positive relational algebra (RA+), the following sanity

check is also in order.

148

Proposition 6.4. Let NRC(RA+) be the usual encoding of projection, selection, cartesian product and

union in (positive) NRC. The semantics of NRC(RA+) on K-complex values representing K-relations

coincides with the semantics of RA+ on K-relations given in Chapter 2 (Definition 2.2).

As another sanity check, observe that NRCN corresponds to the positive fragment of the Nested

Bag Calculus [105].

Adding Trees: NRC + srt

To represent trees, we extend the calculus with a constructor Tree(a, C) where a is the label and C

the set of immediate subtrees, as shown in . Trees of the form Tree(a, {}) are leaves. The typing

rule for the tree constructor is given by:

Γ ` v1 : label Γ ` v2 : {tree}

Γ ` Tree(v1, v2) : tree

where tree is a new type. It is easy to see that the values of type tree and label× {tree} are in a

1-1 correspondence. In one direction this isomorphism is witnessed by Tree(π1(P), π2(P)), where

P is a pair. To express the other direction, we extend the calculus with two new operations,

tag(−) and kids(−) that return the root tag and the set of subtree children of the root, respectively.

The mapping from trees to pairs is then given by (tag(T), kids(T)), where T is a tree. Hence,

semantically, the tree type is recursive.10 In the spirit of [121] we add an operation for structural

recursion on trees:
Γ, x : label, y : {t} ` e1 : t Γ ` e2 : tree

Γ ` (srt(x, y). e1) e2 : t

Its semantics obeys the equation

(srt(x, y). e1) Tree(e2, e3) =

e1[x := e2, y := ∪(z ∈ e3) (srt(x, y). e1) z]
(6.1)

where the notation e[x := e′] denotes substitution of e′ for x in e. For example, the query

(srt(x, y). {x} ∪ flatten y) t

where flatten W def= ∪(w ∈W) w returns the set of atoms in t.

10Tree(−,−), tag(−) and kids(−) are an instance of a standard technique for handling recursive types in functional
languages.

149

To summarize, we extend the syntax of NRCK with the following constructs:

e ::= ...

| Tree(e, e) (tree)

| tag(e) (tag)

| kids(e) (children)

| (srt(x, y). e) e (recursion)

The typing rules for these new constructs are as follows:

Γ ` e1 : label Γ ` e2 : {tree}

Γ ` Tree(e1, e2) : tree

Γ ` e1 : tree

Γ ` tag(e1) : label

Γ ` e1 : tree

Γ ` kids(e1) : {tree}

Γ, x : label, y : {t} ` e1 : t Γ ` e2 : tree

Γ ` (srt(x, y). e1) e2 : t

We denote this query language by NRC + srt.

JlKρ
K = l JxKρ

K = ρ(x) J{}Kρ
K(x) = 0K J{e}Kρ

K(x) = if x = JeKρ
K then 1K else 0K

Je1 ∪ e2K
ρ
K(x) = Je1K

ρ
K(x) + Je2K

ρ
K(x)

Je1K
ρ
K = s1

J∪(x ∈ e1) e2K
ρ
K(y) = ∑

v∈dom(s1)
s1(v) · Je2K

ρ[x←v]
K (y)

if Je1K
ρ
K = Je2K

ρ
K then Je3K

ρ
K else Je4K

ρ
K = v

Jif e1 = e2 then e3 else e4K
ρ
K = v

Je1K
ρ
K = v1 Je2K

ρ
K = v2

J(e1, e2)K
ρ
K = (v1, v2)

JeKρ
K = (v1, v2) i ∈ {1, 2}

Jπi(e)Kρ
K = vi

Je1K
ρ
K = l Je2K

ρ
K = s

JTree(e1, e2)K
ρ
K = Tree(l, s)

JeKρ
K = Tree(l, s)

Jkids(e)Kρ
K = s

JeKρ
K = Tree(l, s)

Jtag(e)Kρ
K = l

Je2K
ρ
K = Tree(l, s) J∪(z ∈ s) (srt(x, y). e1) zKρ

K = s′

J(srt(x, y). e1) e2K
ρ
K = Je1K

ρ[x:=l,y:=s′]
K

Figure 6.10: Semantic Equations for NRCK + srt

The semantics of NRCK + srt, given with respect to an environment to variables ρ, is sum-

marized by the equations in Figure 6.10. The meaning of Tree(−,−), tag(−) and kids(−) are all

straightforward (similar to pairing and projections). For srt, we require that Equation (6.1) contin-

ues to hold. Indeed, since K-collections have finite support, even in the presence of K-annotations,

values of type tree have a finitary recursive structure. The semantics of ∪(− ∈ −) − and Equa-

tion (6.1) above uniquely determines the semantics of srt.

150

Compiling UXQuery to NRC + srt

a a () {} $x x
p e

(p) {e}
p1 e1 p2 e2

p1,p2 e1 ∪ e2

p1 e1 p2 e2

for $x in p1 return p2 ∪(x ∈ e1) e2

p1 e1 p2 e2

let $x := p1 return p2 let x = e1 in e2

p1 e1 p2 e2 p3 e3 p4 e4

if (p1=p2) then p3 else p4 if e1 = e2 then e3 else e4

p1 e1 p2 e2

element p1 {p2} Tree(e1, e2)

p1 e1

name(p1) tag(e1)
p e

annot k p k e
p e e s

 e′

p/s e′

Figure 6.11: Compilation of UXQuery

e self::∗
 e e self::a

 ∪(x ∈ e) if tag(x) = a then {x} else {}

e child::a
 ∪(x ∈ e)

∪(y ∈ kids(x))
if tag(y) = a then {y} else {}

e child::∗
 ∪(x ∈ e)kids(e)

e′ = ∪(x ∈ e) π1((srt(b, s). f) x)
where f = let self = Tree(b,∪(x ∈ s) {π2(x)}) in

let matches = ∪(x ∈ s) {π1(x)} in
(matches∪ if a = b then {self}{} else , self)

e descendant::a
 e′

e′ = ∪(x ∈ e) π1((srt(b, s). f) x)
where f = let self = Tree(b,∪(x ∈ s) {π2(x)}) in

let matches = ∪(x ∈ s) {π1(x)} in
(matches∪ {self }, self)

e descendant::∗
 e′

Figure 6.12: Compilation of XPath to NRCK + srt

We define the semantics of K-UXQuery on K-UXML values by translation (compilation) to

NRCK + srt in Figures 6.11 and 6.12. Since K-UXML values can be expressed with the constructors

in K-UXQuery it suffices to translate K-UXQuery. The compilation function is written p e. Here

we discuss some of the more interesting cases; more details can be found in the long version of

this paper. Most of the operators in K-UXQuery have a direct analog in NRCK + src and therefore

have a simple translation, for example if p1 e1 and p2 e2 then for $x in p1 return p2

∪(x ∈ e1) e2. The most interesting compilation rules concern navigation steps. The compilation of

151

a step ax::nt, written e ax::nt
 e′, describes by e′ the set of trees that results from applying the given

step to the set of trees described by e. Navigation compilation is then used in query compilation:

if p e and e ax::nt
 e′ then p/ax::nt e′.

The compilation of the descendant axis is the only place where we make use of structural

recursion: we use srt to recursively walk down the structure of the tree and build up a set con-

taining all of the matching nodes. For example, in the compilation rule for descendant::∗, the s

argument accumulates a set of pairs whose first component is the set of descendants below the

immediate subtree contained in the second component of the pair. At each step, the body of the

srt expression constructs a new pair using the current node and the accumulator. The descendants

are obtained by projecting the first component of the final result.

6.6 Commutation with Homomorphisms

In this section, we prove a correctness theorem, stating that the semantics commutes with semiring

homomorphisms, and explore some of its broader implications.

A semiring homomorphism h : K1
hom−→ K2 can be lifted to a transformation H from NRCK1+srt

expressions to NRCK2+srt expressions by replacing every occurrence of a scalar k with h(k). Since

every K-complex value can be expressed with the constructors of NRCK + srt, this gives us in

particular a transformation from K1-complex values to K2-complex values.

A fundamental property of NRC + srt is that query evaluation on K-complex values commutes

with such transformations induced by homomorphisms.

Theorem 6.5. If h : K1
hom−→ K2 is a homomorphism of semirings, denote by H its lifting as explained

above. Then for any NRCK1+srt query e, and any environment ρ, H(JeKρ
K1

) = JH(e)KH◦ρ
K2

.

Proof. By induction on the structure of e. There are 14 cases.

Case l: trivial

Case x: trivial

Case {}: immediate since h(0K1) = 0K2

Case {e}: immediate since h(1K1) = 1K2

Case e1 ∪ e2: immediate from induction hypothesis and h(a + b) = h(a) + h(b)

Case ∪(x ∈ e1) e2: the induction hypothesis states that for all ρ′,

H(Je1K
ρ′

K1
) = JH(e1)K

H◦ρ′
K2

(6.2)

H(Je2K
ρ′

K1
) = JH(e2)K

H◦ρ′
K2

(6.3)

152

Suppose Je1K
ρ
K1

= {au1
1 , . . . , aun

n } and JH(e1)K
H◦ρ
K2

= {bv1
1 , . . . , bvm

m }. Define an equivalence

relation i ∼ j iff H(ai) = H(aj). Then

H(Je1K
ρ
K1

) = {H(a1)∑j∼1 h(uj), . . . , H(am)∑j∼m h(uj)} = {bv1
1 , . . . , bvm

m }

and let us assume without loss of generality that for all 1 ≤ i ≤ m,

H(ai) = bi (6.4)

∑
i∼j

h(uj) = vi (6.5)

Now observe that

H
(
J∪(x ∈ e1) e2K

ρ
K1

)
= H(∑n

i=1 ui · Je2K
ρ[x←ai]
K1

)

= ∑n
i=1 h(ui) · H(Je2K

ρ[x←ai]
K1

)

= ∑n
i=1 h(ui) · Je2K

H◦(ρ[x←ai])
K2

by (6.3)

= ∑m
j=1 ∑i∼j h(ui) · Je2K

(H◦ρ)[x←H(ai)]
K2

= ∑m
j=1 vj · Je2K

(H◦ρ)[x←bj]
K2

by (6.4), (6.5)

= J∪(x ∈ e1) e2K
H◦ρ
K1

as required.

Case if e1 = e2 then e3 else e4: immediate using induction hypothesis (the fact that the conditional

tests only equality of labels is essential)

Case (e1, e2): immediate using induction hypothesis

Case πi(e): immediate using induction hypothesis

Case Tree(e1, e2): similar to (e1, e2)

Case kids(e): similar to π2(e)

Case tag(e): similar to π1(e)

Case (srt(x, y). e1) e2: the induction hypothesis states that for all ρ′,

H(Je1K
ρ′

K1
) = JH(e1)K

H◦ρ′
K2

(6.6)

H(Je2K
ρ′

K1
) = JH(e2)K

H◦ρ′
K2

(6.7)

We prove by (inner) induction on the K1-tree Je2K
ρ
K1

that the claim holds for e, i.e.,

H(J(srt(x, y). e1) e2K
ρ
K1

) = JH((srt(x, y). e1) e2)K
H◦ρ
K2

There are two cases.

153

Case Je2K
ρ
K1

= Tree(l, {}): we have that

H(J(srt(x, y). e1) e2K
ρ
K1

) = H(Je1K
ρ[x←l,y←{}]
K1

)

= JH(e1)K
H◦(ρ[x←l,y←{}])
K2

by (6.6)

= JH(e1)K
(H◦ρ)[x←l,y←{}]
K2

= J(srt(x, y). e1) e2K
H◦ρ
K2

as required.

Case Je2K
ρ
K1

= Tree(l, s) where s = {au1
1 , . . . , aun

n }: similar calculations as in the big-union

case, but using the (inner) induction hypothesis.

Case k e: immediate using induction hypothesis and h(a · b) = h(a) · h(b)

A semiring homomorphism h : K1 → K2 can similarly be lifted to a transformation H from

K1-UXQuery expressions to K2-UXQuery expressions (and from K1-UXML values to K2-UXML

values), again by just replacing each occurrence of a scalar k with h(k). Based on our compila-

tion semantics for K-UXQuery, we conclude from the theorem above that a similar commutation

property holds for K-UXML and K-UXQuery:

Corollary 6.6. If h : K1
hom−→ K2 is a semiring homomorphism, denote by H its lifting to a transforma-

tion from K1-UXQuery to K2-UXQuery. Then for any K1-UXQuery query p, for any environment ρ,

H(JpKρ
K1

) = JH(p)KH◦ρ
K2

. (Here, we lift J·K to K-UXQuery in the obvious way using our compilation to

NRCK+srt.)

We already mentioned several applications of the commutations with homomorphisms theo-

rem (cf. Section 6.2, Section 6.3, and Section 6.4). Another simple but practically useful applica-

tion involves the “duplicate elimination” homomorphism † : N→ B defined as †(0) def= false and

†(n + 1) def= true. Lifting † to K-complex values and trees or to K-UXML values we obtain that eval-

uation of ordinary values can be factored through that of values with multiplicities, with duplicate

elimination deferred to a final step (in the style of commercial relational database systems).

6.7 Semantics via Relations

We sketch in this section an encoding of K-UXML into K-relations and an accompanying compi-

lation of XPath into Datalog (extended with Skolem functions) which has the important property

154

that the answer to the Datalog program corresponds to the answer to the XPath query with iden-

tical annotations. This provides an alternative definition of the semantics of XPath on K-UXML

which agrees with that of Section 6.5. The availability of such a compilation scheme is an impor-

tant concern in practice, where XML data is often “shredded” into relations, with queries over the

data compiled into SQL for execution by an RDBMS [47, 127]. However, the focus here is not on

practicality, but on demonstrating a basic proof-of-concept scheme.

We encode a (set of) K-UXML trees using a single K-relation E(pid, nid, label). Each tuple in E

corresponds to a single K-UXML node, and carries the same annotation as the K-UXML node.

As opposed to UXML in which an item is an entire tree identified by its value, in this encoding

an item is identified by its node id. Thus pid is the identifier of the node’s parent, nid is the

identifier of the node itself, and label is the node’s label. The special pid 0 is reserved and indicates

that the node corresponds to a (top-level) root of a tree in the set.

Node ids are invented as needed during translation of the K-UXML into relational form. Dur-

ing subsequent query processing, additional node ids may be needed to represent nodes in the

query result; we use Skolem functions for this purpose. Recursive Datalog rules are used to im-

plement the XPath descendant operator. To give a flavor of the query translation, we show the

rule for one important case, the descendant axis:

e descendant::a

R(n, l) :- E(0, n, l)

R(n, l) :- R(p,), E(p, n, l)

E′(f (p), f (n), l) :- E(p, n, l)

E′(0, f (n),a) :- R(n,a)

E encodes the set of input trees and E′ encodes the set of output trees. f is a Skolem function.

To illustrate, the XPath query //c on the source tree in Figure 6.4 with x1 := 0 (to simplify the

example) yields:

E′ =

pid nid label

0 f (2) c y1

0 f (5) c y1 · y2

f (0) f (1) a 1

f (1) f (2) c y1

f (2) f (3) d 1

f (3) f (4) a 1

f (2) f (5) c y2

f (2) f (6) b x2

The K-UXML tree which would have been produced by executing the query directly on the input

155

tree is encoded by the tuples reachable from the root tuples (which have pid 0). Note that there are

also some “garbage” tuples in the table that are unreachable from any root: e.g., (f (0), f (1),a).

We summarize with the following theorem:

Theorem 6.7. There is a 1-1 translation φ of K-UXML to K-relations and a translation ψ of XPath

to Datalog with Skolem functions, such that for every K-UXML value v and XPath query p, we have

φ(p(v)) = ψ(φ(p)).

Proof.

Monads of Semimodules as Collection Types

Let (K, +, ·, 0, 1) be a commutative semiring. A semimodule over K (a K-semimodule) is an algebraic

structure (M, +, 0, λ) where (M, +, 0) is a commutative monoid, and λ : K ×M → M is a scalar

multiplication operation, written (as usual) λ(k, x) = k x such that

k (x + y) = k x + k y

k 0 = 0

(k1 + k2) x = k1 x + k2 x

(k1 · k2) x = k1 (k2 x)

0 x = 0

1 x = x

K-semimodules and their homomorphisms form a category K-SMod. The forgetful functor U :K−SMod→

Set has a left adjoint that is very easy to describe: the free K-semimodule generated by a set X

is the set XK
f of functions X → K that have finite support (see Section 6.5 and note that in NRCK

J{t}KK is precisely (JtKK)K
f), with the obvious pointwise addition and pointwise multiplication K-

semimodule structure. This adjunction yields a (strong) monad on Set, which can be enriched [99]

with a K-semimodule structure on each monad algebra. Therefore, we have a collection and ag-

gregates query language, as in [19, 99, 12]. In fact, it is easy to see that any commutative monoid is

an N-semimodule and that the B-semimodules are exactly the commutative-idempotent monoids,

so the finite sets and finite bags collections are included here 11. Properties like the commutation

with homomorphisms theorem (6.5) have a very general category-theoretic justification, based

on the fact that all the query language constructs in such query languages come from functorial

constructs and natural transformations.

We can also capture some of this theory through an equational axiomatization for NRCK

11It is not clear how to include finite lists in this semiring-based family of collection types

156

Proposition 6.8. The semantics of NRCK satisfies the following equational axioms:

• ∪, {} and multiplication with scalars from K satisfy the axioms of a semimodule over K.

• ∪(x ∈ e1) e2 satisfies the axioms:

∪(x ∈ ∪(y ∈ R) S) T = ∪(y ∈ R) ∪(x ∈ S) T

∪(x ∈ S) {x} = S

∪(x ∈ {e}) S = S[x := e]

∪(x ∈ k1 R1 ∪ k2 R2) S = k1 (∪(x ∈ R1) S) ∪

k2 (∪(x ∈ R2) S)

∪(x ∈ R) ∪(y ∈ S) T = ∪(y ∈ S) ∪(x ∈ R) T

∪(x ∈ R) (k1 S1 ∪ k2 S2) = k1 (∪(x ∈ R) S1) ∪

k2 (∪(x ∈ R) S2)

(In particular, the 4th and 6th axioms state its bilinearity w.r.t. the semimodule structure).

157

Chapter 7

Related Work

7.1 Paradigms for Data Integration

We mentioned in Chapter 1 that a number of other paradigms for data integration and data shar-

ing have been proposed over the years, of which collaborative data sharing is only the latest. In

this section, we overview several of these paradigms in more detail, and in (roughly) chronologi-

cal order. The goal is not to give a complete account of their various features and functionalities,

but just to give a better sense of the context of the work described in this dissertation. Figure 7.2

gives a comparative summary of some of their main features.

Data Warehousing

While this dissertation has focused on the needs of scientific collaborators, another set of data

integration requirements exists in business and corporate settings. Since the early 1990s, these

have been addressed by the development of so-called data warehouse technologies [83, 80]. As

defined in [80], a data warehouse is a “subject-oriented, integrated, nonvolatile, and time-variant

collection of data in support of management’s decisions.” The emphasis in data warehousing is

on answering complex decision-support (OLAP) queries, which are typically complicated aggregate

queries posed over large volumes of historical business data.

A typical data warehouse architecture consists of a stack of several components as shown in

Figure 7.1:

1. A collection of heterogeneous data sources at the bottom level, which may consist of an

organization’s day-to-day operational databases, legacy systems, unstructured data stored

in text files, and so on.

158

Global
Data Warehouse

End-users

Data sources

ETL scripts

Local data
warehouses

Aggregate materialized views

OLAP
queries

Figure 7.1: Data warehouse architecture

2. A centralized “global” data warehouse, which is a database containing a historical record of

data collected from the data sources.

3. Special-purpose extract-transform-load (ETL) scripts that extract data from data sources, trans-

form it into the global schema of the data warehouse, and perform cleaning of the source

data to remove inconsistencies.

4. Specialized “local” warehouses containing aggregated data derived from the global ware-

house, over which end-users pose their analytical OLAP queries.

As Figure 7.1 suggests, the flow of data through a typical data warehouse is unidirectional,

from source to global warehouse, and from global warehouse to local warehouse. Typically, the

global and local data warehouses are refreshed only periodically (e.g., by weekly or monthly

batch jobs) and data is only added, never deleted. The data warehouse architecture has two chief

virtues, compared to exposing data sources directly to end-user queries: first, formulating queries

159

Materialized
instances

Declarative
mappings

Update
propagation

Mediated
schema

Data
warehousing G# G#

Virtual data
integration # n/a

P2P data
integration # n/a #

Data
exchange #

Collaborative
data sharing #

A “ ” indicates “present”, a “G#” indicates “partial”, and a “#” indicates “absent.”

Figure 7.2: Feature comparison of data integration paradigms

over a single, clean, consistent instance is much simpler from a usability standpoint; second, a

company’s operational databases are isolated from the performance costs of evaluating expensive

OLAP queries.

Compared to CDSS, there are several important differences. First of all, the organization of

a data warehouse is strongly centralized and hierarchical, using a single mediated schema and

a unidirectional flow of data. CDSS, in contrast, is highly decentralized, allows data to flow in

many directions, and does not require agreement on a single mediated schema or global data

consistency. The ETL process used to populate the data warehouse from data sources is similar

to update exchange in its aims, but technically is quite different: ETL is usually implemented

using procedural scripts in general-purpose programming languages, while CDSS uses a logic-

based formalism that can be viewed as a kind of “declarative ETL.” The tradeoff between these

approaches is one of expressiveness versus amenability to automated reasoning tasks such as

optimization of update propagation.

Virtual Data Integration

With the explosion in the 1990s of data on the web, there came a need to build systems to fa-

cilitate rapid integration of this data. This led to the development of virtual data integration tech-

nologies [135, 70]. Figure 7.3 shows a diagram of a typical virtual data integration architecture,

as exemplified by systems like TSIMMIS [53], the Information Manifold [103], and Kleisli [15].

As with data warehousing, the bottom level of such an architecture involves a collection of data

sources, usually imagined to be web data sources. For data sources such as web sites, which

do not expose their databases directly, wrappers must be provided which extract relational or

semistructured data from HTML pages. In contrast to data warehousing, the schemas of the data

160

Mediated schema

Wrapper Wrapper Wrapper

End-user

Declarative mappings
Reformu-

lated
query

Query over
mediated schema

Integrated
query results

Query
results

Web sites

Figure 7.3: Virtual data integration architecture

sources are related to the mediated schema via declarative mappings, and no instance of the medi-

ated schema is ever materialized. Rather, queries posed over the mediated schema are reformulated

on-the-fly, according to the mappings, and answered over the remote data sources. The results

from the remote sources are then collected together and returned to the user. Update propaga-

tion, a main concern in materialized approaches such as data warehousing, becomes a non-issue

in virtual data integration.

Mappings in virtual data integration are expressed in a number of formalisms, such as global-

as-view (GAV), local-as-view (LAV), or global-local-as-view (GLAV). The paper by Lenzerini [100]

surveys and compares these formalisms in detail. Briefly, with GAV, the virtual mediated instance

is essentially just a view (expressed using, e.g., SQL queries) over the data sources. Query posed

over the mediated schema can be answered over the sources using the standard technique of view

unfolding. With LAV, the data sources are thought of as views (typically conjunctive queries)

over the mediated schema. End-user queries posed over the mediated schema are answered over

the sources using so-called maximally-contained query plans [43]. An linchpin result of Abiteboul

and Duschka [1] established that such plans (for conjunctive LAV mappings and Datalog queries)

return precisely the certain answers. Finally, GLAV mappings combine features of the GAV and

LAV formalisms.

While virtual data integration was originally motivated by the need to integrate data from

161

Virtual peer
schema

Virtual peer
schema

Virtual peer
schema

Local DBMS

Local DBMS

Local DBMS

Reformulated query

Query over
peer schema

Integrated
results

Declarative
mappings

Figure 7.4: Peer-to-peer data integration architecture

the web, the techniques developed to accomplish this can equally well be applied to data inside

corporations. This has recently led to a market for commercial enterprise information integration

systems.

Peer-to-Peer Data Integration

The reliance of virtual data integration on a global mediated schema eventually came to be seen

as a limitation in more decentralized application scenarios lacking a strong central authority to

play the role of the mediator. This motivated the development of peer-to-peer data integration

(P2P data integration), as pioneered in systems such as Piazza [64, 69]. Figure 7.4 illustrates the

architecture of such a system. Compared to virtual data integration, the main difference is that

there is no single mediated schema. Rather, each data source (“peer”) comes with its own virtual

peer schema. Declarative mappings relate the data source of each peer with its peer schema,

and a peer schema with schemas of other peers. End-user queries are posed over a particular

peer schema, and the goal is to compute the certain answers to the queries using reformulation

strategies across the network of peers. As with CDSS, technical difficulties arise in the presence

of cycles in the network of mappings.

Data Exchange

We already discussed data exchange [45] in some detail in Chapter 1, but for completeness we

repeat and elaborate upon some of the details here.

162

End-user

Source database Target database

Source-target
mappings

Target-target
mappings

Queries
over

target

Figure 7.5: Data exchange architecture

Figure 7.5 shows a picture of a typical data exchange architecture, as exemplified by systems

such as Clio [75, 118]. A data exchange setting comprises a source schema and a target schema,

related by declarative source-target mappings (tgds). Additionally, target-target mappings may

enforce integrity constraints on the target instance. These may be a combination of tgds and

equality-generating dependencies (a generalization of key constraints). Given an instance of the

source database, the goal is to compute a corresponding instance of the target database. In general,

there may exist many instances of the target database compatible with the schema mappings,

hence a special one — the canonical universal solution — is the one materialized. The end-user

poses queries over this materialized target instance. Cycles in (target-target) mappings cause

technical difficulties, hence as with CDSS, the network of mappings is required to be weakly

acyclic. Propagation of updates from source to target is not considered in the classical data

exchange framework, which is clearly a practical limitation.

Peer-to-Peer Data Exchange

The CDSS paradigm can be described to a first approximation as a generalization of the ideas of

data exchange to peer-to-peer scenarios (with additional support for data provenance and efficient

update propagation). Another recent paper [52] describes a model called peer data exchange, whose

name is suggestive of something rather similar, but turns out to be rather different. The model

of that paper considers a form of data exchange that supports mappings in two directions (from

source to target, and from target to source), but source database remains fixed and the exchange of

data is still done in a unidirectional fashion, from source to target. The target to source mappings

are used only to further constrain the space of allowable target instances.

The Hyperion system [90, 88] also implements a form of peer-to-peer data exchange. As with

CDSS, Hyperion aims to facilitate data sharing among networks of peer relational databases. In

contrast to CDSS, which uses schema-level mappings to accomplish this data sharing, Hyperion

163

instead addresses the problem of data sharing at the data level, employing so-called mapping tables

that relate corresponding data values between sources.

Collaborative Data Integration

A recent paper [94] proposes a paradigm for data integration called collaborative data integration

(CDI), and an implementation in a system called Youtopia, that is similar in many of its aims and

technical features to CDSS. As in CDSS, CDI proposes a data exchange-style setup involving peer

schemas related by networks of declarative mappings (tgds), and computation of materialized

solutions. Youtopia employs an interesting new approach to resolving the technical difficulties

associated with cycles in mappings, based on semi-automated user intervention. This allows the

system to support mappings with arbitrary cycles. The system also supports update exchange,

and incorporates sophisticated new transaction facilities. In contrast to CDSS, it does not track

data provenance.

7.2 Provenance and Annotated Data Models

Lineage and why-provenance were introduced in [34, 35, 17] (the last paper uses a tree data model)

but the relationship with [79] was not noticed. The papers on probabilistic databases [50, 138, 96]

note the similarities with [79] but do not attempt a generalization.

Datalog with bag semantics in which derivation trees are counted was considered in several

papers, among them [109, 113, 114]. The evaluation algorithms presented in these papers do not

terminate if some output tuple has infinite multiplicity. Datalog on incomplete and on probabilis-

tic databases is considered in [40, 97], again with non-terminating algorithms. Later [115] gave

an algorithm for detecting infinite multiplicities in Datalog with bag semantics and [51] gave a

terminating algorithm for Datalog on probabilistic databases.

Two recent papers on provenance, although independent of our work, have a closer relation-

ship to our approach. Like us, [25] identifies the limitations of why-provenance and proposes

route-provenance which is also related to derivation trees. The issue of infinite routes in recursive

programs is avoided by considering only minimal ones. [8] proposes a notion of lineage of tuples

for a type of incomplete databases but does not consider recursive queries. We have seen that the

annotations in that paper can be captured using a semiring, Trio(X).

The first attempt at a general theory of relations with annotations appears to be [81] where

axiomatized label systems are introduced in order to study containment.

A line of work is artificial intelligence on soft constraint satisfaction problems (soft CSP) [11]

is similar in spirit to our work. Their constraints over semirings are in fact the same as our K-

164

relations and the two operations on constraints correspond indeed to relational join and projection.

CSP solutions are expressed as projection-join queries or Prolog programs. Computing solutions

is the same as the evaluation of join and projection in Section 2.2 and [11] also uses fixed points

on semirings. There are some important differences though. The semirings used in [11] are such

that + is idempotent and 1 is a top element in the resulting order. This rules out our semirings

N, N∞, N[X], N∞[[X]] hence the bag and provenance semantics. 1 More importantly, much of

the focus in CSP is in choosing optimal solutions rather than how these solutions depend on the

constraints.

We left open the question of how to incorporate the relational algebra difference operator into

the framework of semiring annotations. This problem was addressed in [54], which proposed the

use of a monus operation for this purpose. The same paper also initiated the study of expressive-

ness of query languages on semiring-annotated relations.

7.3 Update Exchange

As already mentioned, our work on update exchange takes advantage of previous work on data

integration, PDMS (e.g., [73]) and data exchange [45, 104, 118]. With our encoding in Datalog,

we reduce the problem of incremental updates in CDSS to that of recursive view maintenance

where we contribute an improvement on the classic algorithm of [66]. Incremental maintenance

of recursive views is also considered in [108] in the context of databases with constraints using

the Gabrielle-Levi fixpoint operator. The AutoMed system [110] implements data transformations

between pairs of peers (or via a public schema) using a language called BAV, which is bidirectional

but less expressive than tgds; the authors consider incremental maintenance and lineage [46]

under this model. In [52], the authors use target-to-source tgds to express trust. Our approach

to trust conditions has several benefits: (1) trust conditions can be specified between target peers

or on mappings themselves; (2) each peer may express different levels of trust for other peers,

i.e., trust conditions are not always “global”; (3) our trust conditions compose along paths of

mappings. Finally, our approach does not increase the complexity of computing a solution.

[8] proposes a notion of lineage of tuples which is a combination of sets of relevant tuple ids

and bag semantics. As best as we can tell, this is more detailed than why-provenance, but as we

have seen in Chapter 2, we can also describe it by means of a special commutative semiring, so our

approach is more general. The paper also does not mention recursive queries, which are critical

for our work. Moreover, [8] does not support any notion of incremental translation of updates

1Another difference is that for Datalog semantics we require our semirings to be ω-continuous while [11] uses the less
well-behaved fixed points given by Tarski’s theorem for monotone operators on complete lattices. However, the semiring
examples in [11] appear to be in fact ω-continuous.

165

over mappings or incompleteness in the form of tuples with labeled nulls. Our provenance model

also generalizes the duplicate (bag) semantics for Datalog [114] and supports generalizations of

the results in [115].

A recent paper [106] adopts an approach to incremental view maintenance similar in spirit

to our work in its use of provenance annotations to speed up propagation of deletions. There,

the annotations are from what is essentially PosBool(X) (cf. Chapter 2), the semiring of positive

Boolean expressions over variables from X.

7.4 Query Containment and Equivalence

The seminal paper by Chandra and Merlin [22] introduced the fundamental concepts of con-

tainment mappings and canonical databases in showing the decidability of containment of CQs

under set semantics and identifying its complexity as np-complete. The extension to UCQs is due

to Sagiv and Yannakakis [123]. We have built upon the techniques from these papers.

The papers by Ioannidis and Ramakrishnan [81] and Chaudhuri and Vardi [24] initiated

the study of query containment under bag semantics. Chaudhuri and Vardi showed that bag-

equivalence of CQs is the same as isomorphism, established the Πp
2 -hardness of checking bag-

containment of CQs, and gave partial conditions for checking bag-containment (see Section 4.4

for further connections with our results). Chaudhuri and Vardi [24] also introduced the study

of bag-set semantics, and showed that bag-set equivalence of CQs (without repeated atoms in the

body) is the same as isomorphism. This was essentially a rediscovery of a well-known result in

graph theory due to Lovász [107] (see also [74]), who showed that for finite relational structures

F, G, if |Hom(F, H)| = |Hom(G, H)| for all finite relational structures H, where Hom(A, B) is the

set of homomorphisms h : A → B, then F ∼= G. In database terminology, this says that bag-set

equivalence of Boolean CQs (without repeated atoms in the body) is the same as isomorphism.

Ioannidis and Ramakrishnan showed that bag-containment of UCQs is undecidable.

In Section 4.4 we have discussed the results of Cohen et al. [30] and Cohen [27] on bag equiv-

alence and bag-set equivalence of UCQs. The decidability of bag-containment of CQs remains

open. Recent progress was made on the problem by Jayram et al. [84] who established the unde-

cidability of checking bag-containment of CQs with inequalities.

Semiring-annotated relations are also related to the lattice-annotated relations used in para-

metric databases by Lakshmanan and Shiri [98]. That paper also studied query containment and

equivalence, giving a number of positive decidability results. None of our provenance models fall

into this framework (with the exception of PosBool(X), cf. Theorem 4.34).

We have already mentioned in Section 2.4 the paper by Grahne et al. [56], which studied

166

containment and equivalence of positive relational queries on bilattice-annotated relations.

Tan [130] showed that query containment is decidable for CQs on relations with where-provenance

information. Our results here on why-provenance complement the where provenance results

(why-provenance and where-provenance were introduced together in [17]).

Cohen [28] recently initiated the study of query optimization under combined semantics, which

generalizes bag semantics and bag-set semantics by enriching the relational algebra with a dupli-

cate elimination operator. “Duplicate elimination” also makes sense for K-relations in the form of

the support operator:

supp(R) def= λt.

 0 if R(t) = 0

1 otherwise

For K = N, this is duplicate elimination; for K = PosBool(X) it corresponds to the poss operator

of [5] which returns the “possible” tuples of an incomplete relation. It would be interesting to see

whether the decidability results presented here can be extended to queries using supp.

7.5 Ring-Annotated Relations and Updates

Exact query reformulation using views has been studied extensively, due to its applications in

query optimization, data integration, and view maintenance, starting with the papers by Levy et

al. [101] and Chaudhuri et al. [23]. The former paper established fundamental results for UCQs

with built-in predicates (our UCQ<s) under set semantics. The latter paper considered CQs with

built-in predicates (CQ<s) under bag semantics, but it did not provide a complete reformulation

algorithm or consider UCQs.

The view adaptation problem was introduced in [65], which gives a case-based algorithm for

adapting materialized views under changes to view definitions (under bag semantics). In contrast,

our methods apply to view adaptation, but use a more general term rewrite system to develop a

sound and complete query reformulation algorithm.

Our Z-relations appeared in an early form as the deltas in the count incremental view main-

tenance algorithm for UCQs of [66]. That paper did not consider query equivalence for deltas or

make a general study of query reformulation.

Z[X]-relations made their first appearance in [54]. That paper did not consider the use of

Z[X] to represent data updates, nor did it consider questions of query equivalence and query

reformulation.

167

7.6 Semiring-Annotated XML

The original why/where provenance paper [17] used a tree-structured data model. However, the

model was tag-deterministic and the annotations were in effect paths from the root. Its query

language relies on a deep-union construct that seems incomparable with what we do. In addition,

the related work in [62] surveys work on semirings, other models of provenance, and probabilistic

and incomplete relations that we do not repeat here.

Among proposed models for probabilistic and incomplete XML, closest to our work is [4, 126],

which uses unordered XML decorated with Boolean combinations of probabilistic events. A model

for incomplete XML was developed in [3]. In both systems the query language is tree patterns,

and the main focus is on handling updates and complexity results. By contrast, our goal is a

general-purpose annotation framework with a richer query language in which probabilistic and

incomplete XML are obtained as special cases. Other models for probabilistic XML include prob-

abilistic interval annotations [78], probabilistic trees for data integration [134], and numeric prob-

ability annotations [116]; for incomplete XML we add the maximal matchings approach of [85].

The focus of [14] is to compare a semantics for NRC on annotated complex values to the

semantics of an update language but the data model and the query semantics is different from

ours. In particular, query-constructed values are annotated with “unknown.” Another provenance

model for NRC, tracing operational executions for scientific dataflows, is described in [77].

Semirings are used to provide semantics for regular path queries decorated with preference

annotations over graph-structured data in [57]. It is unclear whether there is any connection with

our semiring-annotated data.

Dealing with ordered XML seems to be a troublesome issue in our framework. Unlike sets

and bags, lists are not immediately representable as the functions of finite support into some

commutative (or even non-commutative) semiring. Still we believe that, based on our semantics

for UXML, a practical, albeit somewhat ad-hoc, provenance semantics for ordered XQuery could

be devised and then tested for user acceptance.

7.7 Further Work on Orchestra

The material presented in Chapter 2 and Chapter 3 is also covered in another dissertation [86], by

Grigoris Karvounarakis. (The work described in those chapters was performed in collaboration

with Karvounarakis and Tannen [62] and Karvounarakis, Ives, and Tannen [60].) That dissertation

also covers several major components of Orchestra not discussed here, including its facilities for

bi-directional mappings [87] and a query language for CDSS provenance.

168

Another major component of Orchestra not covered in this dissertation is its automatic,

provenance-based conflict resolution facilities. That component is described in [131].

The version of Orchestra described in this dissertation performs all update exchange com-

putations locally at one peer’s site. (The global update store is used only to store and retrieve local

curations and the final results of update exchange computations.) However, more recent work

on the system [132] has developed a fully distributed, reliable query processing engine that can

be used to distribute the update exchange computations across the peer network, with significant

performance benefits.

169

Chapter 8

Conclusions and Future Directions

We have developed in this dissertation (and in collaboration with others) the theoretical founda-

tions and the practical design and implementation of a new kind of data management system, the

collaborative data sharing system (CDSS). The Orchestra CDSS prototype allows collaborators

in domains such as the sciences to share relational data, modulated by schema mappings, trust

policies, and local curation facilities which allow collaborators to retain full control of their own

data. The system includes novel facilities for efficient handling of updates, both to data and to

schema mappings. The system tracks the provenance of data as it is transformed and propagated

according to schema mappings, and uses this provenance information as the basis for trust poli-

cies and efficient update propagation algorithms, and makes it available to CDSS users to aid

them in curating their databases.

The system is based on solid formal foundations, including a powerful new framework of

semiring-annotated relations, which unifies and clarifies the relationships among a number of

previous models of data provenance, and leads to a natural notion of provenance appropriate

for CDSS. We addressed fundamental questions related to semiring-annotated relations, such as

query containment and equivalence in the presence of provenance information. We also argued

for ring-annotated relations as a uniform representation for data and updates, and we saw that this

approach enables a unified perspective on update translation and mapping evolution as special

cases of a more general problem, optimizing queries using materialized views, which turns out to

be surprisingly tractable in this context. Finally, we showed that semiring annotations also make

sense for XML and nested relational data.

We conclude the presentation with a list of several promising research directions suggested by

the work in this dissertation.

170

8.1 Immediate Next Steps

Soft CSP and conjunctive query containment

Although in general database research and artificial intelligence CSP research sadly tend to ignore

each other (witness the original submission of [62]!), some deep connections have been exhibited

in [93], involving, in particular, conjunctive query containment. Looking at the relationship be-

tween our framework of semiring-annotated relations and that of [11] (cf. Chapter 7) from this

perspective might provide interesting results.

Transactions

It would be worthwhile to extend CDSS to incorporate complex transaction models that give

rise to data dependencies and conflicts between the update policies of different peers. Solving

such problems will likely require a transaction provenance model in which we also would annotate

updates with transaction identifiers.

Datalog and query containment

We left open the decidability of containment and equivalence of Datalog problems in the presence

of several kinds of provenance annotations. A negative resolution of these problems would not be

unexpected, but still nice to know. On the other hand, a positive resolution of any of them would

be quite surprising and interesting.

UCQs, relational algebra, and query containment

In studying query containment and equivalence, we assumed a Datalog-style representation for

UCQs, which is expressively equivalent to the positive relational algebra (RA+) on K-relations, but

exponentially less concise. Under set semantics, it is well-known [123] that checking containment

of RA+ queries is correspondingly harder (Πp
2 -complete rather than np-complete). An obvious

question is how the move to an algebraic representation affects the results in the presence of

provenance annotations. This question appears to be open even for bag semantics, and may be

rather difficult to resolve.

Query containment for annotated XML

It would clearly be worthwhile to investigate how the same questions of query containment and

equivalence considered here for annotated relations play out for annotated XML, in order to better

171

understand the interplay between provenance annotations and query optimization strategies in

that context.

Incomplete XML databases

We have given very general strong representation systems for incomplete XML in Section 6.4. This

opens a whole set of questions about their (relative) completeness and expressive power, along

the lines of the questions considered in [63].

Practical applications of annotated XML

The framework for annotated XML we have described seems to be flexible and potentially useful

in practical applications. We are thinking in particular about using semirings of confidentiality

levels in an RDBMS by hiding the out-of-model calculations from users and also about recording

jointly provenance, security, and uncertainty (the product of several semirings is also a semiring!).

Beyond relational CDSS

Extending CDSS to handle XML and nested relational data would have many practical benefits.

Schema mappings among XML data sources have been well-studied [118, 72], and we have seen

in Chapter 6 that semiring annotations also make sense for XML. Still, there would likely be

significant engineering challenges in building a practical XML CDSS.

8.2 Longer-Term Directions

The tyranny of schema mappings

A fundamental assumption made in CDSS and other paradigms for data integration is the pre-

existence of precise schema mappings relating the data sources. In practice, these mappings are

extremely time-consuming to develop, and present a significant barrier to adoption. We feel that

this is one major reason why current data integration systems have not found more widespread

use. In this dissertation, we took some steps towards ameliorating the problem by allowing for

efficient handling of updates to mappings, expecting that they will change over time.

Longer term, it would be worthwhile to investigate relaxing this requirement by developing

language constructs and data models that allow querying over heterogeneous data sources, even

when mappings are “partial” or non-existent. The recently-proposed notion of dataspaces [68]

provides a vision for such a system, with unstructured, keyword-based search and structured,

relational queries over mediated schemas at opposite ends of a continuous spectrum. Even when

172

all sources are highly-structured (e.g., relational databases), making the query language compo-

sitional will require relaxing the relational data model to allow heterogeneous query results (e.g.,

tuples with different schemas) to be collected together; XML is a natural choice for this purpose.

This gives additional motivation for implementing an XML CDSS as an underlying platform for

more advanced dataspace-style systems.

CDSS and probabilistic data

There is also a need to extend the CDSS paradigm to incorporate probabilistic information. Recently,

the data management community has focused on probabilistic databases as a unifying framework

that allows uncertainties in data, mappings, and queries to be handled in a principled way. While

not originally targeted at uncertainty management, the provenance information used in Orches-

tra can be applied to probabilistic data as well. The semiring-based provenance framework in

Orchestra is also potentially interesting as a vehicle for designing and implementing algorithms

for top-k query answering.

CDSS and privacy

Finally, CDSS participants have natural privacy concerns, hence there is a need for security mech-

anisms to control data sharing among various categories of users. Here again, the framework of

semiring-annotated data offers a potential route to novel solutions: in Chapter 6, we proposed

annotating XML data with security clearance levels, and showed that the semantics of XQuery on

security-annotated XML obeys a fundamental non-interference property. A intriguing novelty of

the semiring-annotations framework is the potential to mix security annotations with other kinds

of annotations, such as trust levels and probabilities, yielding interesting hybrid semantics.

173

Bibliography

[1] Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized

views. In PODS, Seattle, WA, 1998.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.

[3] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing and querying XML with

incomplete information. TODS, 31(1):208–254, 2006.

[4] Serge Abiteboul and Pierre Senellart. Querying and updating probabilistic information in

XML. In EDBT, 2006.

[5] Lyublena Antova, Christoph Koch, and Dan Olteanu. From complete to incomplete infor-

mation and back. In SIGMOD, 2007.

[6] A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence database and its supple-

ment TrEMBL. Nucleic Acids Research, 28, 2000.

[7] Catriel Beeri and Moshe Vardi. A proof procedure for data dependencies. JACM, 31(4),

October 1984.

[8] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. ULDBs:

Databases with uncertainty and lineage. In VLDB, 2006.

[9] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. Uldbs: Databases

with uncertainty and lineage. In VLDB, 2006.

[10] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John Mylopoulos, Lu-

ciano Serafini, and Ilya Zaihrayeu. Data management for peer-to-peer computing: A vision.

In WebDB, June 2002.

[11] Stefano Bistarelli. Semirings for Soft Constraint Solving and Programming. Springer, 2004.

174

[12] P. Buneman and V. Tannen. A structural approach to query language design. In The Func-

tional Approach to Data Management Modeling, Analyzing, and Integrating Heterogenous Data.

Springer, 2004.

[13] Peter Buneman, James Cheney, Wang-Chiew Tan, and Stijn Vansummeren. Curated

databases. In PODS, 2008.

[14] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness of implicit

provenance in query and update languages. In ICDT, 2007.

[15] Peter Buneman, Susan B. Davidson, Kyle Hart, Chris Overton, and Limsoon Wong. A data

transformation system for biological data sources. In VLDB, 1995.

[16] Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL: A query language and algebra

for semistructured data based on structural recursion. VLDB J., 9(1):76–110, 2000.

[17] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A characterization

of data provenance. In ICDT, 2001.

[18] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On propagation of deletions and

annotations through views. In PODS, 2002.

[19] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Principles of program-

ming with complex objects and collection types. TCS, 149(1):3–48, 1995.

[20] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Logical

foundations of peer-to-peer data integration. In PODS, 2004.

[21] Michael J. Carey, Daniela Florescu, Zachary G. Ives, Ying Lu, Jayavel Shanmugasundaram,

Eugene Shekita, and Subbu Subramanian. XPERANTO: Publishing object-relational data as

XML. In WebDB, 2000.

[22] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in

relational data bases. In STOC, pages 77–90, 1977.

[23] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseak Shim. Optimiz-

ing queries with materialized views. In ICDE, 1995.

[24] Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real conjunctive queries. In PODS,

1993.

[25] Laura Chiticariu and Wang-Chiew Tan. Debugging schema mappings with routes. In VLDB,

2006.

175

[26] Noam Chomsky and Marcel-Paul Schützenberger. The algebraic theory of context-free lan-

guages. Computer Programming and Formal Systems, pages 118–161, 1963.

[27] Sara Cohen. Containment of aggregate queries. SIGMOD Record, 34(1):77–85, 2005.

[28] Sara Cohen. Equivalence of queries combining set and bag-set semantics. In PODS, 2006.

[29] Sara Cohen, Werner Nutt, and Yehoshua Sagiv. Deciding equivalences among conjunctive

aggregate queries. J. ACM, 54(2), 2007.

[30] Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries using

views. In PODS, 1999.

[31] Sara Cohen, Yehoshua Sagiv, and Werner Nutt. Equivalences among aggregate queries with

negation. ACM TOCL, 6(2):328–360, April 2005.

[32] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.

McGraw-Hill / MIT Press, 1990.

[33] Peter Crawley and Robert P. Dilworth. Algebraic Theory of Lattices. Prentice Hall, 1973.

[34] Yingwei Cui. Lineage Tracing in Data Warehouses. PhD thesis, Stanford University, 2001.

[35] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view data in a

warehousing environment. ACM TODS, 25(2), 2000.

[36] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In VLDB,

2004.

[37] Jan Van den Bussche, Dirk Van Gucht, and Stijn Vansummeren. Well-definedness and se-

mantic type-checking in the nested relational calculus and XQuery. In ICDT, 2005.

[38] A. Deutsch, L. Popa, and V. Tannen. Query reformulation with constraints. SIGMOD Record,

35(1), 2006.

[39] Alin Deutsch and Val Tannen. Reformulation of XML queries and constraints. In ICDT,

2003.

[40] F. Dong and L. V. S. Lakshmanan. Deductive databases with incomplete information. In

Symposium on Logic Programming, 1992.

[41] Xin Dong, Alon Y. Halevy, and Cong Yu. Data integration with uncertainty. In VLDB, 2007.

176

[42] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra, Michael Rys, Jerome

Simeon, and Philip Wadler. XQuery 1.0 formal semantics. Available from http://www.

w3.org/TR/xquery-semantics/, 12 November 2003. W3C working draft.

[43] Oliver M. Duschka. Query Planning and Optimization in Information Integration. PhD thesis,

Stanford University, Stanford, California, 1998.

[44] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using views.

In PODS, 1997.

[45] Ronald Fagin, Phokion Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: Semantics

and query answering. Theoretical Computer Science, 336, 2005.

[46] Hao Fan and Alexandra Poulovassilis. Using schema transformation pathways for data

lineage tracing. In BNCOD, volume 1, 2005.

[47] Daniela Florescu and Donald Kossmann. Storing and querying XML data using an RDBMS.

IEEE Data Engineering Bulletin, 22(3), September 1999.

[48] J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated XML: Queries and provenance.

In PODS, Vancouver, B.C., June 2008.

[49] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational plans for data integra-

tion. In AAAI ’99, 1999.

[50] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of information

retrieval and database systems. TOIS, 14(1), 1997.

[51] Norbert Fuhr. Probabilistic datalog — a logic for powerful retrieval methods. In SIGIR,

1995.

[52] Ariel Fuxman, Phokion G. Kolaitis, Renée J. Miller, and Wang-Chiew Tan. Peer data ex-

change. In PODS, 2005.

[53] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman,

Yehoshua Sagiv, Jeffrey Ullman, and Jennifer Widom. The TSIMMIS project: Integration

of heterogeneous information sources. Journal of Intelligent Information Systems, 8(2), March

1997.

[54] Floris Geerts and Antonella Poggi. On BP-complete query languages on K-relations. In

Workshop on Logic in Databases, 2008.

177

[55] Goetz Graefe and William J. McKenna. The Volcano optimizer generator: Extensibility and

efficient search. In ICDE, 1993.

[56] Gösta Grahne, Nicolas Spyratos, and Daniel Stamate. Semantics and containment of queries

with internal and external conjunctions. In ICDT, 1997.

[57] Gösta Grahne, Alex Thomo, and William W. Wadge. Preferentially annotated regular path

queries. In ICDT, 2007.

[58] Todd J. Green. Containment of conjunctive queries on annotated relations. In ICDT, 2009.

[59] Todd J. Green, Zachary G. Ives, and Val Tannen. Reconcilable differences. In ICDT, 2009.

[60] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update exchange

with mappings and provenance. In VLDB, Vienna, Austria, September 2007.

[61] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update exchange.

Submitted for publication in ACM TODS, 2009.

[62] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In PODS,

Beijing, China, June 2007.

[63] Todd J. Green and Val Tannen. Models for incomplete and probabilistic information. In

EDBT Workshops, 2006.

[64] Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, and Dan Suciu. What can

databases do for peer-to-peer? In WebDB, June 2001.

[65] Ashish Gupta, Inderpal Singh Mumick, Jun Rao, and Kenneth A. Ross. Adapting materi-

alized views after redefinitions: Techniques and a performance study. Information Systems,

26(5):323–362, 2001.

[66] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incre-

mentally. In SIGMOD, 1993.

[67] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pirahesh. Extensi-

ble query processing in Starburst. In SIGMOD, 1989.

[68] Alon Halevy, Michael Franklin, and David Maier. Principles of dataspace systems. In PODS,

2006.

[69] Alon Halevy, Zachary Ives, Jayant Madhavan, Peter Mork, Dan Suciu, and Igor Tatarinov.

The Piazza peer data management system. TKDE, 16(7), July 2004.

178

[70] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration: the teenage years. In

VLDB, 2006.

[71] Alon Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4), 2001.

[72] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: Data management

infrastructure for semantic web applications. In 12th World Wide Web Conference, May 2003.

[73] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema mediation in peer

data management systems. In ICDE, March 2003.

[74] Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms. Oxford University Press, 2004.

[75] Mauricio A. Hernandez, Renée J. Miller, and Laura M. Haas. Clio: A semi-automatic tool

for schema mapping. In SIGMOD, 2001.

[76] André Hernich and Nicole Schweikardt. CWA-solutions for data exchange settings with

target dependencies. In PODS, 2007.

[77] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz, and Jan Van den Buss-

che. A formal model of dataflow repositories. In DILS, 2007.

[78] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Probabilistic interval XML. ACM

TOCL, 8(4), 2007.

[79] Tomasz Imielinski and Witold Lipski. Incomplete information in relational databases. JACM,

31(4), 1984.

[80] William H. Inmon. Building the Data Warehouse. Wiley, New York, 3rd edition, 2002.

[81] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of conjunctive queries: Beyond

relations as sets. TODS, 20(3):288–324, 1995.

[82] Zachary Ives, Nitin Khandelwal, Aneesh Kapur, and Murat Cakir. orchestra: Rapid,

collaborative sharing of dynamic data. In CIDR, January 2005.

[83] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis. Fundamentals

of Data Warehouses. Springer, 2000.

[84] T. S. Jayram, Phokion G. Kolaitis, and Erik Vee. The containment problem for real conjunc-

tive queries with inequalities. In PODS, 2006.

[85] Yaron Kanza, Werner Nutt, and Yehoshua Sagiv. Queries with incomplete answers over

semistructured data. In PODS, 1999.

179

[86] Grigoris Karvounarakis. Provenance in Collaborative Data Sharing. PhD thesis, University of

Pennsylvania, 2009.

[87] Grigoris Karvounarakis and Zachary G. Ives. Bidirectional mappings for data and update

exchange. In WebDB, 2008.

[88] Anastasios Kementsietsidis and Marcelo Arenas. Data sharing through query translation in

autonomous sources. In VLDB, 2004.

[89] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Mapping data in peer-to-

peer systems: Semantics and algorithmic issues. In SIGMOD, June 2003.

[90] Anastasios Kementsietsidis, Marcelo Arenas, and Renee J. Miller. Mapping data in peer-to-

peer systems: Semantics and algorithmic issues. In SIGMOD, 2003.

[91] Jan Willem Klop. Handbook of Logic in Computer Science, volume 2, chapter 1. Oxford Uni-

versity Press, 1992.

[92] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism Problem: its

Structural Complexity. Birkhäuser Verlag, 1993.

[93] P. Kolaitis and M. Vardi. Conjunctive-query containment and constraint satisfaction. In

PODS, 1998.

[94] Łucja Kot and Christoph Koch. Cooperative update exchange in the Youtopia system.

PVLDB, 2(1):193–204, 2009.

[95] W. Kuich. Semirings and formal power series. In Handbook of formal languages, volume 1.

Springer, 1997.

[96] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and V. S. Subrahmanian. Probview: a

flexible probabilistic database system. TODS, 22(3), 1997.

[97] Laks V. S. Lakshmanan and Fereidoon Sadri. Probabilistic deductive databases. In Sympo-

sium on Logic Programming, 1994.

[98] Laks V. S. Lakshmanan and Nematollaah Shiri. A parametric approach to deductive

databases with uncertainty. IEEE Trans. Knowl. Data Eng., 13(4):554–570, 2001.

[99] S. Kazem Lellahi and Val Tannen. A calculus for collections and aggregates. In Category

Theory and Computer Science, 1997.

[100] Maurizio Lenzerini. Tutorial - data integration: A theoretical perspective. In PODS, 2002.

180

[101] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering

queries using views. In PODS, 1995.

[102] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information

sources using source descriptions. In VLDB, 1996.

[103] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information

sources using source descriptions. In VLDB, 1996.

[104] Leonid Libkin. Data exchange and incomplete information. In PODS, 2006.

[105] Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate functions.

JCSS, 55(2):241–272, 1997.

[106] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and Boon Thau Loo.

Recursive computation of regions and connectivity in networks. In ICDE, 2009.

[107] László Lovász. Operations with structures. Acta Mathematica Hungarica, 18(3–4):321–328,

1967.

[108] James J. Lu, Guido Moerkotte, Joachim Schue, and V.S. Subrahmanian. Efficient mainte-

nance of materialized mediated views. In SIGMOD, 1995.

[109] M. Maher and R. Ramakrishnan. Déjà vu in fixpoints of logic programs. In NACLP, 1989.

[110] Peter J. McBrien and Alexandra Poulovassilis. P2P query reformualtion over both-as-view

data transformation rules. In DBISP2P, 2006.

[111] Prasenjit Mitra. An algorithm for answering queries efficiently using views. In Proceedings

of the Australasian Database Conference, 2001.

[112] Peter Mork, Ron Shaker, Alon Halevy, and Peter Tarczy-Hornoch. PQL: A declarative query

language over dynamic biological schemata. In American Medical Informatics Association

(AMIA) Symposium, 2002, November 2002.

[113] Inderpal Singh Mumick. Query Optimization in Deductive and Relational Databases. PhD thesis,

Stanford University, 1991.

[114] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic of dupli-

cates and aggregates. In VLDB Journal, 1990.

[115] Inderpal Singh Mumick and Oded Shmueli. Finiteness properties of database queries. In

Fourth Australian Database Conference, 1993.

181

[116] Andrew Nierman and H. V. Jagadish. ProTDB: Probabilistic data in XML. In VLDB, 2002.

[117] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. XPath: Looking forward. In

EDBT Workshops, 2002.

[118] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, and Ronald Fagin.

Translating web data. In VLDB, 2002.

[119] Rachel Pottinger and Alon Levy. A scalable algorithm for answering queries using views.

In VLDB, 2000.

[120] Christopher Ré, Jéôme Simèon, and Mary Fernández. A complete and efficient algebraic

compiler for xquery. In ICDE, page 14, 2006.

[121] Edward L. Robertson, Lawrence V. Saxton, Dirk Van Gucht, and Stijn Vansummeren. Struc-

tural recursion on ordered trees and list-based complex objects. In ICDT, 2007.

[122] A. Sabelfeld and A. C. Myers. Language-based Information-flow Security. IEEE Journal on

Selected Areas in Communications, 21(1):5–19, 2003.

[123] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expressions with

the union and difference operators. J. ACM, 27(4):633–655, 1980.

[124] Anish Das Sarma, Omar Benjelloun, Alon Halevy, and Jennifer Widom. Working models

for uncertain data. In ICDE, 2006.

[125] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and

Thomas G. Price. Access path selection in a relational database management system. In

SIGMOD, 1979.

[126] Pierre Senellart and Serge Abiteboul. On the complexity of managing probabilistic XML

data. In PODS, 2007.

[127] Jayavel Shanmugasundaram, H. Gang, Kristin Tufte, Chun Zhang, David J. DeWitt, and

Jeffrey F. Naughton. Relational databases for querying XML documents: Limitations and

opportunities. In VLDB, 1999.

[128] O. Shmueli. Equivalence of datalog queries is undecidable. J. of Logic Programming, 15, 1993.

[129] Partha Pratim Talukdar, Marie Jacob, Mohammad Salman Mehmood, Koby Crammer, Zack

Ives, Fernando Pereira, and Sudipto Guha. Learning to create data-integrating queries. In

VLDB, 2008.

182

[130] Wang-Chiew Tan. Containment of relational queries with annotation propagation. In DBPL,

September 2003.

[131] Nicholas E. Taylor and Zachary G. Ives. Reconciling while tolerating disagreement in col-

laborative data sharing. In SIGMOD, 2006.

[132] Nicholas E. Taylor and Zachary G. Ives. Reliable storage and querying for collaborative data

sharing systems. Submitted for publication, 2009.

[133] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume II. Computer

Science Press, 1989.

[134] Maurice van Keulen, Ander de Keijzer, and Wouter Alink. A probabilistic XML approach

to data integration. In ICDE, 2005.

[135] Gio Wiederhold. Mediators in the architecture of future information systems. IEEE Com-

puter, 25(3):38–49, 1992.

[136] Cong Yu and Lucian Popa. Semantic adaptation of schema mappings when schemas evolve.

In VLDB, 2005.

[137] Lotfi A. Zadeh. Fuzzy sets. Inf. Control, 8(3), 1965.

[138] Esteban Zimányi. Query evaluation in probabilistic relational databases. TCS, 171(1-2), 1997.

183

