
Chapter 3

A Deeper Introduction to
Recombination and Networks:
The Biological, Mathematical
and Algorithmic Contexts

In the last chapter we discussed necessary and sufficient conditions for binary
sequences to be representable by a perfect-phylogeny. When there is a perfect-
phylogeny (i.e., when all sites are pairwise compatible), it serves as a hypoth-
esis for the actual evolutionary history of the sequences. However, a perfect-
phylogeny does not exist for most sets of binary sequences encountered in pop-
ulations because some pairs of sites are incompatible. The principle biological
reason, in the context of populations (which means over a relatively short histor-
ical time period), is that meiotic recombination creates new, chimeric sequences
in each generation. These changes are in addition to any changes created by
point mutations, resulting in sequences that have incompatible sites. Thus, the
main focus of this book concerns algorithmic questions about the evolution of
sequences in populations, when both recombination and point mutation shape
the sequences.

In this chapter we introduce recombination in both a biological context and
in an algorithmic/mathematical context. Building on the general introduction to
recombination given in Chapter 1, we give more formal and complete definitions
of many central terms and models.

3.1 The biological and physical context of recombi-
nation

Repeating the quote from Watson from Chapter 1:
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“All DNA is recombinant DNA ... [The] natural process of recombi-
nation and mutation have acted throughout evolution ... Genetic ex-
change works constantly to blend and rearrange chromosomes, most
obviously during meiosis...”

Moreover, recombination is central to many diverse biological phenomena,
at molecular, population and evolutionary levels. For example:

“Understanding the determinants of recombination is ... crucial for
the study of genome evolution” [33].

And yet:

“Little is known about the rules that govern the distribution of re-
combination events, although age, sex, DNA sequence, chromatin
structure, chromosomal location, and chromosome sizes have been
shown to be important” [166]

Meiotic recombination is a principle force creating sequence variation in pop-
ulations, and has been observed to be involved with, and often central to, many
other biological phenomena. However, there are many unresolved questions
about the role of recombination in those phenomena, and there are many basic
questions about recombination itself.

The central thesis of this book is that genealogical networks can be con-
structed by efficient algorithms and programs using genome variation data in
populations of individuals, and that those networks reflect true recombination
history sufficiently to help resolve or clarify some of these biological issues.

3.1.1 Meiotic Crossing-Over

The best understood form of recombination is called single-crossover recombina-
tion, also called crossing-over in the biological literature, where during meiosis
two equal length sequences produce a third recombinant sequence of the same
length, consisting of a prefix of one of the sequences, followed (at the “crossover
point” or “breakpoint”) by a suffix of the other sequence. See Figure 3.1.

As we have discussed, meiotic crossing-over is one of the major forces shap-
ing genetic variation within a species. It allows the mixing of genes from the
two “copies” of a chromosome, creating a new chimeric chromosome that can
be passed on to a child, and hence it allows the rapid creation of hybrid chro-
mosomes even without mutations.

In addition to its role in fundamental biological questions, meiotic crossing
over is central to several critical applied problems. The most important example
is “association mapping” in populations, a set of techniques that are widely
hoped to help find genes that influence genetic diseases and important economic
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01011

10100 parent 1
parent 2

10111 recombinant
Figure 3.1: A single-crossover recombination. The prefix (underlined) con-
tributed by Parent 1 consists of the first three characters of SNP sequence 1. The
suffix (underlined) contributed by Parent 2 consists of the last two characters of
SNP sequence 2.

10010 recombinant

10100

01011

parent 1
parent 2

Figure 3.2: Double-crossover recombination. The prefix and suffix, underlined,
contributed by Parent 1 consist of the first two characters, and the last character
of sequence 1. The conversion tract, underlined, contributed by Parent 2 consists
of the third and fourth characters of sequence 2.

traits in plants and animals. We will introduce the logic behind association
mapping, and the crucial role of recombination in that logic, in Section 3.4.1.
Association mapping will be discussed in more depth in Section ??.

3.1.2 Double-Crossover, Gene-Conversion and Multiple-Crossover
Recombination

Another form of meiotic recombination, called double-crossover recombination,
creates a recombinant sequence from a prefix of one sequence, followed by an
internal segment of a second sequence, followed by a suffix of the first sequence.
Both parental sequences and the recombinant sequence are of the same length.
See Figure 3.2.

A very common type of double-crossover recombination that occurs in meio-
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sis is called “Gene-Conversion”. In gene-conversion, the internal segment (called
a “conversion track”) is short, around 50 to 500 base pairs long, and it is copied
from one sequence to another. Gene conversion is believed to be more common
than single-crossover recombination, and is known to play a very important role
in meiosis and in recombinational repair of damage to the DNA throughout de-
velopment of an organism, and in all tissues. Until recently, it has been hard
to study gene-conversion in populations, partly because of the lack of analyt-
ical tools and the lack of fine-scale data. For example, little is known about
the distribution of track lengths. Gene conversion events that are mistaken for
single-crossover recombination may also cause problems in association mapping
and in other efforts to deduce information about recombination [90]. Eventu-
ally complete genomic resequencing will allow quantification of the fundamental
parameters of gene conversion, and the contribution of gene conversion to the
overall patterns of sequence variations in populations. A recent detailed study
of gene conversion in Yeast appears in [?].

“Multiple-crossover” recombination, where a recombinant sequence is cre-
ated from two sequences by more than two crossovers, occurs on a chromosomal
scale, and is of biological importance in some applications. For example, the
number of recombinations that occur between two sites on a chromosome is the
basis for the concept of the genetic distance between those points. Genetic dis-
tance was the primary distance measure that could be easily obtained before
DNA sequencing methods become widely available, and still remains important
in some contexts. Note that when we refer to “multiple-crossover recombina-
tion”, it is implied that the number of crossovers is greater than two; however
there is no imposed upper bound on the number of allowed crossovers in a
multiple-crossover recombination event.

3.1.3 The physical context

Generally, the binary sequences we are concerned with are SNP sequences, where
adjacent positions in the SNP sequence represent DNA sites that could be phys-
ically far apart (perhaps separated by thousands of nucleotides). We think
abstractly of recombination as occurring between two adjacent SNP sites (or
before or after the first/last SNP site) in a SNP sequence, but physically, the
recombination crossovers in DNA can occur anywhere on a chromosome. So a
crossover point will generally be in an interval on the chromosome between two
adjacent SNP sites in the SNP sequence. The SNP sequence does not represent
the DNA that lies between or around SNP sites, and so we can only represent the
location of a crossover relative to the SNP sites. It will sometimes be important
to keep the physical reality in mind, for example when discussing the accuracy
of methods to find the location of mutations, given SNP data.
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3.1.4 Introduction to Hybridization and General Reticulation

Not written - defer to the end to see how much hybridization is discussed in the
book.

3.2 The Algorithmic and Mathematical Context of
Recombination

In our treatment of recombination, we abstract away the biological detail and
focus on recombination as an operation on binary sequences. In this context,
the key distinction is the number of crossovers allowed at a recombination event.
We distinguish the cases of a single-crossover event, of a double-crossover event,
and of a multiple-crossover event. Some algorithmic results apply only to single-
crossover recombination, while some apply to single and double-crossover recom-
bination, and some apply to multiple-crossover recombination.

From this point on, when we speak about “a recombination” or “a recom-
bination event”, we mean a single-crossover recombination, and we will use the
term “double-crossover recombination” even if the biological basis of the event
is a gene-conversion.

3.2.1 Representing a history of recombinations and mutations

As we saw in Chapter 2, the evolutionary history of a set of sequences that derive
from a single ancestral sequence and are modified only by successive mutations,
can be represented by a directed tree where each node represents a sequence and
each edge represents a mutation. Tree representations work because mutation
is an operation that creates one new sequence from one existing sequence. But
recombination is an operation that creates a new sequence from two sequences
and so the historically correct derivation of a set of sequences created by both
mutations and recombinations cannot be represented by a tree. Moreover, if
the sequences contain a pair of sites that are incompatible, no perfect-phylogeny
(even a historically incorrect one) can derive the sequences. Instead, we represent
a single recombination by two directed edges entering a node (see Figure 3.3),
and we represent the derivation of a set of sequences as a directed acyclic network
or a directed acyclic graph (DAG) (see Figure 3.4).

Terminological Confusion Depending on the underlying biological context
in which the sequences are derived, and on the research community, the DAGs
that are used to represent evolution have been called phylogenetic networks,
reticulate networks, recombination networks, genealogical networks, ancestral re-
combination graphs (ARGs), hybridization networks, and other terms. Special-
ized terminology for restricted classes of networks such as galled-trees (to be
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discussed in Chapter 7), galled-networks and level-k networks etc. have also
been used. The terminology has been evolving and is confusing and sometimes
contradictory.

The biggest source of confusion is that the term “phylogenetic network” has
been defined differently in different literatures, and in some literatures it has of-
ten been the only term used1. The confusion caused by the overuse of the term
“phylogenetic network” motivates us now to use terms that make more pre-
cise distinctions between different kinds of networks and the different biological
contexts in which they arise.

We follow the definition in [147, 103] that a Phylogenetic Network is “any
graph used to represent evolutionary relationships (either abstractly or explic-
itly) between a set of taxa that labels some of its nodes (usually the leaves)”.
Under that broad definition, the networks discussed in this book are phyloge-
netic networks. See [100, 103, 147] for a taxonomy of many different biological
networks that are called “phylogenetic networks”.

We focus in this book on a particular subset of phylogenetic networks that
derive a set of sequences from a set of ancestral sequences (almost always a single
ancestral sequence). So for greater clarity, we will use the term “Genealogical
Network” to refer to a general phylogenetic network that models the derivation
of sequences by both mutation and recombination events, and note that the term
does not specify the number of allowed crossovers at a recombination event, nor
the number of times that a site can mutate. We will use the term “Ancestral
Recombination Graph”, abbreviated as “ARG” for a genealogical network that
obeys the additional restriction that each site mutates on at most one edge of
the network, and that only single-crossover recombinations are allowed. The
assumption that each site mutates only once in an ARG is again a consequence
of of the infinite sites assumption used in the definition of a perfect-phylogeny.
These networks will be defined more formally in the next section. We will use
the term “hybridization network” to refer to a network where a node with two
incoming edges models the biological event of species hybridization or lateral
gene transfer. Because of its prior overuse and broad meaning, we will rarely
use the term “phylogenetic network”, and will use the term “reticulate network”
to refer in general to any of the networks defined here, when it is not required
to classify the network more precisely.

3.2.2 Formal definitions for a Genealogical Network and an An-
cestral Recombination Graph

We begin with a formal definition of a Genealogical Network, and then specialize
it to an Ancestral Recombination Graph.

1In fact, in much of our own research papers, we used the term “phylogenetic network” for
what we now refer to as a “genealogical network” or “ancestral recombination graph”.
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Figure 3.3: A graphical representation of a single-crossover recombination event.
The contribution of the prefix is indicated by the character ‘P’ written on one
edge, and the contribution of the suffix is indicated by the character ‘S’ written
on the other edge. The crossover point, where the recombinant sequence begins
to take characters from the suffix, is written above the recombination node.

There are four components needed to specify a genealogical network for a
given set of binary sequences M .

1) (The underlying graph) Given a set of n binary sequences M , each of
length m, a genealogical network N for M is built on a directed acyclic graph
containing exactly one node (the root) with no incoming edges, a set of internal
nodes that have both incoming and outgoing edges, and exactly n nodes, (the
leaves), each with exactly one incoming edge and no outgoing edge. Each node
other than the root has either one or two incoming edges. A node with a single
incoming edge is called a tree-node; a node with two incoming edges is called a
recombination node; a node with exactly one incoming edge and no out-going
edges is a leaf node; and a node that is not the root node, nor a leaf node, is called
an internal node. An edge into a recombination node is called a recombination
edge. An edge whose removal disconnects the network, dividing it into two
subnetworks, is called a cut-edge. Note that a cut-edge must be directed into a
tree-node, but not all edges into tree-nodes are cut-edges.

The root node and any internal node can have any number of outgoing edges,
representing the process of replication. An internal node with more than one
outgoing edge is called a branching internal node, and an internal node with
only a single outgoing edge is called a non-branching internal node.

2) (The edge labels) Each edge can be labeled with a set of integers from
1 to m, but can be unlabeled, and no labels are given to recombination edges.
Note that the same integer might label different edges. The labels on an edge



60 CHAPTER 3. RECOMBINATION AND NETWORKS

represent mutations that occur in the time interval represented by the edge.

3) (The node labels) Each node in N is labeled by an m-length binary
sequence, starting with the root node, which is labeled with some sequence r,
called the “ancestral sequence” or the “root sequence”. Since N is acyclic, the
nodes in N can be (topologically) sorted into a list where every node occurs in
the list only after its parent(s). Using that list, we can constructively label the
non-root nodes with well-defined sequences in the order of their appearance in
the list, as follows:

3a) (The tree-node labels) For a tree-node v, let e be the unique edge
directed into v. The sequence labeling v is obtained from the sequence labeling
v’s parent by changing the state (from 0 to 1, or from 1 to 0) of site c, for every
integer c that labels edge e. This corresponds to a mutation at site c occurring
on edge e (i.e., during the interval of time represented by edge e).

3b) (The recombination-node labels) For a recombination node x, let
Z and Z ′ denote the two m-length sequences labeling the two parent nodes of
x. Then the “recombinant sequence” X labeling node x can be any m-length
sequence provided that at every site c in X, the state (0 or 1) is equal to the
state of site c in (at least) one of the sequences Z or Z ′.

The creation of sequence X from Z and Z ′ at a recombination node is called
a “recombination event”, and models multiple-crossover recombination. To fully
specify the recombination event, we must specify for every site c in X whether
its parent sequence (contributing site c to X) is Z or Z ′. This means specifying
whether the state of c in X equals the state of c in Z or in Z ′. This is forced
when the states in Z and Z ′ of site c are different. When they are the same, a
choice must be specified.

For a given recombination event at node x in N , we say that a crossover
or breakpoint occurs between sites c and c + 1 if the states in X of sites c and
c + 1 come from different parents. If the crossover at x is between sites c and
c + 1, we set the crossover index of x, denoted bx, to the integer c + 1. When
drawing network N (as in Figure 3.4), we display the crossover index bx above
the recombination node x to indicate that in the recombination event at node
x, a change in the choice of parental sequence occurs at site c + 1.

Sometimes we will want to determine the minimum number of crossovers
needed to create sequence X by a recombination of specific sequences Z and Z ′.
That problem has an easy solution using a greedy algorithm that we will discuss
later in the book.

As discussed earlier, in the case of single-crossover recombination, a recom-
binant sequence X is formed from a prefix of one of its parent sequences (Z or
Z ′) followed by a suffix of the other parent sequence. This is consistent with the
general definition of recombination given here.

4) (The extant sequences) The sequences labeling the leaves of N are the
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observed, extant sequences, i.e., the sequences in M .
We say that a genealogical network N derives (or explains or generates) a

set of n sequences M if and only if each sequence in M labels one of the leaves
of N .

Note that a “crossover point” or “breakpoint” refers to a physical location
in a chromosome, while a “crossover index” is an integer that is part of the
specification of an genealogical network2. If we know the true breakpoint for
a recombination event, and it occurs between sites c and c + 1 (which my be
physically far apart in the chromosome), then the crossover index for the re-
combination event is c + 1, even though the physical crossover could be very
far from site c + 1. When we don’t know the exact (physical) breakpoint for a
recombination event associated with a recombination node x, but do know that
it must be between sites c and d > c + 1 of M , we say that the crossover index
bx is in the interval (c, d]. Note that this interval is open on the left and closed
on the right, meaning that the crossover index for node x must be specified by
an integer bx that is strictly larger than c and less than or equal to d. The
asymmetry of the interval (open on the left and closed on the right) comes from
the convention that the crossover index bx specified at a recombination node
indicates that a change in the choice of parental sequences contributing to the
recombinant sequence, occurs at site bx.

Since each of the n sequences in M has the same length, m, we will often
consider the sequences arranged in an n by m matrix with one sequence per
row, and refer to that matrix as M . In that case, we sometimes refer to a site
or character as a “column”.

3.2.2.1 Specializing Genealogical Networks to Ancestral Recombina-
tion Graphs

Definition Given a set of binary sequences M , an “Ancestral Recombination
Graph (ARG)” for M is a genealogical network N that generates M , where each
integer (site) from 1 to m labels exactly one edge in N . See Figure 3.4.

In our treatment of ARGs, the default assumption is that every recombi-
nation event in an ARG is a single-crossover recombination, although often it
doesn’t matter which type of recombination is allowed . When it does mat-
ter, we will explicitly state whether single or multiple-crossover recombination
is intended.

The assumption that each integer labels only a single edge is the standard
“infinite sites model” in population genetics [90, 93], discussed in Chapter 1,

2In some treatments, the breakpoint is allowed to be a fractional number even though
there are a finite number of discrete nucleotide sites on a chromosome. The practice of using
fractional numbers comes from the view of a chromosome as a continuous object with essentially
an infinite number of sites.
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Figure 3.4: An ARG N with two recombination nodes. The matrix of sequences
M that are derived by N is shown at the right. Note that the node with sequence
label 01100 is sequence S for the left recombination node, and is sequence P for
the right recombination node. In this example, every label of an interior node
also labels a leaf, but that is not a general property of ARGs.

which is well supported in the context of evolution in a population (and hence
over a short period of time).

ARGs and Coalescent Theory The term ‘Ancestral Recombination Graph’
arose in the the Population Genetics literature [64, 65]. More precisely an ARG
is the graphical representation of the genealogical relations generated by the
stochastic process called of the ‘coalescent with recombination’ [64]. This point
is made in [135] as follows:

... we are using the term “ARG” to mean the data structure for rep-
resenting genealogical histories. The distribution of these under the
Wright-Fisher model with recombination is described by the stochas-
tic process called the “coalescent-with-recombination” model.

See [150] or [90] or [195] for an introduction to coalescent theory, and to
ARGs in the context of population genetics. With these definitions, the classic
“root-unknown perfect-phylogeny”, discussed in Chapter 2, is an ARG with no
recombination nodes.

Although coalescent theory (with recombination) addresses the distribution
of ARGs in the context of stochastic models, our focus in this book is on struc-
tural, combinatorial, non-stochastic features of ARGs. A critical distinction
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between our treatment of an ARG as a digraph, and the distribution of ARGs
generated by the coalescent-with-recombination, is that in the latter the edges
of an ARG have lengths representing the passage of time. In our treatment of
ARGs, edges have no lengths and the only temporal information in an ARG is
the relative order of events implied by the reachability relation. Still, coales-
cent theory and the coalescent-with-recombination provides some of the insight
underlying certain combinatorial methods and results discussed in this book.

Note that in the definitions of a genealogical network, there is no bound on
the number of crossovers that are allowed at a recombination event (other than
the number of sites minus one). Allowing an unbounded number of multiple
crossovers is a convenient mathematical assumption that will allow us to model
a wide variety of biological phenomena. In particular, it will be a way that we
can apply some results about genealogical networks to problems concerning hy-
bridization networks. However, as a biological reality, in meiotic recombination
the number of crossovers is typically small, and the algorithmic/mathematical
literature motivated by meiotic recombination has mostly assumed that only
a single-crossover recombination is allowed at a recombination node. Single-
crossover recombination is therefore the default case for our discussion of ARGs,
although multiple-crossover recombination is permitted in the definition. In our
discussions, we will explicitly state it when we allow multiple-crossover recom-
bination. Multiple-crossover recombination occurs on a chromosomal scale, but
in humans the number of crossovers on a single chromosome is typically under
ten.

Additional helpful, but not limiting, assumptions For ease of exposition,
there are several additional assumptions that we make about M and about any
ARG for M . None of these assumptions limit the results obtained.

Generally, and without the need to state this each time, we assume that
there is no site c where all the sequences in M have the same state. That is,
every column of M contains both a 0 and a 1. This is not a limiting assumption,
for if there were a site c in M where all the sequences have the same state, say
one, and N is any ARG for all the sites in M other than c, we can insert c with
state one, into the ancestral sequence for N , obtaining an ARG for M .

We also assume that the root node of any ARG has at least two outgoing
edges. To see that this is not a limiting assumption, note first that by definition,
the root node of an ARG is not a leaf node, and every sequence in M must label
a leaf, so if the ancestral sequence is in M , then the root must have at least
two outgoing edges. So, if the root has only one outgoing edge, the ancestral
sequence is not in M . Next, suppose that the root r has only one outgoing edge,
and let P be the unique path from r to the first node v that has more than one
outgoing edge. If any edge on P is labeled with a site c, then all sequences in
M will have the same state of c, contradicting the assumption that no such site
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exists. If no edges on P are labeled with a site, then all the edges of P can be
contracted, making v the new root node, with the same ancestral sequence as
before.

We further assume (unless otherwise stated) that every internal node has
degree at least three3. If an internal node v has degree two, then it has one in-
coming edge and one outgoing edge, and these two edges can be merged without
changing the set of sequences generated on the ARG. So we will assume that no
such node v exists. Finally, We assume that M does not contain any duplicate
rows (sequences), but note that M might contain duplicate columns.

3.2.3 There is no ARG-feasibility problem

We saw in Chapter 2 that not every set of sequences M can be derived on a
perfect-phylogeny (with all-zero ancestral sequence), or on even an undirected
perfect-phylogeny, where the ancestral sequence is not constrained. Therefore,
the feasibility question of whether there is perfect-phylogeny for M is of interest.
However, the feasibility-question for ARGs is not interesting because the answer
is always “yes”, as we show next.

Theorem 3.2.1 For any set of binary sequences M , and any sequence sr, there
is an ARG N with ancestral sequence sr that derives M . Further, N has at
most nm/2 recombination nodes.

Proof We prove this constructively. Using the allowed one mutation per
site, create the sequence s′r where every site c has the (binary) state that is the
opposite of the state for c in sr. The result is that in sr and s′r state 0 and
state 1 appear at every site. Therefore, any binary sequence S can be created
by recombining sr and s′r appropriately, using at most m/2 single-crossover
recombinations. Therefore all the sequences in M can be generated using at
most nm/2 recombination nodes. Since in the definition of an ARG, there is no
bound on the number of allowed recombination nodes, and set of sequences M
can be created in this way.

Therefore, unlike the perfect-phylogeny problem, the mere existence of an
ARG N that generates M does not provide evidence that N has captured sig-
nificant features of the true historical evolution of M , or even add evidence in
support of the infinite sites model of mutation. To obtain biologically-plausible
ARGs, we need to constrain the set of ARGs we produce, to focus on significant
properties that such an ARG must poses. The most striking property of realistic
ARGs is that they contain a relatively small number of recombination nodes,
leading to the core algorithmic problem in ARG construction.

3Recall that the degree of a node v in a graph is the number of edges (in either direction)
that touch v.
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3.3 The Core Algorithmic Problem: Recombination
Minimization

We now introduce one of the key computational problems that has been formu-
lated in order to reconstruct plausible genealogical networks, and to study the
extent and scope of historical recombination in populations. The problem is to
determine or estimate the minimum number of recombination events needed to
generate an observed set of binary sequences from an ancestral sequence (which
may or may not be known), when the observed sequences were generated by
both point mutations and recombinations. To make this problem precise, we
must specify a model for permitted mutations. The most common mutation
model is the infinite sites model, implying that any site (in the study) has mu-
tated at most once in the entire history of the sequences. As observed earlier,
this implies that each site in any of the studied sequences has taken on only two
states. We now formalize the problem.

Definition Given a set of binary sequences M , we let Rmin(M) denote the
minimum number of single-crossover recombination events needed to generate
the sequences M from any (unspecified) ancestral sequence, allowing only one
mutation per site over the entire history of the sequences.

An alternative, equivalent definition is

Definition Rmin(M) is the minimum number of recombination nodes that
appear in any ARG N that derives M .

Sometimes we will explicitly emphasize that only single-crossover recombina-
tion events are allowed, and in that case we will use the notation “R1min(M)”
in place of “Rmin(M)”.

To handle the case of multiple-crossover recombinations, we have the follow-
ing

Definition Rmmin(M) is the minimum number of recombination nodes that
appear in any ARG N that derives M , when a multiple-crossover recombination
is allowed at any recombination node.

Sometimes the ancestral sequence is known and specified, and we need defi-
nitions that reflect that situation.

Definition RminS(M) is the minimum number of recombination nodes that
appear in any ARG N that derives M , where N has ancestral sequence S.

Clearly, RminS(M) ≥ Rmin(M) for any particular S.

A particularly useful case is when the ancestral sequence is the all-zero se-
quence.

Definition Rmin0(M) is the minimum number of recombination nodes that
appear in any ARG N that derives M , where N has the all-zero ancestral
sequence.
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Definition The number of recombination nodes in an ARG N is denoted
R(N ).

Definition An ARG N that derives a set of binary sequences M , where
R(N ) = Rmin(M), is called a MinARG; the problem of finding a MinARG for
M is called the MinARG Problem.

Unable to resist the play on words, we also offer the following more formal
definition relating a MinARG to an ArgMin:

A MinARG for M is an element of ArgMinARG N for M[R(N )].

The problem of computing Rmin(M) (or computing closely related values)
is NP-hard [198, 17, 18], and hence so is the problem of constructing a MinARG.
Of course, Rmin(M) is zero, and the MinARG is a perfect-phylogeny if and only
if there are is no incompatible pair of sites in M .

Note that knowing a MinARG for M reveals Rmin(M), but it is conceivable
that we can determine Rmin(M) without knowing any MinARG for M .

3.3.1 Why do we care about Rmin(M) and MinARGs?

When the true ARG that generated a set of sequences is known (through simula-
tions of ARGs and the sequences they derived), studies have empirically observed
that Rmin(M) is typically much lower than the true number of recombination
events that occur, and somewhat lower than the number of observable recombi-
nation events that occur [98]. A recombination event in an ARG is “observable”
if that recombination has a traceable effect on the extant sequences. For exam-
ple, recombination between two identical sequences produces another identical
copy of those sequences, and so that recombination has no effect on the set of
extant sequences. More precisely, we could omit that recombination event (by
removing one of the recombinant edges into the recombination node) and the re-
sulting ARG would still generate the same set of sequences. Recombinations can
be unobservable by other scenarios as well (we will be more precise about this
later in the book). Hence the number of observable recombinations in an ARG
is generally much less than the number of true recombinations that occurred in
the generation of a set of sequences.

Despite the fact that Rmin(M) can be lower than the number of observable
recombinations that occurred in the true derivation of M , in this book, and in
the research that has lead up to it, considerable attention is given to problems
concerning the computation of Rmin or the computation of information about
Rmin, and to problems of finding a MinARG or a non-optimal but observably
“near-optimal” ARG. The MinARG problem, and the problem of computing
Rmin, are motivated by the general utility of parsimony in biological problems,
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and because most evolutionary histories are thought to contain a small number
of observable recombinations. Moreover, of all the statistics that we would like
to determine concerning the history of recombinations, Rmin is one that can
be concretely defined and, in principle, computed. Finally, even lower bounds
on Rmin can be used to answer questions about recombination, such as finding
potential recombination hotspots in genomes [54, 6, 207] and in estimating the
recombination rate in observed haplotypes [196]. Similarly, explicitly computing
a MinARG or a near-Min ARG has been useful in addressing biological problems,
such as gene finding via association mapping [135, 204, 189] or finding haplotypes
underlying genotype data [206, 207], or distinguishing the role of gene-conversion
from single-crossover recombination [179, 180, 137].

It is easy to show that for every binary matrix M , there is an ARG that
derives M using O(nm) recombination nodes, but that is not of great interest
because in most evolutionary histories the number of observable recombinations
is thought to be relatively small, much smaller than nm. So in order to obtain
biologically-informative results concerning recombination in populations, and to
have the best chance at constructing an ARG that captures some (or all) of
the correct historical features, we concentrate on the problems of computing
Rmin(M) and of constructing MinARGs.

The focus on minimizing the number of recombination nodes is further moti-
vated by the fact that for any ARG N deriving n sequences, if N contains R re-
combination nodes and I internal, non-recombination nodes, then I ≤ n+R−2,
and the total number of nodes and edges are at most 2n+2R−1 and 2n+3R−2
respectively. That fact requires (as assumed) that every internal node has de-
gree at least three. In fact, if every internal node has degree exactly three and
the root has degree two (which are biologically sensible assumptions under the
coalescent-with-recombination model), then I = n + R − 2, and the total num-
ber of nodes and edges are exactly 2n + 2R − 1 and 2n + 3R − 2 respectively.
In that case, the size of N is captured by the single parameter R, the number
of recombination nodes, so that the goal of minimizing the size of N is fully
reflected in the goal of minimizing the number of recombination nodes in N .

3.3.2 A robust literature

Although we cannot know for sure the history of mutations and recombinations
that has created a given set of extant sequences, a robust literature has devel-
oped on algorithms to construct plausible, biologically informative genealogical
networks, MinARGs, and near-MinARGs; or to study the history of recombi-
nations; or to deduce well-defined aspects of a genealogy. This literature has
grown particularly in the last twenty years, and includes [98, 88, 89, 109, 181,
182, 198, 142, 143, 78, 77, 202, 112, 45, 46, 127, 5, 183, 73, 74, 184, 126, 179,
180, 4, 6, 185, 169, 209, 210, 81, 207, 208, 75, 204, 138, 212, 135, 137, 66, 189,
211, 190, 153, 100, 99, 103, 101, 102, 135, 115, 205, 147, 41, 121, 122]. Related
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questions about hybridization networks have also been addressed [145, 11, 102,
136, 146, 99, 101, 169, 10, 18, 147].

The need for networks instead of simple trees has long been understood
by population geneticists, formalized by the coalescent with recombination, or
Ancestral Recombination Graph. This understanding has been more recently
matched by a a wider range of evolutionary biologists who have presented the
view that many evolutionary phenomena must be represented by networks rather
than by trees [42, 43, 157, 158, 139, 140, 63, 129, ?].

In addition to helping to recreate and understand history, explicit genealog-
ical networks, even if they do not completely capture the true history, can also
allow better solution of many biological problems than do methods based on
the more commonly used numerical measures that only indirectly reflect the
underlying history 4.

3.4 Two examples of current problems where recom-
bination is central

To further motivate the importance of understanding patterns of recombination
in populations, we discuss here two current, high-visibility, problems and ap-
proaches to their solution. These two illustrations are highly simplified, with
the intent of showing the role of recombination in the logic of the solutions,
particularly for readers who may not have had any exposure to these problems
or solutions. The first solution also illustrates the utility of computationally
reconstructing explicit plausible genealogical networks.

3.4.1 An idealized introduction to association mapping: one use
for the true genealogical network

Perhaps the most important practical application of methods to deduce infor-
mation about recombination is in the search for causal genes using population-
based association mapping, a method that has long been hoped to be able to
efficiently locate genes that contribute to genetic diseases or to important agri-

4For example, most of what has been inferred about recombination rates in humans comes
from the use of “statistical methods ... based on patterns of linkage disequilibrium (LD)”[159],
essentially measures of correlation between the states (alleles) of pairs of sites in the genome
[196]. The logic is that if the states of two sites are highly correlated (in a set of sampled
sequences from a population) then one may conclude that there has been little past recombi-
nation between those two sites. But this indirect reflection of past recombination has several
well-known problems. One is that in the most common measure of LD, called r2, high levels
of recombination in a region leads to low r2, but low r2 can also occur in regions of low recom-
bination, depending on the location of the mutations on the true ARG deriving the sequences
[132, 90]. That problem would be avoided if we could examine the true ARG (or important
features of it) that generated the sequences.
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cultural/commercial traits [28]. The method has been successful in verifying
that specific candidate genes are associated with certain genetic traits (particu-
larly simple Mendelian traits), and recently, several major successes in genome-
wide association mapping [128] (where one does not have any initial conjecture
of where the causal mutations are located) have been reported and verified5

[32, 173, 31].
In this section we discuss a very simplified, idealized example of association

mapping that illustrates the utility of knowing the true genealogical network
that derived the extant SNP sequences. In the example, we consider a pure-
Mendelian genetic disease. A disease is pure-Mendelian if it is caused by a
mutation at a single fixed site in the genome, and everyone who has a specific
allele at that site has the disease, and no one else has the disease6. So there is a
single (“causal”) site c∗ in the genome, and a single causal state (“allele”) i for
c∗, such that any individual in the population will have the disease if and only if
they have state i at site c∗. We assume that the state of site c∗ mutated to i only
once in the history of the population (reflecting the infinite sites model). We
also assume that we can correctly identify the individuals (called the “cases”)
who have the disease, and hence identify the individuals (called the “controls”)
who do not. These assumptions are idealized, but allow a simple example that
explains the biological basis of association mapping and illustrates the role of
recombination.

We are given a set of SNP sequences M for the cases and the controls, and it
is assumed that the causal site c∗ is located somewhere in the genome spanned
by the SNP sites in M ; however c∗ need not be (and generally will not be) one of
the SNP sites in M . The (association mapping) problem is to use this population
data to bracket the location of c∗ in the genome as precisely as possible.

To show the critical role of recombination in solving this problem, suppose
we also know the true genealogical network N that derived the SNP sequences
in M . Consider the ARG shown in Figure 3.5, which is similar, but not identical
to the ARG in Figure 3.4. Individuals e and f have the disease, but none of the
other individuals have it.

Recall that ARG N represents the evolution of the entire DNA molecules

5However, many of the mutations found only explain a small percentage of the genetic influ-
ence on the disease. A major assumption underlying the hope that association mapping would
be more productive is the ‘common disease, common gene” assumption. That assumption was
that the influence of genes on common diseases (such as hypertension) would be due to a small
number of genes. What now appears to be the case is that many common diseases are affected
by many different genes and different mutations, each accounting for a small percentage of the
genetic influence. It is however expected that genome-wide association will be more successful
when based on full DNA sequence data rather than SNPs, and when tens of thousands of
individuals are sampled.

6There are pure-Mendelian diseases, but they are rare. More often, even if a disease is
caused by a single specific allele at a single fixed site, not everyone who has that allele will get
the disease, and there may also be other causes of the disease.
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Figure 3.5: The “true” ARG displaying the derivation of the SNP sequences for
seven individuals. We assume that individuals e and f have a pure-Mendelian
disease, caused by a mutation at a single unknown causal site, c∗, in their
genome. Note that the choice of P and S edges into recombination node x
reverses the usual layout.

that the seven extant individuals receive, even though the only data we have
is for particular SNP sites in those molecules. ARG N can be used to deduce
some of the evolutionary history of the unknown site c∗. It is useful to think
of a physical DNA molecule originating at the root of the ARG and then, by
replications (represented by two or more out-edges leaving a node), mutations
and recombinations, descending and evolving through the ARG, finally arriving
at the leaves, delivering the DNA molecules to the individuals represented there.

The first thing we can deduce is the edge (and the interval of time that it
represents) where site c∗ must have mutated to the causal state. The mutation
must have occurred on an edge that is ancestral to (leads to) leaves e and f , so
it must either be on the edge where sites 2 mutated or the edge where site 3
mutated. However, if it was on the edge where site 3 mutated, then individual c
(and g) would have the disease, since that edge is ancestral to leaf c via a path
that does not contain a recombination node. We conclude that the mutation
must have occurred on the edge labeled 2, and that the DNA molecule that
arrives at node v in Figure 3.5 must have the causal state of site c∗. Knowing
the edge where site c∗ mutates brackets the time of the mutation but not the
location of c∗ in the genome.

Next, we note that individual d does not have the disease, even though the
edge labeled 2 is ancestral to d, and d receives part of its DNA via node v. Since
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Figure 3.6: The intervals (deduced from individuals d and f) where c∗ might be
located, relative to the five SNP sites.

the disease is pure-Mendelian, the reason d does not have the disease must be
due to the recombination event at node x, allowing d to receive the DNA at site
c∗ from its suffix-contributing parent (who does not have the causal state of c∗),
rather than from its prefix-contributing parent (at node v), who has the causal
state of c∗. Thus we can bracket the location of c∗ in the genome by asking what
segment(s) of DNA individuals d, e and f obtain via node v? Site c∗ must be
located in a segment that individual f receives via node v, and must not be in
the segment that individual d receives via node v. Individual e obtains all of its
DNA via node v and so information about e does not help bracket the location
of c∗.

Individual d obtains DNA from v that starts at the left end of the chromo-
some and ends at some crossover point between SNP sites 2 and 3 (recall that
the physical location of a crossover can be between two adjacent SNP sites).
Therefore, c∗ must be to the right of SNP site 2. Individual f obtains DNA
from v that starts at the left end of the chromosome and ends at some crossover
point between SNP sites 3 and 4. So c∗ must be to the left of SNP site 4 (see
Figure 3.6). Therefore, we can conclude that c∗ must be in the interval of DNA
between SNP sites 2 and 4. No finer localization of c∗ is deducible from this
data.

This idealized example shows the biological basis for association mapping,
and the logic of identifying and examining segments of DNA that are common
to the cases but not to the controls. Recombination reduces the size of contigu-
ous intervals in the genome that descend intact to the an individual from any
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ancestor of that individual. This shortening over time is one of the key elements
that makes association mapping possible.

What to do when the ARG is not known Clearly, the true genealogi-
cal network of the extant SNP sequences, showing the locations (both in the
genome and in time) of all mutations and recombinations, explicitly reveals seg-
ments shared by cases but not controls, at least up to the resolution of the SNP
sites. Therefore, having an explicit genealogical network would greatly facilitate
association mapping. However, we don’t generally know the true genealogical
network of the SNP sequences, and most current association mapping methods
do not attempt to deduce a full genealogy, or even partially deduce features of
the genealogy. Instead, they use features of the data that can be explained by
reference to ARGs but can be determined without knowing an ARG.

To explain this, we again use a simple scenario. As before, we suppose that
the causal mutation happened once in the history of the population, so that the
cases must have inherited a segment of DNA that contains the causal site from
a single common ancestor (called the “founder”), while controls did not inherit
their DNA segment from the founder. Thus the cases should have a highly
similar segment of DNA around the causal site. In contrast, that segment of
DNA will be different and more diverse in the controls, since it did not originate
from the founder, and may have originated from many different individuals.

In principle then, to bracket the location of the causal site, one looks for an
interval in the SNP sequences (or even a single SNP site) where some (unknown)
pattern occurs more frequently in cases than in controls. Because of mutations,
the “pattern” might not be identical in all the cases, but it should be highly
similar. Over time, recombination shortens the length of shared, intact segments
that bracket the causal site, making it plausible that the casual site can be finely
located. An even cruder reflection of a “pattern” is that the states of two SNPs
that are physically close to the causal site should be more highly correlated
among the cases than among the controls. Therefore, to help locate the causal
site, one looks for pairs of SNPs whose states are highly correlated among the
cases but not the controls. This kind of correlation is the basis for the notion
of “linkage disequilibrium (LD)”, and for measures of LD that are used in most
association mapping methods [196].

Measures of LD reflect, but do not require or expose explicit genealogical
networks, or necessarily correlate well with levels of recombination in different
regions7. It is well understood that a full genealogical network contains more
information than does any of the more indirect numerical reflection of it: “The

7“It is customary in genomics for researchers to debate which measure of linkage disequi-
librium to use to characterize the joint distribution of variation at linked sites. The correct
answer is ‘none of them’ ... one needs a full coalescent calculation” [56], i.e., a calculation that
considers the space of all ARGs that could have generated the data.
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best information that we could possibly get about association is to know the
full coalescent genealogy ... ” [212]. Further “If the true ARG were known,
it would provide the optimal amount of information for mapping – no extra
information would be available from the genotypes. Not only would disease-
associated regions be identified, but the ARG would give the ages of the causative
mutations, would specify the haplotypic background of those mutations and so
forth. It would also be possible to optimally impute missing data.” [135]

3.4.2 A brief discussion on locating signatures of recent positive
selection

With the recent and increasing availability of data on genomic variation in hu-
mans and other species, population geneticists and evolutionary biologists have
developed several methods to detect signatures of positive selection [149, 163,
164, 165, 133, 194, 156]. In this section, we introduce the logic of one of the
newer, more sophisticated methods, the “Extended Haplotype Homozygosity”
method [163], which we will call the “long-haplotype” method. This method,
and variants of it, has been used to identify chromosomal regions containing
likely causal mutations for recent positively selected traits, or to suggest that
specific traits of interest were recently positively selected, or to provide evidence
that known causal mutations for known traits are recent and that the trait were
positively selected. Most notably, it has been used to detect positive selection
in humans that occurred within the last 30,000 years. Recombination is at the
heart of the logic of the long-haplotype method.

We will later give a more biologically informed definition of a haplotype, but
for now the term can be read as: a sequence observed in a population, where
the sequence is from a segment of one of the two “copies” of some particular
chromosome. See Figures 3.7 and 3.8.

3.4.2.1 Positive Selection

Positive Section refers to a process through which a beneficial genetic trait be-
comes more frequent in a population. When a heritable genetic trait first ap-
pears in a population, for example through a mutation in a germ-line cell (egg
or sperm), it appears in a single individual called a “founder”. Through purely
stochastic effects of uneven numbers of offspring (i.e, random drift), the trait can
go extinct in the population, or with a much lower probability, the frequency of
the trait can increase over time. But even if random drift causes the frequency of
the trait to increase, the increase will be very slow and over short time periods it
should occur in very low frequency in the population. However, if the (heritable)
trait is beneficial, i.e., contributes to an individual having more viable offspring
than do individuals without the trait, the frequency of individuals who have
the trait will likely increase in successive generations, and the rate of increase
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1 2 3 4 5 6
person 1: haplotype 1 A G G C C A
person 1: haplotype 2 A A G C C T
person 2: haplotype 1 A G G C C T
person 2: haplotype 2 A G G C C A
person 3: haplotype 1 A G A T T A
person 3: haplotype 2 A G A T T A
person 4: haplotype 1 G G A T C A
person 4: haplotype 2 A G A T T A

Figure 3.7: Four hypothetical pairs of SNP haplotypes in four individuals. These
haplotypes, but not the pairings, are the haplotypes in the Human Dysbindin
gene on chromosome six reported in [141]. Each individual has two “copies” of
chromosome six, and so has two haplotypes in this region. Notice that there
are five distinct haplotypes among the eight haplotypes possessed by the four
individuals. These are shown in Figure 3.8. The reported phylogenetic history
of these haplotypes is shown in Figure 2.2 (page 24).

1 2 3 4 5 6
42% A G G C C A
6% A A G C C T

33% A G G C C T
8% A G A T T A

11% G G A T C A

Figure 3.8: The five distinct reported SNP haplotpyes in the Human Dysbindin
gene, and their reported frequencies in the sampled population [141].
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can be very rapid. Such a trait is said to be “under positive selection” or just
“under selection” and to “sweep” the population (or sweep away the variation
in the population); ultimately, if (nearly) everyone in the population comes to
have that trait, the trait is said to be “fixed” in the population.

The speed by which a beneficial trait under positive selection can sweep
the population, compared to random drift, can be very dramatic. It is known
[87] that if a trait becomes fixed in a population due to random drift alone,
the expected number of generations until fixation is proportional to the size
of the “effective population” (which crudely can be thought of as the size of a
virtual subpopulation in which there is random mating). In humans, the effective
population size is believed to be somewhere between three and ten thousand. So,
even if a human trait becomes fixed due to random drift (and there is a much
higher probability that it will go extinct), the expected time until fixation is
proportional to thousands of generations. In contrast, there are beneficial traits
such as changes in the color, size and patterns of spots that act as protective
camouflage in fish that have been observed to become fixed in a population in a
handful of generations [47]. Antibiotic Resistance in certain bacteria, which is a
beneficial trait to the bacteria if not to us, is another well-known trait that has
swept populations of bacteria in a matter of decades.

It is of great interest to identify traits that have swept a population due to
positive selection. The issue discussed in this section is how such traits can be
identified when we cannot observe the trait frequencies from the past, but only
observe genomes in the current population.

3.4.2.2 Identity by descent without recombination

To understand the main idea to come, it is helpful to consider first the situa-
tion where no recombination occurs, and to assume that there is only a single
causal mutation for a beneficial trait. That mutation initially appears in a single
individual, the founder, and in a single chromosome of the founder, called the
“enclosing chromosome”. Moreover, if at the time of the mutation, individuals
in the population are not identical, then the founder’s enclosing chromosome will
be distinguishable from the enclosing chromosome possessed by other members
of the population. Without recombination, any descendant of the founder who
inherits the trait will also inherit a “copy” of the founder’s enclosing chromo-
some. Over time, additional mutations will occur, but overwhelmingly (again
without recombination) the enclosing chromosome of an individual with the trait
will be highly similar to that of the founder, and distinguishable from the en-
closing chromosomes of individuals without the trait. Therefore, in the current
population, the enclosing chromosomes of the set of individuals who have the
trait will be highly similar to each other, and will be distinguishable from the
enclosing chromosomes of individuals who lack the trait. Individuals with the
trait will have enclosing chromosomes that are said to be (nearly) “identical by
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descent”.
Combining the concept of identity by descent with the discussion of positive

selection, it follows that without recombination, the frequency in a population of
the copy of the enclosing chromosome of a positively selected trait will increase
rapidly in successive generations. And, unless the trait becomes fixed in the
population, there will be an identifiable subpopulation, the individuals with
the trait, whose enclosing chromosomes are highly similar to each other, and are
distinguishable from the enclosing chromosome of individuals who lack the trait.
But these facts alone don’t allow us to recognize that the trait was positively
selected because we don’t know how rapidly the frequency of the trait increased.
To make that recognition, we need to introduce the effect of recombination.

3.4.2.3 Recombination and haplotype length

Now we consider how recombination changes the story, leading to the second
component in the long-haplotype method. Recall that for clarity of the expo-
sition, we have assumed that the positively selected trait is caused by a single
mutation. Without recombination, the frequency of the founder’s enclosing chro-
mosome will increase rapidly, but since we can’t observe the past we don’t know
how rapidly the frequency increased. However, recombination creates chimeric
chromosomes and reduces the length of the segment around the site of the causal
mutation. Therefore, the length of the chromosome segment that is highly sim-
ilar in the individuals with the trait, and distinguishable from the segments
contained by individuals without the trait, decreases as recombinations occur,
and hence decreases over time. See Figure ??.

Due to recombination, it is no longer true that the entire enclosing chro-
mosomes of individuals with the trait will be highly similar, or that the entire
enclosing chromosome will be distinguishable from the entire enclosing chromo-
somes of individuals who lack the trait. However, if the time since the causal
mutation is not too great, so that recombination has not reduced the length
around the causal mutation to something too small to identify, there will still
be some identifiable interval around the location of the causal mutation where
the chromosomes of the individuals with the trait will be highly similar, and
distinguishable from the interval in individuals who lack the trait. See Figure
??. Finally, this leads to a more valid definition of a haplotype.

Definition A haplotype is a segment of one copy of a chromosome that is
observed in a population of individuals, and is identical by descent, i.e., where
the contiguous loci in the segment are transmitted together to a set of individuals
in the population from some common ancestor of those individuals.

The above definition of a haplotype does not make it easy to determine
if a segment is a haplotype because we don’t know the transmition history of
the chromosomes. But more constructive, operational definitions derive from
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this one. For example, a haplotype can be defined as a maximal segment of
one copy of a chromosome where high LD (above some statitistically significant
threshold) is observed, i.e., high correlation (calculated in a set of individuals in
a population) between the states observed at pairs of sites in the segment.

Similarly, a haplotype can be defined as a segment of one copy of a chro-
mosome that is “highly similar” in a significantly large subset of individuals
in a population, and dissimilar from the segments possessed by the individuals
outside that subset. See Figure ??.

Note that a key property of all of these “definitions” of a haplotype is that
it is a sequence derived from only one of the two “copies” of a chromosome
possesed by individuals in a population. So in any segment of the genome, each
individual has two haplotypes.

Having a more biologicall grounded definition of a haplotype, we can now
observe that the effect of recombination over time is to decrease the lengths of
observed haplotypes in a population. Moreover, in general (with some excep-
tions) the rate of recombination is not influenced by the rate of selection of a
trait. The segment around the site for a positively selected trait will experience
recombinations at the same rate as if the trait was a neutral trait (not posi-
tively or negatively selected). Therefore, through recombination, the length of
the haplotype around the causal site for a trait provides a clock measuring the
time since the causal mutation occurred. Recalling that an “allele” is a technical
term for a variant, the following quote summarizes this discussion:

Positive selection is expected to more rapidly increase the frequency
of an allele, and hence, the length of the haplotype (extent of DNA
segment) associated with the selected allele, relative to those that
are not under selection. [191]

We can now introduce the main idea behind the long-haplotype method for
detecting recent positive selection:

When we observe a haplotype that is highly frequent in the popu-
lation relative to its length (meaning that it is much more frequent
than is typical for a haplotype of that length), we can suspect that
it contains a causal mutation for a positively selected trait.

Note that we haven’t assumed that we know what the trait is, nor have we
assumed that we initially knew anything about the location of the causal site
for the trait.

The simplest implementation of the long-haplotype method is to empirically
examine the SNP sequences of individuals in a population to identify haplotypes,
and to measure their lengths and frequencies in the regions examined. The data
can then be used to identify any haplotypes that are unusually long compared to
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their frequencies, and well-known methods can determine the statistical signif-
icance of that deviation. Other techniques are based on theoretical derivations
of the expected frequency of a haplotype as a function of time, in the absence
of positive selection, and derivations of the expected length of a haplotype as a
function of time.

Adding Case-Controls The power of the long-haplotype method is increased
when a specific trait of interest has been identified and sampled individuals in the
population have been segragated into those that have the trait of interest (the
cases) and those that don’t (the controls). Then, we look for a long haplotype
(relative to its frequency) in the cases, that does not occur in the controls. The
method is even more powerful when the location of the causal mutation for
the trait is known. In that case, we look for a long haplotype (relative to its
frequency) that encloses the causal site. The most powerful variant is when the
causal location is known and cases and controls have been identified.

Different variants of the long-haplotype method have been used to identify
hundreds of traits, and/or putative causal mutations, that are believed to have
been positively selected in the recent past. In humans, some of the more no-
table recent traits (sweeping the population within the last several thousand
years) identified in this way include the ability of adults in nothern European
populations to metabalize lactose [?], and the ability of Tibetans to more effec-
tively utilize the limited oxygen at hhigh elevations [?]. Selection for Lactase
persistence is described in [149] as follows:

The striking pattern of genomic variability that is observed in this
locus involves a long, high frequency haplotype that contains an al-
lele associated with lactase persistence. The haplotypes that carry
the allele are almost identical in regions close to the location of the
causative SNP, whereas haplotypes that do not carry the allele show
a normal level of variability. This is exactly the pattern we would
expect to observe if the allele has recently increased in frequency as
the result of positive selection.

One other example of historical interest is the case of the rapid spred of
the black form (appropriately called carbonaria) of the peppered moth in 19th-
century Britian. The wild-type of this moth is lightly colored, and the spred of
the black form was corrolated with the growth of dark air pollutants in industrial
Britian. This change of color has been widely used as a textbook example
of observed evolution, hypothesized to be a response to environmental change.
However, the genetic and molecular basis of the change of color was only recently
determined. In [94], the chromosomal sites responsible for the change of color
were mapped to a 200-kilobase region. The black colored moths were shown to
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contain a single haplotype in that region that differed from the haplotypes of
the light-colored moths:

We have genetically mapped the carbonaria morph to a 200-kilobase
region ... and shown that there is only one core sequence variant
associated with the carbonaria morph, carrying a signature of recent
strong selection. [94]

Of course, the actual implementation of the long-haplotype method involves
several technical issues. The most important ones are how to recognize haplo-
types in practice and how to statistically define significant length and frequency
associations. Another important technical issue that recombination rates can
be highly variable across the genome (recombination hotspots and deserts are
known), although the recombination rate is not generally related to whether the
haplotype contains a positively selected trait. Since recombination breaks down
the length of the haplotpye, recombination rates affect the rate at which hap-
lotype lengths change. Well done studies must take account of what is known
about the varying rates of recombination. The more that is known about the
parameters of recombination in different parts of a genome, the more these vari-
ations can be normalized, reducing their effect on the long-haplotype method.

This highly simplified introduction to the long-haplotype method is intended
to illustrate the central role that recombination plays in the important question
of identifying traits that were positively selected, and also to motivate the gen-
eral issue of understanding the patterns of recombination in a population. It is
not yet clear how helpful explicit genealogical networks will be for approaches
like the long-haplotype method, but it is certainly plausible that explicit de-
duced histories, showing temporal locations of mutations and both spacial and
temporal locations of deduced recombination events, would be of value in efforts
to locate recent causative mutations for positively selected traits.


