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Chapter 1

First Lower Bounds on Rmin

In the last chapter we introduced Rmin(M), the minimum number of recom-
bination nodes used in any ARG to derive the set of sequences M , and we
noted that the problem of computing Rmin is known to be NP-hard. Hence no
provably-correct, worst-case polynomial-time algorithm is known for comput-
ing Rmin, and we do not expect there will be one. However, several worst-case
polynomial-time algorithms have been developed that compute empirically-good
lower bounds on Rmin, and there are several other lower-bound methods whose
worst case time is not polynomially-bounded, but are fast in practice. Some of
the lower bounds apply only to ARGs, and some of them apply more generally to
other kinds of reticulate networks. The literature on computing lower bounds on
Rmin is contained in many papers, including [2, 3, 1, 9, 13, 19, 25, 10, 27, 33, 4].

Using methods that construct ARGs (which we will discuss in later chapters),
we can compare the number of recombination nodes used in those ARGs to
the lower bounds given by the methods. We will see that some of the lower
bound methods return values equal to Rmin or very close to Rmin on many
datasets. Moreover, there are biological questions concerning recombination
(for example, finding recombination hotspots [7]) that have been successfully
addressed using lower bounds on Rmin rather than using Rmin itself [30, 1, 3,
31, 32]. Therefore, the development and study of lower bounds on Rmin has
been a valuable contribution to the algorithmic understanding of recombination
and reticulate networks.

In this chapter we discuss several specific lower bounds on Rmin, and a very
effective general method for amplifying lower bounds. These bounds are either
computable in worst-case polynomial time, or have been shown to be computable
in practical time on datasets of current interest in biology. In later chapters we
will discuss three additional lower bounds. These are deferred because additional
background must be developed first, and because two of the lower bounds are
less efficiently computed than the ones discussed in this chapter, although they
give somewhat higher bounds.
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4 CHAPTER 1. FIRST LOWER BOUNDS

Before discussing any specific bounds, we clarify several different ways that
the term lower bound is used.

Definition Given a specific binary matrix M a lower bound on Rmin(M) is a
number that is less than or equal to Rmin(M). More generally, a lower bound on
Rmin is a function of M which is guaranteed to be a lower bound on Rmin(M)
for any M . A lower bound algorithm for Rmin is an algorithm that computes a
lower bound on Rmin.

In practice, people often use the term ‘lower bound’ for each of these three
different meanings, letting the context indicate the intended use.

The first trivial lower bound, of one, is given by the Four-Gametes Theorem:
For any binary matrix M , Rmin(M) ≥ 1 if and only if there is some incompatible
pair of sites in M .

1.1 The first combinatorial observation

This book develops and exploits combinatorial structure that an ARG must
posses when it derives a set of sequences M . Here we develop the first combi-
natorial observation, leading to a simple, but important fact.

Definition In an ARG N , let v be a node that has two directed paths out
of it that meet at some recombination node x. Those two paths together define
a recombination cycle Q. Node v is called the coalescent node of cycle Q. For
example, the nodes labeled 00000 and 01100 in Figure ?? are the coalescent
nodes of the two recombination cycles.

Lemma 1.1.1 Let N be any ARG that derives a set of sequences M , and let c
and d be two incompatible sites in M . Then the edges, ec and ed, in N that are
labeled with sites c and d must be contained together in a common recombination
cycle in N .

Proof Without loss of generality, assume that the states of both c and
d are 0 at the root of N . Suppose first that ed is not in the subnetwork of
N below ec, and ec is not in the subnetwork below ed. Note that those two
subnetworks cannot have a node v in common, for then ec and ed would be
contained together in a recombination cycle with the recombination node v.
Therefore, the c, d state-pair of 1,1 cannot appear at any node in N , and hence
no sequence in M has the c, d state-pair of 1,1.

Now suppose that ed is in the subnetwork of ec. The c, d state-pair at the
head of the edge labeled c is 1,0. If, through recombination, the state of c is 0
at the tail of the edge labeled d, then the c, d state-pair of 0,1 will be created,
but the state-pair of 1,1 will not be possible. Similarly, if the state of c is 1 at
the tail of the edge labeled d, then the c, d state-pair of 1,1 will be created, but
the state-pair of 0,1 will not be possible. The case where ec is in the subnetwork
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of ed is symmetric, and omitted. In all cases, only three c, d state-pairs can be
created in N , and so M cannot have all four binary combinations in sites c, d,
so sites c and d must be compatible, a contradiction.

1.2 HK: The first non-trivial lower bound

The first published, and most basic, lower bound on Rmin is due to R. Hudson
and N. Kaplan [13], and it is refered to as the HK bound. The bound is obtained
as follows:

Given an n by m binary matrix M , find all of the incompatible pairs
of sites in M .

Consider the m sites of M to be integer points 1...m on the real line,
and find a minimum-sized set of non-integer points, called R∗(M), so
that for every pair of incompatible sites (p, q) in M , there is at least
one point in R∗(M) that is (strictly) between p and q. The quantity
|R∗(M)| is called the HK-bound for M , and is denoted HK(M).

For example, in the data shown in Figure ??, site pairs (1,3), (1,4) and
(2,5) are incompatible. A single point strictly between sites 2 and 3 intersects
the three intervals defined by those incompatible pairs, giving an HK-bound
of one. Of course, a lower bound of one is not of great interest, because by
the Four-Gametes Theorem, the existence of any incompatible pair means that
there must be at least one recombination node in any ARG that derives the
sequences. However, in general, the HK-bound is more informative than in this
specific example.

Theorem 1.2.1 The HK-bound is a lower bound on Rmin. That is, HK(M)
≤ Rmin(M), for any M .

Before proving Theorem 1.2.1, we establish an important lemma.

Lemma 1.2.1 For every pair of incompatible sites (p, q) in M , where p < q,
every ARG that derives M must have a recombination node whose crossover-
index is greater than p and less than or equal to q, that is, in the interval (p, q]
where the left end is open and the right end is closed. So, in the underlying
chromosome, the recombination breakpoint must occur somewhere in the interval
between sites p and q.

Proof For contradiction, suppose there is an ARG N that derives M , where
every recombination node x in N has a crossover-index bx such that bx ≤ p or
bx > q.
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Let M(p, q) denote the sequences in M restricted to the sites p and q. We
will modify N to obtain a perfect phylogeny T for the set of sequences M(p, q).
To do this, first remove all labels (mutations) on edges other than p and q.
Next, at each recombination node x in N , remove exactly one of the incoming
edges as follows. If the crossover-index bx at x is less than or equal to p, remove
the P -labeled edge into x and retain the S-labeled edge. Conversely, if bx > q,
remove the S-labeled edge, and retain the P -labeled edge into x. See Figures
1.1 and 1.2. The resulting graph is now a directed tree T that derives the
sequences in M(p, q). There is one edge in T labeled with p and one edge in T
labeled with q, so T is a perfect phylogeny for M with the same root node and
ancestral sequence as N has. But, by Theorem ??, M(p, q) can have a perfect
phylogeny only if p and q are compatible, contradicting the assumption that p
and q are incompatible. Hence, for any pair of incompatible sites in M , any
ARG that derives M must have a recombination node with crossover-index bx

where p < bx ≤ q.

Using Lemma 1.2.1, we can now prove Theorem 1.2.1.
Proof of Theorem 1.2.1 Let N be an ARG that derives M , and let B be

the set of crossover-indices associated with recombination nodes in N . For each
recombination node x, let point px = bx − ε, where 0 < ε < 1. By Lemma 1.2.1,
the result is a set of non-integer points B′ such that for every pair of incompatible
sites (p, q) in M , there is at least one point in B′ (strictly) between p and q.
Therefore |B| = |B′| ≥ |R∗(M)|, and in particular, when N is a MinARG using
Rmin(M) recombination nodes, we see that Rmin(M) ≥ |R∗(M)|, so the HK-
bound is a lower bound on Rmin.

Before going on, we note the relationship of Theorem 1.2.1 to Lemma 1.1.1.
Lemma 1.1.1 showed that if sites p and q are incompatible in M , then they must
be contained together in some recombination cycle in any ARG N that derives
M . Theorem 1.2.1 shows that if p and q are incompatible, then any ARG that
derives M must have a recombination node x whose crossover-index is in the
interval (p, q]. In fact, both of these facts must hold simultaneously.

Lemma 1.2.2 If c and d are incompatible in M , then they must be contained to-
gether in some recombination cycle in N whose recombination node has crossover-
index in the interval (p, q].

We leave the proof to the reader. For CS 224 - Homework problem

The root-known version of the HK-bound The discussion of the HK-
bound so far did not assume that a fixed ancestral sequence was known. If
a fixed ancestral sequence Sr is given, a lower bound on RminSr(M) can be
computed simply by adding Sr to M and computing the resulting bound on
Rmin.
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Figure 1.1: Network to illustrate the proof Theorem 1.2.1. For contradiction,
sites 3 and 5 are assumed to be incompatible, but as shown, there is no recom-
bination node x with crossover-index bx in the interval (3,5].

1.2.1 Computing the HK-bound

Let each incompatible pair (p, q) in M define the closed interval [p, ..., q] on the
real line, and let L denote the set of those intervals. Note that the endpoints of
any interval in L are on integer points. The problem of finding R∗(M) can be
restated as:

The Interval Coverage Problem: Find a minimum-sized set of
non-integer points R∗(M) so that each interval in L contains at least
one point in R∗(M).

The Interval Coverage Problem can be efficiently solved by a greedy, left-to-
right scanning algorithm shown in Figure 1.3.

Theorem 1.2.2 Algorithm Interval-Scan correctly computes the HK-bound, HK(M).
In particular, at the end of the scan, R is a minimum-sized set such that every
interval I in L contains at least one point in R.

Proof By the way the scan works, the requirement that every interval I
in L contains a non-integer point in R is clearly satisfied. To see that R is
minimum-sized, suppose that I and I ′ are two intervals in I, and that I was
placed in I before I ′, so the right end of I is to the left of the right end of I ′, and
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Figure 1.2: Continued illustration for the proof of Theorem 1.2.1. The tree
resulting from the network in Figure 1.1 after removal of one edge into each
recombination node, and removal of sites other than 3, 5. The tree correctly
derives the sequences in M restricted to sites 3 and 5. Therefore, sites 3 and 5
can’t be incompatible.
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Algorithm Interval-Scan (M)

Sort the intervals in L by their right endpoints, smallest (leftmost) first,
where ties are broken arbitrarilly.
Let Lr be the resulting sorted set of intervals.

Set R = ∅ and I = ∅, and let r be the left endpoint
of the interval at the head of Lr.

while (Lr is not empty) do

Remove the interval I at the head of Lr.
if (point r is not strictly in I) then

place the point q − ε into R, where 0 < ε < 1,
and q is the right endpoint of interval I; Set r to q, and place I into I
{I is a set of intervals which will be used in the proof of correctness}.

endif

endwhile
Figure 1.3: Algorithm Interval-Scan solves the Interval Coverage Problem and
computes the HK-bound, given the set of intervals L obtained from M .

the two intervals cannot share more than a single point (the right end of I and
the left end of I ′). See Figure 1.2.1. If the two intervals did share more than a
single point, then the point placed into R when I was placed into I would also
be contained in I ′, which contradicts the fact that the algorithm placed both I
and I ′ into I. So, no pair of intervals in I can have a non-trivial intersection.
It follows that no point on the real-line can be strictly between the endpoints
of two different intervals in I, and hence |I| is a lower bound on |R∗(M)|. But
|R| = |I|, so |R| = |R∗(M)| =HK(M), proving that this scanning procedure
correctly computes the HK-bound.

It should be clear that the time to compute the HK-bound, given the sorted
set Lr, is just O(|Lr|), and so the HK-bound is efficiently computable.

Another characterization of the HK-bound As an aside, we note another
result that can be deduced from the reasoning in the proof of Theorem 1.2.2.
Let I∗(M) denote the largest set of intervals in L such that no pair of intervals
in I∗(M) has a non-trivial intersection. Clearly, |R∗(M)| ≥ |I∗(M)|, since a
distinct point must be chosen for each interval in I∗(M). But the scanning
algorithm chooses a set of points R and a set of intervals I (such that no pair
has a non-trivial intersection) where |R| = |I|. The next Corollary then follows:
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Figure 1.4: A cartoon illustrating the workings of the scan used in Algorithm
Interval-Scan to compute the HK-bound. The intervals in L are represented by
horizontal lines, and the points chosen for R are represented by dashed vertical
lines. The numbers labeling intervals identify the intervals in I, and correspond
to the points in R, in the order that points are added to R.

Corollary 1.2.1 The set of intervals I found by the scanning algorithm has
the maximum possible size. That is |I| = |I∗(M)|, and the output of Algorithm
Interval-Scan (and hence the HK-bound) can be described as the size of the largest
set of intervals in L such that no pair of intervals have a non-trivial intersection.

The characterization of the HK-bound given in Corollary 1.2.1 is closer to
the original characterization given in [13] than is the definition of the HK-bound
in terms of R∗(M).

The HK-bound has been widely used in the biological literature, and the
choice of the points in R∗(M) has sometimes even been used as an estimate
for where the recombination crossovers may have occurred in the true (but un-
known) ARG that derived M . However, we will see that the HK-bound is a
relatively weak (low) lower bound1 in comparison to other bounds on Rmin(M)
that were developed after it.

1.3 The Haplotype Bound

The HK-bound was introduced in 1985, and very little progress was made in
improving lower bounds on Rmin until the dissertation of Simon Myers in 2003
[18, 19]. There, the Haplotype Lower Bound, was introduced along with a “com-
posite method” that dramatically improves the quality of that bound. We will
explain the composite method after discussing the original haplotype bound.
Consider the set of sequences M arrayed in a matrix.

Definition Let Dr(M) and Dc(M) be the number of distinct rows and columns
1Ironically, the study of the HK bound in [13] was partly intended to show that the bound

is often considerably lower than the true number of recombinations in simulated ARGs, and
to therefore discourage its use. However, the HK-bound continued to be widely used, since for
some time it was the only non-trivial lower bound method known. There was also confusion in
the literature, which sometimes implied (in different terminology) that the HK-bound is equal
to Rmin(M), although less than the true number of recombinations.
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of M , respectively. The Haplotype Lower Bound on M , denoted H(M), is defined
to be Dr(M) − Dc(M) − 1.

Actually, we assumed earlier that all the n rows of M are distinct, so we
could have simplified the haplotype bound to n−Dc(M)− 1, but the statement
of the bound as Dr(M) − Dc(M) − 1 emphasizes that the bound applies even
when some rows are not distinct.

For example, consider the data M in Figure ??. In that example, there are 7
distinct rows and 5 distinct columns, so H(M) = 1, which is the same as the HK
bound. However, if we modify M by adding the additional sequence h = 00000,
creating input M ′, then the number of distinct rows becomes 8 and the number
of distinct columns remains 5, so H(M ′) = 2. Note that the addition of sequence
h does not create any more incompatible pairs in the data, and so the HK bound
would remain equal to 1.

Theorem 1.3.1 For any M , H(M) ≤ Rmin.

Proof First, if there are some non-distinct columns of M , arbitrarily remove
duplicate columns from M so that all columns in the resulting matrix M ′ are
distinct, and M ′ has exactly Dc(M) columns. Note that Dr(M ′) = Dr(M).

Any ARG N that derives M also derives M ′; simply remove any site labeling
an edge if that site is not in M ′. It follows that Rmin(M ′) ≤ Rmin(M). That
is, the number of recombination nodes needed in an ARG to derive M ′ cannot be
larger than the number needed to derive M . So any lower bound on Rmin(M ′)
is a lower bound on Rmin(M). Let N ′ be a MinARG that derives M ′, i.e.,
using Rmin(M ′) recombination nodes. ARG N ′ must contain nodes labeled by
Dr(M ′) or more distinct sequences, since all the distinct sequences in M ′ must
be generated in N ′. Note that the root of N ′ might be labeled with one of
the sequences in M ′. Since each character can mutate at most once, there can
be at most Dc(M ′) edges labeled by the sites in M ′, and so there are at most
Dc(M ′) distinct sequences that label tree-nodes or leaves whose entering edge
is labeled with a site in M ′ (recall that edges into recombination nodes have no
edge labels). So at least Dr(M ′)− (Dc(M ′) + 1) of the distinct sequences must
label recombination nodes in N ′. Each recombination node has only one label,
so there must be at least Dr(M ′)−Dc(M ′)− 1 = Dr(M)−Dc(M)− 1 = H(M)
recombination nodes in N ′. So, the actual number of recombination nodes in
M ′ must be at least H(M), and since this holds for any N ′, it follows that
Rmin(M ′) ≥ H(M). But we saw earlier that Rmin(M) ≥ Rmin(M ′), so
Rmin(M) ≥ H(M).

Continuing the example started above, note that the ARG in Figure ?? has
two recombination nodes, and if we add an edge from the root to a new leaf
labeled h, the new ARG derives the set of sequences M ′. Since H(M ′) is two,
we can conclude that Rmin(M ′) = 2, and the modified ARG is a MinARG for
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M ′. However, since H(M) is only one, we cannot (yet) conclude that the ARG
in Figure ?? is MinARG for M .

We can also establish the following, using a proof similar to the proof for
Theorem 1.3.1.

Theorem 1.3.2 If M is generated on an ARG N whose root sequence is not in
M , then the number of recombination nodes in N must be at least the Dr(M)−
Dc(M) = H(M) + 1.

Close examination of the proof of Theorem 1.3.1 yields the following:

Corollary 1.3.1 If N is an ARG for M that has only H(M) recombination
nodes (and hence is a MinARG), and every site in M is distinct, then every
node in N is labeled by a sequence in M .

Conversely,

Corollary 1.3.2 If N is an ARG for M where each node is labeled by a distinct
sequence in M , and no edge is labeled by more than a single site, then N has
exactly H(M) recombination nodes (and hence is a MinARG).

Two additional observations There are two observations about the haplo-
type bound that will be useful later. First, the haplotype bound is unaffected
by the given order of the characters in M . We could permute the order of
the columns of M and the numbers of distinct rows and columns would not
change. Second, the haplotype bound is valid for biological processes other than
single-crossover recombination. For example, it is valid for multiple-crossover re-
combination, or as a lower bound on the number of hybridization events needed
to generate a set of binary sequences. What is required for these and other appli-
cations of the haplotype bound, is that each mutation occurs at most once, and
that each reticulation event (recombination, hybridization etc.) only generates
a single new sequence.

1.3.1 Removing compatible characters usually boosts the hap-
lotype bound

The haplotype bound H(M) can be efficiently computed, but the bounds com-
puted for data generated by the program ms [12] show that H(M) by itself is
a very poor bound, and often is a negative number! However, when used with
the composite-bound method explained below, it leads to much improved, i.e.,
higher, lower bounds for Rmin, compared to the HK bound. Before develop-
ing the composite-bound method, we explain another significant way to boost
H(M), that also comes from [18, 19]. Recall that a character c in M is called
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compatible with all other characters, if c is not incompatible with any character
in M .

Theorem 1.3.3 Suppose character c is compatible with all other characters in
M . Then the haplotype bound either increases or remains the same when char-
acter (column) c is removed from M . That is, letting M ′ denote the matrix M
after removal of character c, Rmin(M) ≥ H(M ′) ≥ H(M).

For CS 224, this is a homework problem.
Myers and Griffiths [18, 19] suggest that the removal of all characters that

are compatible with all other characters in M can speed up computations by
reducing the size of the matrix. That is one benefit. But the more important
benefit that we have observed is the very substantial increase in the resulting
lower bound on Rmin when all compatible characters are removed, particularly
when used locally in the composite-bound method to be explained next.

1.3.2 The Composite-Bound Method

Here we introduce a general method developed by Myers and Griffiths [18, 19],
called the composite-bound method, that can (and usually does) substantially
boost several lower bounds on Rmin(M). We will explain the method in general,
and also discuss in particular how it boosts the haplotype lower bound.

As noted earlier, the haplotype bound, when applied to a whole dataset M ,
is often very low and can even be a negative number. Intuitively, the haplotype
bound will tend to be low when the number of columns of M is large relative
to the number of rows of M . This is not guaranteed, but tends to be the
case. Conversely, the haplotype bound tends to be higher when the number of
columns is small relative to the number of rows. We would like to take advantage
of this intuition to obtain a better lower bound on Rmin(M). This is what the
composite method does.

Recall that the sites in M have a fixed linear order, so we can unambiguously
specify an interval of sites. The fact that the sites have a fixed linear order
is critical in the composite method. The composite method combines several
(local) lower bounds computed (by any method) over a family L of intervals of
sites. For simplicity of exposition, we assume that the m sites of M are arrayed
on the real line, on the integer points 1, ..., m. Hence, when we speak of an
interval of sites I, the left and right ends of I are at integer points.

Definition Given an interval of sites I, let M(I) denote the matrix M restricted
to the sites in I, and let b(I) denote a lower bound computed (somehow) for
Rmin(M(I)). The bound b(I) is called a “local bound”.

Definition Given a family L of intervals of sites, let B = {b(I) : I ∈ L}, i.e.,
the set of local bounds, one for each interval in L.
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Definition Given L and B, R∗(L) is defined as the minimum-sized set of
points such that for for each interval I ∈ L, there are at least b(I) points in
R∗(L) that fall strictly in the interior of interval I. The number |R∗(L)| is
called a composite-bound.

The reader should see that the composite-bound is a generalization of the
HK-bound. In particular, if each pair of incompatible pairs of sites (p, q) in M
defines an interval I = [p, q], and for each such interval I, b(I) is set to 1, then
the composite bound, |R∗(L)|, is exactly the HK-bound for M .

Theorem 1.3.4 For any M , if b(I) is a lower bound on Rmin(M(I)), for each
interval I ∈ L, then |R∗(L)| ≤ Rmin(M). That is, the composite-bound is a
valid lower bound on Rmin(M).

Proof The proof is a simple extension of the proof used to show that the
HK-bound is a valid lower bound on Rmin(M). We first show that for every
interval I = [p, ..., q] in L, every ARG that derives M must have at least b(I)
recombination nodes whose crossover-indices are in the interval (p, .., q], which
is open on the left end and closed on the right end. For contradiction, suppose
there is an ARG N which derives M , where this is not the case. Then modify
N to obtain an ARG N ′ just for the set of sequences M(I). We do this by
removing all labels on edges that fall outside of I, and at each recombination
node x in N , where the crossover-index bx is not in the interval (p, ..., q], we
remove exactly one of the incoming edges as follows. If the crossover-index bx

at x is less than or equal to p, remove the P -labeled edge into x and retain the
S-labeled edge; conversely, if bx is greater than q, remove the S-labeled edge,
and retain the P -labeled edge into x. Note that at any recombination node x
where bx ∈ (p, ..., q], nothing is changed. The resulting network is an ARG N ′

that derives the sequences M(I) and where every recombination node x has a
crossover-index bx ∈ (p, ..., q]. But N ′ has fewer than b(I) recombination nodes,
contradicting the assumption that b(I) is a lower bound on Rmin(M(I)).

Now, for any ARG N that derives M , let B be the set of crossover-indices
at recombination nodes of N , and for each recombination node x, create the
point px = bx − εx, where 0 < εx < 1 and εx is different from εy for any other
recombination node y. The result is a set of |B| distinct points such that for
every interval I ∈ L, there are at least b(I) points in the set that are strictly
in the interior of I. Therefore |B| ≥ |R∗(L)|, and in particular, when N is the
ARG with Rmin(M) recombination nodes, we see that |R∗(L)| ≤ Rmin(M), so
the composite-bound is a lower bound on Rmin(M).

1.3.2.1 Computing the composite-bound

As probably anticipated by the reader, given the sets L and B, the composite-
bound can be efficiently computed by an extension of Algorithm Interval-Scan
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used to compute the HK-bound. As in Algorithm Interval-Scan, let Lr be the
sorted set of right endpoints of the intervals in L, smallest (leftmost) first. Then
R∗(L) can be found efficiently by a single scan of Lr, corresponding to left-to-
right sweep of the points in Lr. In particular, when the right endpoint q of
an interval I = [p, ..., q] is examined, if z < b(I) points in I have already been
selected, then place an additional b(I) − z copies of point q − ε, for 0 < ε < 1,
into R∗(L).

The proof of correctness of this method is a simple extension of the proof of
correctness of Algorithm Interval-Scan. We leave the formal proof to the reader.
Also, as in the computation of the HK-bound, after the sorted list Lr is known,
the time required for the method is linear in the size of Lr.

1.3.2.2 The simplest use of the composite-bound method

The simplest way to apply the composite-bound method is to first compute a
local bound for each of the

(m
2

)
intervals in a dataset M with m sites, and then

compute the composite-bound using these local bounds. This can be done with
any local bound, but this approach has been shown to be particularly effective
when the local bound for each interval is the haplotype bound.

1.3.3 The composite-bound greatly boosts the haplotype bound

As mentioned earlier, the haplotype bound is generally not very large when com-
puted on data with a large number of sites compared to the number of taxa.
But by computing local haplotype bounds for all the intervals, or for the smaller
intervals only, and then computing the composite-bound using those local hap-
lotype bounds, the resulting lower bound on Rmin(M) can be greatly increased.
This has been consistently shown empirically. Additional increases are obtained
through the use of Theorem 1.3.3 in each interval where the haplotype bound is
computed. That is, for each interval I where a local haplotype bound is to be
computed, first remove every site that is not incompatible with some other site
in interval I. Note that a site might be removed in an interval I, even though
it is incompatible with some site outside of I. We call the resulting lower bound
the Interval RecMin bound.

An example of the effectiveness of the composite-bound method using local
haplotype bounds is shown in Figure 1.5. The haplotype bound computed from
the entire data is -3 (a useless bound), but the Interval RecMin bound is 6.
The data used in that example is the widely-studied SNP data obtained by
M. Kreitman [15] in 1983, which was one of the first significant SNP datasets
published. The HK bound is five, and Rmin(M) for this data is 7, as we will
discuss in Sections 2.2.5 and ??.
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0000000011000000001101110111100000000000000
0010000000000000001101110111100000000000000
0000000000000000000000000000000000010000101
0000000000000000110000000000000000010011000
0001100010110011110000000000000000001000000
0010000000000001000000000000001010111000010
0010000000000001000000000000011111101000000
1111100010111001000000000000011111101100000
1111100010111001000000000000011111101100000
1111100010111001000000000000011111101100000
1111111110000101000010001000011111101000000

Figure 1.5: In this data (Kreitman’s data), the HK-bound is 5; the haplotype
bound computed on the entire data is -3; the composite-bound computed us-
ing the haplotype bound as the local bound in each of the intervals is 5; the
composite-bound computed using the haplotype bound as the local bound, when
compatible columns are removed in each interval (the Interval RecMin bound)
is 6. Rmin(M) is actually 7.

Why, intuitively, does the composite-bound method helps raise the
haplotype bound It is worth considering why the composite-bound is effec-
tive when used together with the haplotype bound. In addition to the fact that
the haplotype bound tends to be low when intervals are large, and the composite
method uses intervals of all sizes, the key point is that the haplotype bound is
unaffected by the linear order of the sites. That is, we could permute the order
of the sites in M and the resulting haplotype bound would be unchanged. So,
the haplotype bound does not incorporate any constraints imposed by the phys-
ical reality of the fixed linear order of the sites, and the fact that a crossover is
an event that takes place at a particular location among the sites. The effect
of a recombination event is constrained and influenced by a given linear order
of the sites, but that constraint is not incorporated into the haplotype bound.
Intuitively, the composite-bound approach is effective when combined with the
haplotype-bound because it imposes ordered constraints (that at least b(I) re-
combinations must occur inside each local interval I) and hence reflects the fixed
linear order of the sites, and the spacial aspect of a recombination crossover.

The same intuition holds for other local lower bounds that are not affected
by the linear order of the sites. For example, we will discuss the connected-
component lower bound in Section ?? and see that it is also unaffected by the
order of the sites. Again, the composite-bound method improves the result-
ing lower bound on Rmin(M) when each local lower bound is a connected-
component lower bound. In contrast, the composite method might not be as
effective when the local bounds are already affected by the linear order of the
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sites. For example, when each local bound is an HK-bound (which is already
affected by the linear order of the sites) the composite-bound is just the HK-
bound applied to the entire data, and so the composite-bound method offers no
improvement at all.

1.3.4 Applying the Haplotype Bound to Subsets of Sites: a major
improvement

Myers and Griffiths [18, 19] introduced another way to significantly boost the
basic haplotype bound, with an increase in computation time. The basic idea
is to compute the haplotype bound on subsets of columns in an interval, rather
than on all of the columns in the interval. We formalize that idea here.

Definition For a subset of sites S (not necessarily contiguous) in M , let
M(S) be the sequences in M restricted to the sites in S, and let H(M(S)) be
the haplotype bound computed on M(S).

Lemma 1.3.1 Let S be a subset of sites in M , whose leftmost point is p and
whose rightmost point is q. H(M(S)) is a valid local lower bound for interval
I = [p, ..., q]. That is, any ARG that derives M must have at least H(M(S))
recombination nodes whose crossover-indices are in the interval (p, q].

Proof Similar to the first part of the proof of Theorem 1.3.4, consider a
MinARG N for the sequences M(I), and then remove all of the sites from N that
are not in S. The result is an ARG for M(S) with Rmin(M(I) recombination
nodes (and now some of the recombinant sequences might be equal to a parental
sequence, in which case some recombination nodes might be removed). So,
Rmin(M(S)) ≤ Rmin(M(I)). Since H(M(S)) ≤ Rmin(M(S)), the lemma
follows.

Given Lemma 1.3.1 we could compute a valid local lower bound b(I) for an
interval I by computing H(M(S)) for each subset S of sites in I (with length
denoted |I|), and then taking b(I) to be the largest of those 2|I| haplotype
bounds.

It may not be intuitive, but the approach of looking at subsets of sites in
an interval often yields a local lower bound that is larger than H(I), e.g., the
basic haplotype bound computed for the entire set of sites in I. However, we
have already seen one indication of this, in Theorem 1.3.3, when compatible
sites are removed from M . For a more general illustration, consider the example
in Figure 1.6 where there are 8 distinct rows and 6 distinct columns, giving a
haplotype bound of 1. Removal of sites 1, 3 and 4 decreases the number of
distinct columns by three, but does not reduce the number of distinct rows, and
so the haplotype bound computed on the remaining columns is increased to 4.
This type of situation will be more formally treated in Theorem 1.4.2.
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c1 c2 c3 c4 c5 c6

r1 0 0 1 0 0 0
r2 0 0 1 0 1 0
r3 0 1 1 0 0 0
r4 0 1 1 1 1 0
r5 0 0 1 1 0 1
r6 1 0 1 1 1 1
r7 1 1 0 0 0 1
r8 1 1 0 0 1 1

Figure 1.6: Dataset M with 8 distinct rows and 6 distinct sites, so H(M) = 1.
However, if sites 1, 3 and 4 are removed, the resulting dataset still has 8 distinct
rows but now only has three distinct sites, so the resulting haplotype bound is
4.

Clearly, increasing local lower bounds cannot reduce the resulting composite
lower bound, and may lead to a larger composite-bound for Rmin.

The Optimal RecMin Bound Definition Let S∗(I) be a subset of sites in
interval I that maximizes H(M(S)) over all subsets S of sites in I. Then subset
S∗(I) is called the optimal subset for I, and H(M(S∗(I))) is called the Optimal
Haplotype Bound for I.

Definition When, for every interval I in M , the local lower bound b(I) is
set to the optimal haplotype bound for I, the resulting composite lower bound
on Rmin(M) is called the Optimal RecMin Bound on M .

Clearly, the Optimal RecMin Bound is at least as high as the Interval RecMin
Bound. It has been empirically demonstrated that the Optimal RecMin Bound
is typically much larger than the Interval RecMin bound, reflecting the utility
of considering subsets of sites inside of each interval. We will see an example of
this later.

Since a subset of sites S in an interval I is also a subset in any interval that
contains I, it is more efficient to compute the Optimal RecMin Bound by first
enumerating every subset of sites S, computing H(M(S)) for each subset S, and
then using these bounds to determine the local bound b(I) for each interval I.
Still, because all θ(2m) subsets of sites must be explicitly enumerated in this
approach, the time required will generally be prohibitive. Consistent with the
fact that full enumeration is computationally infeasible, Bafna and Bansal [1, 3]
proved that the problem of computing the Optimal RecMin Bound is NP-hard.
Given these realities, we will discuss two alternative approaches, one (program
RecMin) that enumerates only some subsets of sites, and a second approach
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that computes the Optimal RecMin Bound without explicitly enumerating any
subsets of sites, although it again involves a computation that required worst-
case exponential time.

1.3.5 Program RecMin

Myers and Griffiths [18, 19] encapsulated the use of local haplotype-bounds com-
puted over subsets of sites, and the composite-bound method, in a program they
call RecMin. However, because enumerating all subsets of sites is generally im-
practical (taking days on even moderate sized data), RecMin generally computes
local bounds for a restricted set of subsets of sites.

In RecMin, the user specifies two parameters s and w, and RecMin computes
the haplotype-bound H(M(S)) for every subset S of M , with s or fewer sites,
provided that no pair of sites in S is more than w positions apart. The parameter
s is called the subset size parameter, and the parameter w is called the subset
width parameter. Let S be the family of subsets that obey the restrictions
imposed by s and w. RecMin computes H(M(S)) for every subset S in S,
and then for every interval I, the local lower bound b(I) is set to the largest of
value H(M(S)) where S is contained in I. RecMin then computes the composite-
bound using those local bounds. RecMin also uses heuristics to avoid the explicit
examination of some of the specified subsets.

The default settings for RecMin were initially s = 8 and w = 12, but we have
found that RecMin gives better bounds in reasonable time when we set s = w =
20. Overall, RecMin is a very impressive, efficient program for computing lower
bounds on Rmin(M), and far superior to any of the practical alternatives that
came before it. However, as noted earlier, for large problem instances of the
size of current interest, RecMin cannot compute the Optimal RecMin Bound,
and be sure it has been computed. The only way that RecMin can guarantee
to compute the Optimal RecMin Bound is to set s = w = m, which is usually
impractical.

We next discuss an alternative to RecMin which is able to compute the
Optimal RecMin Bound efficiently on data of current interest, and much larger
than the data for which RecMin can compute the Optimal RecMin Bound.

1.4 Program HapBound: Practical computation of
the Optimal RecMin Bound, and beyond

We first discuss the Integer Linear Programming approach developed in [27]
to efficiently compute, in practice, the Optimal RecMin Bound on biological
datasets of current interest.
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1.4.1 The key idea

The following theorem is immediate from the definition of the Optimal RecMin
Bound.

Theorem 1.4.1 If, for each interval I in M , we set the local lower bound b(I)
equal to H(S∗(I)) and use those local bounds to compute a composite-bound, the
resulting lower bound is the Optimal RecMin Bound on Rmin(M).

Given Theorem 1.4.1, to compute the Optimal RecMin Bound, we want to
find the optimal subset S∗(I) for each interval I in M . This is the key idea,
but how can we efficiently (at least in practice) find the subset S∗(I) for each
I? The next theorem begins to explain the answer.

Recall that for any subset S of columns, M(S) denotes the matrix M re-
stricted to the columns in S, and for any interval I, M(I) denotes the matrix
M restricted to the columns in I.

Definition For any interval I, let M̃(I) denote the matrix M(I) after re-
moval of any duplicate rows in M(I). For a subset of sites S in I, M̃(I, S)
denotes M̃(I) restricted to the sites in S.

Theorem 1.4.2 ([21]) An optimal subset S∗(I), can be found by finding a
smallest subset of sites S in I such that that every row in M̃(I, S) is distinct.

Given Theorem 1.4.2, we have

Definition A subset of sites is called a minimum S∗(I) if it is a smallest
subset of sites S in I such that every row in M̃(I, S) is distinct.

As an example, consider the dataset M in Figure 1.6, and let I in this case
be the entire interval 1..6. The eight rows are distinct, so M̃(I) = M . The set
of sites {2, 5, 6} is a smallest set S such that the eight rows are distinct in M(S).
So those three sites yield the highest haplotype bound possible in the interval
1..6, and hence form a minimum S∗(I) for M .

Proof (of Theorem 1.4.2). First, observe that for any subset of sites S in
interval I, two columns in M(S) are distinct if and only if they are distinct in
M̃(I, S), so H(M(S)) = H(M̃ (I, S)). It follows that the removal of duplicate
rows in M(I) (creating M̃(I)) does not affect which subset of columns in I
maximizes the haplotype bound, and so S∗(I) is an optimal subset for I in both
M(I) and M̃(I). Let n′(I) denote the number of rows in M̃(I).

We next show that all rows in M̃(I, S∗(I)) are distinct, or an equally good
subset of sites can be found where this is true. Suppose for contradiction that
two rows r1, r2 in M̃(I, S∗(I)) are identical. Since r1, r2 are not identical in
M̃(I), there must be a site c in I − S∗(I) such that the state of r1 at c differs
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from the state of r2 at c. So, if we add c to S∗(I) we increase the number of
distinct rows by at least one, while increasing the number of distinct sites by at
most one. Therefore H(M̃ (I, S∗(I) + c)) ≥ H(M̃(I, S∗(I))). But, by the choice
of S∗(I), it can only be that H(M̃(I, S∗(I) + c)) = H(M̃ (I, S∗(I))). If the set
of rows M̃(I, S∗ + c) still contains two identical rows, we can again find a new
column to add to S∗(I), and repeat this step until we finally have an optimal
subset of sites S∗(I) where all the rows of M̃(S∗(I)) are distinct.

Similarly, we can assume that all the sites in S∗(I) are distinct, for if not,
the removal of any duplicate copies cannot change the number of distinct sites
nor the number of distinct rows in the resulting matrix. Therefore, we assume
that all the n′(I) rows and all the |S∗(I))| sites of M̃(I, S∗(I)) are distinct, so
H(M̃(I, S∗(I)) = n′(I) − |S∗(I)| − 1.

Now consider a smallest set of sites S in I such that all rows in M̃(I, S) are
distinct. Clearly, if any pair of sites in S are identical, then one of the copies can
be removed to create a smaller set of sites S where all rows in M(S) are distinct.
So, all sites in S are distinct. Also, the number of (distinct) rows in M̃ (I, S) is
n′(I), so H(M̃(I, S)) = n′(I) − |S| − 1. We want to show that H(M̃(I, S)) =
H(M̃(I, S∗(I))). If not, then n′(I)− |S|−1 = H(M̃ (I, S)) < H(M̃(I, S∗(I))) =
n′(I) − |S∗(I)| − 1, so |S∗(I)| < |S|, contradicting the assumption that S is a
smallest subset of sites in M̃(I) such that all the rows of M̃(I, S) are distinct.

1.4.2 Finding S∗(I) by Integer Linear Programming

Theorem 1.4.2 tells us precisely what to look for in order to find an optimal
subset for I, S∗(I), but it does not tell us how to do it. That problem is
answered in this section.

Definition We say that a site c in M̃ (I) distinguishes two rows r1 and r2

if M̃(I)[r1, c] &= M̃(I)[r2, c]. We say that a subset of sites S distinguishes the
rows in M̃(I) if for each pair of rows r1, r2 in M̃ (I), there is a site c in S that
distinguishes r1 and r2.

The following Lemma is almost self-evident and a formal proof is left to the
reader.

Lemma 1.4.1 Let S be a subset of sites in interval I. Then, the rows in M̃ (I, S)
are distinct if and only if S distinguishes the rows of M̃(I).

Given Theorem 1.4.2 and Lemma 1.4.1, in order to find a haplotype optimal
subset for an interval I, we want to find a smallest set of sites that distinguishes
the rows of M̃(I). That task can be formulated and solved as an Integer Linear
Program as follows.

For any pair of rows r1, r2, let D(r1, r2) denote the set of sites in I that
distinguish rows r1 and r2 of M̃ . Since the rows of M̃ are distinct, D(r1, r2)
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cannot be empty. For each site c in I, let X(c) be a binary integer linear
programming variable, i.e., one that is only allowed to take on values 0 or 1.
In a solution, variable X(c) will be set to 1 to indicate that site c should be
taken into S, and set to 0 to indicate it should not be taken into S. The linear
program will have the inequality

∑

c∈D(r1,r2)

X(c) ≥ 1

for each pair of rows r1, r2 in M̃ . The effect of these inequalities is to force
the selection of a subset of sites that distinguish the rows of M̃(I). Finally, the
objective function is

Minimize
∑

c∈I

X(c).

A solution to the integer linear program sets each variable X(c) to either 0
or 1, and hence specifies a smallest set S that distinguishes every pair of rows
in M̃(I). Thus, by Theorem 1.4.2 and Lemma 1.4.1, a solution to the integer
program identifies S∗(I), a optimal subset for I.

As an aside, for those familiar with the set cover problem or the minimum
test set problem [8], one can view this integer program as solving an instance of
the set cover or test set problems, where each pair of rows (r1, r2) defines the
set of sites D(r1, r2), and the problem is to choose the smallest set of sites to
cover all of those sets.

Basic HapBound The above approach, using integer programming to find
S∗(I) and b(I) = H(S∗(I)) for each interval I, and then using these local lower
bounds in the composite-bound method to obtain the Optimal RecMin Bound,
has been implemented in a program called HapBound [27]. In HapBound each
of the integer programs is solved by using the GNU ILP solver, GLPK. GNU
allows GLPK to be incorporated into other programs, and using GLPK allows a
complete version of HapBound to be released to users. With GLPK, HapBound
is able to find S∗(I) efficiently (in fractions of a second, to several seconds) for
many problem sizes of current interest. This is robust enough to illustrate the
practicality of the integer programming approach. However, for large problem
instances, the commercial ILP solver, CPLEX, is significantly faster than GLPK.
HapBound is not built around CPLEX because users would then need to have
a CPLEX license to run HapBound. We will discuss HapBound in more detail
in the next section, and some empirical results in Section 1.4.5.

The Bafna-Bansal method A different alternative approach to improving
on RecMin, developed by V. Bafna and V. Bansal in [1, 3], formulates the
problem of finding S∗(I) (in different notation) in each interval I, and also uses
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the composite method to find a global lower bound on Rmin(M). However,
instead of using a method that is guaranteed to find S∗(I), they use a fast
heuristic algorithm to find a set S that distinguishes every pair of rows.

In more detail, their method first cleans up the input M to reduce the size
of the problem in a way that does not change the number of needed recombina-
tion events (see Algorithm Clean in Section 2.2.1), and that results in a matrix
M̃ with no duplicate rows. Then the algorithm computes a lower bound on
Rmin(M̃) as follows: Until a set of columns has been selected that distinguishes
all pairs of rows in M̃ , successively select the column that distinguishes the most
pairs of rows that are not already distinguished by any previously selected col-
umn. Let S denote the set of selected columns. The lower bound used is the
number of distinct rows in M̃(S) minus |S| minus one.

Although the lower bound computed in this way is not guaranteed to be as
large as the Optimal RecMin Bound, and cannot ever be larger than it, empirical
tests reported in [1, 3] show that it produces consistently higher lower bounds
than the HK bound and the bound returned by RecMin with its default settings
(see Section 1.4.5).

Missing Data The Bafna-Bansal method in [3] extends naturally to the real-
istic problem that biological data often has missing, unknown entries. In molec-
ular sequence data the rate of missing entries can be 1 to 5% percent, while in
phylogenetic data the percentage can often be as high as 35%. It is a common
practice to remove columns or rows of M so that the remaining submatrix, M ′,
has no cell with a missing value. A lower bound on Rmin(M ′) can then be
computed. However, this approach can substantially reduce the resulting lower
bound. Instead, we can define the following problem:

Problem MDOR Given a matrix M with missing entries, fill in the missing
entries with binary values in the way that minimizes the Optimal RecMin Bound
on the resulting matrix.

It may seem incorrect to want to minimize the resulting lower bound rather
than maximizing it. However, it is only through minimizing the lower bound
that we obtain a value that is guarnateed to be a true lower bound on Rmin(Mt),
where Mt is the correct original matrix, with no missing values, from which M
was derived.

Of course, we don’t know how to solve Problem MDOR efficiently, but if
we could solve it, the Optimal RecMin Bound on the resulting matrix would
be larger or equal to the Optimal RecMin Bound computed on M ′, the matrix
resulting from removal of all columns containing missing values.

The effect of including missing entries in the computation of lower bounds
can be considerable, even if the lower bound method used is not the best lower
bound method available for use on complete data. Table 1.1 shows several lower
bound values for nine datasets, computed by Program HapBound (discussed in
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detail in the next section) which is which guaranteed to produce a value that
is as high or higher than the Optimal RecMin Bound. Each of the nine dataset
corresponds to a human subpopulation and a region in the LPL gene after sites
were deleted to remove any cells with missing entries. In contrast, the weaker
lower bound method from [3] (discussed above) was applied to the whole data,
including cells with missing entries. In many cases, the lower bounds obtained
were higher than the ones shown in Table 1.1, and even higher than the upper
bounds computed for the cleaned-up data. For example, the Table 1.1 shows a
lower bound of 13 and an upper bound of 16 for cleaned-up data in the Jackson
population in LPL region 3, but the Bafna-Bansal method computed a lower
bound of 17 for the data when sites with missing data were not removed. In the
N. Karlia population in region 3, the Table shows a lower bound of 8 and an
upper bound of 10, while the lower bound from [3] with missing data included
is 13. More impressive, the combined data over the three populations in region
3 gives a lower bound of 36 when sites with missing data are included in the
analysis, while the lower bound after removing those sites is only 25. However,
there are also cases where HapBound, which only runs on complete data, gives
a higher bound on cleaned-up data than did the Bafna-Bansal method on the
data with missing values included.

1.4.3 Program HapBound: speedups and extensions

The basic ideas behind program HapBound were introduced in the prior section.
However, HapBound incorporates additional ideas that make it run faster, and
often allows it to compute lower bounds that are higher than the Optimal RecMin
Bound. We first discuss the major way to speedup HapBound.

Speeding up the computation In the discussion so far, the computation
of the Optimal RecMin Bound requires that we explicitly find b(I) = H(S∗(I))
for every interval I of M . If M has m sites, this approach executes

(m
2

)
integer

programs. That number grows quadratically in m, rather than exponentially in
m, which characterizes the number of subsets that RecMin needs to examine in
order to find, and be sure it has found, the Optimal RecMin Bound. However, in
worst case, the time to solve integer programming problems grows exponentially
with increasing problem size. Thus, compared to RecMin, HapBound does a
quadratic number of (worst case) exponential-time computations, instead of a
guaranteed exponential number of simple, polynomial-time computations. It
was an empirical question whether this substitution would work to compute the
Optimal RecMin Bound efficiently in practice. The empirical results are that it
does work, but additional speedups are also desired.

The main speedup that is possible is to reduce the number of intervals that
HapBound needs to explicitly examine, and thus reduce the number of required
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ILP computations.
Suppose we find an optimal subset of sites S∗(I) for interval I = [1,m],

and the leftmost and rightmost points of S∗(I) are p and q respectively. Then
S∗(I) will also be an optimal subset for any interval I ′ contained in [1,m] but
containing [p, q]. There is no need to solve an ILP problem for that I ′, and
further, the local lower bound b(I ′) can be ignored in obtaining the overall
composite-bound. We can exclude those intervals from further consideration,
speeding up the total time needed to compute the composite bound.

Excluding the intervals that contain [p, q] is helpful, but that does not (yet)
exclude the need to examine all of the subintervals contained in [1, q − 1], [p +
1,m], [p+1, q], or [p, q−1]. But the number of those subintervals that have to be
examined can be reduced by recursively applying the same exclusion idea: For
each of the four intervals I = [1, q−1], [p+1,m], [p+1, q], and [p, q−1], find an
optimal subset S∗(I) for interval I, and then recurse on four new subintervals
defined from interval I and the span of S∗(I). In this way, over the entire
computation, fewer than

(m
2

)
intervals are explicitly examined, and fewer than(m

2

)
integer programming computations are needed.
In our simulations, this simple idea greatly reduces the number of ILP prob-

lems that need to be solved. When m and n are about the same size, we typically
need to solve about 25% of the

(m
2

)
problems, and when m is several times larger

than n, the percentage typically falls to under 5%. As a consequence, on simu-
lated problems of size of current biological interest, HapBound runs in seconds
to minutes.

1.4.4 HapBound can often compute larger bounds than the Op-
timal RecMin Bound

As described, Program HapBound is guaranteed to compute the Optimal RecMin
Bound. However, HapBound has an option (-S) that typically produces an even
higher lower bound. The option increases the running time, but not beyond the
range of practicality.

In the method described so far, if S∗(I) is an optimal subset found for interval
I, then b(I) is set to H(S∗) = n − |S∗(I)| − 1, where M is assumed to have
n distinct rows. But an increase in the local bound for I may increase the
resulting composite bound. HapBound implements a test to determine whether
the sequences in M(S∗(I)) can actually be generated on an ARG with only
H(S∗) recombinations. If not, then b(I) can be set to H(S∗(I))+ 1. HapBound
can also test if that bound is tight, or if b(I) should again be increased to
H(S∗(I)) + 2. These are small increases, but small increases in several local
bounds can result in a large increase in the overall composite bound.

Definition Given a set of sequences M(S), we say that M(S) is self-derivable
(SD) if M(S) can be generated on an ARG N with an ancestral sequence that
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is in M(S), and where all of the node labels in N are in M(S).
That is, M(S) is self-derivable if the sequences in M(S) can be generated

without generating any sequences not in M(S). Not every set of sequences is
self-derivable.

Lemma 1.4.2 Given a subset of sites S in M , if the sequences M(S) can be
generated on an ARG using exactly H(M(S)) recombination nodes, then M(S)
must be self-derivable.

We will not prove Lemma 1.4.2 for an arbitrary subset S, but only for a
subset that is minimum S∗(I) for some interval I. The proof is easier with this
restriction, and we will only apply Lemma 1.4.2 in the situation when S is a
minimum S∗(I) for an interval I.

CS224 HW problem: Prove Lemma 1.4.2.
The converse of Lemma 1.4.2 does not hold in general, but does hold if we

modify the definition of an ARG to require that at most one site is allowed to
label any edge in the ARG.

Lemma 1.4.2 is useful because it says that if we determine that in an interval
I, the set of sequences M(S∗(I)) is not self-derivable, then b(I) should be set to
H(M(S∗(I))) + 1, rather than to H(M(S∗(I))). We next discuss how we can
determine whether or not a set of sequences is self-derivable.

A first algorithm to test Self-Derivability: We can test whether M(S)
is self-derivable with an an algorithm that runs in time that is polynomial in n,
but exponential in m (in worst case). However, it is observed to be practical for
large data sets of current interest. To describe the algorithm, we first consider
a simplified situation.

When only recombinations are permitted, the test for self-derivability of a
set of sequences M(S) from a fixed pair of ancestral sequences, has an efficient
solution [14]: To start, a “reached set” of sequences consists of the two ancestral
sequences alone. Then at each step, we try to expand the reached set by finding
a pair of sequences (f, g) in the reached set that can recombine to create a
sequence h that is in M(S) but not yet in the reached set. This is repeated until
either the reached set contains all the sequences in M(S), or until no further
expansion of the reached set is possible. In the first case, M(S) is generated
by recombinations, starting from an ancestral pair, and only using sequences in
M(S). In the second case, it is not hard to prove that M(S) cannot be generated
from the chosen ancestral pair, only using recombinations and only generating
sequences in M(S). This algorithm can be sped up by preprocessing [14], but
clearly only takes polynomial time.

The above algorithm, for the simplified situation where there are two an-
cestral sequences and no mutations are allowed, is not a test for whether M(S)
self-derivable. To become a test, it must be modified so that there is only one
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ancestral sequence rather than a pair, and so that site mutations are allowed.
The key insight for this modification is that if M(S) is self-derivable, then for
every site i ∈ S, during any self-derivation of M(S), a mutation at site i must
occur in some sequence that is definitely in M(S) and generate another sequence
that is definitely in M(S). Therefore those two sequences differ by exactly one
site, namely site i. (It also follows that if there is a site i such that no pair of
sequences in M(S) differ only at i, then M(S) is not self-derivable.)

To exploit this key insight, let MUTi be the set of sequence pairs that dif-
fer at exactly site i. We modify the algorithm for the simplified situation by
now starting the reached set with just a single ancestral sequence. We also al-
low the reached set to expand in two different ways. As before, the reached
set can expand by a recombination of two sequences in the reached set if the
recombination creates a sequence in M(S) that is not yet in the reached set.
But the reached set can also be expanded to include a sequence h in M(S), if
some sequence f is already in the reached set, and (f, h) is in MUTi for some
i, where no prior expansion of the reached set used a pair in MUTi. Clearly, if
M(S) is self-derivable starting from the chosen ancestral sequence, then there is
a generation of M(S) by this algorithm, where for every site i in S, exactly one
pair in MUTi is used to expand the reached set.

The algorithm for the self-derivability test tries all sequences in M(S) as
the ancestral sequence, and all ways to choose exactly one pair from each set
MUTi. The number of choices is n×

∏
i∈S |MUTi| which is bounded by n×[n2 ]m,

but is generally much smaller. Further, some combinations of choices can be
immediately ruled out and additional effective heuristics reduce the number of
choices (details left to the reader).

A second algorithm to test Self-Derivability: It is also possible to test
for self-derivability with a dynamic programming algorithm that has worst-case
running time bounded by a function that is exponential in n and polynomial in
m.

Let K denote a subset of the n rows in M(S), and let SD(K) be a boolean
variable that will be set to TRUE if the sequences in K are self-derivable, and
will be set to FALSE otherwise. To start, we set SD(K) to TRUE for every
singleton set K, i.e., if |K| = 1. Then in order of size, we consider each subset
K, and set SD(K) to TRUE if there is a sequence s ∈ K such that SD(K−{s})
has been set TRUE and either of the following conditions holds:

1) s can be created by a recombination of two sequences in K − {s}, or
2) s differs from some sequence in K−{s} by a single mutation at a site c and

all of the sequences in K − {s} have the same state at site c. The last condition
ensures that a mutation at site c has not yet been used in the generation of
K − {s}.

A crude analysis, establishes that the worst-case time for this method is
O(n2m22n) although the polynomial terms can be reduced with the use of the ap-
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propriate preprocesing and data structures [14]. The correctness of this method
is based on the observation that if K is self-derivable in an ARG N , then there
is at least one sequence s ∈ K that is not further mutated or used in a recom-
bination. Therefore, the removal of the leaf labeled s, and its parent if it is also
labeled s, from N , leaves an ARG that self-derives K − {s}. A full proof of
correctness and time analysis is left to the reader. In summary we have

Theorem 1.4.3 Let M(S) be a set of sequences with n taxa and m sites. The
self-derivability can be tested in time that is polynomial in n and exponential
in m, or that is polynomial in m and exponential in n. Further, if M(S) is
self-derivable, then the two algorithms produce an ARG that self-derives M(S).

Further Increases The self-derivability test is used to determine if the set of
sequences M(S∗(I)) can be generated on an ARG that has only H(M(S∗(I))
recombination nodes. If not, then there cannot be any ARG N that gener-
ates M(I) using only H(M(S∗(I)) recombination nodes, because N can be
modified to generate M(S∗(I)) using no additional recombinations. Therefore,
if M(S∗(I)) is not self-derivable, then the local bound b(I) should be set to
H(M(S∗(I)) + 1 rather than to H(M(S∗(I)).

To test if a local bound should be increased by two, we note that this is
the case when M(S) is not self-derivable, and the inclusion of one new sequence
not in M(S) is also not sufficient to allow the expanded set to be self-derivable.
If one new sequence did allow the expanded set to be self-derivable, then the
new sequence must either be generated by the recombination of two sequences
in M(S), or must differ from a sequence in M(S) at exactly one site in S.
There are only a polynomial number of such candidate sequences, and we can
efficiently generate each new candidate sequence in turn and test the resulting
set for self-derivability. If the sequences are not self-derivable in any of these
tests, then the local bound should be increased by two. We can continue in this
way to determine if the local bound should be increased by three, etc. but the
time for each test increases too fast for practical implementation.

Program HapBound, with option -S, tests each minimum S∗(I) subset it
finds, to see if M(S∗(I)) is self-derivable, and if not, to see if the local bound
should be increased by one or by two. For the data sets that we have examined,
the extra computation time for the -S option does not reduce the practicality
of the algorithm, and frequently results in a lower bound on Rmin(M) that is
higher than the Optimal RecMin Bound (some comprehensive test results are
shown in the next section). For example, for the sequences shown in Figure ??
(on page ??) the Optimal RecMin Bound is two, but HapBound -S returns the
value of three.

Program HapBound has another option (-M), that is also based on the self-
derivability test but is more time consuming, and it typically increases the lower
bound by only a small amount. Still, for small data sets, Program HapBound
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with option -M has produced higher lower bounds than any other lower bound
program. An example will be shown in the next section. See [27] for idea behind
the -M option.

1.4.5 Lower bounds for the LPL and ADH data sets

As an illustration of the efficiency and efficacy of program HapBound, we discuss
here the SNP data from [5]. This seminal data is from the LPL locus in humans
and contains 88 rows and (coincidently) 88 sites before removing sites with
missing or non-SNP data. That data set was also examined in [19]. (The first
paper uses 42 sites from the full data in their recombination analysis, while
the second paper uses 48 sites. For clearer comparison, we discuss results that
included the same 48 sites.)

Using CPLEX to solve the ILP problems, HapBound computed the Optimal
RecMin Bound of 75 in 31 seconds, and HapBound -S computed a higher bound
of 78 in 1,643 seconds, on a 2 GHz machine. Using the GNU ILP solver on
the same machine, the times were 871 and 3,326 seconds respectively. Program
RecMin with the default settings of s = 8 and w = 12 produced the lower bound
of 59 in 3 seconds. It found the Optimal RecMin Bound of 75 with parameters
s = w = 25, in 7,944 seconds. As mentioned earlier, a user would not know that
this was the Optimal RecMin Bound. To simulate what the user would need to
do in order to be sure of getting the Optimal RecMin Bound, we set s = w = 48
but RecMin did not finish within five days of execution. The analysis in [19],
based on RecMin, reports a lower bound on Rmin(M) for this data of only 70,
rather than 75. This is due to running RecMin with parameters that are too low
[21]. This illustrates a central point of this section, that with RecMin one does
not know which parameter settings are high enough, and illustrates the utility of
program HapBound. For comparison, the HK bound is only 22, illustrating the
major advance that RecMin made, and the importance of using it or HapBound
in place of the HK bound2.

As mentioned above, HapBound has another option, the -M option, that runs
efficiently on moderate size data sets and produces the highest lower bounds on
those data. For example, the benchmark data set [15] for the ADH locus in
humans (shown in Figure 1.5) has 11 sequences and 43 sites. Song and Hein [25]
established that Rmin(M) is exactly 7 for this data. The lower bound method

2Additional comparisons of the HK bound to the lower bound produced by RecMin (with the
default parameter settings) [3] further demonstrate the weakness of the HK bound, particularly
as the recombination rate increases. For example, averaged over 100,000 datasets with a high
level of recombination, the mean RecMin lower bound is 36.80, while the mean HK bound is
12.07. The Bafna-Bansal lower bound [3] (discussed on page 22) which can never be larger
than the Optimal RecMin Bound gave mean value of 49.69 on the same 100,000 datasets. We
don’t know what the average Optimal RecMin Bound would be on that data, but it would be
at least as high as 49.69.
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in [25] has never been implemented, but was manually applied to this data,
producing a lower bound of 7. HapBound -M ran in about three seconds on
this data and also computed the lower bound of 7. The improved History lower
bound developed in [1, 3], which we will discuss in Section ??, also produces a
lower bound of 7. All other implemented lower bound methods that we know of
(nine in total) produce lower bounds of only 5 or 6.

1.4.5.1 The human LPL data in more detail

Here we report on the observed deviation between the lower bounds on Rmin(M),
computed by HapBound, and the number of recombination nodes used in ARGs
that generate data sets that come from human LPL data, reported in [20]. We
will discuss the methods used to construct those ARGs in Chapter 2. Unless the
lower bound exactly matches the number of recombination nodes in the corre-
sponding ARG, we do not know Rmin(M) exactly, and so we refer to the number
of recombination nodes used in an ARG as an “upper bound” on Rmin(M).

The sequences examined were sampled from three populations—namely, Jack-
son, North Karelia, and Rochester populations. In the analysis, sites with miss-
ing or non-SNP data was removed, ignoring insertions/deletions, unphased sites,
and sites with missing data. This is the treatment of the data that was used
in [20]. Following Myers and Griffiths, sites of the LPL data were partitioned
into three regions (c.f. Table 5 of [19]). It has been suggested that region 2
corresponds to a recombination hotspot[?].

The left hand side of Table 1.1 gives a summary of the lower bounds produced
by HapBound -S -M, and of the upper bounds on Rmin, i.e., the number of re-
combination nodes actually used in ARGs constructed for the data. The three
populations were considered separately as well as together. HapBound -S and
HapBound -S -M produced similar lower bounds. The only difference was in re-
gion 2 of Jackson population; HapBound -S produced 9, whereas HapBound -S -M
produced 10. The lower and upper bounds are generally quite close. In particu-
lar, they exactly match in each of the three regions for the Rochester population,
and hence we know that Rmin(M) exactly for those regions. Moreover, the
lower bounds computed by HapBound were generally higher than the Optimal
RecMin Bound. Optimal RecMin bounds are shown on the right hand side of
1.1 for comparison3.

3This table differs from Table 5 of [19], because Myers and Griffiths did not remove inser-
tion/deletion sites when they did their analysis.
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HapBound -S -M The Optimal RecMin Bound
Population reg 1 reg 2 reg 3 reg 1 reg 2 reg 3
Jackson 11 (13) 10 (10) 13 (16) 10 9 12
N. Karelia 2 (2) 15 (17) 8 (10) 2 13 7
Rochester 1 (1) 14 (14) 8 (8) 1 12 7
All 13 (14) 21 (23) 25 (31) 12 21 22

Table 1.1: Lower and upper bounds for the LPL data, where the sites are par-
titioned into three regions. The numbers in parentheses are upper bounds, i.e.,
the actual number of recombination nodes used in ARGs constructed for the
data. Lower bounds on the left hand side were computed using HapBound -S
-M. The exact values of Rmin for parts of this data will be reported in Section
??.
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Chapter 2

General ARG Construction
Methods

In the previous chapter we considered the problem of constructing a MinARG,
but only for the special case that there is a galled-tree for the input M . In this
chapter we consider the problem of constructing good ARGs and MinARGs for
arbitrary input M .

The problem of constructing a MinARG for a set of sequences M , or even
of computing Rmin(M), is NP-hard. Thus, we do not have, nor do we expect
to have, a worst-case polynomial-time algorithm for those problems. Instead,
we have heuristic algorithms that empirically run fast (and sometimes can be
made to run in worst-case polynomial time) that produce ARGs with a number of
recombination nodes “close” to Rmin(M) on meaningful data. When comparing
the number of recombination nodes in those ARGs to the highest available lower
bound on Rmin(M), we see that those methods often, but not always, produce
MinARGs. We also have exponential-time or superexponential-time algorithms
that compute Rmin(M) exactly and that build MinARGs; these methods are
practical for different, but generally small-sized, ranges of biological data. In this
chapter, we will discuss two examples of the first kind of algorithm, implemented
into programs SHRUB [27] and mARGarita [17]; and three examples of the
second kind of algorithm, two of which have been implemented into programs
Beagle [16] and RecMinPath [24, 26]. We will also mention two related methods
and will discuss an extension of SHRUB to handle the case of gene-conversion
[22, 23].

The ideas in SHRUB are related to a lower bound on Rmin(M) called the
History Bound. So after discussing SHRUB, we will discuss the History Bound,
and another related lower bound, called the Forest Bound.

33
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2.1 Building a MinARG in provably exponential time

Here we first establish the theoretical result that a MinARG for any input M
can be constructed in time that is bounded by an exponential function of the
size of M . While an exponential function grows very rapidly, even this time
bound was not obvious when the construction of ARGs was first studied. That
is reflected by the super-exponential time required by the first method [24, 26]
that is guaranteed to find a MinARG (a method that we will detail in Section
??), and the question posed in [2] of whether exponential-time MinARG methods
are possible. As stated in [2]: “This problem is computationally challenging and
has resisted efforts for even an exponential time algorithm.”

Theorem 2.1.1 A MinARG for any input M of n taxa and m sites, can be con-
structed by a method whose running time is bounded by an exponential function
of nm, the size of M .

Proof let N be a MinARG for M . We can assume that every node in N has
a distinct label. N has at most m tree nodes since each is the head of an edge
labeled by a distinct site of M . Also, R(N ), the number of recombination nodes
in N , is at most nm/2 since by Theorem ?? (page ??) M can be generated on an
ARG with only nm/2 recombinations. Therefore, the number of interior nodes
in N and the number of distinct labels on those nodes is bounded by nm + m.
So the enumerative algorithm in Figure 2.1 certainly finds a MinARG for M .

Now we will analyze the running time of Algorithm MinARG. The node labels
in N are selected from the set of all 2m binary sequences of length m. It follows
that the set of distinct node labels in N is one of

( 2m

R(M)

)
sets. Now

( 2m

R(M)

)
≤

( 2m

nm)

)
≤ 2nm2 . Also,

∑k=R(M)
k=0

(2m

k

)
≤

∑k=R(M)
k=0 2mk ≤ R(M)2mR(M) ≤ nm2nm2

.

So Algorithm MinARG examines at most nm2nm2 subsets of labels. When a
subset K is examined, Algorithm MinARG tests whether K is self-derivable. By
Theorem 1.4.3 (page 28), each self-derivability test can be done in O(n2m22n)
time (although the polynomial terms can be reduced), so a MinARG for M can
be found in O(n3m32n2m2) time.

The time analysis shown in the proof of Theorem 2.1.1 is very crude and the
algorithm can be sped up in several ways. The point is simply to show that it
is possible to find a find a MinARG for M whose worst case running time is
bounded by an exponential function of the size of M . In the remainder of this
chapter, we present several methods to build ARGs or MinARGs that are more
practical than Algorithm MinARG, or that have some additional conceptual
value.
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Algorithm MinARG (M)
Let P(m) be the set of all binary sequences of length m
for (k = n . . . nm + m) do

for each subset K of P(m) that has size k and includes M do
Test if K is self-derivable.
If it is, then stop and output the ARG constructed in that test.

endfor
endfor
Figure 2.1: Algorithm MinARG is guaranteed to find a MinARG for M .

2.2 ARG construction methods that destroy M

Theorem 2.1.1 shows that a MinARG for any M can be constructed in exponen-
tial time, but that is often too slow for practical construction. In this section we
develop a different approach to ARG construction. The approach will be used
in several practical methods for finding good ARGs (but ones that are not guar-
anteed to be MinARGs), and in one program that is guaranteed to construct
MinARGs, and is practical on small to moderate sized data.

Many ARG construction methods build ARGs backwards in time, from the
leaves of the ARG up to the root1. The primitive operations in those methods
act on the input sequences, M , by removing (or “destroying”) rows or columns
of the matrix M , until it consists of a single row with no sites. An ARG N
for M can be built in parallel with the destruction of M by associating each
destructive step on M with a constructive step that adds to the growing ARG
N . This is a very common approach to ARG construction (and in reasoning
about ARGs), so it is important to clearly understand how destructive operations
on M translate into constructive operations for an ARG. In general there are
three types of destructive operations, and we will describe each of them in this
chapter. However, it is instructive to start with the simplest case, when M has
a perfect-phylogeny with all-zero ancestral sequence. In that case, only two of
the destructive operations are needed. So we begin with that case.

2.2.1 The perfect-phylogeny case with all-zero ancestral sequence

Matrix M has n rows and m columns, and each row f in M is associated with the
singleton set {f}. Since the all-zero sequence is the required ancestral sequence,
we assume that it is in M , adding it to M if it is not originally in M . As the
matrix M is destroyed, we let M̃ denote the remaining submatrix of M . Initially,
M̃ = M . At any point in the destructive process, each row in the current M̃ will
be associated with a subset of taxa, and those sets will partition the original n
taxa of M . The two destructive rules remove columns and rows as follows:

1This follows the way that trees and ARGs are thought of, analyzed, and constructed in
coalescent theory [11, 29].
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Algorithm Clean (M)
Set M̃ to M .
Execute Rules Dc and Dr on M̃ in any order until neither rule applies.

Figure 2.2: Algorithm Clean

Rule Dc: If a column c of M̃ contains at most one entry with value
1, then remove column c from M̃ .

Rule Dr: If two rows in M̃ are identical, let K be the union of the
two sets of taxa associated with those two rows. Then merge the two
rows (i.e. remove one) and associate the merged row with the set K.

Assuming there is a perfect-phylogeny with all-zero ancestral sequence for
M , the Algorithm Clean, shown in Figure 2.2, reduces M to a matrix containing
a single row with no sites.

Note that the execution of Rule Dc may create the conditions where Rule Dr
applies, and the converse is also true. See Figures 2.4 through 2.12. Since Rules
Dc and Dr can be applied in any order, and to different columns and rows, it is
conceivable that different executions of Algorithm Clean could produce different
results. However, that is not true.

Lemma 2.2.1 The resulting submatrix M̃ of M created by running Algorithm
Clean on M is invariant over all executions of Algorithm Clean.

Proof Consider two executions of Algorithm Clean. Let c be a column
removed in some execution of Algorithm Clean, and let P be the series of opera-
tions before column c is removed. Clearly, any permutation of the operations in
P that could be executed by Algorithm Clean would also lead to the conditions
where Rule Dc applies to c. Moreover, the insertion of any additional operations
into P (or a permitted permutation of P ) that remove additional columns or
merge additional pairs of rows still lead to the conditions where Rule Dc applies
to c. So, in any execution of Algorithm Clean where all of the operations in P
are applied, column c will eventually be removed. A similar argument can be
made for any pair of rows that are merged.

So we will prove, by induction on the length of P , that every execution of
Algorithm Clean will apply all the operations in P . Clearly, the first operation
in P must be an application of Rule Dc or Dr that applies to an original
column c′ or original pair of rows {f, g} in M . Two rows that are identical
remain identical no matter what columns are removed, and a column with at
most one entry of value 1 continues to have that property no matter what rows
are merged. So the first rule applied in P will also be applied somewhere in
any other execution of Algorithm Clean. So the basis of the inductive claim
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is established. Next, assume that the inductive claim is true for P of length
k > 1, and consider P of length k +1. By the inductive hypothesis, in any other
execution of Algorithm Clean, the first k operations of P will be applied. So, as
argued above, the conditions required for the application of the operation k + 1
of P will eventually be established in any execution of Algorithm Clean, and so
that operation will eventually be applied.

The parallel construction of a perfect-phylogeny To construct a perfect-
phylogeny T for M with all-zero ancestral sequence (assuming one exists), we
start with a forest F̃ containing one node v and one unlabeled edge directed into
v for each taxon f in M ; we associate the singleton set {f} with node v. Then
the forest grows and coalesces to a single tree as Algorithm Clean(M) is executed.
At any point in construction of T , we say that a node v in the growing forest F̃
is associated with the set of taxa that label the leaves in the subtree rooted at v.
Two nodes might be associated with the same subset of taxa, but if this happens
then one of the nodes will be an ancestor of the other. Therefore, for any subset
of taxa that is associated with some node(s) in F̃ , there is a well-defined most
ancestral node that is associated with that subset. The constructive rules will
easily imply (inductively) that if any row in the current M̃ is associated with a
set of taxa K, then some node in the current F̃ will also be associated with K.

Each execution of destructive Rule Dc or Dr triggers a parallel execution of
constructive Rule Cc or Cr respectively. Those constructive rules are:

Rule Cc: If column c has exactly one entry with value 1, then let r̃
be the row in M̃ that contains the only entry of value 1 in column
c. Let K be the subset of taxa associated with row r̃ in M̃ .

If |K| = 1 (so that r̃ is an original row in M), let e be the (existing)
unlabeled edge in F̃ directed into the leaf for r̃. Then add the label
c to edge e.

If |K| > 1, then create a new node v and an edge directed from v into
the most ancestral node u in F̃ associated with K, and then label
edge (v, u) with c.

Rule Cr: Suppose the two identical rows in the current M̃ are
associated with the subsets of taxa K and K′, and let v and v′ be
the most ancestral nodes in F̃ associated with K and K′ respectively.
Then merge nodes v and v′ into a single node.

Note that Rule Cc corresponds to creating a mutation event in the growing
F̃ , and that RuleCr corresponds to creating a coalescent event in the growing
forest. Neither of these rules corresponds to creating a recombination event.
Later, we will add a third rule that will do exactly that. Note also that if Rule
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Dc removes a column that only contains zeros, then Rule Cc does not apply
and no change to F is made.

Algorithm Clean-Build, shown in Figure 2.3 completely destroys M and
builds a perfect-phylogeny T for M with all-zero ancestral sequence, if one exists.
Otherwise, it constructs a forest of two or more trees.

Algorithm Clean-Build (M)

while (Rule Dc or Dr applies) do
if (Rule Dc applies) then

execute Rules Dc and Cc.
endif

if (Rule Dr applies) then
execute Rules Dr and Cr.

endif
endwhile

return the resulting matrix M̃ and the forest (possibly a single tree) F̃ .

Figure 2.3: Algorithm Clean-Build

A complete example of the execution of Algorithm Clean-Build in the case
that M has a perfect-phylogeny with all-zero ancestral sequence, is shown in
Figures 2.4 through 2.13.

Another view of Algorithm Clean-Build There is another helpful way to
view Algorithm Clean-Build. Since M has a perfect-phylogeny with all-zero
ancestral sequence, any submatrix M̃ of M , and in particular any submatrix
created by Algorithm Clean-Build, will also have a perfect-phylogeny with all-
zero ancestral sequence. In general, let T̃ denote the unique perfect-phylogeny
for M̃ with all-zero ancestral sequence. Since any row r̃ of M̃ is represented by

1 2 3 4
r1 0 0 1 0
r2 0 0 1 0
r3 1 1 0 1
r4 1 1 0 0
r5 1 0 0 0

(a) The original matrix
M

5r r r r r21 3 4
(b) The initial forest F̃

Figure 2.4: Matrix M has a perfect-phylogeny. Site 4 has only one entry of 1
(in row r3), so Rules Dc and Cc can be applied. See Figure 2.5 for the results.
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1 2 3
r1 0 0 1
r2 0 0 1
r3 1 1 0
r4 1 1 0
r5 1 0 0

(a) M̃ after removal
of site 4.

4

r r r r r21 3 4 5
(b) The modified F̃

Figure 2.5: Rule Dc removed site 4 from the matrix in Figure 2.4. Rule Cc
added label 4 to the edge directed into leaf r3. Now rows r1 and r2 are identical,
so Rule Dr can be applied. See Figure 2.6 for the results.

1 2 3
{r1, r2} 0 0 1

r3 1 1 0
r4 1 1 0
r5 1 0 0

(a) The modified M̃

4

r r r r r21 3 4 5
(b) The modified F̃

Figure 2.6: Rule Dr merged rows r1 and r2 of the matrix in Figure 2.5 into one
row labeled {r1, r2}. Rule Cr merged the parents of leaves r1 and r2 into single
node associated with the set {r1, r2}. As a result, site 3 now has only a single
entry with value 1 (in the row for {r1, r2}), so Rules Dc and Cc can be applied.
See Figure 2.7 for the results.

1 2
{r1, r2} 0 0

r3 1 1
r4 1 1
r5 1 0

(a) The modified M̃

3

r r r r r21 3 4 5

4

(b) The modified F̃

Figure 2.7: Rule Dc removed site 3 from the matrix in Figure 2.6. Rule Cc
created an edge directed into the most ancestral node associated with set {r1, r2},
and labeled that edge with site 3. Note that the new node is now the most
ancestral node associated with {r1, r2}. Rows r3 and r4 are now identical, so
Rules Dr and Cr can be applied. See Figure 2.8 for the results.
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1 2
{r1, r2} 0 0
{r3, r4} 1 1

r5 1 0
(a) The modified M̃

3

r r r r r21 3 4 5

4

(b) The modified F̃

Figure 2.8: Rule Dr merged rows r3 and r4 in the matrix from Figure 2.7 into
one row associated with {r3, r4}. Rule Cr merged the parents of r3 and r4 into
a single node associated with the set {r3, r4}. Site 2 now only contains one entry
with value 1, so Rules Dc and Cc can be applied. See Figure 2.9 for the results.

1
{r1, r2} 0
{r3, r4} 1

r5 1
(a) The modified

M̃

2

r r r r r21 3 4 5

4

3

(b) The modified F̃

Figure 2.9: Rule Dc removed site 2 from the matrix in Figure 2.8. Rule Cc
created a new node and an edge directed into the most ancestral node associated
with the set {r3, r4}, and labeled that edge with site 2. The new node is now
the most ancestral node associated with {r3, r4}. Rows {r3, r4} and r5 are now
identical, so Rules Dr and Cr can be applied. See Figure 2.10 for the results.
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1
{r1, r2} 0

{r3, r4, r5} 1
(a) The modified M̃

2

r r r r r21 3 4 5

4

3

(b) The modified F̃

Figure 2.10: Rule Cr merged rows associated with {r3, r4} and {r5} from Figure
2.9 into one row labeled {r3, r4, r5}. Rule Cr merged the parents of leaf r5 and
the most ancestral node associated with {r3, r4}. Site 1 now has only a single
entry with value 1, so Rules Dc and Cc can be applied. See Figure 2.11.

{r1, r2}
{r3, r4, r5}

(a) The modified M̃

1

r r r r r21 3 4 5

4

3 2

(b) The modified F̃

Figure 2.11: Rule Dc removed site 1 from the matrix in Figure 2.11. Rule Cc
created a new node and an edge directed into the most ancestral node associated
with the {r3, r4, r5}, and labeled the edge with site 1. All entries in M have now
been removed, but two rows remain, labeled {r1, r2}, and {r3, r4, r5}. These
rows are identical, so Rules Dr and Cr can be applied. See Figure 2.12 for the
results.
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{r1, r2, r3, r4, r5}
(a) The modified M̃

3

r r r r r21 3 4 5

4

2

1

(b) The modified F̃

Figure 2.12: Rule Dr merged the two rows of Figure 2.11 into a single row
labeled {r1, r2, r3, r4, r5}. Rule Cr merged the most ancestral node associated
with {r3, r4, r5} and the most ancestral node associated with {r1, r2}. Matrix
M has now been reduced to a single row, associated with all of the taxa, and
with no sites. The construction now consists of a single tree whose root node
is associated with all of the taxa. The tree is a perfect-phylogeny for M . See
Figure 2.13.
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Figure 2.13: The perfect-phylogeny T for M with all of the node labels.
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a leaf v in T̃ , if r̃ is associated with a subset K of taxa of M , we also associate
K leaf v. The following two lemmas are easy to establish by inducting on the
number of rules applied in Algorithm Clean-Build.

Lemma 2.2.2 In Algorithm Clean-Build when Rule Dc applies to a site c in
M̃ , the edge labeled c in T̃ must be directed into a leaf of T̃ .

Lemma 2.2.3 In Algorithm Clean-Build, when Rule Dr merges two rows of
M̃ that are associated with subsets of taxa K and K′, there must be two sibling
leaves in T̃ that are associated with K and K′ respectively. Further, the directed
edges into those two sibling leaves must be unlabeled.

Given Lemmas 2.2.2 and 2.2.3, an insightful way to view the action of Al-
gorithm Clean-Build is with the following thought experiment. Imagine that we
know the unique perfect-phylogeny T for M , with all-zero ancestral sequence.
Imagine also that for every destructive operation on M , we will execute a parallel
destructive operation on T . At the start of an execution of Algorithm Clean-
Build, each leaf in T will be associated with the taxon that labels it. Then, in
the thought experiment, whenever Rule Dc applies to a site c in M̃ , remove
the label c from the edge (into a leaf) in T̃ labeled by c. That edge exists by
Lemma 2.2.2. Also, whenever Rule Dr applies to two rows in M̃ , let v and v′ be
the sibling leaves in T̃ associated with sets K and K′. Those sibling leaves exist
by Lemma 2.2.3. Then in the thought experiment, associate the parent node of
leaves v and v′ with K ∪ K′, and remove the v and v′ and the edges into them
from T̃ .

Figure 2.14 shows the seven steps of this thought experiment corresponding
to the first seven steps in the destruction of M shown in Figures 2.4 to 2.11. The
next step would remove the two leaves and label the one remaining node with
the full set of taxa of M . Lemmas 2.2.2 and 2.2.3, also lead to the following

Theorem 2.2.1 Let T be the unique perfect-phylogeny for M with all-zero an-
cestral sequence. Let M̃ be a submatrix of M created during an execution of
Algorithm Clean-Build. Then T̃ is is a subtree of T , rooted at the root node of
T .

The point of the thought experiment is that the (assumed) known T is de-
stroyed from the leaves upward, in parallel with the destruction of M , and in
parallel with the construction of unknown T , by Algorithm Clean-Build. When
M is reduced to a single row with no sites, T is reduced to a single node with no
edges, and that node is associated with the set of all the taxa in M . Essentially,
the forest construction part of Algorithm Clean-Build constructs edges and la-
bels of the perfect-phylogeny corresponding to edges and labels of T that the
destructive thought experiment removes. The actual correspondence is left to
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the reader but the idea is simple: as columns and rows of are removed from M ,
edge labels and sibling edges are removed from the original T , and corresponding
labels, sibling edges and labeled edges are added to the growing F̃ in Algorithm
Clean-Build.

Formal Correctness Now we can formally prove the correctness of Algorithm
Clean-Build.

Theorem 2.2.2 The set of sequences M can be derived on a perfect-phylogeny
T with all-zero ancestral sequence if and only if Algorithm Clean-Build reduces
M to a single row containing no sites; and if and only if the forest constructed
by the algorithm is the perfect-phylogeny T for M .

Proof We first prove the “only if” side of the theorem, so suppose that
M can be derived on a perfect-phylogeny T with all-zero ancestral sequence.
Clearly, the theorem holds if T contains only a single node, so that the corre-
sponding M contains a single row with no entries; or if T contains only a single
labeled edge, so M contains a single row and a single column with an entry of
value 1.

More generally, note that if M has been reduced to a single row, but there are
sites remaining, those sites will be removed by application of Rule Dc. So, if M is
reduced to a single row, it can be reduced to a row containing no sites. Therefor,
for contradiction, assume that there is a counter-example to the theorem, i.e., a
matrix M that can be derived on a perfect-phylogeny T with all-zero ancestral
sequence, but Algorithm Clean-Build does not reduce M to a single row. Then
there is a counter-example with the minimum number of sites, and among such
counter-examples, there is one with a minimum number of taxa. Let M be such
a minimal counter-example. Now consider the deepest leaf node v in the perfect
phylogeny T for M and suppose it is labeled by taxon f . Recall that all interior
nodes of a perfect-phylogeny must have degree at least three, so the parent of
v must have at least two children. Therefore, v has a sibling v′ which is also a
leaf node. Let f ′ be the taxon labeling v′.

If the edge into v or v′ (say v) is labeled by a site c, then site c in M has only
a single 1 entry and Rule Dc applies. Removing site c from M creates a matrix
M̃ , and removing label c from the edge in T into v creates a perfect-phylogeny
T̃ for M̃ . M̃ has fewer sites than M , so the theorem applies to M̃ . Therefore,
Algorithm Clean-Build reduces M̃ to a single row, showing that M also reduces
to a single row.

If neither edge into v or v′ is labeled by a site, then the two rows for taxa f
and f ′ are identical and Rule Dr applies. Merging the rows for f and f ′ creates
a matrix M̃ ; removing v′ from T and the edge into v′, and labeling v with {f, f ′}
creates a perfect-phylogeny for M̃ . M̃ has fewer rows than M , so the theorem
applies to M̃ , and so Algorithm Clean-Build reduces M̃ , and M , to a single row.
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Figure 2.14: Seven steps of the thought experiment corresponding to the first
seven destructive operations on M shown in Figures 2.4 through 2.12. The last
step would merge the remaining two leaves into a single node associated with
all the taxa in M .



46 CHAPTER 2. GENERAL CONSTRUCTION

We have therefore proved that if M can be derived on a perfect-phylogeny T
then Algorithm Clean-Build reduces M to a single row with no sites.

In a similar way, we can prove by contradiction that if there is a perfect-
phylogeny T for M , with all-zero ancestral sequence, then Algorithm Clean-Build
will construct T . But it is more insightful to understand constructively that as
M is destroyed, the algorithm builds a set of trees (a forest) that generate the
sequences defined by submatrices of M of increasing size. In particular, at any
point in the algorithm, the submatrix consists of those rows and those columns
that have been involved in an application of Rule Dc or Dr. Therefore, when
M is reduced to a single row with no sites, the set of trees consists of a single
tree, i.e., the unique perfect-phylogeny T for M . In more detail, assuming that
there is a perfect phylogeny T for M , with all-zero ancestral sequence, each
application of Rule Cc or Cr identifies a forced feature (a new edge label, a new
labeled edge, or the merging of two nodes) of the unique perfect-phylogeny T
for M . That is what is established by Lemmas 2.2.2 and 2.2.3. For example,
if site c in the current M̃ has only a single 1 (so Rule Dc applies) and the 1 is
in row r̃ associated with the subset of taxa K, then in T there must be an edge
into a node associated with K, and that edge must be labeled with site c. Hence
Rule Cc is forced. Similarly, when Rule Dr applies, Rule Dr is forced. So, as
M is destroyed, the algorithm constructs features of T that are forced, finishing
the proof of the only-if side of the theorem.

To prove the “if” side of the theorem, suppose that Algorithm Clean-Build
reduces M to a single row with no sites. As above, as M is destroyed, a perfect-
phylogeny T for M is constructed, so certainly a perfect-phylogeny for M exists.

2.2.2 The case of the root-unknown perfect-phylogeny

Above we assumed that M can be derived on a perfect-phylogeny with all-zero
ancestral sequence. It is easy to extend that to the case of a different known
ancestral sequence in the same way that the perfect-phylogeny problem with any
known ancestral sequence can be reduced to the case of the all-zero ancestral
sequence (see Section ??). But if no ancestral sequence is known, then we modify
the approach as follows. First assume that no column in M contains only zeros
or only ones. Next, modify Rule Dc so that column c is removed if it contains
only a single 1 or only a single 0. Such a column is called uninformative. The
parallel Rule Cc is not changed; the edge created is labeled with site c. However,
the ancestral state of c is set whenever Rule Cc is applied: If column c contains
only a single 1, the ancestral state of c is set to 0; if column c only contains a
single 0, the ancestral state of c is set to 1. Rules Dr and Cr are not changed.
When these variants of Rules Dc and Cc are used in Algorithms Clean and
Clean-Build, the resulting algorithms will be called RU-Clean and RU-Clean-
Build.
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2.2.3 The general ARG case

We now move from the case of perfect-phylogeny to ARGs that must contain
recombination nodes. We again assume that the ancestral sequence is required
to be the all-zero sequence. By Theorem 2.2.2, if Algorithm Clean-Build reduces
M to a single row with no sites, then M can be derived on a perfect-phylogeny
with all-zero ancestral sequence. Hence if there is no such perfect-phylogeny for
M , then any execution of Algorithm Clean-Build must reach a point where M̃
still contains entries, but neither rules Dc nor Dr apply. Let F̃ be the forest
constructed by Algorithm Clean-Build at that point; let D be the set of sites
removed from M ; and let R be the set of taxa involved in any application of
Rule Dr, i.e., the set of rows in M that were part of some merge(s). M(D)
then represents the submatrix of M restricted to the sites in D. Application of
Lemmas 2.2.2 and 2.2.3 imply the following

Lemma 2.2.4 The set of sequences in M(D) can be derived on the unique forest
F̃ of perfect-phylogenies, each with all-zero ancestral sequence.

As an example, consider the matrix M and the ARG for it shown in Figure
2.15. Since sites r2 and r4 are incompatible (after adding the all-zero ancestral
sequence to M), there is no perfect-phylogeny for M with all-zero ancestral
sequence. Algorithm Clean-Build removes columns 1 and 3 and merges rows r3

and r4. The resulting matrix M̃ is shown in Figure 2.16 a); the forest F̃ is shown
in Figure 2.16 b); and the matrix M(D) is shown in Figure 2.16 c). As stated
in Lemma 2.2.4, F̃ is a forest of three perfect-phylogenies, each with all-zero
ancestral sequence, that generate the sequences M(D). Also, as in the thought
experiment done for the case of perfect-phylogenies, F̃ is a forest of trees that
hangs off the periphery of the ARG for the sequences in M̃ shown in Figure
2.15. That observation will be formalized below in Theorem 2.2.3.

So, at the point in Algorithm Clean-Build where neither Rule Dr nor Dc
applies, the algorithm has constructed a forest F̃ of perfect-phylogenies whose
leaves are labeled by the taxa in M , and whose edges are either unlabeled or are
labeled by the sites in D. Intuitively, this forest F̃ should be part of a larger
ARG for M , and it should form part of the “bottom” of the ARG. We formalize
and prove that next.

Theorem 2.2.3 There exists an ARG N for the original M that contains the
forest F̃ . More exactly, if F̃ consists of k trees, then there are k nodes in N
that root the trees in F̃ .

Proof Let M̃ , F̃ , D and R be as defined above. By construction, M̃ does
not contain any of the sites in D, but for each tree in F̃ , M̃ does contain one
row r̃ associated with the taxa labeling the leaves of that tree. Let Tr̃ denote
that tree, and let T (r̃) be the set of taxa of M labeling the leaves of Tr̃ (and
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(b) An ARG for M

Figure 2.15: Matrix M does not have a perfect-phylogeny when the required
ancestral sequence is the all-zero sequence.

hence associated with row r̃ of M̃). Let Sr̃ be the sequence in M̃ in row r̃. Two
rows are merged in an execution of Algorithm Clean-Build only when the two
rows are identical in M̃ , so in the original M all of the taxa in T (r̃) must be
identical at all of the sites in M̃ . More exactly, when restricted to the sites in
M̃ , each sequence in M for the taxa in T (r̃) must be identical to the sequence
Sr̃.

Now let Ñ be an ARG for M̃ . Since r̃ is a taxon in M̃ , there must be a node
ṽ in Ñ labeled by Sr̃. If we attach the root of tree Tr̃ at node ṽ, the result is an
ARG that generates the sequences in M for all the taxa in T (r̃). Let N be the
ARG with all-zero ancestral sequence created by repeating this operation for
each tree in F̃ , i.e., attaching each tree to the appropriate node in Ñ . Clearly,
the ARG N correctly generates all the sequences in R. We need to prove that
it also correctly generates the sequences not in R. By assumption, Ñ correctly
generates those sequences at all the sites not in D. We next show that each
sequence not in R has a value of 0 at any site in D.

Every site in D must label an edge in some tree in F̃ . Consider a site c in
D that labels an edge of tree Tr̃. Clearly, only taxa in R can label leaves of Tr̃,
so we need to prove that any taxon not in R has a value of 0 at site c. That is
true because at the point in Algorithm Clean-Build when a site c was removed,
site c had only one entry with a value of l, so in M , no taxon outside of T (r̃)
can have a value of 1 at site c.

Given Theorem 2.2.3, an ARG for M can be built by first applying Algo-
rithm Clean-Build until no further application of Rule Dc or Dr is possible,
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(a) The reduced ma-
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r1 1 0
r2 0 0
r3 0 0
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(c) matrix
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Figure 2.16: Sites 1 and 3 have been removed from the matrix M shown in
Figure 2.15, and rows r3 and r4 have been merged. The set D of removed
columns is {1, 3}. The forest F̃ , restricted to the sites in D, is shown in (b), and
the matrix M(D) is shown in (c). As stated in Lemma 2.2.4, forest F̃ generates
the sequences in M(D).
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creating the forest F̃ and the resulting matrix M̃ . Then, recursively, an ARG Ñ
for M̃ can be constructed; after that, F̃ can be attached to Ñ as in the proof of
Theorem 2.2.3. Since there are no recombination nodes in F̃ , the number of re-
combination nodes for the resulting ARG N will be the number of recombination
nodes in Ñ .

Now how can a good ARG for M̃ be constructed? We know that no ap-
plication of Rule Dc or Dr on M̃ is possible. Instead, we introduce the third
destructive rule that operates on M̃ , and the third constructive rule that builds
part of Ñ , again “bottom up”.

The Third Destructive Rule

Rule Dt: If neither Rule Dc nor Dr can be applied, pick a row r̃ in
the current M̃ (other than the all-zero row that corresponds to the
ancestral sequence) and remove row r̃ from M̃ .

For clarity of the discussion below, we will use M̃1 to refer to the matrix
M̃ before an application of Rule Dt. M̃ will always refer to the current matrix
incorporating all of the removals of columns and rows due to applications of
Rules Dc, Dr, Dt. We use Sr̃ to denote the sequence removed from M̃1.

The Third Constructive Rule After the application of Rule Dt, we use the
third constructive Rule to begin the construction of Ñ :

Rule Ct: Find a series of recombinations (without mutations) of
sequences in M̃ = M̃1 − Sr̃ that derive sequence Sr̃. (This will
always be possible, as explained below.) Then construct a DAG
containing one node for each sequence in M̃ and one node for Sr̃ and
all needed edges and additional recombination nodes specified by the
recombinations that derive Sr̃ from M̃ .

The DAG constructed by application of Rule Ct forms a bottom or periph-
eral part of the desired ARG Ñ for M̃1. The full ARG Ñ for M̃1 is formed by
adding that DAG to an ARG that derives M̃ . Of course, the ARG for M̃ is
found by recursive application of the entire method.

For example, consider the reduced matrix in Figure 2.16, and denote it M̃1.
If we pick r̃ to be the row labeled {r3, r4}, sequence Sr̃ = 11 can be generated
by recombining the two sequences in rows r1 and r2. The DAG representing
the generation of Sr̃ is shown in Figure 2.17 a). Then, the algorithm must
recursively find an ARG for the matrix M̃ shown in Figure 2.18. That ARG is
the tree shown in Figure 2.17 b). The ARG Ñ for M̃1, shown in Figure 2.17 c),
is formed by combining the DAG in Figure 2.17 a) with the ARG in Figure 2.17
b). The full ARG N for M , shown in Figure 2.15, is formed by adding the forest
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Figure 2.17: ARG Ñ for M̃1 is constructed by adding the DAG deriving Sr̃ to
the ARG for the matrix in Figure 2.18.

F̃ shown in Figure 2.16 b) to ARG Ñ . If instead of picking r̃ to be the row
{r3, r4}, we pick row r2, the resulting ARG for M is shown in Figure 2.19. In
this example, both choices for r̃ result in an ARG with only one recombination
node. In general, however, different choices for r̃ can result in different numbers
of recombination nodes in the ARG for M . In this example, the DAG generating
Sr̃ only has one recombination node, but that need not be true in general, and
the recursively found ARG is a tree, but that also need not be true in general.
For a more involved example, see Figure 1 in [27].

2 4
r1 1 0
r2 0 1

Figure 2.18: The reduced matrix M̃ after Rule Dt removes row r̃, labeled
{r3, r4}.
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Figure 2.19: The ARG constructed by Algorithm Clean-Build-with-
Recombination when row r2 is selected for row r̃ in Rule Dt.

2.2.4 Summarizing the Full Algorithm

We reduce M to a single row with no sites, and build an ARG N for M , using
Algorithm Clean-Build-with-Recombination, shown in Figure 2.20. As always,
M̃ denotes the current matrix created during an execution of the algorithm,
changing as the algorithm proceeds. The algorithm is initially called with input
M .

It should be clear that Algorithm Clean-Build-with-Recombination does build
an ARG for M , but we have not yet given any reason to believe that it will be
an ARG where the number of recombination nodes is close to Rmin0(M). To
achieve that goal, we will have to add criteria for the way we select the row r̃ in
Rule Dt, and we will have to be explicit about how recombinations are found
to derive Sr̃. We do that next.

2.2.4.1 Specifying and Reducing Recombinations

To reduce the number of recombination nodes created in Algorithm Clean-Build-
with-Recombination we first examine how to derive Sr̃ from a set of sequences
M̃ using the fewest number of (single-crossover) recombination nodes.

Definition Given a set of sequences M̃ , each of length m, and an m-length
sequence Sr̃ not in M̃ , Rmin(M̃, Sr̃) is the minimum number of single-crossover
recombinations needed to create Sr̃ from the sequences in M̃ without using any
mutations. Rmin(M̃, Sr̃) is not defined if it is not possible to create Sr̃ from M̃
without mutations.

Rmin(M̃, Sr̃) will be defined if and only if, for every site c in Sr̃, the state of
c in Sr̃ equals the state of c for some sequence in M̃ . Clearly, after any execution
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Algorithm Clean-Build-with-Recombination (M̃0)

{The algorithm will return an ARG Ñ for M̃0.}

if M̃0 contains more than one row or contains some sites then

Set M̃ to M̃0 and run Algorithm Clean-Build on M̃
until no further applications of Rules Dc or Dr are possible.
Let F̃ denote the forest created by Algorithm Clean-Build,
and let M̃1 denote M̃ at this point.

Apply Rule Dt to M̃
{so M̃ now is M̃1 − Sr̃.}

Apply Rule Ct to M̃ , creating a DAG Gt that derives the sequence Sr̃

by recombinations of sequences in M̃ .

(Recursively) Call Clean-Build-with-Recombination with input M̃ .

endif

Add the DAG Gt to the ARG returned from the above recursive call,
creating an ARG Ñ1 for M̃1.

Add the forest F̃ to Ñ1, creating the ARG Ñ for M̃0.

return Ñ

Figure 2.20: Algorithm Clean-Build-with-Recombination

of Algorithm Clean, no column will contain exactly one entry with value 1, and
if it has a column with exactly one entry with value 0, that entry will be in the
all-zero ancestral sequence. Since the ancestral sequence cannot be chosen for
Sr̃, the state of c in Sr̃ will always equal the state of c for some sequence in M̃ ,
so in Algorithm Clean-Build-with-Recombination, Rmin(M̃, Sr̃) will always be
defined. Algorithm Min-Crossover, shown in Figure 2.21, efficiently computes
Rmin(M̃, Sr̃), or determines that it is not defined, for an arbitrary matrix M̃
and a sequence Sr̃. This algorithm is a generalization of Algorithm Multiple-
Crossover-Test discussed in Section ??.

Clearly, if Rmin(M̃, Sr̃) is defined, Algorithm Min-Crossover will return
some value for cr∗ and Sr̃ can be created from M̃ using cr∗ single-crossover
recombinations (whose crossover-indices are recorded in C) and no mutations.
More completely, we have the following
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Algorithm Min-Crossover (M̃, Sr̃)

Set C to the list containing the number 1.
Set c to 1, and cr to 0.

repeat

Over all the sequences in M̃ , find the longest substring starting at site c
that matches the substring in Sr̃ starting at site c.
Let k denote the length of that longest matching substring.

if (k == 0) then
report that Rmin(M̃, Sr̃) is undefined, and exit.

else
set cr to cr + 1, and c to c + k.
Put c at the end of list C.

endif
until (c > m)

Set cr∗ = cr, and add m + 1 to the end of C.
return cr∗ and C

Figure 2.21: Algorithm Min-Crossover, which generalized Algorithm Multiple-
Crossover-Test.

Theorem 2.2.4 Algorithm Min-Crossover correctly determines whether Rmin(M̃, Sr̃)
is defined, and if defined, Rmin(M̃, Sr̃) equals cr∗.

Proof At each iteration, the algorithm attempts to extend the length of the
prefix of Sr̃ that can be generated from M̃ by single-crossover recombinations.
In particular, the length of the prefix starts at zero and increases by exactly
k characters in any iteration where k > 0. Therefore, unless k = 0 in some
iteration, the algorithm constructively shows that Rmin(M̃, Sr̃) is defined, and
Sr̃ can be created from exactly cr∗ + 1 substrings of sequences in M̃ .

Conversely, if k = 0 at some iteration, it means that there is a site c where all
the sequences in M̃ have a state that is unequal to the state of c in Sr̃. Therefore,
the algorithm is correct if it reports that Rmin(M̃, Sr̃) is not defined.

To show that cr∗ = Rmin(M̃, Sr̃) (when it is defined), assume it does not.
Since Sr̃ can be created from cr∗ + 1 substrings in M̃ , it must be that cr∗ >
Rmin(M̃, Sr̃). Let Cmin be the list consisting of 1, followed by all the crossover-
indices in some scenario that creates Sr̃ from M̃ using Rmin(M̃, Sr̃) single-
crossover recombinations, followed by m + 1. If cr∗ > Rmin(M̃, Sr̃), then there
must be a first index c, such that C[c], the c’th entry in C, is strictly less than
Cmin[c]. Note that by the choice of c, C[c − 1] ≥ Cmin[c − 1]. But then, the
substring of Sr̃ from site Cmin[c−1] to site Cmin[c]−1 must match the substring
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of some sequence S in M̃ , in that same range of sites. And since Cmin[c − 1] ≤
C[c − 1], the substring of Sr̃ from site C[c − 1] to site Cmin[c] − 1 must match
S in that range of sites. But that would contradict the fact that the algorithm
reported a crossover at site C[c] < Cmin[c]. Hence there is no index c where
C[c] < Cmin[c] and therefore cr∗ = Rmin(M̃, Sr̃).

Given Theorem 2.2.4, the obvious first modification of Algorithm Clean-
Build-with-Recombination is to use Algorithm Min-Crossover to determine how
Sr̃ should be derived from M̃ in each application of constructive Rule Ct. We
will assume that this is done in every application of Rule Ct. A more effective
change is to modify destructive Rule Dt. Recall that M̃1 is the matrix M̃ before
the application of Rule Dt.

Modified Rule Dt: In Rule Dt, choose the row r̃ in M̃1 that
minimizes Rmin(M̃1 − Sr̃, Sr̃).

The uses of modified Rule Dt, and of Algorithm Min-Crossover to determine
exactly how Sr̃ should be derived from M̃ , are clearly good heuristics to locally
(in each application of Rules Dt, Ct) reduce the number of recombination
nodes in the resulting ARG N for M . But their use does not guarantee that
the resulting ARG will minimize the number of recombination nodes over all
possible executions of Algorithm Clean-Build-with-Recombination. We consider
that goal next.

Definition For a matrix M , let N ∗(M) be the ARG with the minimum
number of recombination nodes over all possible executions of Algorithm Clean-
Build-with-Recombination on input M , and let RN∗(M) denote the number of
recombination nodes in N ∗(M).

It is not true that N ∗(M) is necessarily found by applying the modified
Rule Dt and using Algorithm Min-Crossover at every iteration of Algorithm
Clean-Build-with-Recombination.

It is also not true that N ∗(M) is necessarily a MinARG for M , or an ARG
with all-zero ancestral sequence that uses Rmin0(M) recombination nodes. Still,
it is desirable to build N ∗(M) and compute RN∗(M).

2.2.4.2 Computing RN∗(M) and Building N ∗(M)

The conceptually simplest way to compute RN∗(M) and to build N ∗(M) is
to branch on all choices of r̃ in each application of Rule Dt, building a search
tree of choices2. Each path in that search tree defines an ARG for M and the
ARG with the fewest recombination nodes defines RN∗(M). The algorithm that
conducts such an exhaustive branching over all choices of r̃ is called Algorithm
CBR-branch.

2Note that the original Rule Dt is used here, not the modified Rule Dt.
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It is simple to modify Algorithm CBR-branch so that each path of the tree
only computes the number of recombination nodes that would be used in an ARG
constructed along that path, rather than actually constructing the ARG. After
the tree is built, the path that computed RN∗(M) can be used to build N ∗(M).
Deferring the construction of N ∗(M) until the full search tree is completed yields
a small speedup, but the exhaustive branching in Algorithm CBR-branch still
makes it computationally prohibitive except for small matrices3. However, there
is considerable redundancy in any execution of Algorithm CBR-branch because
the same submatrix M̃ of M can be formed many times along many different
search paths. We can speed up the branching by avoiding such redundancy,
and that will be done in Section 2.2.4.3. There, the addition of branch-and-
bound ideas will make the branching approach practical for data of current
interest. Moreover, understanding the redundancy in Algorithm CBR-branch
leads to a dynamic programming algorithm to compute RN∗(M), achieving a
worst-case running time that is significantly less than the θ(n!) worst-case time
for Algorithm CBR-branch.

Dynamic Programming computation of RN∗(M) and N ∗(M)

Definition Given a matrix M , and a subset K of rows of M , let MK denote
the submatrix of M consisting of the rows in K and all of the columns of M .

The idea of the dynamic program is to compute the RN∗(MK), for each
subset K of the rows of M .

In the dynamic program, the values will be computed in order of increasing
cardinality of K. RN∗(M) is the extreme case that K is the entire set of rows
of M . In the algorithm, we use the variable rn∗(M) rather than RN∗(M), but
later prove that rn∗(M) = RN∗(M). After RN∗(M) is computed, the ARG
N ∗(M) can be constructed during a standard dynamic programming traceback.
That traceback will specify a series of applications of Rules Dc, Dr and Dt,
and N ∗(M) can therefore be build by applying the corresponding Rules Cc, Cr
and Ct, as discussed earlier in this chapter.

The key idea in the dynamic programming recurrence is to mimic the action
of Algorithm CBR-branch on matrix MK, but avoid redundancy by enumerating
each required matrix M̃ and computing each RN∗(M̃ ) only once. The non-
trivial part of the recurrence is that it stores rn∗(M(K̃−r̃)), where M(K̃−r̃) is the
submatrix of M consisting of the rows in set K̃ − r̃, but all of the columns of
M . In that way, it enumerates 2n submatrices of M , each specified by a choice
of rows, rather than enumerating 2n2m submatrices specified by choices of both
rows and columns. The correctness of this idea essentially follows from Lemma
2.2.1 (on page 36), and is formally proved next.

3The only established upper bound for this version of Algorithm CBR-branch is θ(n!).



2.2. CONSTRUCTION BY DESTRUCTION 57

Algorithm DP-RN∗ (M)

if (M has less than three rows) then
set rn∗(M) to 0
return rn∗(M)

endif

for (k = 2, . . . , n) do
{where n is the number of rows in M}

for (each subset K of k rows of M) do
Form the submatrix MK of M , and run Algorithm Clean on MK.
Let M̃ denote the resulting matrix, and let K̃ denote
the set of rows of M̃ .

Set rn∗(MK) = minSr̃∈M̃ [Rmin(M̃ − Sr̃, Sr̃) + rn∗(M(K̃−r̃))]
endfor

endfor

return rn∗(M)

Theorem 2.2.5 The value of rn∗(M) computed by Algorithm DP-RN∗ on in-
put M is RN∗(M).

Proof The proof is by induction on |K|. When |K| < 3, matrix MK cannot
have any incompatible pair of sites, so it can be derived on a perfect-phylogeny
with all-zero ancestral sequence. Therefore, by Theorem 2.2.2, Algorithm Clean
reduces MK to a matrix with one row and no sites. So RN∗(MK) = rn∗(MK) =
0, and the theorem holds when |K| < 3. Now suppose the theorem holds up to
some k ≥ 3, and that |K| = k + 1.

Consider the action of Algorithm CBR-branch on MK. It would first run
Algorithm Clean on MK, resulting in the same matrix M̃ defined in Algorithm
DP-RN∗. At that point, it would branch on all choices of Sr̃ ∈ M̃ . Each path
from that branching point would compute Rmin(M̃ − Sr̃, Sr̃) + RN∗(M̃ − Sr̃)
for one of those Sr̃. So clearly,

RN∗(MK) = min
Sr̃∈M̃

[Rmin(M̃ − Sr̃, Sr̃) + RN∗(M̃ − Sr̃)].

The right-hand side of that recurrence differs from the right-hand side of the
recurrence given in Algorithm DP-RN∗ in that the second term in the recurrence
is RN∗(M̃ − Sr̃) rather than rn∗(M(K̃−r̃)). So if we can prove that those two
terms are equal, then the recurrence for rn∗ will be the same as for RN∗ and the
theorem will be proved. Now rn∗(M(K̃−r̃)) = RN∗(M(K̃−r̃)), by the induction
hypothesis, so we want to prove that RN∗(M(K̃−r̃)) = RN∗(M̃ − Sr̃).
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Note that K̃ is the set of rows in M̃ , so M̃ − Sr̃ and M(K̃−r̃) have the
same set of rows but a different set of columns. Recall that the computation
of RN∗(M(K̃−r̃)) begins with the application of Algorithm Clean to M(K̃−r̃).
Consider a column c in MK that is not in M̃ . In reducing MK to M̃ , column c
was removed at a point where it had at most one entry with value 1. Since the
rows in K̃− r̃ are a subset of the rows at that point, column c in M(K̃−r̃) will also
have at most one entry with value 1. If we run Algorithm Clean on M(K̃−r̃) by
first removing all the columns in MK not in M̃ (which is permitted by Lemma
2.2.1), the result after removing those columns will be M̃−Sr̃. Therefore, the full
execution of Algorithm Clean on M(K̃−r̃) will be the same as the result of running
Algorithm Clean on M̃ − Sr̃. Further, the destructive operations in Algorithm
Clean induce constructive application of Rules Cc and Cr that build a forest
containing zero recombination nodes. Therefore, rn∗(MK̃−r̃) = RN∗(M(K̃−r̃)) =
RN∗(M̃ − Sr̃), and we conclude that the value rn∗(M) returned by Algorithm
DP-RN∗ is RN∗(M).

Time analysis There are 2n subsets of rows of M , and for each one we examine
at most n individual sequences Sr̃, running Algorithm Min-Crossover on each.
With the appropriate data structures and string algorithm, each execution of
Algorithm Min-Crossover takes O(nm) time, so

Theorem 2.2.6 Algorithm DP-RN∗ can be implemented to run in O(n2m2n)
time.

We also need to keep a table to hold rn∗(MK) for each subset of rows K.

2.2.4.3 Major Speedups of Algorithm CBR-branch

In addition to the dynamic-programming approach to computing RN∗(M) (and
then N ∗(M)), there are three ways to speed up Algorithm CBR-branch.

The first speedup is through the standard way that memoization converts
a top-down, recursive branching algorithm into an algorithm whose worst-case
running time is of the same order as a bottom-up dynamic programming solution
[6]. In that approach, the search tree formed by Algorithm CBR-branch would
be expanded depth-first and a table would be built that stores RN∗(M̃ ) for every
submatrix of M formed during the search. When the depth-first search backs
up to a node in the search tree where a recursive call to compute RN∗(M̃ ) was
made, the value of RN∗(M̃ ) will be known and can be put in the table. Then,
when another search path requires RN∗(M̃ ) it can retrieve the value from the
table, rather than expanding the search tree to (re)compute it. This standard
memoizing idea has the consequence that the number of internal nodes in the
search tree is bounded by the number of distinct submatrices of M . Further, by
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Lemma 2.2.1, the number of submatrices where any branching occurs is bounded
by 2n, and so we have

Theorem 2.2.7 Algorithm CBR-branch can be implemented using memoization
to run in O(n2m2n) worst-case time.

The second speedup occurs if the search-tree in Algorithm CBR-branch is not
expanded in a strictly depth-first manner. In that case there can be two or more
nodes in the expanded tree that require the computation of RN∗(M̃ ), which has
not yet been computed. Because the order that rows are removed by Rule Dt
differs along different search paths that create submatrix M̃ , the total number
of recombination nodes (in the implied ARGs that could be created) specified
along those paths can differ. Clearly, among all the paths in the search tree that
create the same M̃ , only the one with the smallest total number of specified
recombination nodes should be expanded. The other paths can be terminated.

The third speedup is through application of the classic idea of using lower
bounds to cut off paths in the search tree. Suppose that some of the paths in the
tree have been completed, and let w be the minimum number of recombination
nodes in the ARGs for M specified along those paths. Consider an incomplete
path in the search tree ending at a node v, creating submatrix M̃ . Let w(M̃ ) be
the total number of recombination nodes specified by that path, and let L(M̃)
be a lower-bound on Rmin0(M̃). If w ≤ w(M̃ ) + L(M̃) then there is no need to
expand the search tree at node v.

2.2.5 Program SHRUB

Algorithm CBR-branch with the second and third speedups discussed above has
been implemented in a program called SHRUB, which stands for “simulated
history recombination upper bound” [27]. SHRUB does not necessarily assume
that the ancestral sequence is the all-zero sequence, but we will continue to
use the notation N ∗(M) for best possible ARG produced by SHRUB, and use
RN∗(M) for the number of recombination nodes in N ∗(M).

With no additional modifications, when given an input matrix M , SHRUB
will compute the full upper bound RN∗(M) and build the ARG N ∗(M). The
lower bound used in the branch-and-bound is either the HK bound or the hap-
lotype bound discussed in Chapter 1. RN∗(M) is called an “upper bound”
because Rmin(M) ≤ RN∗(M). This inequality is due to the fact that N ∗(M)
is an ARG with all-zero ancestral sequence that derives M and uses exactly
RN∗(M) recombination nodes.

The user can also select a number k, and specify that the search tree should
branch at most k ways. In that case, when SHRUB is at a branch node of the
search tree, it randomly selects k rows (or all rows if there are k or fewer rows)
in the current M̃ and individually chooses each of those rows as r̃. Since the
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rows are selected randomly, different executions of the computation can give
different results, and it may be advantageous to repeat the computation several
times to select the best result. In experiments reported in [27] the number of
recombination nodes in the ARGs found with k between 3 and 5 was very close
to RN∗(M).

SHRUB can also be used to compute a fast upper bound which is obtained
by an implementation of Algorithm Clean-Build-with-Recombination using the
modified Rule Dt, i.e., always choosing the row r̃ to minimize Rmin(M̃1−Sr̃, Sr̃).
The computation time for this approach is polynomially-bounded since there is
no branching when the Modified Rule Dt is applied. The resulting number of
recombination nodes may not be close to RN∗(M), but it can be used as a first
value w in the branch-and-bound version of Algorithm CBR-branch.

The program SHRUB not only computes RN∗(M), but outputs the specifi-
cations for N ∗(M) in a format that can then be processed by a graphical display
program and drawn on the plane. The program and the ARG drawing that it
specified was used to help identify a single gene that greatly influences the body
size of dogs [28] (see the supplemental material to see the use of SHRUB).

Experimental studies of the accuracy of SHRUB are reported in [27] for both
real SNP data and for simulated data. In each dataset, RN∗(M) is compared
to the lower bound on Rmin(M) computed by program HapBound. Table 1.1
on page 31 shows both of the numbers, for real population data. The results
there show that the observed upper and lower bounds are close, often equal,
in which case both HapBound and SHRUB have computed Rmin(M) exactly.
Simulated data was produced by the coalescent simulation program MS [12]
which is commonly used to generate test data for questions about ARGs. The
critical parameters in that simulation are the sample size (number of taxa in the
terminology of this book), the mutation rate θ (which determines the number of
sites), and the recombination rate ρ. The rates were chosen to reflect a range of
realistic biological situations. The results show that when θ and ρ are modest,
and the sample size is 25, the upper and lower bounds agreed more than 95%
of the time; as the sample size increases to 100, the agreement falls slowly to
about 85%. In the cases where the upper and lower bounds were not equal, the
lower bound was on average about 80% of the value of the upper bound. More
details on these experiments can be found in [27].

SHRUB also efficiently, almost instantly, builds an ARG with 7 recombina-
tion nodes for Kreitman’s classic SNP data (see Figure 1.5). In Section ?? we
discussed that program HapBound produces a lower bound of 7 for this data, so
we can now conclude that Rmin(M) for Kreitman’s data is in fact 7. This will
be additionally confirmed in Section ?? when we discuss the program Beagle.
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