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Abstract

Malware, software with malicious intent, has emerged
as a widely-spread threat to system security. It is difficult to
detect malware reliably because new and polymorphic mal-
ware programs appear frequently. It is also difficult to re-
move malware and repair its damage to the system because
it can extensively modify a system.

We propose a novel framework for automatically remov-
ing malware from and repairing its damage to a system.
The primary goal of our framework is to preserve system
integrity. Our framework monitors and logs untrusted pro-
grams’ operations. Using the logs, it can completely remove
malware programs and their effects on the system. Our
framework does not require signatures or other prior knowl-
edge of malware behavior. We implemented this framework
on Windows and evaluated it with seven spyware, trojan
horses, and email worms. Comparing our tool with two
popular commercial anti-malware tools, we found that our
tool detected all the malware’s modifications to the system
detected by the commercial tools, but the commercial tools
overlooked up to 97% of the modifications detected by our
tool. The runtime and space overhead of our prototype tool
is acceptable. Our experience suggests that this framework
offers an effective new defense against malware.

1. Introduction

Malware has become an epidemic problem. A recent
study showed that a significant number of computers run-
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ning Windows in a major research university were infected
with one or more malware programs [19]. Another recent
study showed that one in three computers has malicious
code on it [15]. A major reason for the malware problem
is the proliferation of software applications and the diver-
sity of their vendors. Many cutting-edge applications come
from vendors with questionable reputations. For example,
many P2P applications carry code that will install adware
or spyware that is very difficult to remove [8].

The most common defense against malware is detection.
However, since most detectors search for malicious code
patterns (static signatures) of known malware, they cannot
reliably detect new malware or variants of known malware
(also known as polymorphic malware). Naive users ignore
or disable working detection programs to install and run
malware programs when trying to use applications bundled
with malware. As these malware programs accumulate,
the computer often becomes unusable due to slow response
time, exhausted storage, and frequent application crashes.
In short, even good malware detectors cannot protect the
user from running malware programs.

In the case that the user cannot avoid running malware on
his system, the next defense is to remove it once the user no-
tices its adverse effect on his computer. Typically, removing
a malware program involves removing all the components
installed by this program and restoring all the data modified
or deleted by this program. Common approaches include:

• Running an anti-malware program to remove all the
components of the malware. However, because it re-
lies on known malware signatures, this approach can-
not reliably remove new or polymorphic malware, nor
can it restore infected data.

• Taking periodic snapshots of the system, and restoring
the infected system to the last clean snapshot. This ap-
proach will destroy all the new data created after the
snapshot, even if they are clean. Although the user
may avoid this problem by saving the clean data, man-
ually determining which data are clean is laborious and
unreliable.



• Formatting the disk and reinstalling the operating sys-
tem. This drastic approach will destroy all the user data
and configurations. Unfortunately, since most other
approaches fail to remove all the components of the
malware program, this approach is often advised and
followed.

These problems call for a better approach, one that can
remove all the components of both known and unknown
malware, that can restore data infected by malware while
preserving clean data, and that requires minimal user inter-
vention. We introduceBack to the Future, a framework for
achieving these goals. The framework monitors and logs
operations of untrusted programs designated by the user,
and can remove all the components of the untrusted pro-
grams and restore the infected data at the user’s request.
In other words, this framework allows the user to run un-
trusted programs without compromising the integrity of the
system. If an untrusted program turns out to be spyware, the
framework can remove all the components of the malware
automatically and reliably; if the untrusted program turns
out to be a virus, the framework can also restore all the in-
fected files automatically. We name this frameworkBack to
the Futurebecause conceptually we have first rolled back
the system to a prior good state. From there, we then bring
only the trusted processes back to their pre-recovery state
(for the prior good state this is the future).

The primary security goal of our framework isintegrity:
we want to preserve the integrity of the system while the
user is running malware programs. In some cases, our
framework can also provide availability: by completely re-
moving malware from the system, it will free the resources
usurped by the malware. Our framework does not aim
to provide confidentiality. However, if the user can indi-
cate confidential information on his system, our framework
can incorporate this information and provide confidentiality.
Furthermore, in the process of preserving system integrity
we may stop running malware before it discloses confiden-
tial information. Our framework may seem similar to sand-
boxing environments; however, unlike a typical sandboxing
environment, our framework does not require system or ap-
plication specific rules about what operations are allowed
(see Section 6 for further discussion).

Our framework monitors untrusted processes, and re-
moves them and their effects on the system automatically
at the user’s request. However, our framework needs the
user to decide which programs are trusted and which are
untrusted. On the surface, this requirement seems as diffi-
cult as malware detection, but in fact, our framework only
expects the user to evaluate the trustworthiness of a pro-
gram conservatively: when in doubt, the user should con-
sider the program as untrusted. In practice, there are often
sound heuristics for deciding if a program is trusted. It is
reasonable to consider programs from reliable sources as

trusted, such as all pre-installed applications on a new com-
puter from a reputable vendor. There is no harm in mis-
classifying a non-malware program as untrusted, except for
incurring some performance penalty. (We will discuss per-
formance issues in Section 4.)

We summarize the major contributions of our paper:

• We propose a new framework for preserving system
integrity while allowing the user to run untrusted pro-
grams. The framework monitors and logs the operation
of untrusted programs, and uses these logs for remov-
ing the untrusted programs and their effects completely
and automatically. Since this framework does not need
any prior knowledge about the untrusted program, it
can defend against both known and unknown malware.

• Our framework provides a transparent environment for
running both trusted and untrusted programs. The user
does not need to modify any existing programs. No
program should notice that it is running in our frame-
work.

• We have implemented a prototype of our framework
on Windows, where the threat of malware is greatest,
and evaluated it with seven spyware, trojan horses, and
email worms. Comparing our tool with two popular
commercial anti-malware tools, we found that our tool
detected all the malware’s modifications to the system
detected by the commercial tools, but the commercial
tools overlooked up to 97% of the modifications de-
tected by our tool.

2. Framework

2.1. Overview

Figure 1 illustrates the three components of Back to the
Future: a monitor, a logger, and a recovery agent. The mon-
itor intercepts each monitored process’s read and write op-
erations. The logger records some write operations of the
untrusted processes. When the monitor determines that an
untrusted process may harm a trusted process, it invokes the
recovery agent to restore system integrity.

Our framework needs to solve two challenges. First, how
does it determine when an untrusted program may violate
the integrity of the system? Second, how does it remove
all the effects of an untrusted program? Intuitively, after re-
covery, the system should look as if only the trusted appli-
cations have run, and the untrusted applications have never
been installed or run. The next two sections describe our
solutions to these two challenges.
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Figure 1. Framework for monitoring, logging
and recovery.

2.2. System Integrity

This section defines the notion of system integrity, de-
scribes a criterion for checking when an untrusted program
may violate system integrity, and discusses how to preserve
system integrity.

2.2.1. Integrity Model

We start with Biba’s integrity model [3], which says
that no subject can read objects of lower integrity levels,
and no subject can write objects of higher integrity levels.
Our framework defines two integrity levels:trustedandun-
trusted. Applying Biba’s model, our framework would re-
quire that trusted processes should not read untrusted data,
and untrusted processes should not write trusted data.

Strictly following Biba’s model, however, considerably
limits the user’s ability to run untrusted programs. For ex-
ample, the framework would have to stop an untrusted pro-
cess immediately when the process tries to overwrite trusted
data. If no trusted process will ever read this data again
(e.g., temporary scratch data), stopping the untrusted pro-
cess is unnecessary. Even if some trusted process will read
this data, the framework does not have to intervene until just
before the read operation happens.

Hence, we adopt a relaxed integrity model. Our model
only requires that no trusted process should read untrusted
data, but untrusted processes can freely write (or overwrite)
any data they desire. This model can be viewed as alazy
Biba’s model: it does not enforce integrity until the point
where untrusted data could flow into trusted processes. The
laziness in our model allows the user to run more untrusted
applications without interference from the integrity policy.

2.2.2. Preserving System Integrity

To preserve system integrity, the framework must inter-
vene when a trusted process is about to read untrusted data.
We argue that a good intervening approach should satisfy
the following properties:

• Preserving the consistency of processes: The approach
should preserve the consistency of both trusted and un-
trusted processes. This means that if the approach al-
lows a process to continue, it should not change the
process’s behavior. For example, the approach should
not selectively deny certain operations of the process.

• Allowing processes to run as long as possible: The ap-
proach should allow a process to run as long as pos-
sible until it cannot preserve system integrity or the
consistency of some processes.

We propose the following options for preserving system
integrity:

• Deny the operation: This option preserves system in-
tegrity by denying this read operation. To preserve
the consistency of the trusted process that issued the
read operation, the framework must also terminate the
trusted process.

• Allow the operation: We can allow this read operation
but still preserve system integrity with the following
approaches:

– Terminate the untrusted process: We terminate
the untrusted process that has written the un-
trusted data, and restore the old data at the same
location. If the restored data is still untrusted, we
terminate the process that had written it, restore
the old data, and repeat this procedure until the
data that we have restored is trusted. This solu-
tion preserves system integrity by replacing un-
trusted data with trusted data.

– Mark the trusted process as untrusted: We be-
gin to treat the trusted process as untrusted. No-
tice, however, that we do not need to remove the
data written by this process in the past. Since this
process is now untrusted, we allow the read oper-
ation to continue, as untrusted processes can read
any data. This solution preserves system integrity
by reducing the set of trusted processes.

Sometimes we may want to preserve good effects of un-
trusted applications. Under such cases, we can mark the
untrusted data as trusted and let the read operation con-
tinue. As an example, consider media files downloaded by
malware-laden P2P applications. If the user is confident
that the media files will not affect trusted applications, we



can allow a trusted application, say a media player, to play
these media files.

2.3. System Recovery

This section describes how the framework removes all
the effects of untrusted programs on the system.

2.3.1. Basic Approach for System Recovery

We first describe a basic approach for system recovery
that is conceptually simple and serves as a reference for
reasoning about the correctness of a more efficient but com-
plex approach. During monitoring, the framework logs all
the operations of both trusted and untrusted processes; dur-
ing recovery, the framework first reverses all the logged
operations of both trusted and untrusted processes reverse-
chronologically, and then reapplies all the logged operations
of only the trusted processes chronologically.

We next elaborate on this approach. Given a definition
of the state of a system (e.g., the state consists of the file
system and the registry), we can divide the operations of all
the processes into two categories: read operations (which
do not change the system state) and write operations (which
do change the system state). Since our goal is to remove
all the effects of the untrusted processes on the system, the
framework needs to log only the write operations. This ap-
proach requires the framework to log the write operations
of both trusted and untrusted processes. Moreover, since
the framework needs to undo the write operations during
the recovery phase, it needs to log the old data overwritten
by each write operation during the monitoring phase.

One can argue that after recovery this basic approach
brings the system to a state that looks as if the untrusted pro-
cesses have never run. However, this approach is inefficient,
because during recovery it first undoes each write operation
by the trusted processes and later redoes the same opera-
tion. For most write operations, undoing them followed by
redoing them will have no net effect. We could save time by
avoiding undoing and redoing these write operations, and
save space by not logging these write operations.

2.3.2. Refined Approach for System Recovery

We refine the basic approach by avoiding the recovery
operations with no net effect. We motivate the refined ap-
proach by two examples, where a trusted processT and an
untrusted processU write to the same data location:

• Example 1: T writes beforeU writes. During recov-
ery, the framework only needs to undoU ’s write op-
eration; it does not need to undo and then to redoT’s
write operation, and it does not need to log this opera-
tion during monitoring.

• Example 2. U writes beforeT writes. During recov-
ery, the framework does not need to undo eitherU ’s
write or T’s write, becauseT’s trusted data has over-
writtenU ’s untrusted data.

These two examples suggest that we can detect unnec-
essary recovery operations by tracking the order in which
trusted and untrusted processes write to the same data lo-
cation. In fact, it suffices to track whether each location
contains trusted or untrusted data. In this refined approach,
during monitoring:

• When a trusted process writes to a data location, mark
the new data in the location as trusted.

• When an untrusted process writes to a location:

– If the location contains trusted data, log this write
operation, save the old data, and mark the new
data in this location as untrusted.

– If the location contains untrusted data, do noth-
ing.

– If the location contains no data, log this write op-
eration, and mark the new data in this location as
untrusted.

During recovery, the framework examines each logged
write operation reverse-chronologically. Recall that the
framework only logs write operations by untrusted pro-
cesses. For each logged write operation, the recovery agents
restores the old data from the log only if the location cur-
rently contains untrusted data.

Proof of Correctness We prove that this refined approach
achieves the same result as the basic approach. Given a data
location, let the entire sequence of write operations at this
location before system recovery beO1, . . . ,On. We consider
two cases, depending on whether the last operationOn is
from a trusted or an untrusted process:

• Case 1: The last write operationOn is from a trusted
process. Using the basic approach, the framework will
first undoOn, . . . ,O1, and then redo only the opera-
tions inO1, . . . ,On that are from trusted processes, in
that order. SinceOn is from a trusted process and is
the last operation performed during recovery, this lo-
cation will contain the data written byOn after recov-
ery. Using the refined approach, the framework will
notice that the location already contains trusted data,
so it will do nothing on this location. Since before re-
covery this location already contains data written by
On, after recovery using the refined approach, this lo-
cation will contain the same data as when using the
basic approach.



• Case 2: The last write operationOn is from an un-
trusted process. LetOt be the last write operation by
a trusted process in this sequence. Now the sequence
is O1, . . . ,Ot,Ot+1, . . . ,On where allOt+1, . . . ,On are
from untrusted processes. Using the basic approach,
the framework will first undoOn, . . . ,O1, and then
redo only the operations inO1, . . . ,Ot that are from
trusted processes. SinceOt is from a trusted process,
it will be the last operation that the framework re-
does on this location, so this location will contain the
data written byOt after recovery. Using the refined
approach, during monitoring the framework will log
Ot+1, but will not log any operation afterOt+1, because
Ot+1 writes untrusted data into this location. During
recovery, the framework will first undoOt+1 by replac-
ing the data in this location with the data that was in
this location beforeOt+1, which was exactly the data
written byOt. After that, this location contains trusted
data becauseOt is from a trusted process, so the frame-
work will not change the data in this location any more.
Therefore, both the basic and the refined approach re-
store the same data into this location.

3. Implementation

To evaluate our framework, we have developed a proto-
type implementation for the Windows XP operating system.
The implementation consists of the three essential compo-
nents of the framework: a monitor, logger, and recovery
agent. Our monitor is a Windows kernel driver that hooks
relevant system services and can therefore capture most of
the interactions between user processes and the operating
system. The logger and recovery agent are user applications
that interact with the driver.

3.1. Monitoring

3.1.1. System Service Hooking

In Windows NT 4, 2000, and XP, user applications rely
on the interface exposed from a set of libraries, such as
kernel32.dllanduser32.dll, to access operating system ser-
vices. This interface is known as theWin32 API. Applica-
tions may also call function inntdll.dll known as the Native
API [14]. The Native API functions perform system calls in
order to have the kernel provide the requested service.

When the kernel traps system service interrupts, it uses
a unique identifier found in the call to look up a function
pointer in the service dispatch table. Kernel drivers can
modify this table to wrap system services with arbitrary
code. This technique, known as API hooking, allows us
to intercept all the system service calls made by any pro-
cess [13, 21]. Our framework hooks the system services

that access the file system and registry, and those that create
new processes.

3.1.2. Tracking Untrusted Data

A significant component of the monitor tracks which
data are untrusted as both trusted and untrusted processes
execute, because our integrity model requires that no trusted
process should read untrusted data. In the implementation
of this component, two key issues are granularity and meta-
data: to what granularity does this component track un-
trusted data, and how is the trustworthiness recorded?

To determine the best granularity, we need to strike a
balance between precision and overhead. For the registry,
we chose a granularity of one value, because most registry
values are small. On the other hand, files can become very
large, so using a file-level granularity would be too coarse-
grained. Thus, we track the ranges of untrusted data in each
file.

Our implementation maintains a table of all files and reg-
istry entries that contain untrusted values. For each file, an
associated data structure describes which ranges in this file
contain untrusted data. The monitor uses this table to deter-
mine if a trusted process will read untrusted data. The log-
ger (Section 3.2) and the recovery agent (Section 3.3) will
also use this table. Table 1 summarizes the actions taken by
the monitor for various operations.

In addition to tracking untrusted data, the monitor also
tracks and monitors processes spawned by untrusted pro-
cesses, which are also considered as untrusted.

3.2. Logging

The second component of the implementation is logging.
During recovery, the framework uses logged information to
remove malware programs and to restore infected data on
the system. As discussed in Section 2.3, the framework only
needs to log write operations from untrusted processes. The
monitor makes appropriate backups and forwards informa-
tion to the logger.

3.3 Recovery

The final portion of the implementation is recovery.
Given the data created by the logging mechanism, the re-
covery tool will roll back the effects of each entry until the
desired system state is reached. The tool also uses trustwor-
thiness information about data from the monitor to deter-
mine what portions of data it should restore.

4. Experiments

We evaluated our tool’s effectiveness in detecting mal-
ware, removing malware, and restoring infected data, and



Process Process’s Operation Old Status of Target Data Monitor’s Action

Trusted

Delete file
Trusted Allow
Untrusted Remove file from watch list

Write data
Trusted Allow
Untrusted Mark new data as trusted

Read data
Trusted Allow
Untrusted Warn integrity violation

Create process Any Allow

Untrusted

Delete file
Trusted Mark file as deleted
Untrusted Mark file as deleted

Write data
Trusted Mark new data as untrusted
Untrusted Allow

Read data
Trusted Allow
Untrusted Allow

Create process Any Monitor new process as untrusted

Table 1. Tracking untrusted data and new processes.

its performance during monitoring and recovery. We tested
our tool on a suite of malware programs consisting of:

• Adware and spyware: eZula, Gator, andBonziBuddy.
They are normally bundled with other benign pro-
grams, such as a P2P application. When the user in-
stalls the benign programs, the installers furtively in-
stall these malware programs.

• Trojan horse: NetBus. Trojan horses are normally
packaged with innocuous decoy programs. When the
decoy programs are executed, they install and run the
bundled Trojan horses. NetBus configures the system
to allow remote access and control.

• Email worms: NetskyandBeagle. Email worms de-
pend on deceived users to execute email attachments
to install and propagate the worms.NetskyandBeagle
caused two major email worm outbreaks in 2004.

• Hybrid malware: Happy99. Happy99acts both as a
trojan horse and a worm, since it purports to be an
entertaining screen saver, and it propagates via email
behind the scenes.

4.1. Recovery

During recovery, our tool should remove all the files
and registry entries installed by the malware, and restore
the original data in the infected files and registry entries.
We evaluated the effectiveness of our tools’s recovery func-
tion by comparing it with two popular commercial tools:
Spybot[2] and Symantec Norton AntiVirus[1]. Spybot han-
dleseZula, Gator, andBonziBuddy, and Symantec Norton
Anti-Virus handles the rest of the malware programs used in
our experiments. We compared them in two experiments:

• First experiment: after running a malware program, we
first invoke the recovery function of our tool, and then
we run a commercial tool to detect any residual traces
of this malware.

• Second experiment: after running a malware program,
we first run a commercial tool to detect and remove the
program, and then we examine whether the commer-
cial tool has removed all the files and registry entries
created by the malware program as logged by our tool.

In the first experiment, for each malware program, we
found that neither commercial tool could detect the malware
after we ran our tool to remove it. Since both commercial
tools could detect the malware before we removed it using
our tool, we conclude that our tool has removed the mal-
ware to the satisfaction of the commercial tools. In the sec-
ond experiment, we found that the commercial tools failed
to remove all the files and registry entries that the malware
programs had created. Table 2 compares the number of files
and registry entries modified by the malware programs that
were detected by our tool with those that were detected by
the commercial tools. The table shows that, for some mal-
ware, our tool can identify more files and registry entries
modified by the malware than commercial tools can. These
include:

• Original files and registry keys that malware has
deleted from the system. E.g., W32.Netsky deleted a
registry key associated with a component of Microsoft
Internet Explorer.

• Temporary files created by malware during its installa-
tion. E.g., eZula created temporary files while it was
retrieving data from the network. These files were not
deleted even after the commercial tool claimed to have
removed eZula.



• Modifications made by other system components on
behalf of the malware. E.g., Bonzi Buddy asked Mi-
crosoft Agent Services to modify the file system, but
the commercial tool failed to detect the modified files.

4.2. Usability

Our tool monitors read and write operations of both
trusted and untrusted processes. When a trusted process
reads data that were written by an untrusted process, our
tool will stop the process and alert the user. If this alert
never happens, our tool will allow an untrusted process to
run to completion (the user can still use our tool to remove
the program and its effects at any later time). However, if
this alert happens often, the usability of our tool will suffer,
because each alert requires user intervention.

We never saw an alert when we used our tool to run the
seven malware programs mentioned earlier. Examining of
the logs carefully, we found that NetBus, W32.Beagle.AC,
and W32.Netsky should have triggered alerts. They all
write to the registry keyHKEY LOCAL MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run, which is
read by Windows during its boot. This modified key al-
lows the malware to survive a system reboot, because the
system will automatically restart all the programs listed in
this registry key. These malware programs violate our in-
tegrity model, because they write untrusted data into this
registry key, and the system will read these untrusted data
during the next reboot. Our framework would detect this vi-
olation, if our monitor driver were loaded early in the boot
sequence. However, due to limitations in Windows, no user
visible notification could be given at this point of detection,
and so the only allowable option would be to restore the
previous registry key value.

4.3. Performance

Our tool monitors the execution of all the processes on
the system. It intercepts and optionally logs all the sys-
tem services from untrusted processes, and it also monitors
trusted processes to prevent them from reading untrusted
data. However, most system service calls pass through our
monitor very quickly, and only the calls that modify the sys-
tem state (such as the file system and the registry) may no-
tice delays.

The timings in Table 3 reveal that while the overhead
of our implementation does increase execution time for the
tasks, the effect is reasonable when compared with the re-
source usage of a commercial anti-spyware of anti-virus
program. Moreover, the performance numbers for the in-
stallers and unzip should be interpreted as a stress test of
our system since they mainly consist of file operations. All
measurements were conducted on an Intel Pentium 4 2GHz

desktop with 256 MB RAM and a 7200rpm IDE hard disk
running Windows XP Workstation SP1.

5. Discussion

5.1. Security of the Framework

Security Goals Security has three main goals: confiden-
tiality, integrity, and availability [3]. Our framework fo-
cuses on maintaining integrity: it allows the user to run
untrusted programs without compromising system integrity,
and it can remove the untrusted programs and all their ef-
fects on the system completely and automatically. Our
framework does not ensure availability directly, because
it does not control resource usage by untrusted programs;
however, since our framework can remove untrusted pro-
grams and their effects on the system, it provides availabil-
ity indirectly. Our framework does not provide confiden-
tiality, since it does not prevent untrusted programs from
reading confidential information, nor does it monitor out-
going network traffic. As we discussed in Section 1, once
the user starts to run untrusted programs, it is very difficult
to maintain confidentiality in a usable way. However, we
can enhance our framework to provide confidentiality. If
the user can indicate what information is confidential on his
system, we can incorporate this information by disallowing
untrusted applications from reading confidential informa-
tion. We leave this for future work.

Security of the Logging Mechanism Our framework
logs write operations by untrusted processes so that it can
reverse these operations in the future. An adversarial pro-
cess may try to DOS attack our logging system by mak-
ing numerous write operations. However, our system does
not log each write operation by untrusted processes; it only
logs those write operations that replace trusted data. More
specifically, we divide the write operations by untrusted
processes into three categories:

• The operation replaces trusted data. Our system logs
this operation and the old data.

• The operation replaces untrusted data (i.e., data writ-
ten earlier by an untrusted process). Our system logs
nothing.

• The operation writes new data. Our system only logs
that this operation took place.

The log size in the first case may be large because of poten-
tially large old data, the log size in the third case is small,
and the log size for the second case is zero. Therefore, an
adversarial untrusted process cannot effectively DOS attack
our logging system by writing a large amount of new data,



Malware
Our Tool Commercial Tool

Detected Modifications Detected Modifications False Negative
File Registry Key File Registry Key File Registry Key

eZula 242 195 42 61 83% 69%
Gator 385 129 151 4 61% 97%

BonziBuddy 112 2135 24 59 79% 97%
NetBus 2 1 2 1 0% 0%

Happy99.Worm 2 0 2 0 0% 0%
W32.Beagle.AC 44 1 44 1 0% 0%

W32.Netsky 336 8 330 1 2% 88%

Table 2. Comparison of our tool and commercial tools’ abilit y to detect files and registry keys modi-
fied by malware.

Program
CPU Time

Log Size
Not monitored Monitored as trusted Monitored as untrusted

eZula installer 3.953s 4.516s 6.338s 4959 KB
Kazaa installer 48.965s 59.824s 101.466s 12552 KB
Happy99.Worm 4.858s 4.963s 4.937s 6 KB
unzip (5MB file) 0.535s 0.666s 1.013s 336 KB

Table 3. CPU time and disk space overhead of our tool while run ning benign and malware programs.

or repeatedly overwriting the same location. The only ef-
fective attack is to overwrite a large amount of trusted data,
which we can deal with by limiting the maximum amount
of data that an untrusted process may overwrite.

Security of the Dichotomy of Trustworthiness We as-
sume that once the user considers a process trusted, it re-
mains trusted until the user explicitly reclassifies it as un-
trusted. This ignores the possibility that a trusted but vul-
nerable process may become untrusted because malicious
code has been injected into it.

5.2. Security of the Implementation

We discuss the security of our prototype implemented on
Windows:

• Read and write operations: Our current prototype only
considers read and write operations on the Windows
registry and on the file system. It considers some IPCs
mechanisms, such as communication through named
pipes as combined read and write operations. There-
fore, when an untrusted program sends a message to
a trusted program, this message passing violates the
integrity model. However, in our current implemen-
tation we do not monitor all IPC mechanisms includ-
ing shared memory and Windows message passing.
Since we cannot easily monitor device drivers installed

by untrusted programs, we consider their installation
as violating the integrity property. We also assume,
optimistically, that after an untrusted program writes
data to the network, the data will not be read by some
trusted programs from the network later; therefore, we
do not monitor read or write operation on the network.

• Security of the monitoring mechanism: The princi-
ple of complete mediation requires that untrusted pro-
grams should be unable to attack or circumvent the
monitoring mechanism [18]. We install our monitor
as a kernel driver before we run untrusted programs.
Therefore, our monitor can intercept and control all the
API calls made by untrusted programs from the user
space. Our prototype treats all the processes spawned
by untrusted processes as untrusted and transitively
monitors the spawned processes. Therefore, we be-
lieve that our monitor is secure from tampering or cir-
cumvention by user-level processes. While our pro-
totype can prohibit untrusted programs from installing
kernel drivers by standard means, we do not prevent at-
tacks on trusted processes that may install rootkits on
the system.

• Security of the logging mechanism: We have discussed
the security of the logging mechanism of the frame-
work in Section 5.1. In the implementation, we need
to ensure that no untrusted process can tamper with the



logs. Since our framework hooks into all the API calls
that access the file system, it protects the logs by deny-
ing access to it from all except the logging process.

• Security of the recovery mechanism: Since our frame-
work maintains system integrity, recovery can always
succeed. In particular, before the monitor begins re-
covery, it aborts the untrusted process (and any process
spawned by it). Therefore, the process cannot interfere
directly with the recovery mechanism.

6. Related Work

SEE [20, 12], proposed the idea of usingone-way iso-
lation to create a safe execution environment. Untrusted
programs modify a separate temporary copy of the file sys-
tem rather than the original. SEE allows the user the option
to commit these changes to the original file system once
the untrusted program finishes. We view SEE as a dual to
our approach: SEE allows the untrusted programs to run
to completion, but may not be able to commit some data
back to the original file system. Our framework allows un-
trusted programs to write to the file system immediately, but
our framework may prohibit some untrusted programs from
running to completion.

Goel et al. designed a system to recover a file system af-
ter an intrusion is detected. The Taser [7] intrusion recovery
system logs all process, file and network operations. It can
then use this audit log to determine the resultant file sys-
tem modifications after an intrusion. Once a compromised
process is flagged by IDS network activity logs or filesys-
tem changes, all changes to the file system depending on
that process can be reversed. The dependency is derived
from information flow between processes and files by sys-
tem calls. While Taser has similar logging and recovery
components compared with our approach, the main differ-
ence is the timeliness of response. Our approach can act
immediately when an untrusted process taints a trusted one
since we monitor the actual kernel objects in the operat-
ing system. Taser identifies malicious behavior by an IDS,
and only acts after the IDS signals an intrusion. Since an
IDS may have false negatives, Taser may never respond to
the tainting of trusted processes. Moreover, if an IDS does
not respond immediately after an intrusion happens, Taser
would need to reverse all the operations of legitimate pro-
cesses from the time of intrusion to the time of intrusion
detection, resulting in the loss of any work done by the le-
gitimate processes.

Our work is also related to the general isolation strat-
egy with virtual machines, which provide an effective, reli-
able mechanism for isolating untrusted applications. King
et al. added support for virtual machines monitors into the
Linux kernel for achieving high performance [11]. How-

ever, using virtual machines to execute untrusted programs
has its shortcomings. First, untrusted programs running in-
side a virtual machine cannot access resources created by
programs running outside the virtual machine, which may
break many programs. Second, virtual machines are expen-
sive. Configuring each untrusted program to run in its own
virtual machine with a complete operating system requires
considerable amounts of system resources and human time.

Our framework is inspired by recovery-oriented com-
puting (ROC), which is a framework for recovering from
system component failure and operator errors [16, 4]. It
contains three stages: rewind, repair, and replay. Its threat
model is that any component in the system may fail, and
that the operator may make a mistake at any time. Since
our goal is to run untrusted programs safely, we need a dif-
ferent threat model: we assume that most applications on
the system are trustworthy, so we can focus on monitoring
and logging a few untrusted applications. Therefore, our
framework has a much smaller overhead for logging and
recovery. Our framework also avoids possibly expensive
snapshots required in ROC.

Logging has been used for replaying system events. Re-
Virt uses logging for intrusion detection. It runs applica-
tions inside a virtual machine and logs their events. Then, it
analyzes intrusions by replaying the logged events [6]. King
et al. uses logging for debugging operating systems [10].
They run an operating system inside a virtual machine, log
all its events, and use the logs to debug the operating system.
We use logging for a different purpose: we want to recover
the system to a safe state, rather than replay the events. This
difference requires that we design our logging system differ-
ently. We do not need to take a snapshot of the system; we
just log all the events. During recovery, we start from the
current state of the system and undo each offending event in
the reverse chronological order. In this approach, we have
avoided taking a system snapshot, which may be very ex-
pensive. Logging has also been used for system recovery.
A log-structured file system [17] takes this idea even fur-
ther: the entire file system is in a log-like structure, which
speeds up both file writing and crash recovery. It influenced
the design of file system recovery in our framework.

Reparable file service (RFS) [22] uses a similar idea of
logging and recovery to repair compromised network file
servers, such as NFS servers. It interposes a RFS server
between the NFS server and clients for logging file update
operations, and these logs can be used later for rolling back
these operations. It is used for a different purpose from that
of our approach, and as such, it is more complicated: it
requires modifying all the NFS clients as well as interposing
the RFS server between the NFS server and its clients.

Our logging mechanism employs a simple tainting anal-
ysis to track trustworthiness of data. Similar ideas have
been used for many other purposes. Chow et al. proposed to



use whole-system simulation with tainting analysis to ana-
lyze how sensitive data are handled in large programs [5].
Newsome et al. used dynamic taint analysis for automatic
detection of overwrite attacks in processes. BackTracker [9]
identified automatically potential sequences of steps that
occurred in an intrusion. Starting with a single detection
point, it identified files and processes that could have af-
fected that detection point. In comparison, our framework
tracks the propagation of untrusted data for preserving sys-
tem integrity and removing malware.

7. Conclusion

We have described Back to the Future, a novel frame-
work for automatically removing malware and repairing its
damage to the system. The framework preserves system in-
tegrity while the user is running untrusted programs, and
allows untrusted programs to run as long as possible until
they may harm trusted programs. The framework achieves
these goals by monitoring untrusted programs, logging their
operations, and using the logs to remove malware and to
restore infected data. We implemented this framework on
Windows and tested our prototype on real spyware, adware,
Trojan horses, and email worms. With acceptable runtime
and storage overhead, we detected all the malware’s modi-
fications found by commercial tools, while the commercial
tools overlooked up to 97% of the modifications found by
our tool.
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