
Vol.:(0123456789)

Machine Learning (2021) 110:651–674
https://doi.org/10.1007/s10994-021-05951-6

1 3

Protect privacy of deep classification networks by exploiting
their generative power

Jiyu Chen1 · Yiwen Guo2 · Qianjun Zheng3 · Hao Chen1

Received: 20 September 2020 / Revised: 15 December 2020 / Accepted: 23 January 2021 /
Published online: 13 April 2021
© The Author(s) 2021

Abstract
Research showed that deep learning models are vulnerable to membership inference
attacks, which aim to determine if an example is in the training set of the model. We pro-
pose a new framework to defend against this sort of attack. Our key insight is that if we
retrain the original classifier with a new dataset that is independent of the original training
set while their elements are sampled from the same distribution, the retrained classifier will
leak no information that cannot be inferred from the distribution about the original training
set. Our framework consists of three phases. First, we transferred the original classifier to
a Joint Energy-based Model (JEM) to exploit the model’s implicit generative power. Then,
we sampled from the JEM to create a new dataset. Finally, we used the new dataset to
retrain or fine-tune the original classifier. We empirically studied different transfer learning
schemes for the JEM and fine-tuning/retraining strategies for the classifier against shadow-
model attacks. Our evaluation shows that our framework can suppress the attacker’s mem-
bership advantage to a negligible level while keeping the classifier’s accuracy acceptable.
We compared it with other state-of-the-art defenses considering adaptive attackers and
showed our defense is effective even under the worst-case scenario. Besides, we also found
that combining other defenses with our framework often achieves better robustness. Our
code will be made available at https:// github. com/ ChenJ iyu/ meminf- defen se. git.

Keywords Data privacy · Membership inference attack · Generative modeling · Deep
neural networks

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 * Jiyu Chen
 jiych@ucdavis.edu

 Yiwen Guo
 guoyiwen.ai@bytedance.com

 Qianjun Zheng
 bachjin@mail.ustc.edu.cn

 Hao Chen
 chen@ucdavis.edu

1 University of California, Davis, USA
2 ByteDance AI Lab, Beijing, China
3 University of Science and Technology of China, Hefei, China

http://orcid.org/0000-0002-0144-6376
https://github.com/ChenJiyu/meminf-defense.git
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05951-6&domain=pdf

652 Machine Learning (2021) 110:651–674

1 3

1 Introduction

Deep learning models are widely deployed, and many of them are continuously trained by
data collected from users. As such, privacy becomes a major concern.

Researchers have proposed several privacy attacks on deep learning models, such as
inference attacks (Shokri et al., 2017; Hayes et al., 2019; Nasr et al., 2019), inversion
attacks (Fredrikson et al., 2015), and model stealing attacks (Tramèr et al., 2016; Wang &
Gong, 2018). We focus on defending against membership inference attacks, which aims to
infer whether an example is among the target model’s training data. The ability of resisting
membership inference attacks is crucial in practical scenarios where the privacy of training
data is of importance. For example, while a patient consents to use her medical record to
train a sensitive disease classifier, she does not want the model to reveal that her record is
part of the training set (and hence she has the disease).

Researchers considered overfitting as a major contributing factor to inference
attacks (Shokri et al., 2017; Yeom et al., 2018). Therefore, many defenses aimed to reduce
overfitting by forcing the model to learn the distribution instead of memorizing the data
by applying different regularization strategies, such as weight decay and dropout (Srivas-
tava et al., 2014). However, recently researchers also showed that overfitting is a sufficient
but not necessary condition for performing privacy attacks (Yeom et al., 2018; Jain et al.,
2015; Salem et al., 2018), which means that merely reducing overfitting may be inade-
quate. Others proposed certifiable training algorithms (Chaudhuri et al., 2011; Abadi et al.,
2016; Wang et al., 2018) to theoretically guarantee that the trained model is differentially
private. Section 6 will discuss more defenses. Among these defenses, the original training
data are always exposed to model training, which makes it challenging to defend against
privacy attacks. Moreover, some defenses bear conditional restrictions, require additional
architectures and data, or need large time budgets.

In this paper, we propose a novel framework for defending a pre-trained deep learning
classifier against inference attacks without requiring additional architectures and datasets,
or special training algorithms. Our key insight is that if we retrain the model with a gen-
erated dataset that (1) is from the same distribution as the original training set but (2) is
independent of the original training set, then no information about the original training set
that cannot be inferred from the distribution itself will be available to the retrained model.
Therefore, the retrained model achieves information-theoretic security against inference
attacks. However, we do not know the true distribution of the underlying data in practice,
so we instead turn to approximate it using the empirical distribution via generative models
based on our original datasets.

Our framework consists of three phases. First, we train a generative model using the
original training data. Second, we sample from the generative model to create a new data-
set. Finally, we use the new dataset to retrain or fine-tune the original classifier.

Applying generative models creates two potential problems. First, the divergence
between the original dataset’s empirical distributions and our generated dataset may reduce
the retrained classifier’s accuracy. Second, the generated dataset may not be completely
independent of the original dataset. To address these problems, we need to carefully select
generative models and evaluate our retrained models on classification accuracy and robust-
ness against inference attacks.

Several generative models can produce high-quality examples, including genera-
tive adversarial networks (GANs) (Goodfellow et al., 2014), variational auto-encoders
(VAEs) (Kingma and Welling 2013), and energy-based models (EBMs) (Ackley et al.,

653Machine Learning (2021) 110:651–674

1 3

1985). Recently, Grathwohl et al. introduced joint energy-based models (JEM). A JEM
consists of a discriminative model and a generative model that share the same deep net-
work architecture (Grathwohl et al., 2019). We selected JEM to provide the required gen-
erative ability for several reasons. First, since JEM’s generative model can reuse the same
network architecture of the pre-trained classifiers, we need no architectural engineering.
Second, sampling from EBMs (including JEMs) is theoretically guaranteed to be asymp-
totically in the true data distribution. Finally, training JEMs requires less computation,
especially when it is possible to transfer the pre-trained classifier to JEM. This transfer
learning is efficient because it can inherit the useful features that the pre-trained classifier
has already learned.

We have performed extensive evaluations for two main objectives. One is to provide
insight into how different transferring to JEM and model fine-tuning strategies would result
in our final results. The other is to demonstrate the performance of the model produced by
our framework under popular membership inference attacks.

For the first objective, we compared different amounts of network transfer from the
original classifier to the JEM and found that JEM training failed to converge when we
transferred all the layers from the original classifier to the JEM. By contrast, transferring
only the early convolutional layers resulted in the fastest convergence. We also compared
retraining the original classifier with fine-tuning it and found that fine-tuning increased
both classification accuracy and the attacker’s membership advantage moderately. Mean-
while, for the second objective, our evaluation shows that our framework reduced the
attacker’s membership advantage from 32.91% on the original model to 2.66% on the
retrained model on CIFAR-10, and from 25.28% on the original model to 4.55% on the
retrained model on SVHN,1 while our retrained model suffers a moderate decrease in clas-
sification accuracy. More importantly, by comparing our defense with other state-of-the-
art defenses under adaptive attacks, we show that our defense is effective even under the
worst-case scenario and can provide better accuracy-robustness tradeoff when combined
with other defenses.

2 Background

2.1 Membership inference attacks

One main category of privacy attacks consists of inference attacks, which contains mem-
bership inference attacks and attribute inference attacks. Membership inference attacks
aim to infer whether an example was in the target model’s training dataset, e.g., inferring
whether a patient’s record was used in medical research. Shokri et al. (2017) designed a
black-box membership inference attack against machine learning models. Subsequently,
researchers introduced several variants of the attack, such as attacks on GANs (Hayes et al.,
2019), VAEs (Hilprecht & Härterich, 2019), model explanations (Shokri et al., 2019), and
collaborative learning models (Nasr et al., 2019). We focus on mitigating membership
inference attacks on DNN classifiers in this paper.

A well-known membership inference attack is the shadow-model attack (Shokri et al.,
2017). It requires the attacker to train several shadow models and attack models. To attack

1 Membership advantage = 2 * attack accuracy − 1

654 Machine Learning (2021) 110:651–674

1 3

a victim model, first, the attacker collects or synthesizes data from the same domain as the
victim classifier’s training and test data, and divides the data into several private training
and test sets. Then, the attacker uses each of the private training set to train one shadow
model f i

shadow
 to mimic the behavior of the victim classifier. Next, the attacker sends all the

examples in each private training and test set to its corresponding shadow model to create a
dataset D that contains the tuple (y, f i

shadow
(x), I(x)) for each example x , where y is the class

label of x , f i
shadow

(x) is a vector containing the outputs of the ith shadow model, and I(x)
indicates whether x is used for training the shadow models. Finally, the attacker partitions
D based on the examples’ class labels and uses them to train one attack model per class to
distinguish the training data from the others.

2.2 Energy‑based models

Energy-based models (EBMs) was proposed long ago (Ackley et al., 1985) and has been
largely improved during the years (LeCun & Huang, 2005; Hinton et al., 2006). Currently,
energy-based models can achieve state-of-the-art generative power compared with other
generative models (Du & Mordatch, 2019), such as GANs and VAEs, but have more flex-
ible architectures because they directly model reasonable energy representations.

An energy-based model represents the probability density function p(x), x ∈ ℝ
D as

where E
�
(x) ∶ ℝ

D
→ ℝ

D is the energy function parameterized by a set of learnable param-
eters � (e.g., a neural network), and Z(�) =

∑
x�∈X exp(−E�

(x�)) is a normalizing constant
known as the partition function.

Computing Z(�) directly is usually intractable. Instead, we can train the energy-based
model by computing the gradient of p

�
(x) w.r.t. �:

The detailed derivation of Eq. (2) can be found in “Appendix 1”. At each training step, we
approximate the expectation in Eq. (2) by sampling from the current model, using Sto-
chastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011) which is an iterative
sampling method:

where x0 is uniformly drawn from the valid input domain of the model, the step size �
decays polynomially, and the noise � is drawn from the normal distribution N(0, �) . SGLD
is efficient and is provable to asymptotically produce samples from the target distribution.

3 Design

3.1 Threat model

A DNN classifier takes an example as input and outputs a vector describing the probabil-
ity that the input belongs to each class (or label). In the concerned membership inference

(1)p
�
(x) =

exp(−E
�
(x))

Z(�)
,

(2)∇
�
log(p

�
(x)) = �p

�
(x�)∇�

E
�
(x�) − ∇

�
E
�
(x).

(3)xt+1 = xt −
�

2
∇xt

E
�
(xt) + �,

655Machine Learning (2021) 110:651–674

1 3

attacks, the attacker aims to determine if a given example was used to train the classifier.
As defenders, our goal of this paper is to protect a pre-trained classifier from such attacks.

We assume the following threat model in this paper:

• The attacker has gray-box access to the classifier. She knows the architecture of the
classifier and can query it using arbitrary examples. However, she knows neither the
weights nor the activation of nodes inside the classifier.

• Even though the attacker does not know the training data of the original classifier, she
knows the distribution of the training data and can access other datasets from the same
distribution.

This threat model applies to many real-life scenarios. For example, a company provides
face recognition service via an API. The attacker can query the API. She may even guess
the architecture of the classifier. However, she can access neither the weights nor the acti-
vation of nodes inside the classifier. She has no access to the training data, but she can
collect her own face datasets and use them to launch an attack, e.g., by training a shadow
model (Shokri et al., 2017).

3.2 Defense framework

The goal of a classifier is to learn the conditional probability distribution of data. Unfor-
tunately, DNN classifiers tend to overfit the training data and thus enabling membership
inference attacks. Our insight is that if we replace the training dataset with a new dataset
that (1) is independent of the training data, and (2) is from the same distribution of the
training data, then we can mitigate membership inference attacks while retaining the test-
set accuracy of the original classifier.

One straightforward way is to transform individual training examples, e.g., by add-
ing noise. However, this approach has an irreconcilable dilemma: If the transformation is
small, then the transformed example will be highly correlated with the original example;
on the other hand, if the transformation is large, then the transformed example may deviate
from the distribution.

Fig. 1 The three-phase framework of our defense. Transferring the pre-trained classifier to a JEM, sampling
a new dataset by SGLD, retraining/fine-tuning a privacy-preserving classifier. All phases share a single
model architecture

656 Machine Learning (2021) 110:651–674

1 3

We proposed a new approach to satisfy both properties. Instead of transforming
individual example, we first learned the distribution of the training data (Sect. 3.2.1),
and then sampled from the distribution to create a new dataset (Sect. 3.2.2). Finally,
we used the new dataset to train the classifier (Sect. 3.2.3). Figure 1 summarizes our
pipeline of performing these steps.

3.2.1 Train the generative model

We learned the distribution of the training data by training a generative model. GAN
is a popular option, but we would need to design a suitable GAN architecture and
carefully tune its hyper-parameters to suit the training data. We aimed to achieve the
goal by exploiting the original classifier’s generative power such that no extra archi-
tecture engineering is needed. On this point, we created a Joint Energy-based Model
(JEM) (Grathwohl et al., 2019), which reused the architecture of the original classifier
but changed its log-likelihood loss to

where

The energy function here is defined as E
�
(x) = − logΣy exp(f�(x)[y]) and f

�
(x)[y] is the out-

put logit of the DNN corresponding to the label y on the input x computed by the original
classifier.

When training the JEM, the gradient of log p
�
(y|x) is readily available from the DNN

using back-propagation (as log p
�
(y|x) is simply the negative cross-entropy loss of the

DNN when used as a classifier). To compute the gradient of log p
�
(x) , we approxi-

mated the expectation in Eq. (2) by sampling from the current model. Specifically, we
applied Stochastic Gradient Langevin Dynamics (SGLD, Eq. 3) for sampling, which is
the common choice in many recent energy-based models’ training.

The original goal of JEM was to train both a discriminative model and a generative
model from scratch (Grathwohl et al., 2019), but that requires sophisticated parameter
turning and converges slowly. By contrast, since we already had the original classifier
as a descent discriminative model on which we wished to defend against membership
inference attacks, we attempted to transfer the classifier to the JEM. Since the JEM and
the classifier had the same architecture (but with different loss functions), we simply
used the weights of the original classifier to initialize the JEM. We compared different
transfer strategies (and the detailed results are deferred to Sect. 4.2):

• Transfer all: initialized all the weights in the JEM to their corresponding values in
the original classifier.

• Transfer some: for some layers in the JEM, initialized their weights to their cor-
responding values in the original classifier; for the other layers, initialize their
weights randomly.

• Transfer none: initialized all the weights in the JEM randomly.

(4)log p
�
(x, y) = log p

�
(x) + log p

�
(y|x),

(5)p
�
(x) =

exp(−E
�
(x))

∑
x�∈X exp(−E�

(x�))
and p

�
(y�x) =

exp(f
�
(x)[y])

∑
y� exp(f�(x)[y

�])
.

657Machine Learning (2021) 110:651–674

1 3

3.2.2 Sample from the generative model

In fact, when we trained the JEM, according to Eqs. (2) and (3), we needed to sample from
the generative model of the JEM at every training iteration. However, sampling that starts
from random noise every time can result in a large computational overhead. In practice, we
kept the examples that we used to approximate the gradient of log p

�
(x) during SGLD in a

replay buffer. Specifically, the replay buffer works under the following procedure. Initially,
the fixed-sized replay buffer is filled with random noise. Whenever we sample a new exam-
ple, we will randomly select an entry in the replay buffer and use it as the starting point of
SGLD, and the new sample will replace the original entry as a new seed for the next time
selected. The replay buffer is dynamically updated at each training iteration and thus can
gradually boost the sampling speed and quality.

After we obtained a well-trained JEM, we sampled from its generative model p
�
(x) to

create a set for training the final privacy-preserving classifier. We leveraged the replay
buffer to get samples from the generative model similar to in training. We also randomly
selected seeds from the replay buffer and then used SGLD to acquire samples according to
Eq. (3). We will discuss how the replay buffer size would affect the final classifier’s genera-
tion quality and performance in Sect. 4.2.1.

3.2.3 Fine‑tune the classifier

After we collected enough samples as a new training set from the generative model, we
were ready to train the final privacy-preserving classifier. A straightforward way was to
retrain the final classifier from scratch by randomly initializing all its weights. Retraining
provides the best privacy protection because no information was left over from the original
privacy-sensitive training data. However, if the generated data were inadequately diversi-
fied as they cannot approximate the true data distribution better than the original training
data, the resulting classifier’s test accuracy might deteriorate comparing to the original one.
Considering the trade-off between classification accuracy and membership robustness, we
can also fine-tune the original classifier either fully or partially. We compared these three
strategies (train from scratch, fine-tune partially, and fine-tune fully) in terms of test accu-
racy and robustness against membership inference attack in Sect. 4.3, where the proposed
framework will also be compared with other effective defenses to membership inference
attacks empirically.

As we will see in Sect. 4.3, by the nature of JEM and SGLD sampling, the generated
dataset would have a similar distribution with the real dataset. Thus, the model would only
drop little accuracy even if it was retrained from scratch by the generated dataset. We pro-
vide more visualized evidence in “Appendix 5”.

4 Evaluation

4.1 Experiment settings

To evaluate the effectiveness of our approach, we performed an extensive empirical study.
First, we evaluated our JEM on its discriminative model’s accuracy and the quality of the
examples sampled from its generative model. Then we evaluated how different training

658 Machine Learning (2021) 110:651–674

1 3

settings, including replay buffer size and early stopping, would affect our result. Next,
we evaluated the retrained/fine-tuned classifier on classification accuracy and robustness
against membership inference attacks. Finally, we compared our defenses with other state-
of-the-art defenses to further demonstrate the effectiveness of our defense.

We used WideResNet (Zagoruyko & Komodakis, 2016) as our network architecture,
the same as used by Grathwohl et al. (2019). We used two datasets: CIFAR-10 contains
colored natural objects of 10 classes (Krizhevsky et al., 2009), and SVHN contains colored
digital photos of street house numbers (Netzer et al., 2011).

Unless specified otherwise, all the models (JEMs, shadow models, and attack models)
were selected at the point of best validation accuracy.

4.2 Training efficiency of JEM

JEM contains a discriminative model (classifier) p(y|x) and a generative model p(x) , both
sharing the same network architecture. When training JEM from scratch, it requires sophis-
ticated parameter tuning and considerable time to converge. Since we already had the pre-
trained original classifier, our JEM used the same architecture as the original classifier. We
compared the three schemes for transferring the weights from the original classifier to our
JEM introduced in Sect. 3.2.1. The WideResNet network in our JEM has 90 convolutional
layers (the others are mainly batch-normalization layers). The three schemes are:

• Transfer all (or transfer 90/90): Transfer all the 90 convolutional layers from the origi-
nal classifier to JEM.

• Transfer some (or transfer 50/90): Transfer the early 50 convolutional layers from the
original classifier to JEM.

• Transfer none (or transfer 0/90): Do not transfer.

Any weight not transferred from the original classifier was randomly initialized in the JEM.
Figure 2 shows the training curves of the transfer learning schemes. It shows that when

we used the entire pre-trained classifier to initialize the JEM (i.e., transfer all), training was
hard to converge. We explain this difficulty by the following phenomenon. Given an exam-
ple and its label (x, y) , a trained classifier is expected to output a high confidence in class

Fig. 2 Training curves of differ-
ent transfer learning schemes

659Machine Learning (2021) 110:651–674

1 3

label y , e.g., a high p(y|x) . However, the converse is not true, which means that even when
the classifier outputs a high confidence in the label y on another example x′ , we cannot
conclude that x′ is likely from the same distribution as x . So the original network, which
was solely optimized over p(y|x) , may have very poor performance in terms of describing
p(x) . This phenomenon also makes deep learning models vulnerable to adversarial exam-
ples (Szegedy et al., 2013), which are specially crafted examples to make models output
different decisions than humans.

By contrast, when we transfer only some of the convolutional layers from the origi-
nal classifier to the JEM, training became more stable and easily converged. This is likely
because early convolutional layers mostly contain low-level features extracted from the
training images, which are more likely to be shared between the discriminative model
p(y|x) and the generative model p(x) . Consequently, between transferring some layers (i.e.,
transfer 50/90) and training from scratch (i.e., transfer 0/90), the former also converged
faster. See for example Fig. 3, it shows that the accuracy of the discriminative model dur-
ing training converged faster when we transferred some convolutional layers than training
from scratch.

Fig. 3 Accuracy of JEM’s
discriminative model during
training

Fig. 4 Image quality during training. At each epoch, we randomly sampled 500 images for calculating the
Inception Score and Fréchet Inception Distance

660 Machine Learning (2021) 110:651–674

1 3

Figure 4 further shows how the Inception Score (IS) (Salimans et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017) of the images sampled from the generative
model of the JEM changed during training. Inception Score and Fréchet Inception Distance
are commonly used to assess image generation in terms of image quality and variety. We
can see that the transfer learning scheme (i.e., transfer 50/90) improved image quality faster
during training than training from scratch.

4.2.1 Size of the replay buffer

After training the JEM, we sampled images from its generative model to create a dataset
for fine-tuning/retraining the classifier for protecting data privacy. As Sect. 3.2.2 described,
during each iteration of JEM training, we stored the example that was used to approximate
the gradient of p(x) in a replay buffer. To get a sample from the generative model, we
randomly selected an entry from the replay buffer as the start point and then used SGLD
to acquire a sample. In other words, the replay buffer contained high-quality seeds based
on which we sampled from the distribution. On the one hand, larger replay buffers allow
us to acquire samples with greater variety, which will improve the generalizability of the
retrained classifier. But on the other hand, since the size of the replay buffer is linear in the
number of training iterations, a larger buffer will require longer training time.

Table 1 shows how replay buffer size (i.e., number of seeds in the buffer) affects the
accuracy of the retrained classifier. We trained the JEM with different buffer sizes. On each
buffer size, we sampled the same number of images from the replay buffer and used them
to retrain the original classifier (i.e., used the architecture of the original classifier but ini-
tialized its weights randomly). As we expected, a larger buffer size increased the accuracy
of the retrained model. The user of our framework needs to balance the trade-off between
the training time of the JEM and the accuracy of the retrained classifier.

In the following experiments, we set the replay buffer size to 100 000 and transferred
the early 50 convolutional layers of the original classifier to the JEM.

4.2.2 Early stopping

Normally we stop the training of the JEM when its generative model achieves the best
validation accuracy. However, this usually takes a long time. Since our goal is not to train
the best generative model but to train a good enough generative model to generate high-
quality examples, we could stop the training early, but how will this affect the quality of the
sampled images and the retrained/fine-tuned classifier’s accuracy and robustness against
membership inference attacks?

Figure 5 compares the images sampled at the end of the 10th epoch (Fig. 5a) with those
at the end of the 50th epoch (Fig. 5b). It shows that even though more photo-realistic
images appeared at the later epoch, some photo-realistic images also appeared at the earlier

Table 1 The impact of the size of
the replay buffer on the accuracy
of the retrained classifier. We
retrained the classifier for 10
epochs

Buffer size Classification accuracy (%)

CIFAR-10 SVHN

10,000 54.27 81.62
50,000 74.34 84.14
100,000 80.19 87.98

661Machine Learning (2021) 110:651–674

1 3

epoch. In our experiments, we used the original classifier as a quality filter where a sam-
pled image passes the filter only if the original classifier outputs a high confidence in its
class label. This filter allows us to stop the JEM training early “safely”.

Figure 6 shows the impact of early stopping of JEM training on the privacy and test-set
accuracy of the retrained classifier. Figure 6a shows that the accuracy of the discrimina-
tive model of the JEM increased rapidly during the first 10 epochs but much slower after
that, and more importantly, the same trend can be observed in the test-set accuracy of the
retrained classifier (trained using data generated by the JEM model collected at the cor-
responding epoch). Therefore, early stopping may be desirable for better efficiency of our
framework when the discriminative model of JEM reaches an acceptable classification
accuracy. Figure 6b shows that the attack accuracy barely changed as the training of JEM
progressed, i.e., in the context of privacy-preserving, retraining or fine-tuning the final

(a) Sample from the 10th epoch (b) Sample from the 50th epoch

Fig. 5 Synthesized images from different training epochs for CIFAR-10. The left were sampled from the
10th epoch, and the right were sampled from the 50th epoch. While the right samples have higher quality,
there are also lots of photo-realistic samples in the left, which only took 1/5 training time

Fig. 6 Impact of early stopping on the regular accuracy and on the attack accuracy of the retrained CIFAR-
10 classifier

662 Machine Learning (2021) 110:651–674

1 3

classifier using data generated after 10 epochs of the JEM training can be as effective as
using data generated after 50 epochs. This phenomenon supports our hypothesis that the
data sampled from the generative model of JEM are independent of the original training
data, no matter how long the JEM has been trained.

4.3 Privacy of the final classifier

4.3.1 Robustness against shadow‑model attack

After retraining or fine-tuning the original classifier, we performed the shadow-model
attack (Shokri et al., 2017) on (1) the original classifier, (2) the fine-tuned classifiers, and
(3) the retrained classifier using our framework. We use Membership advantage (or sim-
ply advantage) to measure the amount of information leaked to the attacker (Yeom et al.,
2018):

which equals the difference between the true positive rate and the false positive rate of the
attacker.

The row with the label “Ours” in Table 2 reports the performance of our defenses. It
shows that our retrained or fine-tuned classifiers significantly reduced the attacker’s advan-
tage, from 32.91 to 2.66% on CIFAR-10 and from 25.28 to 4.55% on SVHN. It also com-
pares fine-tuning the original classifier and retraining it. The results show that the fully
fine-tuned classifier (i.e., obtained by fine-tuning all the 90 convolutional layers) achieved
the highest accuracy while giving the attacker slightly more advantage than the retrained
classifier, while the retrained classifier gave the attacker the smallest advantage with a
slight decrease in the accuracy. Besides classification accuracy and attacker advantage,
another factor to consider when making the trade-off is training time, as fine-tuning takes
less time to converge than retraining.

4.3.2 Comparison with other defenses

For comparison, we also implemented several state-of-the-art defenses that have been
shown effective against membership inference attacks.

We have selected the following defenses for comparison: standard regularizations
(L2 Reg. and Dropout) (Shokri et al., 2017), Min–Max adversarial regularization (Nasr
et al., 2018), DP-SGD (Abadi et al., 2016). Note that we mostly selected regularization-
based defenses for comparison, since output masking based defenses, such as MemGuard
and output vector truncation, have been shown ineffective under black-box label-only
attacks (Choo et al., 2020). Regularization-based attacks can keep their performance as
they directly adjust the discriminative features learned by the model. Our attack can also be
categorized as a regularization based defense. Additional evaluations for label-only attacks
can be found in “Appendix 3”.

As successfully defending against vanilla attacks does not really guarantee privacy,
we considered adaptive attacks when evaluating all defenses, which means the attackers
have the knowledge of which defense algorithm and what hyper-parameters may have been
applied to training the target model, so that they can plug these algorithms into their own
shadow models. In most cases, there is no straightforward adaptive attack to our defense,
since we essentially substituted the training dataset with a randomly generated dataset that

Membership advantage = 2 ⋅ Attack accuracy − 1

663Machine Learning (2021) 110:651–674

1 3

Table 2 Membership advantage of the shadow-model attack and regular accuracy of different target mod-
els, including the original classifier and all defended classifiers. Note that Membership advantage = 2 *
Attack accuracy − 1. Detailed attack accuracy table for each class label can be found in the “Appendix 2”

†Evaluation under the worst-case scenario which is somewhat unlikely to occur
*d: dropout ratio, w: weight-decay rate, � : standard derivation of the white Gaussian noise

Defense Setting* Membership advantage
(%)

Regular accuracy (%)

(a) CIFAR-10
None – 32.91 85.60
Ours Fine-tune (90/90) 14.01 83.97

Fine-tune (50/90) 9.45 81.32
Retrain 2.66 80.19
Retrain

† 12.86 80.19
Dropout d = 0.2 33.63 87.26

d = 0.4 32.60 88.59
d = 0.6 31.42 90.47
d = 0.8 27.04 91.07

L
2-Reg. w = 0.001 20.45 84.33

w = 0.01 8.78 71.94
DP-SGD � = 0.001 24.05 83.91

� = 0.01 23.06 83.79
Min–Max – 23.94 79.81
Combined Retrain

†+DP(�=0.001) 12.74 80.55

Retrain
†+DP(�=0.01) 2.41 79.89

Retrain
† + Min–Max 2.55 80.14

(b) SVHN
None – 25.28 94.98
Ours Fine-tune (90/90) 8.81 90.72

Fine-tune (50/90) 6.57 88.42
Retrain 4.55 87.98
Retrain

† 19.74 87.98
Dropout d = 0.2 22.63 94.91

d = 0.4 22.62 95.45
d = 0.6 24.14 96.07
d = 0.8 23.53 96.25

L
2-Reg. w = 0.001 22.05 95.28

w = 0.01 – Not converged
DP-SGD � = 1.0 16.78 82.19

� = 2.0 14.59 70.05
Min–Max – 14.45 94.75
Combined Retrain

† + DP(� = 1.0) 20.54 74.54

Retrain
† + DP(� = 2.0) 12.39 60.80

Retrain
† + Min–Max 12.84 86.51

664 Machine Learning (2021) 110:651–674

1 3

would be different every time we do the sampling. However, in order to perform a more
thorough and fair evaluation, we considered the following case: the attacker has direct
access to the exact generated samples we used for fine-tuning or retraining. Although not
quite possible in reality, it is the worst-case scenario for our defense, where all the training
set information included in the final model, if any, would be revealed to the attacker.

Moreover, we observed that our defense is orthogonal with the other defenses. In other
words, our defense can work simultaneously with other defenses to achieve possibly even
better performance, so we also evaluated several combined methods to see whether our
defense can boost other defenses’ performance. Note that all the combined methods with
our defense were evaluated in the worst-case scenario described in the previous paragraph.

The detailed results are also shown in Table 2. The most effective defenses under adap-
tive attack are large L2 regularization or large DP. However, as shown in multiple previous
works, large regularization can result in degradation in model accuracy. From the “Regular
accuracy” column, we can see that large L2 regularization or DP severely harmed the mod-
el’s regular accuracy with a more than 20% decrease of accuracy. At the same time, even
if our defense is under the worst-case adaptive attack, the defended model can still keep an
acceptable accuracy while achieving high membership robustness. Interestingly, we found
that the combined defenses often achieve much better robustness against adaptive attacks
than individual defenses while having better regular accuracy than large L2 regularization
or DP. Although the trade-offs between the model accuracy and membership robustness
are inevitable, a proper combination of defenses may provide us with smaller trade-offs to
achieve better performance in both.

5 Discussion

5.1 Privacy analysis of JEM

As described in Sect. 3.2.3, we either retrained or fine-tuned the original classifier by using
new data generated from a JEM, which is transferred from the original classifier, aiming to
make it more privacy-preserving. A natural curiosity is if we can directly use the discrimi-
native model of the JEM as a robust classifier against membership inference attacks since
JEMs are more likely to have learned from the underlying data distribution and have better

Fig. 7 Comparison of the attack-
er’s advantage when launching
the shadow-model attack on the
original classifier, the JEM’s dis-
criminative model, and our fully
fine-tuned classifier, respectively

665Machine Learning (2021) 110:651–674

1 3

generalization ability by their nature. In fact, it has been shown that JEMs are more robust
against adversarial examples (Grathwohl et al., 2019).

Therefore, we performed a direct evaluation by applying the shadow-model attack
on JEM’s discriminative part. Figure 7 compares the advantage of the attacker using the
shadow-model attack on the JEM’s discriminative model, the original classifier, and our
fully fine-tuned classifier, respectively. Unfortunately, it shows that the JEM’s discrimina-
tive model is no better than the original classifier in terms of robustness against member-
ship inference attacks, but our fine-tuned model is much more robust than both of them.

Since JEM is a joint model with both discriminative and generative ability, we also try
to provide some insights into JEM’s generative model’s robustness against membership
inference attacks for completeness. In the black-box setting, the attacker has no informa-
tion about the generative model. However, if we consider the white-box scenarios where
the attacker can access the JEM weights, we found that JEM’s generative model might also
be vulnerable to membership inference attacks. Specifically, if we apply the training data as
the initialization of the SGLD sampling using a well-trained JEM and proceed with many
sampling steps, the resulting images will be more likely to be close to the original ones.
On the other hand, if the sampling starts from other images from the same distribution but
not inside the training data, the resulting images have a high probability of containing a
different object of the same class. Figure 8 shows the phenomenon described above. This
phenomenon might be leveraged to design membership inference attacks on JEM’s genera-
tive model.

A question following our observations of JEM’s privacy would be: can we build a robust
JEM? In this paper, our framework is a multi-phase transfer learning process designed for
pre-trained classifiers. It requires us to train two models: the JEM transferred from the
original classifier and the fine-tuned privacy-preserving classifier. However, it is possible
to apply an integrated training strategy that directly trains a privacy-preserving JEM by
gradually replace the training data by generated samples during training.

Since studying the robustness of JEM against privacy attacks is outside the scope of this
paper, we only provide some preliminary results and will leave the topic of improving the
privacy robustness of JEMs as future work.

5.2 Other limitations and future work

Different threat models The threat model that we are using considers the grey-box attack. It
allows the attacker to have knowledge of the target model’s architecture. On the one hand,

Fig. 8 SGLD results start from
samples inside/outside the
training dataset. If starting from
training data, the SGLD gener-
ated samples are more likely to
keep the original objects inside
the images. On the other hand, if
starting from non-training data,
the samples may become other
randomly generated objects of
the same classes as the original
ones

Start from training data
========================⇒

1000 steps

Start from non-training data
========================⇒

1000 steps

666 Machine Learning (2021) 110:651–674

1 3

we consider a stronger attacker to evaluate the worst-case vulnerability of the target model
and our defenses, and we should even consider a white-box scenario where the attacker has
full access to the models in the future. On the other hand, we may also want to know how
is the attacker’s realistic performance when less or even no information about the model
is provided. We showed some empirical results in “Appendix 4” to provide some insights.

Moreover, our work only protects against membership inference attacks, and it would be
interesting to apply the key ideas behind our framework to defending against other privacy
attacks, such as model inversion attacks.

Training efficiency Though much simpler than training GANs, training JEMs is still
slower than training classifiers. Moreover, JEM training faces many similar problems
as training other generative or hybrid models, e.g., requiring careful selection of hyper-
parameters. This paper introduced a new, efficient training strategy by transferring from
pre-trained classifiers. Since optimizing the JEM training algorithm is out of the scope of
this paper, we leave as future work ways to maximize the features and information that we
can borrow from the pre-trained classifier.

6 Related work

Membership inference defenses Though it seems impossible to eliminate privacy attacks
due to the intrinsic property of statistical inference, many methods were proposed to reduce
the advantage that the attacker can obtain from such attacks. Current defenses can be
roughly put into two categories. The first is regularization based defense, and the second is
model output vector obfuscation.

Regularization based defenses are shown effective towards every kind of membership
inference attacks. Using standard regularization such as L2 regularization and Dropout as
membership inference mitigation strategies are proposed together with the shadow model
attack by Shokri et al. (2017). These standard regularization techniques also have been
shown effective in enhancing privacy in other literature (Jain et al., 2015; Salem et al.,
2018). Nasr et al. (2018) proposed an adversarial regularization technique, which tries to
optimize a min–max game that simultaneously takes into account the model accuracy and
membership robustness. Besides, Differential Privacy (DP) (Dwork 2008) has been fre-
quently leveraged in defending against membership inference attacks, such as (Chaudhuri
et al., 2011; Abadi et al., 2016; Wang et al., 2018). DP-based defenses try to theoretically
ensure a differentially private training algorithm by inducing random noises, either in loss
functions or in each optimization step. Once a model is differentially private, it can guaran-
tee each data point’s worst-case privacy risk.

The second category of defenses tries to increase the difficulty of training an attack
model. The most straightforward strategies are output vector masking strategies, such as
truncating the output vector to top-k classes, restricting the precision of the output that is
revealed to the attacker, or increasing the entropy of the output towards uniform distribu-
tion. Besides simple output vector masking strategies, Jia et al. (2019) proposed another
direction to mislead the attack models via adversarial attacks (Szegedy et al., 2013). By
adding specially crafted adversarial perturbations to the model output, they could fool the
attacker to infer given examples as wrong classes, thus increasing the attack difficulty.
Unfortunately, these defenses have been shown ineffective against label-only attacks (Choo
et al., 2020), which requires no information on the output vector.

667Machine Learning (2021) 110:651–674

1 3

Other defenses are from the perspective of keeping part of the information secret. Xiang
et al. (2019) proposed to leverage the complex-valued neural networks, and to use a ran-
domly generated rotation angle � and complex counterpart b secrets, thus making it hard
for the attacker to infer information from the transformed input exp(i�)[a + bi].

The aforementioned defenses either face restrictions to meet the theoretical conditions,
require additional architectures or require large computational overhead. More importantly,
the original training data are still directly exposed to the model training procedure. By con-
trast, we propose to defend against membership inference attack from a different perspec-
tive: generating samples from the same data distribution and hide the real training data.
As we have shown, our method is straightforward and applies to all the current classifiers
without requiring any additional architecture.

Other privacy attacks Besides membership inference attacks introduced in Sect. 2, there
are also other privacy attacks. For example, attribute inference attacks aim to infer prop-
erties that should not be exposed to the public, such as background environment or gen-
der information of a target in human face recognition systems. Ganju et al. (2018) tried to
obtain properties by permutation invariant representations. Melis et al. (2019) also con-
sidered attribute inference in collaborative learning settings. Yeom et al. (2018) showed
that membership inference attack is highly related to property inference attack in the way
that they are both highly related to the overfitting problem. They also showed that property
inference attack is harder to succeed than membership inference attacks.

Another category of attacks that also tries to extract information of data is the model
inversion attack. Model inversion attack was first proposed by Fredrikson et al. (2015). It
tries to inversely generate the original inputs of a target machine learning model given out-
puts or activations of the intermediate layers. Besides the attacks towards data, there also
exist attacks that aim to steal the machine learning models (Tramèr et al., 2016; Wang &
Gong, 2018).

Among all these attacks, the privacy vulnerabilities in machine learning models can
cause severe privacy leaks when it comes to models used in areas where each single data
point should be kept confidential. In this paper, we focus on defending against membership
inference attacks.

7 Conclusion

We proposed a simple yet effective framework to protect pre-trained classifiers from mem-
bership inference attacks. We exploited the hidden generative power in a classifier by trans-
ferring it to a Joint Energy-based Model (JEM). We efficiently sampled data from the JEM
to create a new dataset, which is independent of the original training set and is from the
same distribution. Then, we used this new dataset to retrain or fine-tune the original clas-
sifier. We performed extensive empirical studies to evaluate different learning strategies
and our framework’s effectiveness against membership inference attacks. Our framework
significantly reduced the attacker’s membership advantage, from 32.91% on the original
model to 2.66% on the retrained model on CIFAR-10, and from 25.28% on the original
model to 4.55% on the retrained model on SVHN, while maintaining acceptable classifica-
tion accuracy, which means it is an effective defense against membership inference attacks.
Moreover, by comparing with other state-of-the-art defenses, we showed that our defense
could maintain effective under the worst-case scenario and provide better accuracy-robust-
ness trade-off when combined with other defenses.

668 Machine Learning (2021) 110:651–674

1 3

Appendix 1: Derivation of Eq. (2)

We provide a detailed derivation of Eq. (2) which computes the gradient of p
�
(x) . Given

p
�
(x) =

exp(−E
�
(x))

Z(�)
 and Z(�) =

∑
x�∈X exp(−E�

(x�)) , we have:

Appendix 2: Detailed attack results

For best performance, shadow-model attack (Shokri et al., 2017) trains a separate attack
model for each class label of the target model. Table 3 shows the detailed attack accu-
racy for each class label for the CIFAR-10 and SVHN dataset. The membership advan-
tage in Table 2 is computed based on these raw results.

Appendix 3: Evaluation of the label‑only attack

Recently, Choo et al. (2020) proposed the label-only membership inference attack,
which only requires output labels instead of output logits from the target model. The
label-only attack has close performance compared with shadow-model attack. Surpris-
ingly, though regularization based defenses are still effective, their attack can easily
break output masking defenses such as MemGuard (Jia et al., 2019). We mainly evalu-
ated the shadow-model attack in the paper. Since our defense directly functions during
model training, it should be resistant to label-only attack if it can perform well under the
shadow-model attack.

For completeness, we also evaluated our framework on CIFAR-10 and SVHN under
the label-only attack to provide empirical evidence that our defense is still robust under
the label-only attack. In this experiment, we use the same experiment settings in the
label-only attack paper: a set of 5000 images, and the HopSkipJumpAttack (Chen et al.,
2020) for the black-box adversarial attack. The results are listed in Table 4.

∇
�
log(p

�
(x)) = ∇

�
log(

exp(−E
�
(x))

Z(�)
)

= ∇
�
(log(exp(−E

�
(x))) − log(Z(�)))

= −∇
�
E
�
(x) − ∇

�
log(Z(�))

= −∇
�
E
�
(x) −

∇
�
Z(�)

Z(�)

= −∇
�
E
�
(x) −

∇
�

∑
x�∈X exp(−E�

(x�))

Z(�)

= −∇
�
E
�
(x) −

�

x�∈X

(∇
�
(−E

�
(x�))) ⋅ exp(−E

�
(x�))

Z(�)

= −∇
�
E
�
(x) +

�

x�∈X

[(∇
�
E
�
(x�)) ⋅ p

�
(x�)]

= �p
�
(x�)∇�

E
�
(x�) − ∇

�
E
�
(x)

669Machine Learning (2021) 110:651–674

1 3

Ta
bl

e
3

 A
cc

ur
ac

y
of

 th
e

sh
ad

ow
-m

od
el

 a
tta

ck
 fo

r e
ac

h
ta

rg
et

 c
la

ss
 a

nd
 av

er
ag

e
at

ta
ck

 a
cc

ur
ac

y
of

 th
e

or
ig

in
al

 c
la

ss
ifi

er
 a

nd
 a

ll
de

fe
nd

ed
 m

od
el

s

D
ef

en
se

Se
tti

ng
A

tta
ck

 a
cc

ur
ac

y
(%

)

Ta
rg

et
 c

la
ss

A
ve

ra
ge

0
1

2
3

4
5

6
7

8
9

(a
) C

IF
AR

-1
0

N
on

e
–

65
.7

4
59

.8
9

71
.4

0
75

.1
1

68
.3

9
70

.8
1

65
.1

3
64

.2
0

61
.6

4
62

.2
5

66
.4

6
O

ur
s

Fi
ne

-tu
ne

d
(9

0/
90

)
58

.4
0

54
.3

3
58

.7
6

59
.6

0
57

.5
9

58
.9

7
55

.7
5

55
.8

4
54

.9
4

55
.9

1
57

.0
1

Fi
ne

-tu
ne

d
(5

0/
90

)
52

.7
4

53
.3

1
56

.5
0

56
.0

5
54

.9
6

55
.3

7
54

.1
0

55
.8

2
54

.5
3

53
.8

9
54

.7
3

Re
tra

in
52

.0
2

50
.0

0
52

.7
7

52
.0

3
51

.0
6

50
.4

0
51

.1
1

51
.6

7
50

.8
6

51
.4

1
51

.3
3

R
e
tr
a
in

†
56

.8
0

54
.8

6
57

.4
5

56
.8

3
56

.1
1

58
.1

8
55

.7
3

56
.4

8
55

.6
1

56
.2

2
56

.4
3

D
ro

po
ut

d
=

 0
.2

65
.6

5
59

.4
4

70
.5

1
75

.9
1

68
.7

0
71

.4
0

66
.0

3
66

.0
3

62
.3

6
62

.1
2

66
.8

2
d

=
 0

.4
66

.2
8

59
.8

7
71

.9
4

75
.6

1
67

.4
6

68
.9

8
65

.6
0

64
.2

2
61

.4
1

61
.6

4
66

.3
0

d
=

 0
.6

65
.2

4
58

.7
9

70
.0

4
74

.8
9

66
.9

4
70

.4
0

63
.4

3
64

.1
8

61
.2

5
61

.9
3

65
.7

1
d

=
 0

.8
63

.4
7

57
.6

5
64

.9
0

69
.1

1
65

.5
1

64
.8

6
62

.4
5

63
.2

0
61

.4
1

62
.6

1
63

.5
2

L
2

w
 =

 0
.0

01
60

.5
5

56
.2

3
64

.0
8

64
.2

9
60

.8
8

61
.9

2
59

.4
8

59
.0

7
58

.6
57

.1
7

60
.2

3
w

 =
 0

.0
1

55
.1

2
51

.0
4

56
.1

7
55

.3
5

55
.5

9
54

.2
9

53
.5

4
55

.5
5

54
.4

6
52

.7
5

54
.3

9
D

P-
SG

D
�

 =
 0

.0
01

60
.3

9
55

.5
6

67
.1

0
69

.2
0

64
.1

5
65

.7
1

61
.3

3
60

.4
0

58
.1

2
58

.2
9

62
.0

3
�

 =
 0

.0
1

61
.0

0
56

.7
5

65
.1

0
68

.0
9

62
.6

2
65

.5
0

60
.1

5
59

.8
1

57
.5

6
58

.7
3

61
.5

3
M

in
–M

ax
–

60
.5

4
55

.4
0

65
.7

2
68

.1
3

64
.8

4
66

.0
6

59
.9

9
61

.8
9

57
.2

7
59

.8
5

61
.9

7
C

om
bi

ne
d

R
e
tr
a
in

†
 +

 D
P(
�

 =
 0

.0
01

)
56

.5
6

54
.0

3
57

.7
4

59
.0

9
56

.1
9

56
.3

5
56

.1
0

56
.5

6
55

.7
5

55
.3

4
56

.3
7

R
e
tr
a
in

†
 +

 D
P(
�

 =
 0

.0
1)

52
.0

5
51

.0
6

51
.8

6
50

.8
6

50
.6

6
51

.3
1

50
.8

4
51

.3
5

51
.1

8
50

.8
5

51
.2

0

R
e
tr
a
in

†
 +

 M
in

–M
ax

50
.6

5
51

.1
0

51
.8

5
51

.4
2

51
.4

4
50

.1
0

51
.6

4
51

.7
7

50
.6

0
52

.1
7

51
.2

7
(b

) S
VH

N
N

on
e

–
65

.2
9

59
.7

5
64

.6
0

63
.6

1
59

.9
0

62
.4

5
64

.1
0

59
.4

4
65

.1
7

64
.7

1
62

.9
0

O
ur

s
Fi

ne
-tu

ne
d

(9
0/

90
)

58
.7

8
55

.0
3

56
.1

3
56

.1
8

52
.1

3
49

.3
6

55
.9

2
49

.9
8

57
.8

1
52

.7
2

54
.4

0
Fi

ne
-tu

ne
d

(5
0/

90
)

58
.5

2
55

.4
2

51
.8

1
48

.5
2

53
.9

1
54

.3
8

56
.1

3
46

.7
5

57
.9

5
49

.4
3

53
.2

8
Re

tra
in

ed
54

.9
2

54
.3

4
55

.1
7

51
.4

8
50

.5
8

48
.7

0
53

.6
0

47
.5

0
56

.1
3

50
.3

4
52

.2
8

R
e
tr
a
in

†
65

.1
3

58
.3

7
62

.7
2

59
.0

9
59

.3
5

54
.5

3
60

.3
3

56
.7

7
62

.9
59

.5
1

59
.8

7

670 Machine Learning (2021) 110:651–674

1 3

†
Ev

al
ua

tio
n

un
de

r t
he

 w
or

st-
ca

se
 sc

en
ar

io
 w

hi
ch

 is
 so

m
ew

ha
t u

nl
ik

el
y

to
 o

cc
ur

*d
: d

ro
po

ut
 ra

tio
, w

: w
ei

gh
t-d

ec
ay

 ra
te

, �
 : s

ta
nd

ar
d

de
riv

at
io

n
of

 th
e

w
hi

te
 G

au
ss

ia
n

no
is

e

Ta
bl

e
3

 (c
on

tin
ue

d)

D
ef

en
se

Se
tti

ng
A

tta
ck

 a
cc

ur
ac

y
(%

)

Ta
rg

et
 c

la
ss

A
ve

ra
ge

0
1

2
3

4
5

6
7

8
9

D
ro

po
ut

d
=

 0
.2

63
.1

5
58

.5
8

62
.0

6
61

.6
7

57
.2

4
63

.2
0

63
.3

5
59

.7
7

63
.3

1
60

.8
0

61
.3

2

d
=

 0
.4

63
.7

3
60

.3
6

61
.7

0
63

.3
3

57
.8

4
59

.7
6

58
.9

0
60

.8
3

64
.6

4
62

.0
2

61
.3

1

d
=

 0
.6

61
.2

2
59

.0
6

64
.0

5
63

.7
2

61
.9

1
60

.6
8

64
.4

3
61

.8
7

64
.8

3
58

.9
4

62
.1

0

d
=

 0
.8

64
.7

5
60

.0
6

63
.1

4
63

.5
6

61
.3

9
61

.1
7

60
.3

5
59

.5
3

61
.1

0
62

.6
3

61
.7

7
L
2

w
 =

 0
.0

01
66

.1
9

57
.7

2
62

.1
6

56
.9

8
60

.5
7

61
.3

8
64

.1
56

.2
5

63
.3

7
61

.5
61

.0
2

w
 =

 0
.0

1
N

ot
 c

on
ve

rg
ed

D
P-

SG
D

�
 =

 1
.0

60
.4

2
57

.4
1

60
.5

4
58

.6
1

57
.0

55
.6

8
57

.9
5

55
.4

5
62

.4
3

58
.4

58
.3

9
�

 =
 2

.0
60

.3
1

54
.2

5
57

.6
2

56
.4

1
55

.6
8

58
.9

4
57

.3
1

55
.5

5
60

.3
6

56
.5

1
57

.2
9

M
in

–M
ax

–
59

.9
3

56
.3

3
53

.9
9

57
.8

60
.0

4
58

.4
7

52
.5

6
57

.2
5

58
.2

6
57

.6
2

57
.2

3
C

om
bi

ne
d

R
e
tr
a
in

†
 +

 D
P(
�

 =
 1

.0
)

63
.8

5
57

.1
3

61
.9

7
60

.2
57

.5
5

59
.7

9
61

.8
7

57
.0

3
62

.0
8

61
.2

1
60

.2
7

R
e
tr
a
in

†
 +

 D
P(
�

 =
 2

.0
)

55
.7

8
54

.1
6

58
.1

2
56

.4
2

56
.4

3
53

.7
1

55
.4

1
53

.5
6

61
.7

1
56

.6
6

56
.1

9

R
e
tr
a
in

†
 +

 M
in

-M
ax

58
.3

7
54

.2
4

59
.7

9
57

.1
6

54
.5

0
57

.4
2

53
.9

1
53

.8
5

58
.2

1
56

.7
6

56
.4

2

671Machine Learning (2021) 110:651–674

1 3

From the table, we can find that our defense can still reduce the attack performance
to nearly random guess (around 50%).

Appendix 4: Shadow models trained by different architectures

Current literature in membership inference attack usually considers the grey-box threat
model proposed in Shokri et al. (2017), where the attacker has full knowledge of the target
model’s architecture. However, in this section, we will show some empirical results to pro-
vide insights on how using a different model architecture for the shadow model will affect
the attack performance.

In the experiment, we consider three possible scenarios: (1) the attacker uses the same
architecture as the target model, (2) the attacker uses a minor variation of the target model,
and (3) the attacker has no knowledge of the target model and use an entirely different
architecture for shadow models.

Specifically, the original model is a 28 × 10 WideResNet (Zagoruyko and Komodakis
2016) and is undefended. We applied a 34 × 10 WideResNet for the second scenario and
a VGG19 (Simonyan and Zisserman 2014) network for the third scenario. The training
parameters for the first and second scenarios are the same. All experiments are done on
CIFAR-10.

The results are shown in Table 5. We can see that using a minor variation of the origi-
nal model for the shadow model attack can achieve very close performance to using the
real architecture. However, using an entirely different model architecture resulted in failed
attacks, which indicates that hiding the original model architecture from the attacker is a
feasible strategy to prevent membership inference attacks based on shadow models. Further
study on this topic will be left as future work.

Table 4 Evaluation results of the
label-only attack

Defenses Attack performance (%)

CIFAR-10 SVHN

Accuracy Precision Accuracy Precision

No defense 81.08 75.48 60.15 66.67
MemGuard 80.90 53.06 59.35 55.17
Ours (retrain) 51.28 50.14 50.55 53.81

Table 5 Results of shadow model attacks on CIFAR-10 of different shadow model architectures. The target
model of the attack uses WRN(28 × 10)

Architecture Attack accuracy (%)

Target class Average

0 1 2 3 4 5 6 7 8 9

WRN(28 × 10) 65.74 59.89 71.40 75.11 68.39 70.81 65.13 64.20 61.64 62.25 66.46
WRN(34 × 10) 64.4 58.2 66.85 73.78 67.59 69.92 64.48 63.12 60.38 61.43 65.01
VGG19 50.27 49.66 49.86 53.5 49.91 50.3 49.89 50.28 49.84 49.64 50.31

672 Machine Learning (2021) 110:651–674

1 3

Appendix 5: Quality of the generated dataset

Since the accuracy of our defended model is highly dependent on the quality of the
generated dataset. The divergence between the real data distribution and the generated
data distribution may cause a great loss in the model accuracy. In addition to Fig. 5,
we provide more visualized evidence to show how well is the dataset sampled from the
JEM in Fig. 9. Specifically, we applied t-SNE (Maaten and Hinton 2008) on 500 random
samples from the CIFAR-10 training dataset, 500 random samples from the CIFAR-10
testing dataset, and 500 random samples from the generated dataset. We can observe
that the generated dataset can very well catch the real data distribution.

Funding This material is based upon work supported by the National Science Foundation under Grant No.
1801751. This research was partially sponsored by the Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-13-2-0045
(ARL Cyber Security CRA).

Availability of data and material All datasets used in the paper is publicly available.

Code availability Code will be open-sourced: https:// github. com/ ChenJ iyu/ meminf- defen se. git

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security, (pp. 308–318).

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for boltzmann machines.
Cognitive science, 9(1), 147–169.

Fig. 9 The t-SNE dimensional
reduction result of 500 random
samples from the CIFAR-10
training dataset, 500 random
samples from the CIFAR-10
testing dataset, and 500 random
samples from the sampled dataset

https://github.com/ChenJiyu/meminf-defense.git
http://creativecommons.org/licenses/by/4.0/

673Machine Learning (2021) 110:651–674

1 3

Chaudhuri, K., Monteleoni, C., & Sarwate, A. D. (2011). Differentially private empirical risk minimiza-
tion. Journal of Machine Learning Research, 12, 1069–1109.

Chen, J., Jordan, M. I., & Wainwright, M. J. (2020). Hopskipjumpattack: A query-efficient decision-
based attack. In 2020 IEEE symposium on security and privacy (sp) (pp. 1277–1294). IEEE

Choo, C. A. C., Tramer, F., Carlini, N., & Papernot, N. (2020). Label-only membership inference
attacks. arXiv: 20071 4321.

Du, Y., & Mordatch, I. (2019). Implicit generation and generalization in energy-based models. arXiv:
19030 8689.

Dwork, C. (2008). Differential privacy: A survey of results. In International conference on theory and
applications of models of computation (pp. 1–19). Springer

Fredrikson, M., Jha, S., & Ristenpart, T. (2015). Model inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security (pp 1322–1333).

Ganju, K., Wang, Q., Yang, W., Gunter, C. A., & Borisov, N. (2018). Property inference attacks on fully
connected neural networks using permutation invariant representations. In Proceedings of the 2018
ACM SIGSAC conference on computer and communications security (pp. 619–633).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Ben-
gio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp.
2672–2680).

Grathwohl, W., Wang, K. C., Jacobsen, J. H., Duvenaud, D., Norouzi, M., & Swersky, K. (2019). Your clas-
sifier is secretly an energy based model and you should treat it like one. arXiv: 19120 3263.

Hayes, J., Melis, L., Danezis, G., & De Cristofaro, E. (2019). Logan: Membership inference attacks against
generative models. Proceedings on Privacy Enhancing Technologies, 1, 133–152.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilibrium. In Advances in neural information processing
systems (pp. 6626–6637).

Hilprecht, B., & Härterich, M. (2019). Monte carlo and reconstruction membership inference attacks against
generative models. Proceedings on Privacy Enhancing Technologies, 4, 232–249.

Hinton, G., Osindero, S., Welling, M., & Teh, Y. W. (2006). Unsupervised discovery of nonlinear structure
using contrastive backpropagation. Cognitive Science, 30(4), 725–731.

Jain, P., Kulkarni, V., Thakurta, A., & Williams, O. (2015). To drop or not to drop: Robustness, consistency
and differential privacy properties of dropout. arXiv: 15030 2031.

Jia, J., Salem, A., Backes, M., Zhang, Y., & Gong, N. Z. (2019). Memguard: Defending against black-box
membership inference attacks via adversarial examples. In Proceedings of the 2019 ACM SIGSAC con-
ference on computer and communications security, (pp. 259–274).

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv: 13126 114.
Krizhevsky, A., & Hinton, G. et al. (2009). Learning multiple layers of features from tiny images. Technical

report, University of Toronto.
LeCun, Y., & Huang, F. J. (2005). Loss functions for discriminative training of energy-based models. In

AIStats, Citeseer (Vol. 6, p 34).
Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research,

9, 2579–2605.
Melis, L., Song ,C,. De Cristofaro, E., & Shmatikov, V. (2019). Exploiting unintended feature leakage in

collaborative learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 691–706). IEEE
Nasr, M., Shokri, R., & Houmansadr, A. (2018). Machine learning with membership privacy using adver-

sarial regularization. In Proceedings of the 2018 ACM SIGSAC conference on computer and communi-
cations security (pp. 634–646).

Nasr, M., Shokri, R., & Houmansadr, A. (2019). Comprehensive privacy analysis of deep learning: Passive
and active white-box inference attacks against centralized and federated learning. In 2019 IEEE sym-
posium on security and privacy (SP) (pp. 739–753). IEEE

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., & Backes, M. (2018). Ml-leaks: Model and data
independent membership inference attacks and defenses on machine learning models. arXiv: 18060
1246.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved tech-
niques for training gans. In Advances in neural information processing systems (pp. 2234–2242).

Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership inference attacks against machine
learning models. In 2017 IEEE symposium on security and privacy (SP) (pp. 3–18). IEEE

http://arxiv.org/abs/200714321
http://arxiv.org/abs/190308689
http://arxiv.org/abs/190308689
http://arxiv.org/abs/191203263
http://arxiv.org/abs/150302031
http://arxiv.org/abs/13126114
http://arxiv.org/abs/180601246
http://arxiv.org/abs/180601246

674 Machine Learning (2021) 110:651–674

1 3

Shokri, R., Strobel, M., & Zick, Y. (2019). Privacy risks of explaining machine learning models. arXiv:
19070 0164.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. arXiv: 14091 556.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1),
1929–1958.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intrigu-
ing properties of neural networks. arXiv: 13126 199.

Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., Ristenpart, T. (2016). Stealing machine learning models via
prediction APIS. In 25th USENIX security symposium (USENIX security 16) (pp. 601–618).

Wang, B., & Gong, N. Z. (2018). Stealing hyperparameters in machine learning. In 2018 IEEE symposium
on security and privacy (SP) (pp. 36–52). IEEE

Wang, J., Zhang, J., Bao, W., Zhu, X., Cao, B., & Yu, P. S. (2018). Not just privacy: Improving performance
of private deep learning in mobile cloud. In Proceedings of the 24th ACM SIGKDD international con-
ference on knowledge discovery & data mining, (pp 2407–2416).

Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. In Proceed-
ings of the 28th international conference on machine learning (ICML-11) (pp. 681–688).

Xiang, L., Ma, H., Zhang, H., Zhang, Y., Ren, J., & Zhang, Q. (2019). Interpretable complex-valued neural
networks for privacy protection. arXiv: 19010 9546.

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018). Privacy risk in machine learning: Analyzing
the connection to overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF) (pp.
268–282). IEEE

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv: 16050 7146.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/190700164
http://arxiv.org/abs/190700164
http://arxiv.org/abs/14091556
http://arxiv.org/abs/13126199
http://arxiv.org/abs/190109546
http://arxiv.org/abs/160507146

	Protect privacy of deep classification networks by exploiting their generative power
	Abstract
	1 Introduction
	2 Background
	2.1 Membership inference attacks
	2.2 Energy-based models

	3 Design
	3.1 Threat model
	3.2 Defense framework
	3.2.1 Train the generative model
	3.2.2 Sample from the generative model
	3.2.3 Fine-tune the classifier

	4 Evaluation
	4.1 Experiment settings
	4.2 Training efficiency of JEM
	4.2.1 Size of the replay buffer
	4.2.2 Early stopping

	4.3 Privacy of the final classifier
	4.3.1 Robustness against shadow-model attack
	4.3.2 Comparison with other defenses

	5 Discussion
	5.1 Privacy analysis of JEM
	5.2 Other limitations and future work

	6 Related work
	7 Conclusion
	References

