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Abstract—Membership inference attacks (MIAs) on machine
learning models, which try to infer whether a sample is in the
training dataset of a target model, have been widely studied
over recent years as data privacy attracts increasing attention.
One unignorable problem in the current MIA threat model is
that it assumes the attacker always obtains exactly the same
samples as in the training set. In reality, however, the attacker
is more likely to gather only a transformed version of the
training samples. For instance, portraits downloadable from a
social networking website usually are re-scaled and compressed,
while the website owner can train models with RAW images.
We believe a transformed training sample still causes privacy
leakage if the transformation is semantic-preserving. Therefore,
we broaden the concept of membership inference into more realistic
scenarios by considering data transformations. We introduce two
strategies for designing MIAs in face of data transformations: one
adapts current MIAs to transformations, and the other tries to
reverse the transformations approximately. We demonstrated the
effectiveness of our strategies and the significance of considering
data transformations by extensive evaluations of multiple datasets
with several common data transformations and by comparisons
with six state-of-the-art attacks. Moreover, we conduct evaluations
on data-augmented and privacy-preserving models protected by
three state-of-the-art defenses.

Index Terms—Data Privacy; Membership Inference; Data
Transformation

I. INTRODUCTION

Privacy issues in machine learning have been attracting
more concerns in recent years. Membership inference attack
(MIA) [1], designed to infer whether a sample held by an
attacker was utilized for training a target model, is one of the
most studied problems. Existing MIAs can cause severe privacy
leakage, for example, by analyzing facial recognition systems
trained on a particular set of identities or medical models trained
on patients’ medical records.

However, we notice an unignorable problem in the threat
model of all current MIA research, which comes from the
assumption that the attacker can always obtain the original
training data. The assumption is pretty ideal since what can
be collected by the attacker may have been processed and
transformed in reality. For example, images downloaded from
the Internet may have been compressed; stolen medical records
might have missing features. In face of such real-world data

transformations, the performance of current MIA methods is
yet unknown and rarely explored.

From the perspective of data privacy, one should consider
not only specific numeric values but also the semantics of data,
especially for human-perceivable ones. Data with semantic-
preserving transformations still leak private information, even
as much as the original (training) data. For instance, compressed
photos differ from their RAW counterparts only in image
quality; photos processed by different filters only change in their
brightness, contrast, or saturation. Therefore, it is natural to
ask the following questions: can we better define “membership”
considering the presence of possible data transformations, and
can adversaries infer the membership, even if they only have a
transformed version of a training member? We show that the
answer to both questions is yes. The attacker can achieve a better
success rate with strategies adapted to data transformations
than directly applying current MIA methods, indicating that
model assessment without considering data transformation may
underestimate privacy risks.

In Section III-A and III-B, we broaden the concept of
membership, define the attack space, and enhance the threat
model by considering semantic-preserving transformations.
We propose two strategies in Section III-C and III-D for
designing MIAs under the presence of data transformations.
The first strategy enhances traditional attacks by incorporating
possible data transformations in shadow models to select
better transferable thresholds or train better attack models. The
second strategy is developed based on an observation that the
transformed training members are closer to their ϵ-robust areas
(defined in Definition 3.2) than non-members, thus we can infer
membership via evaluating the distance required to reverse
collected samples back to ϵ-robust areas.

In our evaluations, we studied datasets in both image and non-
image domains, including CIFAR-10 [2], and Purchase-100 [3].
For CIFAR-10, we evaluated common pixel transformations
(Gaussian noise, adversarial noise [4], JPEG compression [5],
scaling, photo filtering) and spatial transformations (rota-
tion, translation). For Purchase-100, which has binary one-
dimensional feature vectors, we evaluated the scenario where
some of the vector entries are missing. Our experimental results



show that current MIAs generally fail with a moderate level
of transformations or corruptions while the attacker can still
achieve decent attack performance with our proposed strategies.
Moreover, we also evaluated more realistic scenarios where the
target model was trained with data augmentation and state-of-
the-art defenses, including differential privacy [6], adversarial
regularization [7], and MemGuard [8].

We hope our work can broaden the scope of current MIAs
and help ML service providers better assess the actual privacy
risks under a more realistic threat model.

II. RELATED WORK

In recent years, researchers thoroughly explored the domain
of MIA, such as strategies for black-box attacks [1, 9], label-
only attacks [10, 11, 12, 13], white-box attacks [14, 15],
attacks on generative models [16, 17, 18], and attacks on
federated learning [19, 20]. Defenses were also developed from
the perspective of privacy-preserving algorithms [6, 21, 22],
regularization [1, 7, 23], output obfuscation [1, 8, 13], etc.

Yu et al. [24] discussed the MIAs on data augmented
models trained by only transformed data. The attacker tries to
infer the membership of the original training samples before
augmentation. Our problem settings share a similar condition:
what the attacker obtains is not in model training. However,
the core difference between our attack scenarios comes from
the transformation knowledge of the attacker. On the other
hand, we will show that our attack is applicable to both regular
and transformed samples on data augmented models. Further
discussions on this topic are in Section V-A.

The label-only attacks [10] share a similar intuition with
our second strategy in Section III-D. The core assumption of
label-only attacks is that training members should lie farther
from the decision boundary than non-members. Instead of the
decision boundary, we consider a more fine-grained boundary–
ϵ-robust area that can be adjusted for different transformations.
Similarly, we assume it is easier to move training members
back towards ϵ-robust areas.

III. ATTACKS ON TRANSFORMED DATA

A. Membership reconsidered

Before introducing our considered threat model, we first
propose to broaden the scope of membership formally:

Definition 3.1 (Membership (Generalized)): An sample x′

is considered a (generalized) training member of a training
dataset D0 if x′ = g(x), x ∈ D0, g ∈ G∗, where G∗ is the set
of semantic-preserving transformations.

In terms of data privacy, we advocate focusing on the
semantics of the target data. There can be special cases, for
example, if x1 ∈ D0 and x2 /∈ D0 are both transformed into the
same x′ = g1(x1) = g2(x2) via some g1, g2 ∈ G∗, we will still
recognize x′ as a training member, since x′ can always leak
(semantic) information of x1 ∈ D0 as long as g1 is semantic-
preserving. In other words, with Definition 3.1, we only care
about whether the post-transformation data x′ leaks information
in the training dataset. Compared with the traditional definition,
which only focuses on fixed training data points, our generalized

definition is closer to the attackers’ real goal — the semantic
information within data. The attackers can further utilize the
semantic information to speculate other attributes of the training
data.

A question to ask is: what transformation is considered
semantic-preserving? The answer can be very subjective and
vary from the attacker’s downstream goals after membership
inference. For instance, adding too much noise can make some
small objects inside an image unrecognizable; severe filtering
can change the appearance of objects. This paper will limit the
discussion of semantic-preserving transformations to common
transformations that are frequently seen in the real world,
with constrained transformation levels. Examples of common
transformations are provided in Section IV-A2.

B. Our threat model

Given Definition 3.1, we then introduce the threat model for
attackers, which, to the best of our knowledge, for the first
time considers transformations between collected samples and
training samples. The other assumptions follow those of the
traditional threat model [1]. See as follows.

• Data distribution: Assume that the data distribution of
the training dataset is D. The attacker can sample from D
without knowledge of any specific members of the training
set. On the other hand, the possible training member collected
by the attacker can be transformed by some transformations
g. The attacker may or may not know the detailed form and
parameters of the transformation; however, they can access
the transformation as a black box (i.e., obtain the transformed
version of any given sample in D). Additionally, the attacker
is able to correctly label samples from D.
• Target model: The attacker has full knowledge of the model

architectures, pre-processing methods, training methods, and
hyper-parameters. The attacker does not know the detailed
parameters of the target model but can query it as a black box
and obtain confidence scores for each class.

• The attacker’s goal: The attacker wants to obtain an infer-
ence function M for the target model f , so that M(x′, f) =
1(x ∈ D0), where x′ = g(x) is the target sample transformed
by g, x is the original version of x′, and D0 ⊂ D is the training
set for f .

One thing to clarify here is the difference between the
attackers’ ability to sample from D and to obtain training
members. For example, to attack a face classification model
from a social media website, the potential training members
are (possibly compressed) face images downloadable from the
website. Yet, attackers can always obtain high-resolution face
images from other data sources in D.

C. Strategy 1: Adapt current attacks to scenarios with trans-
formations

We start by evaluating current MIAs in face of data transfor-
mations. We found that most current attacks would deteriorate
without considering data transformations. Detailed results of
SOTA attacks can be found in Section IV. Here we take the
LT attack [9] as an example, which classifies all samples with



losses lower than a threshold as training members. With data
transformations, the loss distributions of training and test data
change significantly, and the threshold set for regular data in
D can be suboptimal, as can be observed in Figure 1.

Generally, most current attacks encounter a similar problem
since they all rely on the differences in output statistics between
training and test samples. To obtain the statistics, current
attacks use some evaluators L, such as the loss function
in [9], the entropy metric in [25] or the binary classifier
in [1]. Transformations can change the output distribution of L
significantly, resulting in failed attacks.

Fig. 1: Illustration of the loss distribution change. The blue
curves show the loss distributions of the original training and
test samples, while the orange curves show the corresponding
loss distributions of JPEG compressed (q = 10) versions.

Fig. 2: Illustration of the intuition of Strategy 2 by a simple
linear binary classifier. The figure shows that when a sample is
used for training, its neighborhood is more likely to be closer
to its ϵ-robust areas. Detailed explanations are in Section III-D.

In order to accommodate the distribution change, it is
straightforward to select better thresholds. Thresholds in MIAs
are commonly obtained from shadow models trained with data
sampled from D to mimic the target model. Hence, our first
strategy shown in Algorithm 1 is to adapt current attack methods
to data transformations by explicitly considering transformations
in the shadow models when selecting thresholds. In detail, the
shadow models are still trained with data sampled from D,
while the inputs to L for generating statistics are transformed
data. Note that the transformation is applied as a black-box
function via our assumption in Section III-B.

We take the adapted LT attack as an example (namely, Loss-
thresholding with transformation, or LTT) for evaluation in
Section IV and V. Other attacks can be adapted similarly (e.g.,

Algorithm 1: Adapt current attacks to transformations
Input: shadow model fs, black box transformation

function g, shadow model’s training set X and
labels Y , shadow model’s test set Xt and labels
Yt, metric function L

Output: Best threshold τ∗ on the shadow model
L← L(fs(g(X)), Y );
Lt ← L(fs(g(Xt)), Yt);
τ∗ ← argmaxτ (sum(1(L < τ)) + sum(1(Lt > τ)));
▷ Select τ that can optimally
distinguish L and Lt

return τ∗;

adapted label only attack (LOT) in Table VI).

D. Strategy 2: Reverse transformation

While the first strategy adapts current attacks, we intro-
duce another strategy from the following perspective: training
members tend to lie around its local minima. Thus, moving a
transformed training member towards its original version may
decrease its loss more drastically than a non-member.

To get into more details, we first provide the definition for an
ϵ-robust area, where ϵ serves as an important hyper-parameter
to control the area’s range.

Definition 3.2 (ϵ-robust area): An ϵ-robust area Rϵ(x, f,G)
of a given sample x, a target model f , and a family of
transformation G, is defined as:

Rϵ(x, f,G) = {g(x, δ)|L(f(g(x, δ)), y) < ϵ, g ∈ G},

where g(·, δ) is some transformation function from a family of
functions G parametrized by δ which controls its transformation
level, L evaluates the prediction loss with label y, and ϵ ∈ R+.

An ϵ-robust area represents the neighborhood of a trained
instance via some transformations with a loss lower than ϵ.
Given Definition 3.2, our intuition is that a transformed training
member is likely to show a shorter distance to its ϵ-robust area.
We illustrate with a toy linear model f(x, y) = 1(x > y)
in Figure 2. We trained two models with and without z0,
respectively. The blue and red regions are ϵ-robust areas
of z0, corresponding to the two models. Obviously, z0 and
perturbations within the black circle are closer to the blue
region, for which z0 is a training member.

In order to estimate distances to ϵ-robust areas, we define
the reverse transformation function g−(·, θ) in Definition 3.3,
and we limit the optimization of the parameter θ of G′ in a
metric space (Θ, d) with a distance metric d.

Definition 3.3 (Reverse transformation function): A reverse
transformation function g−θ = g−(·, θ) of gδ = g(·, δ) is a
function from a family of transformations G′ parameterized by
θ such that:

∀δ ∈ ∆,∃θ ∈ Θ, g−θ ◦ gδ = I,

where ∆ and Θ are parameter spaces for δ and θ, respectively,
and I(x) = x is the identity function.



Given all these, our second strategy (named reverse trans-
formation, RT) is summarized in Algorithm 2, which searches
the shortest path from a transformed sample towards a ϵ-robust
area. The update function u is designed differently for different
transformations. Examples of u are in Section IV.

Once the shortest path is found, we will decide the member-
ship via a preset threshold distance τ . The threshold is also from
shadow models: the attacker evaluates reverse transformation
distances for training and non-training data with transformations
and then selects a threshold to maximize the inference accuracy
on shadow models.

Algorithm 2: Reverse transformation (RT)
Input: transformed sample x′, true label y, target model

f , loss function L, robust area radius ϵ, reverse
transformation function g−, update function u,
attack threshold τ , maximum iteration n, metric
d

Output: membership m ∈ {True,False}
θ ← 0;
i← 0;
while L(f(g−(x′, θ)), y) >= ϵ and i < n do

θ ← u(θ);
i← i+ 1;

end
return d(θ) < τ & i < n;

We would like to mention that the reverse transformation
function g− is not necessarily the mathematical inverse of
g, considering that not all transformations are invertible (i.e.,
∃g−,such that g− ̸= g−1). For a specific sample, functions
that output the same result as g−1 may not be unique, and g−

can be any one of them. Generally, the reverse transformation
can be any operation that undoes the transformation. Still, the
closer g− to g−1 (if it exists), the better the results. In practice,
an approximation of the reverse transformation already suffice,
and we will show it with experiments.

IV. EVALUATION

A. Experiment settings

1) Datasets: In the main paper, we report the results of two
datasets: CIFAR-10 [2] and Purchase-100 [3] due to the page
limit. Sources and results of other datasets will be released
upon paper publication.

We train the target model and shadow models by randomly
selecting a training set of size 10000 and also a test set of size
10000. Note that the training set for the target model and the
shadow models are independent.

2) Transformations: Image datasets lie in continuous spaces
with spatial information, so we consider the following seven
semantic-preserving transformations. The first five are pixel
value transformations, and the other two are spatial transforma-
tions, all commonly seen in real-world websites, social media
applications, CAPTCHA services, etc.

• Gaussian noise: Gaussian noise is one of the most common
noises that would appear in images. In this case, the transformed
sample is x′ = x+ δ, where δ ∼ N(µ, σ2). In our experiments,
we set µ = 0 and consider a random standard deviation σ ∈
(σmin, σmax).

• Adversarial noise: Adversarial noise [4] is defined as noises
crafted to change the model output significantly. We apply
adversarial noises generated by PGD attacks [26] with a fixed
L∞-norm of 0.05. We consider three different adversarial
settings: 1-step PGD, 10-step PGD, and targeted-loss PGD
(which runs until the loss exceeds the target loss).
• JPEG compression: JPEG [5] is a popular lossy compression

method for digital images. Our experiments evaluate samples
with different compression quality parameters q (q ∈ [0, 100],
higher q means better image quality).
• Scaling: Scaling is a common image processing operation

when placing an image into a larger or smaller placeholder. In
our experiment, we consider scaling the target image by bi-
linear interpolation. We will evaluate both down-scaling (r < 1)
and up-scaling (r > 1) scenarios, where r is the scaling factor.
• Filtering: Photo filtering appears everywhere in social media

applications when people share their photos. Our experiments
evaluate attacks on three popular filters embedded in Instagram
— Clarendon, Gingham, and Moon, all implemented in the
pilgram library [27].

• Rotation: Rotation is a common spatial transformation
that keeps the image semantics. Since rotation is a fixed
transformation once the degree of the rotation δ is given, and
the attacker can easily identify it. So we consider the scenario
where the degrees of rotation are randomly selected in a range:
δ ∈ (δmin, δmax).
• Translation: Translation is another common spatial trans-

formation that preserves semantics. Without loss of generality,
we consider translating the image to the left-top direction by
(d, d), where d is a small translation distance in terms of image
pixels towards both horizontal and vertical directions.

Records in Purchase-100 lie in discrete space and have
no explicit spatial relationship. So we consider the following
realistic scenario:

• Missing features: Some features in the data records are
missing. For Purchase-100, which has binary features, we
consider pre-processing the data by randomly filling the entries
of missing features, making the scenario the same as when
some features are randomly flipped. We assume that the attacker
knows the ratio γ of flipped features in the original records,
but the attacker does not know their exact positions. Note that
the flipped positions may not be the same for all records.

For the cases where there exists randomness in the transfor-
mations (e.g., Gaussian noise with a range of σ), we transform
each sample by a randomly selected parameter in the parameter
space multiple times and compute the average loss or reverse
transformation distance to select the threshold.

3) Target models: For CIFAR-10, we trained VGG-19 [28]
models by an SGD optimizer with a 1e-3 learning rate and a
5e-4 weight decay rate for 100 epochs. The final model has a
training accuracy of 99% and testing accuracy of 69%.



TABLE I: Accuracies of MIAs on CIFAR-10 regular models

(a) Smaller transformations

Att.
Trans. Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ) Translation(d)

- [0,0.1] 1-step 50 10 Clarendon [0◦, 10◦] 3

Current

CC 65.64% 66.21% 78.89% 66.68% 67.97% 66.72% 66.10% 54.53%

LT 80.47% 77.32% 62.63% 74.13% 70.32% 72.78% 69.51% 51.61%

ST 78.32% 75.84% 64.86% 73.40% 70.38% 72.04% 68.99% 51.92%

ET 77.58% 76.44% 68.49% 75.59% 73.11% 73.81% 71.32% 52.56%

NN 79.46% 76.33% 54.23% 73.10% 68.33% 72.18% 67.94% 50.42%

LO 76.27% 72.19% 68.59% 71.58% 71.14% 72.11% 68.47% 54.81%

Ours LTT - 77.62% 79.39% 75.89% 73.81% 74.51% 71.69% 54.54%

RT - 75.71% 79.63% 74.63% 74.34% 72.94% 78.73% 67.04%

(b) Larger transformations

Att.
Trans. Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ) Translation(d)

- [0,0.3] loss=10 1 0.5 Moon [0◦, 30◦] 7

Current

CC 65.64% 63.48% 50.22% 56.15% 58.65% 64.41% 60.09% 49.93%

LT 80.47% 64.78% 50.02% 51.98% 53.46% 60.56% 59.03% 50.01%

ST 78.32% 64.57% 50.10% 52.06% 53.64% 60.69% 58.97% 49.93%

ET 77.58% 65.50% 50.03% 52.93% 54.94% 63.20% 60.51% 49.67%

NN 79.46% 63.14% 53.25% 51.37% 51.90% 59.75% 58.14% 50.87%

LO 76.27% 63.33% 50.07% 52.96% 55.17% 61.33% 59.25% 49.70%

Ours LTT - 65.67% 56.17% 56.70% 58.91% 65.56% 61.33% 49.99%

RT - 65.79% 65.01% 57.10% 61.35% 65.44% 77.11% 56.81%

For Purchase-100, we trained the same architecture used
by [1] by an SGD optimizer with a 1e-2 learning rate and a
1e-7 weight decay rate for 200 epochs. The final model has a
98% training accuracy and 72% testing accuracy.

Note that all models in this section are regular models without
data augmentation and privacy defenses.

4) Evaluation metrics: The primary metric to compare the
effectiveness of each MIA is attack accuracy (on 10000 training
and 10000 non-training data). The baseline accuracy is ∼ 50%
since the membership inference functions have binary outputs
(member/non-member). A success rate of around 50% means
the attack is no better than random guessing.

5) Selection of ϵ-robust areas: In RT attacks, ϵ serves as an
important hyper-parameter that controls the range of the robust
area, which decides the strength of the reverse transformation.
An improperly selected ϵ can weaken the attack.

Empirically, we found that the optimal ϵ is always with a
close magnitude of the median loss of the input data distribution.
In our experiments, we select best results from ϵs that are set
as λϵ ∈ {100, 10−1, 10−2} times of the median loss of the
(transformed) training members.

B. Evaluation on CIFAR-10

Together with attacks designed by our proposed strategies, we
also evaluate how current MIAs performs against transformed
samples. In this section, we select six SOTA attacks: (1)
Classification correctness (CC) [9], (2) Loss thresholding
(LT) [9], (3) Confidence score thresholding (ST) [29], (4)

Entropy thresholding (ET) [25], (5) NN-based attack (NN) [1],
and (6) Label-only attack (LO) [10].

As mentioned in Section III-D, we need to select two
functions—the reverse transformation function and the update
function—for the RT attack. Specifically, we consider the
following two families of reverse transformation functions for
the image transformations listed in Section IV-A:
• Noises on pixel values For transformations that modifies

pixel values, such as Gaussian noises, adversarial noises, JPEG
compression, scaling, and filtering, we consider a simple reverse
transformation function g−(x′, θ) = x′ + θ.
• Affine transformations For both rotation and translation,

they can be represented by affine transformations parameterized
by some affine transformation matrices θ which applies the
following transformation to every pixel:[

x′

y′

]
=

[
θ00 θ01
θ10 θ11

] [
x
y

]
+

[
θ02
θ12

]
.

We also apply affine transformations as the reverse transforma-
tion function.

On top of the reverse transformation function, the update
function u is designed in Algorithm 3. It decreases the loss L
w.r.t. the reverse transformation parameter θ via zeroth-order
gradient descent controlled by the sign direction and a step size
λ. u is called at most n = 100 times to avoid nonconvergence.
After reaching the ϵ-robust area, we apply L2-norm as the
distance metric for membership inference.

The attack accuracy of current and our attacks on CIFAR-
10 models are shown in Table I, with the best accuracy of



Algorithm 3: Update function u for transformations on
pixel values

Input: transformed sample x′, true label y, target model
f , loss function L, reverse transformation
function g− parameterized by the noise θ, step
size λ, small constant σ0

Output: updated noise θ
η ← sample(N(0, σ2

0));
g ← L(f(g−(x′,θ+η)),y)−L(f(g−(x′,θ)),y)

η ; ▷ Gradient

estimation
θ ← θ − λ · sign(g);
return θ;

each scenario highlighted. When the transformations are small,
regular attacks can still perform well due to the model’s robust-
ness to small transformations. However, their accuracy would
drop significantly when the transformation becomes larger or
adversarially designed. CC attack’s accuracy sometimes gets
better than attacking original samples for small transformations
because slight noises cause fewer misclassifications in the train
set, which aligns with our intuition.

Table I shows that both LTT and RT attacks outperform the
rest, especially for larger transformations. The results indicate
that attacks that focus on original samples can underestimate the
real privacy risks. In addition, we can see that RT outperforms
LTT in several cases, such as adversarial noises, rotations, and
translations. The former is due to the design of RT, which
exploits the local minima property of training samples, while
LTT relies only on logits. The latter two support that RT can
perform better when the reverse transformation function is close
to the mathematical inverse of the transformation.

C. Evaluation on Purchase-100

Different from images, gradient estimation via binary features
would be inaccurate. Instead, we propose the following reverse
transformation function g−(x′,S): flipping x′ by all the binary
features whose indices are in the set S. The corresponding
update function u is defined in Algorithm 4. We flip the single
feature that decreases the loss value most whenever we call u
on a given input. We repeat this process until the sample is
moved back to the ϵ-robust area. Finally, we define d(S) = |S|,
which is the total number of features flipped, as the distance
metric for membership inference.

In the experiment, we select a fixed ϵ = 0.5 for the reverse
transformation attack, but we vary the missing ratio γ from
0.05 to 0.40 to see how it would affect our attacks.

Table II shows the performance of SOTA and our attacks on
Purchase-100, with the best highlighted. Similar to the results
of CIFAR-10, SOTA attacks still work at a small γ. However,
the success rate decreases quickly as γ increases. We can see
that both LTT and RT outperform other attacks. Specifically,
LTT performs better than RT when the transformation is small
(with missing ratios γ ≤ 0.3), while RT can still successfully
infer training members when the transformation is large (with a

Algorithm 4: Update function u for missing features
Input: transformed sample x′, true label y, target model

f , loss function L, reverse transformation
function g−, set of flipped feature indices S,
number of features n

Output: updated set of flipped features S
l← L(f(g−(x′,S)), y);
k ← −1;
for i← 0 to n do

if i /∈ S and L(f(g−(x′,S + {i})), y) < l then
l← L(f(g−(x′,S + {i})), y);
k ← i;

end
end
S ← S + {k};
return S;

missing ratio γ = 0.3) when all current attacks drop to random
guesses when the missing ratio γ = 0.25.

V. EVALUATION ON MORE GENERAL SCENARIOS

A. Evaluation on data augmented models

In Section III and IV, we only consider training models with
original samples to focus our attention to data transformations.
However, data augmentation via transformations is also common
in reality, where samples used in model training and collected
by the attacker are variations of the original samples via two
different transformations.

This section will evaluate our attacks on data augmented
models trained on CIFAR-10. Specifically, we consider the
following data augmentation when training the target model
and assume the attacker knows the augmentation: (1) Random
affine transformations with a random rotation of up to 10 degrees
and a random translation of up to 3 pixels in each direction,
(2) Color jittering with a random adjustment of brightness,
contrast, and saturation with a maximum ratio of 0.2, and (3)
Gaussian noise from N(0, 0.1). The target model trained by
data augmentation has a 99% training accuracy and a 73%
testing accuracy.

In addition to the SOTA attacks we evaluated in Section IV,
we also consider the moment attack (MM) proposed by [24]
specifically designed for data-augmented models. We set the
number of the augmented instances to be 10 and concatenate
moments of orders from 1 to 20, which is the same as in [24].

We also evaluated our attack strategies on original samples
since they can be regarded as an (inverse) transformed version of
the augmented samples in model training. Specifically, suppose
x is the original data, x′ = g(x) is the augmented data
with transformation g, and x = g−1(x′) where g−1 is the
mathematical inverse of g. We can then switch the role of x
and x′, that is, x′ is now regarded as the original sample
and x is the transformed version of x′ via transformation
g−1. As a result, attacking x is the same as having access
to transformation g−1, so we can apply our attack strategies



TABLE II: Accuracies of MIAs on Purchase-100

Att.
γ Original 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Current

CC 63.33% 61.72% 57.54% 53.74% 51.61% 50.54% 50.18% 50.17% 50.13%

LT 70.68% 61.15% 55.47% 52.42% 51.11% 50.37% 50.20% 50.12% 50.10%

ST 59.36% 56.51% 53.78% 52.26% 51.30% 50.64% 50.32% 50.39% 50.21%

ET 70.99% 61.46% 55.62% 52.47% 51.09% 50.38% 50.20% 50.11% 50.09%

NN 65.65% 60.58% 56.01% 52.93% 51.37% 50.63% 50.28% 50.16% 50.09%

LO 70.65% 59.96% 54.88% 52.22% 50.81% 50.29% 50.08% 49.98% 50.01%

Ours LTT - 64.09% 58.03% 55.40% 52.79% 51.96% 50.70% 50.11% 49.83%

RT - 61.94% 57.27% 55.49% 53.70% 52.90% 52.02% 50.57% 50.41%

TABLE III: Accuracies of MIAs on CIFAR-10 augmented models

Att.
Trans. Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ) Translation(d)

- [0,0.3] loss=10 1 0.5 Moon [0◦, 30◦] 7

Current

CC 63.32% 62.65% 51.58% 54.59% 56.43% 60.08% 61.02% 51.62%

LT 72.49% 67.36% 50.16% 51.50% 53.47% 58.66% 60.71% 50.59%

ST 71.55% 66.43% 50.41% 51.76% 53.71% 58.03% 60.61% 50.77%

ET 71.56% 66.95% 50.17% 51.58% 53.58% 58.59% 60.45% 50.58%

NN 71.05% 67.95% 52.57% 50.17% 53.70% 56.10% 58.38% 50.80%

LO 71.81% 65.41% 50.37% 51.14% 54.08% 58.00% 58.75% 49.88%

MM 73.76% 58.61% 52.25% 52.32% 56.65% 57.88% 61.94% 50.43%

Ours LTT 72.49% 68.10% 61.42% 55.06% 56.98% 60.57% 62.42% 52.10%

RT 73.20% 67.30% 67.12% 56.19% 60.50% 61.08% 71.28% 57.32%

the same as attacking transformed samples on regular models.
Note that our first strategy is essentially the same as regular
attacks when attacking original samples on augmented models.

Similarly, the MM attack may also be adapted to attacking
transformed samples on regular models if we switch the role
of original and transformed samples. Unfortunately, there is an
inevitable difficulty: an essential assumption for initiating the
MM attack is the knowledge of the data augmentation, which
would be g−1 in this case. In reality, g−1 is not available for
most g. Moreover, many transformations are strictly lossy, and
even invertible transformations can have information loss due
to value clipping. As a result, we only evaluate the original
version of the MM attack when attacking transformed samples.

Results of data augmented models are in Table III. Like
attacking unaugmented models, LTT and RT outperform all
other attacks when facing transformations. On the other hand,

MM achieves the best attack accuracy among all SOTA attacks
when attacking original untransformed samples. We can see
that RT can also achieve comparable performance to MM (both
> 73%) on original samples.

B. Evaluation on defended models

This section evaluates how effective the SOTA defenses are
when facing data transformation. Here we provide evaluation
results of CIFAR-10 models trained with three popular defenses:
(1) Differentially-private (DP) training [6], (2) Adversarial
regularizations [7], and (3) MemGuard [8]. Similarly, we
assume that attackers know the defense algorithms so they
can adaptively train shadow models with the same defenses.

For the first defense, we applied the implementation from
Opacus [30] with an RMSprop optimizer for better convergence.
Then we set a gradient clipping value of 1.2, a noise multiplier of

TABLE IV: Accuracies of MIAs on CIFAR-10 models trained with DP

Att.
Trans. Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ) Translation(d)

- [0,0.3] loss=10 1 0.5 Moon [0◦, 30◦] 7

Current

CC 50.67% 50.48% 50.00% 50.24% 50.34% 50.62% 50.51% 50.07%

LT 50.79% 50.53% 50.01% 50.30% 50.27% 50.68% 50.53% 50.38%

ST 50.55% 50.32% 50.04% 50.08% 50.25% 50.50% 50.19% 50.53%

ET 50.86% 50.53% 50.00% 50.28% 50.35% 50.69% 50.57% 50.19%

NN 49.82% 50.14% 50.17% 50.18% 49.97% 50.08% 50.18% 49.75%

LO 50.56% 50.25% 50.01% 50.31% 50.30% 50.26% 50.21% 49.35%

Ours LTT - 50.91% 51.42% 50.54% 50.78% 50.33% 51.10% 50.49%

RT - 50.89% 51.32% 50.52% 50.75% 50.32% 50.92% 50.40%



TABLE V: Accuracies of MIAs on CIFAR-10 models trained with adversarial regularization

Att.
Trans. Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ) Translation(d)

- [0,0.3] loss=10 1 0.5 Moon [0◦, 30◦] 7

Current

CC 60.85% 55.30% 51.15% 51.93% 53.55% 54.66% 54.91% 50.07%

LT 60.96% 55.39% 51.35% 51.79% 53.12% 54.51% 54.83% 50.31%

ST 58.91% 54.97% 52.27% 51.46% 52.34% 54.27% 53.75% 50.11%

ET 60.03% 54.51% 50.25% 51.68% 53.37% 53.99% 54.48% 50.12%

NN 60.88% 55.78% 53.75% 50.50% 50.95% 54.03% 51.18% 50.20%

LO 61.45% 52.45% 50.70% 51.96% 52.61% 54.10% 52.69% 49.50%

Ours LTT - 57.08% 50.39% 52.52% 53.62% 55.54% 55.05% 50.52%

RT - 56.12% 51.01% 52.37% 53.72% 55.68% 55.48% 51.00%

TABLE VI: Accuracies of MIAs on CIFAR-10 models protected by MemGuard

Att.
Trans. Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ) Translation(d)

- [0,0.3] loss=10 1 0.5 Moon [0◦, 30◦] 7

Current

CC 65.37% 63.92% 50.10% 56.11% 58.03% 64.27% 60.35% 49.93%

LT 65.37% 63.92% 50.10% 56.11% 58.03% 64.27% 60.35% 49.93%

ST 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%

ET 65.37% 63.92% 50.10% 56.11% 58.03% 64.27% 60.35% 49.93%

NN 50.58% 49.63% 50.00% 48.83% 49.23% 49.88% 49.00% 49.65%

LO 76.85% 65.30% 50.05% 53.45% 56.50% 62.40% 60.40% 50.55%

Ours LTT - 62.27% 50.00% 50.00% 58.03% 64.27% 60.51% 50.00%

RT - 62.68% 50.00% 50.00% 50.00% 64.27% 60.55% 50.00%

LOT - 71.50% 50.10% 54.50% 59.25% 63.95% 62.34% 50.35%

2.3, and trained the target model for 100 epochs, achieving a (5,
1e-5)-differential privacy. For the second defense, we followed
the attack model architecture in [7] and set the regularization
weight λ = 5. For the third defense, we applied the same
implementation as in [10]. All the other training settings are
the same as in Section IV-A in order to control variates. The
final performance (training accuracy/testing accuracy) of the
models trained with the first two defenses are (1) 40%/39%, and
(2) 75%/52%, respectively. MemGuard is directly applied to
the undefended model and does not affect model performance.

Table IV, V, and VI show the attack results on defended
models. In Table IV, we can see that DP with a small privacy
budget provides the best privacy guarantee, reducing all attacks
to (∼ 50%), with a large privacy-utility trade-off. The trade-off
also exists in adversarial regularizations. MemGuard doe not
suffer from the trade-off while providing excellent robustness
against attacks that heavily rely on confidence vectors. From
Table VI, we can see that ST, NN, and our RT are deteriorated
by MemGuard, while LT and ET are essentially the same as
CC. On the other hand, we can see that MemGuard is not
effective under LO, which has also been reported in [10]. Thus,
an adaptive attacker can apply our strategy 1 to LO and achieve
better attack performance when facing transformed data, as
shown in row LOT in Table VI.

In summary, we can see that all three defenses are effective
against all MIAs. Though the overall success rate is reduced
significantly, applying our attack strategies can always help
increase the performance when facing data transformations.

VI. CONCLUSION

In this paper, we study MIA in face of potential transforma-
tion, which is somehow overlooked by previous research. We
believe transformed data is of similar interest to attackers if it
retains semantic and private information of the original training
data. On this point, we have made an attempt toward broadening
the concept of membership and generalizing the threat model
of MIAs, by taking semantic-preserving data transformations
into account. We have proposed two strategies for designing
attacks to infer data that has probably been transformed. The
former strategy directly improves current attacks by setting
optimal parameters (e.g., thresholds) based on knowledge
of transformations. The latter leverages the difference in
transformation sensitivity between training and test samples and
tries to distinguish them by comparing their shortest distance
to ϵ-robust areas. We have shown by extensive experimental
evaluations that, derived from the two strategies, one can
outperform current state-of-the-arts on inferring transformed
members, with a variety of different transformation types and
levels. We hope our paper can inspire future work towards
generalizing MIAs to more realistic settings and reducing
possible bias in accessing model privacy in practice.
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