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ABSTRACT 
We developed a user interface that organizes Web search 
results into hierarchical categories.  Text classification 
algorithms were used to automatically classify arbitrary 
search results into an existing category structure on-the-
fly.  A user study compared our new category interface 
with the typical ranked list interface of search results.  The 
study showed that the category interface is superior both in 
objective and subjective measures.  Subjects liked the 
category interface much better than the list interface, and 
they were 50% faster at finding information that was 
organized into categories.  Organizing search results 
allows users to focus on items in categories of interest 
rather than having to browse through all the results 
sequentially. 
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INTRODUCTION 
With the exponential growth of the Internet, it has become 
more and more difficult to find information.  Web search 
services such as AltaVista, InfoSeek, and MSNWebSearch 
were introduced to help people find information on the 
web. Most of these systems return a ranked list of web 
pages in response to a user’s search request.  Web pages 
on different topics or different aspects of the same topic are 
mixed together in the returned list.  The user has to sift 
through a long list to locate pages of interest.  Since the 
19th century, librarians have used classification systems 
like Dewey and Library of Congress classification to 
organize vast amounts of information.  More recently, Web 
directories such as Yahoo! and LookSmart have been used 
to classify Web pages.  The manual nature of the directory 
compiling process makes it impossible to have as broad 
coverage as the search engines, or to apply the same 
structure to intranet or local files without additional 

manual effort. 

To combine the advantage of structured topic information 
in directories and broad coverage in search engines, we 
built a system that takes the web pages returned by a 
search engine and classifies them into a known 
hierarchical structure such as LookSmart’s Web directory 
[24].  The system consists of two main components: 1) a 
text classifier that categorizes web pages on-the-fly, and 2) 
a user interface that presents the web pages within the 
category structure and allows the user to manipulate the 
structured view (Figure 1). 

 

Figure 1: Presenting web pages within category 
structure 

RELATED WORK 
Generating structure 
Three general techniques have been used to organize 
documents into topical contexts.  The first one uses 
structural information (meta data) associated with each 
document.  The DynaCat system by Pratt [15] used meta 
data from the UMLS medical thesaurus to organize search 
results.  Two prototypes developed by Allen [1] used meta 

 

 

 



 

data from the Dewey Decimal System for organizing 
results.  In the SuperBook project [10], paragraphs of texts 
were organized into an author-created hierarchical table of 
contents.  Marchionini et al. [12] also used table of content 
views for structuring information from searches in the 
Library of Congress digital library.  Others have used the 
link structure of Web pages to automatically generate 
structured views of Web sites.  Maarek et al.’s WebCutter 
system [11] displayed a site map tailored to the user’s 
search query.  Wittenburg and Sigman’s AMIT system 
[18] showed search results in the context of an 
automatically derived Web site structure.  Chen et al.’s 
Cha-Cha system [4] also organized search results into 
automatically derived site structures using the shortest 
path from the root to the retrieved page.  Manually-created 
systems are quite useful but require a lot of initial effort to 
create and are difficult to maintain.  Automatically-derived 
structures often result in heterogeneous criteria for 
category membership and can be difficult to understand. 

A second way to organize documents is by clustering.  
Documents are organized into groups based their overall 
similarity to one another.  Zamir et al. [19, 20] grouped 
Web search results using suffix tree clustering.  Hearst et 
al. [7, 8] used the scatter/gather technique to organize and 
browse documents.  One problem with organizing search 
results in this way is the time required for on-line 
clustering algorithms.  Single-link and group-average 
methods typically take O(n2) time, while complete-link 
methods typically take O(n3), where n is the number of 
documents returned.  Linear-time algorithms like k-means 
are more efficient being O(nkT), where k is the number of 
clusters and T the number of iterations.  In addition, it is 
difficult to describe the resulting clusters to users.  Clusters 
are usually labeled by common phrases extracted from 
member documents, but it is often difficult to quickly 
understand the contents of a cluster from its label. 

A third way to organize documents is by classification.  In 
this approach, statistical techniques are used to learn a 
model based on a labeled set of training documents 
(documents with category labels).  The model is then 
applied to new documents (documents without category 
labels) to determine their categories.  Chakrabarti et al. 
[2], Chekuri [3], and Mladenic [13] have developed 
automatic classifiers for subsets of pages from the Yahoo! 
Web directory.  Only a small number of high level 
categories were used in their published results.  And, the 
focus of these papers was on the underlying text 
classification algorithms and not on user interfaces that 
exploit the results.  Recently, Inktomi [22] announced that 
it had developed techniques for automatic classification of 
web pages.  However, its technical details were not 
disclosed and we are not aware of any search services 
employing this technology. 

Using structure to support search 
A number of web search services use category information 
to organize the search results.  Yahoo! [27], Snap [26] and 
LookSmart [24] show the category label associated with 
each retrieved page.  Results are still shown as a ranked 
list with grouping occurring only at the lowest level of the 
hierarchy (for Yahoo! and Snap).  There is, for example, 
no way to know that 70% of the matches fell into a single 
top-level category.  In addition, these systems require pre-
tagged content.  Before any new content can be used, it 
must be categorized by hand.  Northern Light [25] 
provides Custom Folders in which the retrieved documents 
are organized hierarchically.  The folders are organized 
according to several dimensions -- source (sites, domains), 
type (personal page, product review), language, and 
subject.  Individual categories can be explored one at a 
time.  But, again no global information is provided about 
the distribution of search results across categories. 

The most common interface for manipulating hierarchical 
category structures is a hierarchical tree control, but other 
techniques have been explored as well.  Johnson et al. [9] 
used a treemap that partitioned the display into rectangular 
bounding boxes representing the tree structure.  
Characteristics of the categories and their relationships 
were indicated by their sizes, shapes, colors, and relative 
positions.  Shneiderman et al. [17] have recently developed 
a two-dimensional category display that uses categorical 
and hierarchical axes, called hieraxes, for showing large 
results sets in the context of categories.  Hearst et al. [5] 
used three-dimensional graphics to display categories 
together with their documents.  Multiple categories could 
be displayed simultaneously along with their hierarchical 
context.  In all of these systems, documents must have pre-
assigned category tags. 

Few studies have evaluated the effectiveness of different 
interfaces for structuring information.  Landauer et al. [10] 
compared two search interfaces for accessing chemistry 
information -- SuperBook which used a hierarchical table 
of contents, and PixLook which used a traditional ranked 
list.  Browsing accuracy was higher for SuperBook than 
PixLook.  Search accuracy and search times were the same 
for the two interfaces.  However, different text pre-
processing and search algorithms were used in the two 
systems so it is difficult to compare precisely.  More 
recently, Pratt et al. [16] compared DynaCat, a tool that 
automatically categorized results using knowledge of query 
types and a model of domain terminology, with a ranked 
list and clustering.  Subjects liked DynaCat’s category 
organization of search results.  Subjects found somewhat 
more new answers using DynaCat, but the results were not 
reliable statistically, presumably because there were only 
15 subjects and 3 queries in the experiment. 

In this paper we describe a new system showing how 
automatic text classification techniques can be used to 



 

organize search results.  A statistical text classification 
model is trained offline on a representative sample of Web 
pages with known category labels.  At query time, new 
search results are quickly classified on-the-fly into the 
learned category structure.  This approach has the benefit 
of using known and consistent category labels, while easily 
incorporating new items into the structure.  The user 
interface compactly displays web pages in a hierarchical 
category structure.  Heuristics are used to order categories 
and select results within categories for display.  Users can 
further expand categories on demand.  Tooltip-like 
overlays are used to convey additional information about 
individual web pages or categories on demand.  We 
compared our category interface with a traditional list 
interface under exactly the same search conditions.  We 
now describe each of these components in more detail. 

TEXT CLASSIFICATION 
Text classification involves a training phase and a testing 
phase.  During the training phase, web pages with known 
category labels are used to train a classifier. During the 
testing or operational phase, the learned classifier is used 
to categorize or tag new web pages. 

Data Set 
For training purposes, we used a collection of web pages 
from LookSmart’s Web directory [24].  LookSmart’s 
directory is created and maintainted by 180 professional 
Web editors.  For our experiments, we used the directory 
as it existed in May 1999.  At that time there were 13 top-
level categories, 150 second-level categories, and over 
17,000 categories in total.  On average each web page was 
classified into 1.2 categories. 

Pre-processing 
A text pre-processing module extracted plain text from 
each web page.  In addition, the title, description, keyword, 
and image tag fields were also extracted if they existed.  A 
vector was created for each page indicating which terms 
appeared in that page. 

The results returned by search engines contain a short 
summary of information about each result.  Although it is 
possible to download the entire contents of each web page, 
it is too time consuming to be applicable in a networked 
environment.  Therefore, in our prototype, the initial 
training and subsequent classification are performed using 
only summaries of each web page.  The training 
summaries were created using the title, the keyword tag, 
and either the description tag if it existed or the first 40 
words otherwise.  When classifying search results we use 
the summary provided in the search results. 

Classification 
A Support Vector Machine (SVM) algorithm was used as 
the classifier, because it has been shown in previous work 
to be both very fast and effective for text classification 
problems [5][14].  Roughly speaking, a linear SVM is a 

hyperplane that separates a set of positive examples (i.e., 
pages in a category) from a set of negative examples (i.e., 
pages not in the category).  The SVM algorithm 
maximizes the margin between the two classes; other 
popular learning algorithms minimize different objective 
functions like the sum of squared errors.  Web pages were 
pre-processed as described above.  For each category we 
used the 1000 terms that were most predictive of the 
category as features.  Vectors for positive and negative 
examples were input into the SVM learning algorithm.  
The resulting SVM model for each category is a vector of 
1000 terms and associated weights that define the 
hyperplane for that category.  

We used 13,352 pre-classified web pages to train the 
model for the 13 top-level categories, and between 1,985 
and 10,431 examples for each of these categories to train 
the appropriate second-level category models.  The total 
time to learn all 13 top-level categories and 150 second-
level categories was only a few hours.  Once the categories 
are learned, the results from any user query can be 
classified.  At query time, each page summary returned by 
the search engine is compared to the 13 top-level category 
models.  A page is placed into one or more categories, if it 
exceeds a pre-determined threshold for category 
membership.  Pages are classified into second-level 
categories only on demand using the same procedure. 

We explored a number of parameter settings and text 
representations and used the optimal ones for classification 
in our experiment.  Our fully automatic methods for 
assigning category labels agreed with the human-assigned 
labels almost 70% of the time.  Most of the disagreements 
were because additional labels were assigned (in addition 
to the correct one), or no labels were assigned.  This is 
good accuracy given that we were working with only short 
summaries and very heterogeneous web content.  Although 
classification accuracy is not perfect, we believe it can still 
be useful for organizing Web search results. 

USER INTERFACE 
The search interface accepted query keywords, passed 
them to a search engine selected by the user, and parsed 
the returned pages.  Each page was classified into one or 
more categories using the learned SVM classifier.  The 
search results were organized into hierarchical categories 
as shown in Figure 1.  Under each category, web pages 
belonging to that category were listed.  The category could 
be expanded (or collapsed) on demand by the user.  To 
save screen space, only the title of each page was shown 
(the summary can be viewed by hover text, to be discussed 
later).  Clicking on the title hyperlink brought up the full 
content of the web page in another browser window, so 
that the category structure and the full-text of pages were 
simultaneously visible. 



 

Information Overlays 
There is a constant conflict between the large amount of 
information we want to present and the limited screen real 
estate.  We presented the most important information 
(titles of web pages and category labels) as text in the 
interface, and showed other information using small icons 
or transient visual overlays.  The techniques we used 
included: 

• A partially filled green bar in front of each category 
label showed the percentage of documents falling into 
the category.  This provided users with an overview of 
the distribution of matches across categories. 

• We presented additional category information (parent 
and child category labels) as hover text when the 
mouse hovered over a category title.  This allowed 
users to see the subcategories for category as well as 
the higher-level context for each page. 

• The summaries of the web pages returned by search 
engines provide users with additional information 
about the page helping them decide which pages to 
explore in greater depth.  In order to present category 
context along with the search results, we displayed 
only titles by default and showed summaries as hover 
text when the mouse hovered over the titles of web 
pages. 

Distilled Information Display 
Even with the help of information overlays, there is still 
more information than a single screen can accommodate.  
We developed heuristics to selectively present a small 
portion of the most useful information on the first screen.  
The first screen is so important that it usually determines 
whether the user will continue working on this search or 
abandon it all together.  We wanted to enable the user to 
either find the information there or identify a path for 
further exploration.  In order to do this effectively we must 
decide: how many categories to present, how many pages 
to present in each category, how to rank pages within a 
category, and how to rank categories. 

We presented only top-level categories on the first screen.  
There were several reasons for this.  First, the small 
number of top level categories helped the user identify 
domains of interest quickly.  Second, it saved a lot of 
screen space. Third, classification accuracy was usually 
higher in top level categories.  Fourth, it was 
computationally faster to match only the top-level 
categories.  Fifth, subcategories did not help much when 
there were only a few pages in the category.  The user can 
expand any category into subcategories by clicking a 
button. 

In each category, we showed only a subset of pages in that 
category.  We decided to show a fixed number of pages 
(20) across all categories, and divided them in proportion 
to the number of pages in that category.  So, if one 

category contained 50% of results, we would show 10 
pages from that category in the initial view.  The user can 
see all pages in a category by clicking a button. 

Three parameters affected how pages are ordered within a 
category:  its original ranking order in the results, its 
match score (if returned by the search engine), and the 
probability that it belongs to the category according to the 
classifier.  For the experiment, we used only the rank order 
in the original search results to determine the order of 
items within each category.  Thus if all the search result 
fall into one category the category organization returns the 
same items in the same order as the ranked list. 

The categories can be ordered either in a static 
alphabetical order, or dynamically according to some 
importance score.  The advantage of dynamic ranking is to 
present the most likely category first.  The disadvantage is 
that it prevents the user from establishing a mental model 
of the relative position of each category in the browser 
window.  For our experiment, importance was determined 
by the number of pages in the category.  The category with 
the most items in it was shown first, and so on. 

USER STUDY 
A user study was conducted to compare the category-based 
interface (referred to as “Category Interface” henceforth) 
with the conventional search interface where pages are 
arranged in a ranked list (referred to as “List Interface” 
henceforth).  The two interfaces are shown in Figure 2. 

Figure 2: Category vs. List Interface 

The top 100 search results for the query “jaguar” are used 
in this example.  Twenty items are shown initially in both 
interfaces.  In the List interface the 20 items can be seen 
without scrolling; in the Category interface scrolling is 
always required in spite of our attempt to conserve screen 
space.  In both interfaces, summaries are shown on hover.  
Both interfaces contain a ShowMore button which is used 
to show the remaining items in the category; in the case of 
the List interface the remaining 80 items are shown.  In 
addition, in the Category interface a SubCategory button is 



 

used to sub-categorize the pages within that category.  The 
same control program is used in both cases, so timing is 
the same in both interfaces. 

Methods 
Subjects 
Eighteen subjects of intermediate web ability participated 
in the experiment.  Subjects were adult residents of the 
Seattle area recruited by the Microsoft usability lab, and 
represent a range of ages, backgrounds, jobs and education 
level. 

Procedure 
The experiment was divided into two sessions with a 
voluntary break between.  Subjects used the Category 
interface in one session and the List interface in the other.  
The user read a short tutorial before each session began.  
During each session, the user performed 15 web search 
tasks, for a total of 30 search tasks.  At the end of the 
experiment, the user completed an online questionnaire 
giving his/her subjective rating of the two interfaces.  The 
total time for the experiment was about 2 hours. 

During the experiment, the subject worked with three 
windows (Figure 3).  The control window on the top shows 
the task and the query keywords.  In this example, the task 
is to find out about “renting a Jaguar car” and the query 
we automatically issued is “jaguar”.  The search results 
were displayed in the left bottom window.  In the Category 
interface, the results were automatically organized into 
different categories, and in the List interface, the top 20 
items were shown on the initial screen. 

 

Figure 3: Screen of the User Study 

When the subject clicked on a hyperlink, the page opened 
in the right window.  When the subject found an answer, 
s/he clicked on the “Found It!” button in the control 
window.  If no answer could be found, s/he clicked on the 
“Give Up” button.  There was a timer in the control 
window that reminded the subject after five minutes had 
passed.  If a reminder occurred, the subject could continue 
searching or move on to the next task.  User events such as 

hovering over a hyperlink to read the summary, clicking 
on a hyperlink to read the page, expanding or collapsing 
the list were logged. 

Search Tasks 
The 30 search tasks were selected from a broad range of 
topics, including sports, movies, travel, news, computers, 
literature, automotive, local interest, etc.  Ten of the 
queries were popular queries from users of 
MSNWebSearch.  In order to facilitate evaluation we 
selected tasks that had reasonably unambiguous answers in 
the top 100 returned pages (a kind of known-item search).  
The tasks varied in difficulty – 17 had answers in the top 
20 items returned (on the first page in the List interface), 
and 13 had answers between ranks 21 and 100.  The tasks 
also varied in how much manipulation was required in the 
Category interface – 10 required subjects to use ShowMore 
or SubCategory expansion, and 10 required some scrolling 
because the correct category was not near the top. 

To ensure that results from different subjects were 
comparable, we fixed the keywords for each query in the 
experiment.  We also cached the search results before the 
experiments so that each subject got the same results for 
the same query.  The MSNWebSearch engine [22] was 
used to generate the search results. 

Each subject performed the same 30 search tasks.  For 15 
tasks they used the Category interface and for 15 they used 
the List interface.  The order in which queries were 
presented and whether the Category or List interface was 
used first was counterbalanced across subjects. Nine lists 
of tasks were used -- each list contained all the tasks in a 
different order and was assigned to a pair of subjects, one 
in the Category-first condition and one in the List-first 
condition.  This yoking of presentation orders reduces 
error variance which is desirable given the relatively small 
number of subjects and tasks we used. 

Results 
The main independent variable is the Category interface 
vs. the List interface.  The order of presentation (List first 
or Category first) is a between subject variable.  We 
analyzed both subjective questionnaire measures and 
objective measures (search time, accuracy, and interactions 
with the interface such as hovering, and displaying Web 
pages). 

Subjective questionnaire measures 
After the experiment, subjects completed a brief online 
questionnaire.  The questionnaire covered prior experience 
with Web searching, ratings of the two interfaces (on a 7-
point scale), and open-ended questions about the best and 
worst aspects of each interface.  Seventeen of the eighteen 
subjects used the Web at least every week, and eleven of 
the eighteen subjects searched for information on the Web 
at least every week.  The most popular Web search service 
among our subjects was Yahoo!. 



 

Subjects reported that the Category interface was “easy to 
use” (6.4 vs. 3.9, t(17) = 6.41 ; p<<0.001), they “liked 
using it” (6.7 vs. 4.3, t(17) = 6.01 ; p<<0.001), they were 
“confident that I could find the information if it was there” 
(6.3 vs. 4.4, t(17) = 4.91; p<<0.001), that it was “easy to 
get a good sense of the range of alternatives” (6.4 vs. 4.2, 
t(17) = 6.22; p<<0.001), and that they “prefer this to my 
usual search engine” (6.4 vs. 4.3, t(17) = 4.13; p<<0.001).  
On all of our overall measures subjects much preferred the 
Category interface. 

For the two questions that asked about the usefulness of 
interface features (hover text and ShowMore), there were 
no reliable differences between interfaces, suggesting that 
subjects did not simply have an overall positive bias in 
responding to questions about the Category interface.  
Subjects thought the display of page summaries in hover 
text was useful in both interfaces (6.5 Category vs. 6.4 
List, t(17) = 0.36; p<0.72), and that the ShowMore option 
was useful (6.5 Category vs. 6.1 List, t(17) = 1.94; 
p<0.07). 

Accuracy/GiveUp. 
When creating search tasks, we had a target correct answer 
in mind.  However, other pages might be relevant as well, 
so we examined all pages that subjects said were relevant 
to see if they in fact answered the search task.  We looked 
at performance with strict and liberal scoring of accuracy.  
For strict scoring only pages that were deemed by the 
experimenters to be relevant (after including additional 
pages found by subjects that we had missed) were counted 
as relevant.  Using the strict criterion, there were slightly 
more wrong answers in the List interface (1.72 out of 30) 
than in the Category interface (1.06 out of 30), but this 
difference is not reliable statistically using a paired t-test 
(t(17) = -1.59; p<.13).  The lack of difference between 
interfaces is not surprising, since it reflects a difference in 
criterion about what the correct answer is rather than task 
difficulty per se.  For liberal scoring, any answer that 
subjects said was relevant was deemed relevant, so by 
definition, there were no wrong answers in either 
interface. We used the liberal scoring in subsequent 
analyses. 

Subjects were allowed to give up if they could not find an 
answer.  They could do this at any time during a trial.  
After 5 minutes had elapsed for a task, subjects were 
notified and encouraged to move onto the next task.  Some 
subjects continued searching, but most gave up at this 
time.  There are significantly more tasks on which subjects 
gave up in the List interface than in the Category interface 
(t(17) = -2.41; p<.027), although the absolute number of 
failures is small in both interfaces (0.77 in List and 0.33 in 
Category). 

Search Time 
We used the median search time across queries for 
statistical tests, because reaction time distributions are 
often skewed and statistical tests can be influenced by 
outliers.  (We also find exactly the same results using 
mean reaction times, so outliers were not a problem in this 
experiment.)  A 2x2 mixed design was used to measure 
differences in search time.  The between subjects factor is 
whether subjects saw the List or Category interface first, 
and the within subjects factor is List or Category interface.  
Median search times are shown in Figure 4. 

Search Time for Category vs. List

0

10

20

30

40

50

60

70

80

90

Category List

Interface Condition
M

ed
ia

n
 S

ea
rc

h
 T

im
e 

(s
ec

s)

 

Figure 4: Search time by interface type 

There is a reliable main effect of interface type, with a 
median response time of 56 seconds for the Category 
interface and 85 seconds for the List interface (F(1,16) = 
12.94; p=.002).  The advantage is not due to a speed-
accuracy tradeoff or to a tendency to give up on difficult 
queries, since if anything subjects in the Category interface 
were more accurate (when scored strictly) and gave up less 
often.  This is a large effect both statistically and 
practically.  It takes subjects 50% longer to find answers 
using the List interface.  On average it took subjects 14 
minutes to complete 15 tasks with the Category interface, 
and 21 minutes with the List interface.  There is no effect 
of the order in which interfaces were shown, list first or 
category first (F(1,16) = 0.26; p=0.62).  And, there is no 
interaction between order and interface (F(1,16) = 1.23; 
p=0.28), which shows that results are not biased by order 
of presentation. 

There are large individual differences in search time.  The 
fastest subject finished the 30 search tasks in a median of 
37 seconds, and the slowest in 142 seconds.  But, the 
advantage of the Category interface is consistent across 
subjects. 

There are also large differences across tasks or queries.  
The easiest task was completed in a median of 22.5 
seconds, and the most difficult task required 166 seconds 
to complete.  We divided the queries into those whose 



 

answers were on the first screen of the List interface (i.e., 
in the Top20 returned by the search engine) and those 
whose answers were not in the Top20.  The search times 
are shown in Figure 5.  Not surprisingly, there is a reliable 
main effect of whether the answer is in the Top20 or not -- 
median time for Top20 (57 seconds) and NotTop20 (98 
seconds), F(1,56) = 16.5; p<<.001. 

 Search Time by Interface and 
Query Difficulty
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Figure 5: Search time by interface type and query 
difficulty 

There is no interaction between query difficulty and 
interface (F(1,56)=2.52; p=.12).  The Category interface is 
beneficial for both easy and hard queries.  Although there 
is a hint that the category interface is more helpful for 
difficult queries, the interaction is not reliable.  The 
Category interface is still beneficial even when the 
matching web page is in the first page of results.  In our 
List interface items which were in the Top20 did not 
require any scrolling, whereas several of the Category 
interfaces for these items did.  The advantage appears to be 
due to the way in which the category interface breaks the 
list of returned items down into easily scanable semantic 
chunks. 

Interaction Style – Hovering, Page Views, ShowMore, 
SubCategory 
We measured the number of hovering and page viewing 
actions subjects performed in the course of finding the 
answers.  Subjects in the List interface hovered on more 
items than those in the Category interface (4.60 vs. 2.99; 
t(17) = -5.54; p<<0.001).  The number of pages that 
subjects actually viewed in the right window is somewhat 
larger in the List interface (1.41 List vs. 1.23 Category; 
t(17) = -2.08; p<0.053).  Although the difference is not 
large, it suggests that the category structure can help 
disambiguate the summary in the hover text.  It is 
interesting to note that the average number of page views 
is close to 1, suggesting that users could narrow down their 

search by reading just the titles and summaries.  Subjects 
read the full pages mostly to confirm what they found in 
the summary.  This significantly reduces search time 
because the short summaries can be read faster than a full 
page of text, and there is no network latency for accessing 
summaries (summaries were stored locally, but retrieving 
the full-text of the pages required net access). 

We also measured the expansion operations that subjects 
used in searching for information.  In the List interface, 
subjects could expand this list of results by ShowMore.  In 
the Category interface, subjects could ShowMore within 
each category, or they could break down categories into 
SubCategories.  Overall, subjects in the Category interface 
used more expansion operations (0.78 ShowMore + 
SubCategories in Category vs. 0.48 Show More in List; 
t(17) = 3.54; p<0.003).  So, subjects performed more 
expansion operations in the Category interface, but the 
selective nature of the operations (i.e., they applied to only 
a single category) meant that they were nontheless more 
efficient overall in finding things.  

CONCLUSION 
We developed and evaluated a user interface that organizes 
search results into a hierarchical category structure.  
Support Vector Machine classifiers were built offline using 
manually classified web pages.  This model was then used 
to classify new web pages returned from search engines 
on-the-fly.  This approach has the advantage of leveraging 
known and consistent category information to assist the 
user in quickly focusing in on task-relevant information.  
The interface allows users to browse and manipulate 
categories, and to view documents in the context of the 
category structure.  Only a small portion of the most 
important and representative information is displayed in 
the initial screen, and hover text and overlay techniques 
are used to convey more detailed information on demand.  
A user study compared the category interface with 
traditional list interface using the same set of tasks, search 
engine, and search results.  The results convincingly 
demonstrate that the category interface is superior to the 
list interface in both subjective and objective measures. 

There are many directions for further research.  One issue 
to explore is how the results generalize to other domains 
and task scenarios.  The categories used in our experiment 
were designed to cover the full range of Web content.  
Nonetheless, not all user queries will match the category 
structure to the same extent.  Results for some queries may 
fall entirely within one category (e.g., results for the query 
“used parts for Jaguar XJ6L”, would likely fall entirely 
within the Automobile category).  In such cases, the 
Category interface (given our current display heuristics) is 
exactly the same as the List interface, so we are no worse 
off.  Results for other queries may not match any of the 
categories very well.  In our current interface we have a 
“NotCategorized” group at the bottom.  In our experiment 



 

5-40% of the results for each query were NotCategorized, 
but few of the answers were in the NotCategorized group.  
We hope to deploy our system more widely to look at this 
issue by getting a large sample of typical user queries.  
This would also allow us to explore a wider range of user 
tasks in addition to the known-item scenario we used.  

There are also many interesting issues concerning how 
best to present concise views of search results in their 
category contexts.  We chose to order categories by the 
number of matches and within each category to order the 
pages by search rank.  Our text classification algorithms 
can easily handle thousands of categories, and we may 
have to move beyond our simple display heuristics for such 
cases. 
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