

Bringing Order to the Web:
Automatically Categorizing Search Results

Hao Chen
School of Information Management & Systems

University of California
Berkeley, CA 94720 USA
hchen@sims.berkeley.edu

Susan Dumais
Microsoft Research
One Microsoft Way

Redmond, WA 99802 USA
sdumais@microsoft.com

ABSTRACT
We developed a user interface that organizes Web search
results into hierarchical categories. Text classification
algorithms were used to automatically classify arbitrary
search results into an existing category structure on-the-
fly. A user study compared our new category interface
with the typical ranked list interface of search results. The
study showed that the category interface is superior both in
objective and subjective measures. Subjects liked the
category interface much better than the list interface, and
they were 50% faster at finding information that was
organized into categories. Organizing search results
allows users to focus on items in categories of interest
rather than having to browse through all the results
sequentially.

Keywords
User Interface, World Wide Web, Search, User Study, Text
Categorization, Classification, Support Vector Machine

INTRODUCTION
With the exponential growth of the Internet, it has become
more and more difficult to find information. Web search
services such as AltaVista, InfoSeek, and MSNWebSearch
were introduced to help people find information on the
web. Most of these systems return a ranked list of web
pages in response to a user’s search request. Web pages
on different topics or different aspects of the same topic are
mixed together in the returned list. The user has to sift
through a long list to locate pages of interest. Since the
19th century, librarians have used classification systems
like Dewey and Library of Congress classification to
organize vast amounts of information. More recently, Web
directories such as Yahoo! and LookSmart have been used
to classify Web pages. The manual nature of the directory
compiling process makes it impossible to have as broad
coverage as the search engines, or to apply the same
structure to intranet or local files without additional

manual effort.

To combine the advantage of structured topic information
in directories and broad coverage in search engines, we
built a system that takes the web pages returned by a
search engine and classifies them into a known
hierarchical structure such as LookSmart’s Web directory
[24]. The system consists of two main components: 1) a
text classifier that categorizes web pages on-the-fly, and 2)
a user interface that presents the web pages within the
category structure and allows the user to manipulate the
structured view (Figure 1).

Figure 1: Presenting web pages within category
structure

RELATED WORK
Generating structure
Three general techniques have been used to organize
documents into topical contexts. The first one uses
structural information (meta data) associated with each
document. The DynaCat system by Pratt [15] used meta
data from the UMLS medical thesaurus to organize search
results. Two prototypes developed by Allen [1] used meta

data from the Dewey Decimal System for organizing
results. In the SuperBook project [10], paragraphs of texts
were organized into an author-created hierarchical table of
contents. Marchionini et al. [12] also used table of content
views for structuring information from searches in the
Library of Congress digital library. Others have used the
link structure of Web pages to automatically generate
structured views of Web sites. Maarek et al.’s WebCutter
system [11] displayed a site map tailored to the user’s
search query. Wittenburg and Sigman’s AMIT system
[18] showed search results in the context of an
automatically derived Web site structure. Chen et al.’s
Cha-Cha system [4] also organized search results into
automatically derived site structures using the shortest
path from the root to the retrieved page. Manually-created
systems are quite useful but require a lot of initial effort to
create and are difficult to maintain. Automatically-derived
structures often result in heterogeneous criteria for
category membership and can be difficult to understand.

A second way to organize documents is by clustering.
Documents are organized into groups based their overall
similarity to one another. Zamir et al. [19, 20] grouped
Web search results using suffix tree clustering. Hearst et
al. [7, 8] used the scatter/gather technique to organize and
browse documents. One problem with organizing search
results in this way is the time required for on-line
clustering algorithms. Single-link and group-average
methods typically take O(n2) time, while complete-link
methods typically take O(n3), where n is the number of
documents returned. Linear-time algorithms like k-means
are more efficient being O(nkT), where k is the number of
clusters and T the number of iterations. In addition, it is
difficult to describe the resulting clusters to users. Clusters
are usually labeled by common phrases extracted from
member documents, but it is often difficult to quickly
understand the contents of a cluster from its label.

A third way to organize documents is by classification. In
this approach, statistical techniques are used to learn a
model based on a labeled set of training documents
(documents with category labels). The model is then
applied to new documents (documents without category
labels) to determine their categories. Chakrabarti et al.
[2], Chekuri [3], and Mladenic [13] have developed
automatic classifiers for subsets of pages from the Yahoo!
Web directory. Only a small number of high level
categories were used in their published results. And, the
focus of these papers was on the underlying text
classification algorithms and not on user interfaces that
exploit the results. Recently, Inktomi [22] announced that
it had developed techniques for automatic classification of
web pages. However, its technical details were not
disclosed and we are not aware of any search services
employing this technology.

Using structure to support search
A number of web search services use category information
to organize the search results. Yahoo! [27], Snap [26] and
LookSmart [24] show the category label associated with
each retrieved page. Results are still shown as a ranked
list with grouping occurring only at the lowest level of the
hierarchy (for Yahoo! and Snap). There is, for example,
no way to know that 70% of the matches fell into a single
top-level category. In addition, these systems require pre-
tagged content. Before any new content can be used, it
must be categorized by hand. Northern Light [25]
provides Custom Folders in which the retrieved documents
are organized hierarchically. The folders are organized
according to several dimensions -- source (sites, domains),
type (personal page, product review), language, and
subject. Individual categories can be explored one at a
time. But, again no global information is provided about
the distribution of search results across categories.

The most common interface for manipulating hierarchical
category structures is a hierarchical tree control, but other
techniques have been explored as well. Johnson et al. [9]
used a treemap that partitioned the display into rectangular
bounding boxes representing the tree structure.
Characteristics of the categories and their relationships
were indicated by their sizes, shapes, colors, and relative
positions. Shneiderman et al. [17] have recently developed
a two-dimensional category display that uses categorical
and hierarchical axes, called hieraxes, for showing large
results sets in the context of categories. Hearst et al. [5]
used three-dimensional graphics to display categories
together with their documents. Multiple categories could
be displayed simultaneously along with their hierarchical
context. In all of these systems, documents must have pre-
assigned category tags.

Few studies have evaluated the effectiveness of different
interfaces for structuring information. Landauer et al. [10]
compared two search interfaces for accessing chemistry
information -- SuperBook which used a hierarchical table
of contents, and PixLook which used a traditional ranked
list. Browsing accuracy was higher for SuperBook than
PixLook. Search accuracy and search times were the same
for the two interfaces. However, different text pre-
processing and search algorithms were used in the two
systems so it is difficult to compare precisely. More
recently, Pratt et al. [16] compared DynaCat, a tool that
automatically categorized results using knowledge of query
types and a model of domain terminology, with a ranked
list and clustering. Subjects liked DynaCat’s category
organization of search results. Subjects found somewhat
more new answers using DynaCat, but the results were not
reliable statistically, presumably because there were only
15 subjects and 3 queries in the experiment.

In this paper we describe a new system showing how
automatic text classification techniques can be used to

organize search results. A statistical text classification
model is trained offline on a representative sample of Web
pages with known category labels. At query time, new
search results are quickly classified on-the-fly into the
learned category structure. This approach has the benefit
of using known and consistent category labels, while easily
incorporating new items into the structure. The user
interface compactly displays web pages in a hierarchical
category structure. Heuristics are used to order categories
and select results within categories for display. Users can
further expand categories on demand. Tooltip-like
overlays are used to convey additional information about
individual web pages or categories on demand. We
compared our category interface with a traditional list
interface under exactly the same search conditions. We
now describe each of these components in more detail.

TEXT CLASSIFICATION
Text classification involves a training phase and a testing
phase. During the training phase, web pages with known
category labels are used to train a classifier. During the
testing or operational phase, the learned classifier is used
to categorize or tag new web pages.

Data Set
For training purposes, we used a collection of web pages
from LookSmart’s Web directory [24]. LookSmart’s
directory is created and maintainted by 180 professional
Web editors. For our experiments, we used the directory
as it existed in May 1999. At that time there were 13 top-
level categories, 150 second-level categories, and over
17,000 categories in total. On average each web page was
classified into 1.2 categories.

Pre-processing
A text pre-processing module extracted plain text from
each web page. In addition, the title, description, keyword,
and image tag fields were also extracted if they existed. A
vector was created for each page indicating which terms
appeared in that page.

The results returned by search engines contain a short
summary of information about each result. Although it is
possible to download the entire contents of each web page,
it is too time consuming to be applicable in a networked
environment. Therefore, in our prototype, the initial
training and subsequent classification are performed using
only summaries of each web page. The training
summaries were created using the title, the keyword tag,
and either the description tag if it existed or the first 40
words otherwise. When classifying search results we use
the summary provided in the search results.

Classification
A Support Vector Machine (SVM) algorithm was used as
the classifier, because it has been shown in previous work
to be both very fast and effective for text classification
problems [5][14]. Roughly speaking, a linear SVM is a

hyperplane that separates a set of positive examples (i.e.,
pages in a category) from a set of negative examples (i.e.,
pages not in the category). The SVM algorithm
maximizes the margin between the two classes; other
popular learning algorithms minimize different objective
functions like the sum of squared errors. Web pages were
pre-processed as described above. For each category we
used the 1000 terms that were most predictive of the
category as features. Vectors for positive and negative
examples were input into the SVM learning algorithm.
The resulting SVM model for each category is a vector of
1000 terms and associated weights that define the
hyperplane for that category.

We used 13,352 pre-classified web pages to train the
model for the 13 top-level categories, and between 1,985
and 10,431 examples for each of these categories to train
the appropriate second-level category models. The total
time to learn all 13 top-level categories and 150 second-
level categories was only a few hours. Once the categories
are learned, the results from any user query can be
classified. At query time, each page summary returned by
the search engine is compared to the 13 top-level category
models. A page is placed into one or more categories, if it
exceeds a pre-determined threshold for category
membership. Pages are classified into second-level
categories only on demand using the same procedure.

We explored a number of parameter settings and text
representations and used the optimal ones for classification
in our experiment. Our fully automatic methods for
assigning category labels agreed with the human-assigned
labels almost 70% of the time. Most of the disagreements
were because additional labels were assigned (in addition
to the correct one), or no labels were assigned. This is
good accuracy given that we were working with only short
summaries and very heterogeneous web content. Although
classification accuracy is not perfect, we believe it can still
be useful for organizing Web search results.

USER INTERFACE
The search interface accepted query keywords, passed
them to a search engine selected by the user, and parsed
the returned pages. Each page was classified into one or
more categories using the learned SVM classifier. The
search results were organized into hierarchical categories
as shown in Figure 1. Under each category, web pages
belonging to that category were listed. The category could
be expanded (or collapsed) on demand by the user. To
save screen space, only the title of each page was shown
(the summary can be viewed by hover text, to be discussed
later). Clicking on the title hyperlink brought up the full
content of the web page in another browser window, so
that the category structure and the full-text of pages were
simultaneously visible.

Information Overlays
There is a constant conflict between the large amount of
information we want to present and the limited screen real
estate. We presented the most important information
(titles of web pages and category labels) as text in the
interface, and showed other information using small icons
or transient visual overlays. The techniques we used
included:

• A partially filled green bar in front of each category
label showed the percentage of documents falling into
the category. This provided users with an overview of
the distribution of matches across categories.

• We presented additional category information (parent
and child category labels) as hover text when the
mouse hovered over a category title. This allowed
users to see the subcategories for category as well as
the higher-level context for each page.

• The summaries of the web pages returned by search
engines provide users with additional information
about the page helping them decide which pages to
explore in greater depth. In order to present category
context along with the search results, we displayed
only titles by default and showed summaries as hover
text when the mouse hovered over the titles of web
pages.

Distilled Information Display
Even with the help of information overlays, there is still
more information than a single screen can accommodate.
We developed heuristics to selectively present a small
portion of the most useful information on the first screen.
The first screen is so important that it usually determines
whether the user will continue working on this search or
abandon it all together. We wanted to enable the user to
either find the information there or identify a path for
further exploration. In order to do this effectively we must
decide: how many categories to present, how many pages
to present in each category, how to rank pages within a
category, and how to rank categories.

We presented only top-level categories on the first screen.
There were several reasons for this. First, the small
number of top level categories helped the user identify
domains of interest quickly. Second, it saved a lot of
screen space. Third, classification accuracy was usually
higher in top level categories. Fourth, it was
computationally faster to match only the top-level
categories. Fifth, subcategories did not help much when
there were only a few pages in the category. The user can
expand any category into subcategories by clicking a
button.

In each category, we showed only a subset of pages in that
category. We decided to show a fixed number of pages
(20) across all categories, and divided them in proportion
to the number of pages in that category. So, if one

category contained 50% of results, we would show 10
pages from that category in the initial view. The user can
see all pages in a category by clicking a button.

Three parameters affected how pages are ordered within a
category: its original ranking order in the results, its
match score (if returned by the search engine), and the
probability that it belongs to the category according to the
classifier. For the experiment, we used only the rank order
in the original search results to determine the order of
items within each category. Thus if all the search result
fall into one category the category organization returns the
same items in the same order as the ranked list.

The categories can be ordered either in a static
alphabetical order, or dynamically according to some
importance score. The advantage of dynamic ranking is to
present the most likely category first. The disadvantage is
that it prevents the user from establishing a mental model
of the relative position of each category in the browser
window. For our experiment, importance was determined
by the number of pages in the category. The category with
the most items in it was shown first, and so on.

USER STUDY
A user study was conducted to compare the category-based
interface (referred to as “Category Interface” henceforth)
with the conventional search interface where pages are
arranged in a ranked list (referred to as “List Interface”
henceforth). The two interfaces are shown in Figure 2.

Figure 2: Category vs. List Interface

The top 100 search results for the query “jaguar” are used
in this example. Twenty items are shown initially in both
interfaces. In the List interface the 20 items can be seen
without scrolling; in the Category interface scrolling is
always required in spite of our attempt to conserve screen
space. In both interfaces, summaries are shown on hover.
Both interfaces contain a ShowMore button which is used
to show the remaining items in the category; in the case of
the List interface the remaining 80 items are shown. In
addition, in the Category interface a SubCategory button is

used to sub-categorize the pages within that category. The
same control program is used in both cases, so timing is
the same in both interfaces.

Methods
Subjects
Eighteen subjects of intermediate web ability participated
in the experiment. Subjects were adult residents of the
Seattle area recruited by the Microsoft usability lab, and
represent a range of ages, backgrounds, jobs and education
level.

Procedure
The experiment was divided into two sessions with a
voluntary break between. Subjects used the Category
interface in one session and the List interface in the other.
The user read a short tutorial before each session began.
During each session, the user performed 15 web search
tasks, for a total of 30 search tasks. At the end of the
experiment, the user completed an online questionnaire
giving his/her subjective rating of the two interfaces. The
total time for the experiment was about 2 hours.

During the experiment, the subject worked with three
windows (Figure 3). The control window on the top shows
the task and the query keywords. In this example, the task
is to find out about “renting a Jaguar car” and the query
we automatically issued is “jaguar”. The search results
were displayed in the left bottom window. In the Category
interface, the results were automatically organized into
different categories, and in the List interface, the top 20
items were shown on the initial screen.

Figure 3: Screen of the User Study

When the subject clicked on a hyperlink, the page opened
in the right window. When the subject found an answer,
s/he clicked on the “Found It!” button in the control
window. If no answer could be found, s/he clicked on the
“Give Up” button. There was a timer in the control
window that reminded the subject after five minutes had
passed. If a reminder occurred, the subject could continue
searching or move on to the next task. User events such as

hovering over a hyperlink to read the summary, clicking
on a hyperlink to read the page, expanding or collapsing
the list were logged.

Search Tasks
The 30 search tasks were selected from a broad range of
topics, including sports, movies, travel, news, computers,
literature, automotive, local interest, etc. Ten of the
queries were popular queries from users of
MSNWebSearch. In order to facilitate evaluation we
selected tasks that had reasonably unambiguous answers in
the top 100 returned pages (a kind of known-item search).
The tasks varied in difficulty – 17 had answers in the top
20 items returned (on the first page in the List interface),
and 13 had answers between ranks 21 and 100. The tasks
also varied in how much manipulation was required in the
Category interface – 10 required subjects to use ShowMore
or SubCategory expansion, and 10 required some scrolling
because the correct category was not near the top.

To ensure that results from different subjects were
comparable, we fixed the keywords for each query in the
experiment. We also cached the search results before the
experiments so that each subject got the same results for
the same query. The MSNWebSearch engine [22] was
used to generate the search results.

Each subject performed the same 30 search tasks. For 15
tasks they used the Category interface and for 15 they used
the List interface. The order in which queries were
presented and whether the Category or List interface was
used first was counterbalanced across subjects. Nine lists
of tasks were used -- each list contained all the tasks in a
different order and was assigned to a pair of subjects, one
in the Category-first condition and one in the List-first
condition. This yoking of presentation orders reduces
error variance which is desirable given the relatively small
number of subjects and tasks we used.

Results
The main independent variable is the Category interface
vs. the List interface. The order of presentation (List first
or Category first) is a between subject variable. We
analyzed both subjective questionnaire measures and
objective measures (search time, accuracy, and interactions
with the interface such as hovering, and displaying Web
pages).

Subjective questionnaire measures
After the experiment, subjects completed a brief online
questionnaire. The questionnaire covered prior experience
with Web searching, ratings of the two interfaces (on a 7-
point scale), and open-ended questions about the best and
worst aspects of each interface. Seventeen of the eighteen
subjects used the Web at least every week, and eleven of
the eighteen subjects searched for information on the Web
at least every week. The most popular Web search service
among our subjects was Yahoo!.

Subjects reported that the Category interface was “easy to
use” (6.4 vs. 3.9, t(17) = 6.41 ; p<<0.001), they “liked
using it” (6.7 vs. 4.3, t(17) = 6.01 ; p<<0.001), they were
“confident that I could find the information if it was there”
(6.3 vs. 4.4, t(17) = 4.91; p<<0.001), that it was “easy to
get a good sense of the range of alternatives” (6.4 vs. 4.2,
t(17) = 6.22; p<<0.001), and that they “prefer this to my
usual search engine” (6.4 vs. 4.3, t(17) = 4.13; p<<0.001).
On all of our overall measures subjects much preferred the
Category interface.

For the two questions that asked about the usefulness of
interface features (hover text and ShowMore), there were
no reliable differences between interfaces, suggesting that
subjects did not simply have an overall positive bias in
responding to questions about the Category interface.
Subjects thought the display of page summaries in hover
text was useful in both interfaces (6.5 Category vs. 6.4
List, t(17) = 0.36; p<0.72), and that the ShowMore option
was useful (6.5 Category vs. 6.1 List, t(17) = 1.94;
p<0.07).

Accuracy/GiveUp.
When creating search tasks, we had a target correct answer
in mind. However, other pages might be relevant as well,
so we examined all pages that subjects said were relevant
to see if they in fact answered the search task. We looked
at performance with strict and liberal scoring of accuracy.
For strict scoring only pages that were deemed by the
experimenters to be relevant (after including additional
pages found by subjects that we had missed) were counted
as relevant. Using the strict criterion, there were slightly
more wrong answers in the List interface (1.72 out of 30)
than in the Category interface (1.06 out of 30), but this
difference is not reliable statistically using a paired t-test
(t(17) = -1.59; p<.13). The lack of difference between
interfaces is not surprising, since it reflects a difference in
criterion about what the correct answer is rather than task
difficulty per se. For liberal scoring, any answer that
subjects said was relevant was deemed relevant, so by
definition, there were no wrong answers in either
interface. We used the liberal scoring in subsequent
analyses.

Subjects were allowed to give up if they could not find an
answer. They could do this at any time during a trial.
After 5 minutes had elapsed for a task, subjects were
notified and encouraged to move onto the next task. Some
subjects continued searching, but most gave up at this
time. There are significantly more tasks on which subjects
gave up in the List interface than in the Category interface
(t(17) = -2.41; p<.027), although the absolute number of
failures is small in both interfaces (0.77 in List and 0.33 in
Category).

Search Time
We used the median search time across queries for
statistical tests, because reaction time distributions are
often skewed and statistical tests can be influenced by
outliers. (We also find exactly the same results using
mean reaction times, so outliers were not a problem in this
experiment.) A 2x2 mixed design was used to measure
differences in search time. The between subjects factor is
whether subjects saw the List or Category interface first,
and the within subjects factor is List or Category interface.
Median search times are shown in Figure 4.

Search Time for Category vs. List

0

10

20

30

40

50

60

70

80

90

Category List

Interface Condition
M

ed
ia

n
 S

ea
rc

h
 T

im
e

(s
ec

s)

Figure 4: Search time by interface type

There is a reliable main effect of interface type, with a
median response time of 56 seconds for the Category
interface and 85 seconds for the List interface (F(1,16) =
12.94; p=.002). The advantage is not due to a speed-
accuracy tradeoff or to a tendency to give up on difficult
queries, since if anything subjects in the Category interface
were more accurate (when scored strictly) and gave up less
often. This is a large effect both statistically and
practically. It takes subjects 50% longer to find answers
using the List interface. On average it took subjects 14
minutes to complete 15 tasks with the Category interface,
and 21 minutes with the List interface. There is no effect
of the order in which interfaces were shown, list first or
category first (F(1,16) = 0.26; p=0.62). And, there is no
interaction between order and interface (F(1,16) = 1.23;
p=0.28), which shows that results are not biased by order
of presentation.

There are large individual differences in search time. The
fastest subject finished the 30 search tasks in a median of
37 seconds, and the slowest in 142 seconds. But, the
advantage of the Category interface is consistent across
subjects.

There are also large differences across tasks or queries.
The easiest task was completed in a median of 22.5
seconds, and the most difficult task required 166 seconds
to complete. We divided the queries into those whose

answers were on the first screen of the List interface (i.e.,
in the Top20 returned by the search engine) and those
whose answers were not in the Top20. The search times
are shown in Figure 5. Not surprisingly, there is a reliable
main effect of whether the answer is in the Top20 or not --
median time for Top20 (57 seconds) and NotTop20 (98
seconds), F(1,56) = 16.5; p<<.001.

 Search Time by Interface and
Query Difficulty

0

20

40

60

80

100

120

140

Category List

Interface Condition

M
ed

ia
n

 S
ea

rc
h

 T
im

e
(s

ec
s)

Top20

NotTop20

Figure 5: Search time by interface type and query
difficulty

There is no interaction between query difficulty and
interface (F(1,56)=2.52; p=.12). The Category interface is
beneficial for both easy and hard queries. Although there
is a hint that the category interface is more helpful for
difficult queries, the interaction is not reliable. The
Category interface is still beneficial even when the
matching web page is in the first page of results. In our
List interface items which were in the Top20 did not
require any scrolling, whereas several of the Category
interfaces for these items did. The advantage appears to be
due to the way in which the category interface breaks the
list of returned items down into easily scanable semantic
chunks.

Interaction Style – Hovering, Page Views, ShowMore,
SubCategory
We measured the number of hovering and page viewing
actions subjects performed in the course of finding the
answers. Subjects in the List interface hovered on more
items than those in the Category interface (4.60 vs. 2.99;
t(17) = -5.54; p<<0.001). The number of pages that
subjects actually viewed in the right window is somewhat
larger in the List interface (1.41 List vs. 1.23 Category;
t(17) = -2.08; p<0.053). Although the difference is not
large, it suggests that the category structure can help
disambiguate the summary in the hover text. It is
interesting to note that the average number of page views
is close to 1, suggesting that users could narrow down their

search by reading just the titles and summaries. Subjects
read the full pages mostly to confirm what they found in
the summary. This significantly reduces search time
because the short summaries can be read faster than a full
page of text, and there is no network latency for accessing
summaries (summaries were stored locally, but retrieving
the full-text of the pages required net access).

We also measured the expansion operations that subjects
used in searching for information. In the List interface,
subjects could expand this list of results by ShowMore. In
the Category interface, subjects could ShowMore within
each category, or they could break down categories into
SubCategories. Overall, subjects in the Category interface
used more expansion operations (0.78 ShowMore +
SubCategories in Category vs. 0.48 Show More in List;
t(17) = 3.54; p<0.003). So, subjects performed more
expansion operations in the Category interface, but the
selective nature of the operations (i.e., they applied to only
a single category) meant that they were nontheless more
efficient overall in finding things.

CONCLUSION
We developed and evaluated a user interface that organizes
search results into a hierarchical category structure.
Support Vector Machine classifiers were built offline using
manually classified web pages. This model was then used
to classify new web pages returned from search engines
on-the-fly. This approach has the advantage of leveraging
known and consistent category information to assist the
user in quickly focusing in on task-relevant information.
The interface allows users to browse and manipulate
categories, and to view documents in the context of the
category structure. Only a small portion of the most
important and representative information is displayed in
the initial screen, and hover text and overlay techniques
are used to convey more detailed information on demand.
A user study compared the category interface with
traditional list interface using the same set of tasks, search
engine, and search results. The results convincingly
demonstrate that the category interface is superior to the
list interface in both subjective and objective measures.

There are many directions for further research. One issue
to explore is how the results generalize to other domains
and task scenarios. The categories used in our experiment
were designed to cover the full range of Web content.
Nonetheless, not all user queries will match the category
structure to the same extent. Results for some queries may
fall entirely within one category (e.g., results for the query
“used parts for Jaguar XJ6L”, would likely fall entirely
within the Automobile category). In such cases, the
Category interface (given our current display heuristics) is
exactly the same as the List interface, so we are no worse
off. Results for other queries may not match any of the
categories very well. In our current interface we have a
“NotCategorized” group at the bottom. In our experiment

5-40% of the results for each query were NotCategorized,
but few of the answers were in the NotCategorized group.
We hope to deploy our system more widely to look at this
issue by getting a large sample of typical user queries.
This would also allow us to explore a wider range of user
tasks in addition to the known-item scenario we used.

There are also many interesting issues concerning how
best to present concise views of search results in their
category contexts. We chose to order categories by the
number of matches and within each category to order the
pages by search rank. Our text classification algorithms
can easily handle thousands of categories, and we may
have to move beyond our simple display heuristics for such
cases.

ACKNOWLEDGMENTS
We are grateful to John Platt for help with the Support
Vector Machine code, to Kirsten Risden for help in setting
up the user study, and to reviewers for helpful suggestions.

REFERENCES
1. Allen, R. B., Two digital library interfaces that exploit

hierarchical structure. In Proceedings of DAGS95:
Electronic Publishing and the Information
Superhighway (1995).

2. Chakrabarti, S., Dom, B., Agrawal, R., and Raghavan,
P. Scalable feature selection, classification and
signature generation for organizing large text databases
into hierarchical topic taxonomies. The VLDB Journal
7, (1998), 163-178.

3. Chekuri, C., Goldwasser, M., Raghavan, P. and Upfal,
E. Web search using automated classification. In Sixth
International World Wide Web Conference, Santa
Clara, California, Apr. 1997, Poster POS725.

4. Chen, M., Hearst, M., Hong, J., and Lin, J. Cha-Cha: a
system for organizing intranet search results. In
Proceedings of the 2nd USENIX Symposium on
Internet Technologies and SYSTEMS (USITS) (Boulder
CO, October 1999) (to appear).

5. Dumais, S. T., Platt, J., Heckerman, D. and Sahami, M.
Inductive learning algorithms and representations for
text categorization. In Proceedings of ACM-CIKM98,
Nov. 1998.

6. Hearst, M., and Karadi, C. Searching and browsing
text collections with large category hierarchies. In
Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI),
Conference Companion (Atlanta GA, March 1997).

7. Hearst, M., and Pedersen, P. Reexamining the cluster
hypothesis: scatter/gather on retrieval results. In
Proceedings of 19th Annual International ACM/SIGIR
Conference (Zurich 1996).

8. Hearst, M., Pedersen, J., and Karger, D. Scatter/gather
as a tool for the analysis of retrieval results. Working
Notes of the AAAI Fall Symposium on AI Applications
in Knowledge Navigation (Cambridge MA, November
1995).

9. Johnson, B., and Shneiderman, B. Treemaps: a space-
filling approach to the visualization of hierarchical
information structures. In Sparks of Innovation in
Human-Computer Interaction. Ablex Publishing
Corporation, Norwood NJ, 1993

10. Landauer, T., Egan, D., Remde, J., Lesk, M.,
Lochbaum, C., and Ketchum, D. Enhancing the
usability of text through computer delivery and
formative evaluation: the SuperBook project. In
Hypertext – A Psychological Perspective. Ellis
Horwood, 1993.

11. Maarek, Y., Jacovi, M., Shtalhaim, M., Ur, S., Zernik,
D., and Ben Shaul, I.Z. WebCutter: a system for
dynamic and tailorable site mapping. In Proceedings of
the 6th International World Wide Web Conference
(Santa-Clara CA, April 1997).

12. Marchionini, G., Plaisant, C., and Komlodi, A.
Interfaces and tools for the Library of Congress
national digital library program. Information
Processing and Management, 34, 535-555, 1998.

13. Mladenic, D. Turning Yahoo into an automatic web
page classifier. In Proceedings of the 13th European
Conference on Artificial Intelligence (ECAI'98) 473-
474.

14. Platt, J. Fast training of support vector machines
using sequential minimal optimization. In Advances in
Kernel Methods –Support Vector Learning. B.
Schölkopf, C. Burges, and A. Smola, eds., MIT Press,
(1999).

15. Pratt, W. Dynamic organization of search results using
the umls. In American Medical Informatics Association
Fall Symposium, 1997.

16. Pratt, W., Hearst, M. and Fagan, L. A knowledge-
based approach to organizing retrieved documents. In
Proceedings of AAAI-99.

17. Shneiderman, B., Feldman, D. and Rose, A.
Visualizing digital library search results with
categorical and hierarchical axes. CS-TR-3993,
UMIACS-TR-99-12.
ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-
Bibliography/99-03html/99-03.html

18. Wittenburg, K. and Sigman, E. Integration of
browsing, searching and filtering in an applet for
information access. In Proceedings of ACM CHI97:
Human Factors in Computing Systems, (Atlanta GA,
March 1997).

19. Zamir, O., and Etzioni, O. Grouper: A dynamic
clustering interface to web search results. In
Proceedings of WWW8 (Toronto, Canada, May 1999).

20. Zamir, O., and Etzioni, O. Web document clustering: a
feasibility demonstration. In Proceedings of the 19th
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’98), 46-
54.

21. http://cha-cha.berkeley.edu/

22. http://search.msn.com/

23. http://www.inktomi.com/new/press/directory.html/

24. http://www.looksmart.com/

25. http://www.northernlight.com/

26. http://www.snap.com/

27. http://www.yahoo.com/

