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ABSTRACT
Go is a statically typed programming language designed for efficient
and reliable concurrent programming. For this purpose, Go provides
lightweight goroutines and recommends passing messages using
channels as a less error-prone means of thread communication.
Go has become increasingly popular in recent years and has been
adopted to build many important infrastructure software systems.
However, a recent empirical study shows that concurrency bugs,
especially those due to misuse of channels, exist widely in Go. These
bugs severely hurt the reliability of Go concurrent systems.

To fight Go concurrency bugs caused by misuse of channels,
this paper proposes a static concurrency bug detection system,
GCatch, and an automated concurrency bug fixing system, GFix.
After disentangling an input Go program, GCatch models the com-
plex channel operations in Go using a novel constraint system and
applies a constraint solver to identify blocking bugs. GFix auto-
matically patches blocking bugs detected by GCatch using Go’s
channel-related language features. We apply GCatch and GFix to 21
popular Go applications, including Docker, Kubernetes, and gRPC.
In total, GCatch finds 149 previously unknown blocking bugs due
to misuse of channels and GFix successfully fixes 124 of them. We
have reported all detected bugs and generated patches to develop-
ers. So far, developers have fixed 125 blocking misuse-of-channel
bugs based on our reporting. Among them, 87 bugs are fixed by
applying GFix’s patches directly.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software reliability.
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1 INTRODUCTION
Go is a statically typed programming language designed by Google
in 2009 [13]. In recent years, Go has gained increasing popularity in
building software in production environments. These Go programs
range from libraries [5] and command-line tools [1, 6] to systems
software, including container systems [12, 22], databases [3, 8], and
blockchain systems [16].

One major design goal of Go is to provide an efficient and safe
way for developers to write concurrent programs [14]. To achieve
this purpose, Go provides easily created lightweight threads (called
goroutines); it also advocates the use of channels to explicitly
pass messages across goroutines, on the assumption that message-
passing concurrency is less error-prone than shared-memory con-
currency supported by traditional programming languages [24, 31,
69]. In addition, Go also provides several unique primitives and
libraries for concurrent programming.

Unfortunately, Go programs still contain many concurrency
bugs [77], the type of bugs that are most difficult to debug [30, 53]
and severely hurt the reliability of multi-threaded software sys-
tems [15, 78]. Moreover, a recent empirical study [87] shows that
message passing is just as error-prone as shared memory, and that
misuse of channels is even more likely to cause blocking bugs (e.g.,
deadlock) than misuse of mutexes.

A previously unknown concurrency bug in Docker is shown
in Figure 1. Function Exec() creates a child goroutine at line 5
to duplicate the content of a.Reader. After the duplication, the
child goroutine sends err to the parent goroutine through channel
outDone to notify the parent about completion and any possible er-
ror (line 7). Since outDone is an unbuffered channel (line 3), the child
blocks at line 7 until the parent receives from outDone. Meanwhile,
the parent blocks at the select at line 9 until it either receives err
from the child (line 10) or receives a message from ctx.Done() (line
13), indicating the entire task can be halted. If the message from
ctx.Done() arrives earlier, or if the two messages arrive concur-
rently and Go’s runtime non-deterministically chooses the second
case to execute, the parent will return from function Exec(). No
other goroutine can pull messages from outDone, leaving the child
goroutine permanently blocked at line 7.
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1 func Exec(ctx context.Context, ...) (ExResult, error) {

2 var oBuf, eBuf bytes.Buffer

3 - outDone := make(chan error)
4 + outDone := make(chan error, 1)

5 go func() {

6 _, err = StdCopy(&oBuf, &eBuf, a.Reader)

7 outDone <- err // block

8 }()

9 select {

10 case err := <-outDone:

11 if err != nil {

12 return ExecResult{}, err }

13 case <-ctx.Done():

14 return ExecResult{}, ctx.Err()

15 }

16 return ExResult{oBuf: &oBuf, eBuf: &eBuf}, nil
17 }

Figure 1: A previously unknown Docker bug and its patch.

This bug demonstrates the complexity of Go’s concurrency fea-
tures. Programmers have to have a good understanding of when
a channel operation blocks and how select waits for multiple
channel operations. Otherwise, it is easy for them to make similar
mistakes when programming Go. Since Go is being widely adopted,
it is increasingly urgent to fight concurrency bugs in Go, especially
those caused by misuse of channels, since Go advocates using chan-
nels for thread communication and many developers choose Go
because of its good support for channels [72, 86].

However, existing techniques cannot effectively detect channel-
related concurrency bugs in large Go software systems. First, con-
currency bug detection techniques designed for classic program-
ming languages [49, 58, 67, 68, 75, 82] mainly focus on analyz-
ing shared-memory accesses or shared-memory primitives. Thus,
they cannot detect bugs caused by misuse of channels in Go. Sec-
ond, since message-passing operations in MPI are different from
those in Go, techniques designed for detecting deadlocks in MPI
programs [38, 41, 42, 83, 88] cannot be applied to Go programs.
Third, the three concurrency bug detectors released by the Go
team [9, 11, 19] cover only limited buggy code patterns and cannot
identify the majority of Go concurrency bugs in the real world [87].
Fourth, although recent techniques can use model checking to
identify blocking bugs in Go [39, 59, 60, 70, 80], those techniques
analyze each input program and all its synchronization primitives
as a whole. Due to the exponential complexity of model check-
ing, those techniques can handle only small programs with a few
primitives, and cannot scale to large systems software containing
millions of lines of code and hundreds of primitives (e.g., Docker,
Kubernetes).

In this paper, we propose GCatch, a static detection system that
can effectively and accurately identify concurrency bugs in large
Go systems software. As shown in Figure 2, GCatch focuses on
blocking misuse-of-channel (BMOC) bugs (“BMOC Detector” in
Figure 2), since the majority of channel-related concurrency bugs
in Go are blocking bugs [87]. GCatch also contains five additional
detectors (“Traditional Detectors” in Figure 2) that rely on ideas ef-
fective at discovering concurrency bugs in traditional programming
languages.

The design of GCatch comprises two steps. To scale to large Go
software, GCatch conducts reachability analysis to compute the
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Figure 2: The workflow of GCatch and GFix.
relationship between synchronization primitives of an input pro-
gram, and leverages that relationship to disentangle the primitives
into small groups. GCatch inspects each group only in a small pro-
gram scope. To detect BMOC bugs, GCatch enumerates execution
paths for all goroutines executed in a small program scope, uses
constraints to precisely describe how synchronization operations
proceed and block, and invokes Z3 [33] to search for possible exe-
cutions that would lead some synchronization operations to block
forever (thereby detecting blocking bugs).

The key challenge of building GCatch lies in modeling channel
operations using constraints. Since a channel’s behavior depends
on its states (e.g., the number of elements in the channel, closed
or not), channel operations are much more complex to model than
the synchronization operations (e.g., locking/unlocking) already
covered in existing constraint systems [45, 48, 57, 90]. We model
channel operations by associating each channel with state variables
and defining how to update state variables when a channel opera-
tion proceeds. Our constraint system is the first to consider states
of synchronization primitives. It is very different from existing con-
straint systems and models used in the previous model checking
techniques [39, 59, 60, 70, 80].

A BMOC bug will continue to hurt the system’s reliability until
it is fixed. Thus, we further design an automated concurrency bug
fixing system (GFix) to patch BMOC bugs detected by GCatch (Fig-
ure 2). GFix first conducts static analysis to categorize input BMOC
bugs into three groups. It then automatically increases channel
buffer sizes or uses keyword “defer” or “select” to change block-
ing channel operations to be non-blocking and fix bugs in each
group. One challenge of automated bug fixing is generating read-
able patches that will be more readily accepted by developers. GFix
synthesizes patches using Go’s channel-related language features,
which are powerful and already frequently used by programmers.
Thus, GFix’s patches only change a few lines of code and align
with programmers’ usual practice. They are easily validated and
accepted by developers.

The bug and its patch shown in Figure 1 confirm the effectiveness
of GCatch and GFix. After inspecting Docker, GCatch identifies
the previously unknown bug by reporting that when the parent
goroutine chooses the second case, the child goroutine endless
blocks at line 7, which is the correct root cause of the bug. GFix
changes one line of code to increase outDone’s buffer size from
zero to one, which successfully fixes the bug. We submitted the
bug and the patch to Docker developers. They directly applied our
patch in a more recent Docker version.

We evaluate GCatch and GFix on 21 popular real-world Go soft-
ware systems including Docker, Kubernetes, and gRPC. In total,
GCatch finds 149 previously unknown BMOC bugs and reports 51
false positives. We reported all detected bugs to developers. So far,
125 BMOC bugs have been fixed based on our reporting. The largest
application used in our evaluation (Kubernetes) contains more than
three million lines of code. GCatch can finish examining it in 25.6
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hours and finds 15 BMOC bugs, demonstrating its capability to
analyze large Go software. GFix generates patches for 124 detected
BMOC bugs. All the patches are correct. On average, each patch
incurs less than 0.26% runtime overhead and changes 2.67 lines of
code. Eighty-seven of the generated patches have been applied by
developers directly. Overall, GCatch can effectively detect BMOC
bugs in large, real Go software, and GFix can synthesize correct
patches with good performance and readability for detected bugs.
GCatch and GFix constitute an end-to-end system to combat BMOC
bugs and improve the reliability of Go software systems.

In summary, we make the following contributions:
• Based on a disentangling policy and a novel constraint sys-
tem, we build an effective concurrency bug detection system
that can analyze large Go systems software.
• We design an automated bug fixing system for BMOC bugs
in Go. The system contains three fixing strategies relying on
Go’s channel-related language features. The system gener-
ates correct patches with good performance and readability.
• We conduct thorough experiments to evaluate our systems.
We identify and fix hundreds of previously unknown con-
currency bugs in real Go software.

All our code and experimental data (including detected bugs
and generated patches) can be found at https://github.com/system-
pclub/GCatch.

2 BACKGROUND
This section gives some background of this project, including Go’s
synchronization primitives, concurrency bugs found in Go, and
limitations of existing constraint systems.

2.1 Concurrency in Go
Go supports concurrency primitives for both passing messages
between goroutines and protecting shared memory accesses.

Message Passing. Channel (chan) is the most commonly used
message-passing primitive in Go [87]. It can send data across gor-
outines and synchronize different goroutines to implement com-
plex functionalities [25, 73]. Go supports two types of channels
(unbuffered and buffered) and three types of channel operations (re-
ceiving, sending and closing). Whether a channel operation blocks
and what its return value is depend on the channel’s states (e.g.,
full or not, closed or not). For example, if a channel’s buffer is full,
a goroutine sending data to the channel will block until another
goroutine receives data from that channel or closes it, while the
goroutine that sends data will not block, if the channel’s buffer
still has empty slots. If a channel is closed, a goroutine seeking to
receive data from the channel will immediately receive a zero value
(e.g., "" for string).

Go’s select statement (e.g., line 9 in Figure 1) allows a gorou-
tine to wait for multiple channel operations. A goroutine blocks
at a select until one of the select’s channel operations can pro-
ceed, unless the select has a default clause. If multiple channel
operations can proceed at the same time, Go’s runtime will non-
deterministically choose one to execute.

Protecting Shared Memory Accesses. Go allows multiple gorou-
tines to access the same memory, and also provides several prim-
itives to protect shared memory accesses, including lock (Mutex),

read/write lock (RWMutex), condition variable (Cond), atomic in-
structions (atomic), and a primitive to wait for multiple goroutines
to finish their tasks (WaitGroup).

2.2 Concurrency Bugs in Go
Unfortunately, concurrency bugs are more likely to happen in
Go [77]. Thus, we need to detect them and fix them. A previous
empirical study [87] categorized Go concurrency bugs into two
groups: blocking bugs, where one or more goroutines are uninten-
tionally stuck in their execution (e.g., deadlock), and non-blocking
bugs, where all goroutines can finish their execution but with un-
desired results (e.g., data race). The study further divided bugs in
each category into several subcategories based on which primitive
causes a bug. The proportion of bugs in each (sub)category mo-
tivates the design of GCatch and GFix. Since we want to combat
channel-related concurrency bugs and the study reported that most
bugs due to misuse of channels are blocking bugs [87], we concen-
trate our efforts on combating blocking misuse-of-channel (BMOC)
bugs. According to the study, BMOC bugs are usually caused by
errors when only using channels or using channels together with
mutexes.

2.3 Existing Constraint Systems
Previously, constraint solving was used to dynamically detect con-
currency bugs [45, 57, 90]. Different types of constraints were de-
fined to describe how a concurrent system works from different
aspects, including synchronization enforced by locking/unlocking
operations (lock constraints), instruction orders enforced by thread
creation or wait/signal (partial-order constraints), instruction or-
ders caused by program flow (memory order constraints), and the
occurrence of bugs like data races and atomicity violations (bug
constraints).

Unfortunately, existing constraint systems don’t consider the
state of synchronization primitives. For example, the existing con-
straint systems model the mutual exclusion supported by a mutex
as a requirement that the critical sections protected by the mutex
not execute concurrently, while not modeling the mutual exclusion
by considering whether the mutex is locked or not. As discussed in
Section 2.1, channel operations are so complex that they can only
be described precisely after taking account of channels’ states (e.g.,
the number of elements in a channel, closed or not). It is neither
straightforward nor trivial to extend existing constraint systems to
apply to channels, since there are at least two challenges to solve: 1)
how to model a channel’s states? and 2) how to update a channel’s
states after an operation is taken on the channel? We will present
our solutions in Section 3.4.

3 DETECTING GO CONCURRENCY BUGS
This section discusses GCatch in detail. As shown in Figure 2,
GCatch takes Go source code as input and reports detected bugs
for GFix or developers to fix.

The key benefit of GCatch is its capability to detect BMOC bugs
in large Go software systems (“BMOC Detector” in Figure 2). To
achieve this purpose, GCatch’s design mainly contains two compo-
nents: an effective disentangling policy to separate synchronization
primitives of an input program and a novel constraint system to
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Algorithm 1 BMOC Bug Detection
Require: An input Go program (P)
1: function (P )
2: Cgraph ← BuildCallGraph(P )
3: Alias ← ConductAliasAnalysis(Cgraph)
4: Pr imitives ← SearchSynPrimitives(Cgraph)
5: OPmap ← SearchSynOperations(Pr imitives , Cgraph , Alias )
6: /*more details of lines 7 and 9 are in Section 3.2*/
7: Dgraph ← BuildDependGraph(OPmap , Cgraph)
8: for each channel c in Pr imitives do
9: scope , Pset ← DisentanglingAnalysis(c , OPmap , Dgraph)
10: GOset ← SearchGoroutines(c , scope )
11: /*more details of line 12 are in Section 3.3*/
12: PCs ← ComputePathCombination(GOset , Pset , OPmap , scope )
13: for each path combination pc in PCs do
14: /*more details of lines 15 – 23 are in Section 3.4*/
15: Groups ← ComputeSuspiciousOpGroups(pc , Pset , GOset)
16: for each group (д) in Groups do
17: ΦR ← ReachConstraint(д, Pset)
18: ΦB ← BlockConstraint(д)
19: Φ← ΦR ∧ ΦB
20: if Z3 finds a solution (s ) for Φ then
21: ReportBug(д, s )
22: end if
23: end for
24: end for
25: end for
26: end function

model channel-related concurrency features in Go. We will mainly
present the BMOC detector in this section.

Besides the BMOC detector, GCatch also contains five traditional
detectors for concurrency bugs that also appear in classic program-
ming languages (“Traditional Detectors” in Figure 2). We will briefly
describe them at the end of this section.

3.1 Workflow
To detect BMOC bugs, GCatch takes several steps as sketched out
in Algorithm 1. We explain the steps as follows.

First, GCatch inspects the whole input program to search for con-
currency primitives and their operations (lines 2–5 in Algorithm 1).
GCatch distinguishes primitives using their static creation sites
and leverages alias analysis to determine whether an operation
is performed on a primitive. For example, GCatch uses line 3 to
represent channel outDone in Figure 1 and finds three operations
(i.e., lines 3, 7, 10) for it.

Second, after disentangling an input program, GCatch iterates all
its channels (lines 8–25 in Algorithm 1). Given a channel c , GCatch
only inspects c and a few other related primitives (Pset) in a small
analysis scope (scope). We will discuss the disentangling policy in
Section 3.2.

Third, GCatch determines the goroutine set (GOset) that accesses
channel c by inspecting all goroutines created in c’s analysis scope
(line 10 in Algorithm 1). For the bug in Figure 1, the analysis scope
of channel outDone is identified as extending from its creation site
(line 3) to the end of function Exec(). Besides the parent gorou-
tine, GCatch also identifies the child goroutine created at line 5 as
accessing channel outDone.

Fourth, GCatch computes path combinations by enumerating
all possible execution paths for each goroutine inGOset (line 12 in
Algorithm 1). GCatch provides heuristics to filter out combinations
that are either infeasible or unlikely to contain BMOC bugs. We
will discuss more details in Section 3.3.

Fifth, GCatch computes all suspicious groups for a path combi-
nation at line 15. Each suspicious group contains synchronization
operations that together can potentially block forever.

Sixth, GCatch uses a constraint solver Z3 [33] to examine all
suspicious groups (lines 16–23 in Algorithm 1). For each group,
GCatch computes the constraints (ΦR) for the program to execute
just before the group operations and the constraints (ΦB) for all
group operations to block. If Z3 finds a solution for the conjunction
of ΦR and ΦB at line 20, GCatch detects a bug. We will discuss
how to compute suspicious groups and how our constraint system
works in Section 3.4.

3.2 Disentangling Input Software
If GCatch were to analyze the whole input program and all its
primitives, it would be difficult to scale to large Go software systems.
Thus, GCatch disentangles each input program and inspects each
channel separately to determine whether that channel causes any
BMOC bugs (line 8–25 in Algorithm 1).

Given that any one channel c is unlikely to be used throughout
the whole input program, GCatch only needs to analyze c in its
usage scope (scope at line 9). Moreover, if GCatch only examines c
without considering other related primitives, GCatch cannot detect
bugs arising when using c and other primitives together. Thus,
GCatch needs to compute which primitives (Pset at line 9) must be
analyzed together with c .

How to compute scope? GCatch first analyzes the call graph of the
input program and searches for the lowest common ancestor (LCA)
function that can invoke all operations of c directly or indirectly.
Then, GCatch defines scope as extending from c’s creation site to
the end of the LCA function, including all functions called directly
and indirectly in between. When analyzing a library, GCatch may
identify a set of functions whose combination can cover all oper-
ations of c . In this case, GCatch computes a scope for each of the
identified functions and consider scope of c as the union of the
computed scopes.

How to compute Pset? GCatch builds a graph (Dgraph) at line 7 in
Algorithm 1 by computing the dependence relationship for each
pair of synchronization primitives. Later, at line 9, GCatch queries
the graph to get Pset for channel c .

Given primitive a and primitive b, GCatch computes their de-
pendence by checking whether they are in one of the following
scenarios: 1) if one of a’s operations with the capability to unblock
another operation of a (e.g., sending, unlocking) is reachable from
one of b’s operations that can block (e.g., receiving, locking), then
a depends on b, since whether a’s blocking operation can proceed
depends on how b’s blocking operation executes; 2) if both a and b
are channels and a select waits for operations of a and b, then a
and b depend on each other. Since a select can only choose one
channel operation to process, whether an operation in the select
can proceed depends on whether other operations in the same
select cannot make progress.

We also consider dependence to be transitive, which means if a
depends on b and b depends on c, then a depends on c.

GCatch computes Pset of channel c as containing c and all other
synchronization primitives that have a smaller scope and a circular
dependency relationship with it.
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Running Example. For channel outDone in Figure 1, its Pset only
contains itself. Although channel ctx.Done() and channel outDone
circularly depend on each other (in the same select), ctx.Done()
has a larger scope than outDone, so that it is not in outDone’s Pset
and it is ignored by GCatch when GCatch analyzes outDone. The
two channels will be inspected together when GCatch analyzes
ctx.Done().

3.3 Computing Path Combinations
For each goroutine inGOset, GCatch conducts an inter-procedural,
depth-first search to enumerate all its execution paths within scope
(line 12 in Algorithm 1). GCatch processes instruction by instruction.
Given a call instruction, if the callee does not execute any operation
of any primitive in Pset directly or indirectly, GCatch speeds up its
analysis by ignoring the function call. Given a loop whose iteration
number cannot be computed statically, GCatch iterates the loop at
most twice to avoid path explosion, which may lead to both false
positives and false negatives, since GCatch may mistakenly count
the number of sending or receiving operations inside the loop.

GCatch enumerates all possible path combinations for all gor-
outines in GOset. GCatch filters out combinations that either in-
clude an infeasible execution path or do not contain any blocking
operation. For example, GCatch inspects branch conditions only
involving read-only variables and constants and filters out path
combinations containing conflicting branch conditions. As another
example, GCatch analyzes the terminating conditions for all loops
in each combination. If GCatch identifies a combination involving
two loops with the same loop terminating condition but different
loop iteration numbers, then GCatch filters out that combination.

Running Example. For the bug in Figure 1, function StdCopy()
at line 6 does not contain any synchronization operation. Thus,
GCatch ignores it when enumerating paths for the child goroutine.
GCatch only finds one path for the child. Since there is a select
statement with two cases at line 9 and an if statement at line 11,
GCatch finds three possible paths for the parent goroutine. In total,
GCatch identifies three path combinations.

3.4 Identifying BMOC Bugs
Detecting a BMOC bug is equivalent to identifying a group of oper-
ations that together can block forever. GCatch takes two steps to
achieve this purpose: 1) it identifies suspicious groups (line 15 in
Algorithm 1) with synchronization operations belonging to primi-
tives in Pset, from different goroutines, and unable to unblock other
operations in the same group; and 2) it leverages Z3 to validate
each group by checking whether all instructions before the group
operations can execute (ΦR) and whether all group operations can
block (ΦB) (lines 16–23).

The current version of GCatch only models channel operations
and mutex operations, since they cause most BMOC bugs [87].
GCatch changes every mutex to a channel, so that we will mainly
focus our explanation on modeling channels.

How to model channel states? As discussed in Section 2.3, the
challenges of using constraints to describe channel operations lie
in how to model and update channel states. There are two types
of states that control whether a channel operation blocks: 1) how

many elements are in the channel; and 2) whether the channel is
closed. We model them as follows.

To model how many elements are in a channel and whether a
channel is full, we associate each channel with a BS constant denot-
ing the channel buffer size, and associate each sending/receiving
operation with a CB variable denoting the number of elements in
the channel before conducting the operation. For example, CBs7
indicates that before the sending operation at line 7 in Figure 1,
CBs7 elements are in channel outDone. The value of a CB variable
is computed as the number of sending operations minus the number
of receiving operations, where the sending and receiving operations
are conducted on the same channel and before the operation of the
CB variable.

To model whether a channel is closed, we associate each re-
ceiving operation with a binary CLOSE variable and compute the
variable value by checking whether a closing operation is conducted
earlier on the same channel.

How to compute ΦR? ΦR represents all the necessary constraints
for goroutines in GOset to execute just before operations in a sus-
picious group. Besides variables for channel states, ΦR contains
another two types of variables. First, we associate each instruction
with an O variable denoting its execution order, e.g., O7 represent-
ing the order of the sending operation at line 7 in Figure 1. Second,
we associate each pair of sending and receiving operations of the
same channel but in different goroutines with a binary P variable
denoting whether the two operations match and unblock each other.
If P(si, rj) = 1, then the sending operation at line i and the receiving
operation at line j execute at the same time (Osi = Orj). For example,
given the code snippet in Figure 1, P(s7, r10) = 1 means the sending
operation at line 7 unblocks the receiving operation at line 10, and
these two operations have the same execution order (Os8 = Or10).

ΦR is constructed by a conjunction of three sub-formulae: 1)
Φorder denotes the instruction orders enforced by each execution
path; 2) Φspawn denotes the orders enforced by goroutine creations;
and 3) Φsync denotes the constraints required by the proceeding
of synchronization operations. When computing Φsync, GCatch
only considers synchronization operations belonging to primitives
within Pset. Since Φorder and Φspawn were discussed in previous
literature [48, 90], we only explain how to compute Φsync.

Modeling channels. GCatch models sending operations, receiving
operations, and select statements as follows.

If a sending operation at line i (si) proceeds, one of the following
two conditions must be satisfied: 1) the channel buffer is not full,
or 2) one and only one receiving operation matches the sending.
We use R to denote all receiving operations executed by different
goroutines on the same channel. The computed constraints for si
are written as follows:

CBsi < BS ∨ [(
∨
rx∈R

P(si,rx) = 1 ∧Osi = Orx) ∧
∑
rx∈R

P(si,rx) = 1]

Similarly, the proceeding of a receiving operation at line j (rj)
must satisfy one of the following conditions: 1) at least one element
is in the channel; 2) the channel is closed; or 3) one and only one
sending matches the receiving. We use S to denote all sending
operations executed by different goroutines on the same channel.

620



ASPLOS ’21, April 19–23, 2021, Virtual, USA Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song

The constraints for rj are written as follows:

CBrj > 0 ∨ CLOSEDrj ∨ [(
∨
sx∈S

P(sx,rj) = 1 ∧Osx = Orj) ∧
∑
sx∈S

P(sx,rj) = 1]

When a select proceeds, there are two possible cases. First, if
the select chooses its default clause, all the channel operations
in that select block, and GCatch computes the constraints for all
the channel operations unable to proceed. Second, if the select
chooses a channel operation, GCatch computes the constraints for
the operation to make progress.

Modeling mutexes. GCatch changes each mutex to a channel with
buffer size one, changes its locking operations to sending to the
channel, and changes its unlocking operations to receiving from
the channel. Then, GCatch can compute constraints for mutex
operations in the same way as channel operations.

How to compute ΦB? Similarly, ΦB for a suspicious group is con-
structed by a conjunction of two sub-formulae: 1) Φorder requires
that instructions before the group operations must have smaller O
variable values, compared with the group operations, and 2) Φsync
requires each group operation to be unable to make progress.

A receiving operation blocks when there is no element in the
channel, the channel is not closed, and no sending operation is
paired with the receiving. A sending operation blocks when the
channel is full and there is no paired receiving. A select blocks
when the select does not have a default clause and none of its
channel operations can proceed.

Working Example. When analyzing channel outDone in Figure 1,
we assume the path combination to be processed includes path 3-5-
9-13-14 in the parent goroutine and path 6-7 in the child goroutine.
Since ctx.Done() is not in outDone’s Pset, only the sending oper-
ation at line 7 satisfies the requirements for being in a suspicious
group. Thus, GCatch only finds one suspicious group containing
the sending at line 7.

For ΦR, Φorder is “O3 < ... < O13 < O14 ∧ O6 < O7” which
is enforced by the two paths in the path combination, Φspawn is
“O5 < O6” required by the goroutine creation at line 5, and Φsync
is empty, since there is no synchronization operation belonging to
any primitive in the Pset on the path of the parent goroutine and
on the path of the child goroutine before line 7.

For ΦB, Φorder is “O3 < O7 ∧ ... ∧O14 < O7 ∧O6 < O7”, which
means instructions before the instruction in the suspicious group
(the sending at line 7) execute earlier. Φsync is “CBs7 = BS”, repre-
senting channel outDone is full. Channel outDone is an unbuffered
channel (line 3), and thus BS is 0.

Z3 successfully finds a solution for the conjunction of ΦR and ΦB.
The solution is “O3 = 0∧ ...∧O14 = 4∧O6 = 5∧O7 = 6∧CBs7 = 0”,
which means when the program executes in the order 3→ ...→ 14
→ 6→ 7, the child blocks at sending operation at line 7 forever.

3.5 Traditional Checkers
GCatch contains five additional checkers to detect three types of
Go concurrency bugs. These checkers leverage old ideas that are
effective at detecting concurrency bugs in traditional programming
languages. We include the five checkers into GCatch to demonstrate
traditional concurrency bugs are widespread in Go programs and

to increase the bug coverage of GCatch. We briefly discuss the five
checkers as follows.

GCatch detects traditional deadlocks caused by misuse of mu-
texes by conducting intra-procedural, path-sensitive analysis to
identify lock-without-unlocks, and inter-procedural, path-sensitive
analysis to identify double locks and deadlocks that result from
acquiring two locks in conflicting orders.

Similar to previous techniques designed for C [74, 75], GCatch
implements an intra-procedural, path-sensitive algorithm to collect
lockset information for each struct field access. If a field is protected
by a lock for most accesses, GCatch reports the accesses without
such protection as data races.

Detecting violations of API usage rules is effective at discovering
bugs in classic programming languages [29, 32, 50, 63]. GCatch
detects concurrency bugs caused by errors when using the testing
package. Each unit testing function in Go takes a testing.T object
as a parameter. The Fatal()method and many other methods (e.g.,
FailNow(), Fatalf()) of a testing.T object can only be called by
the main goroutine running the testing function. GCatch checks
whether a Fatal() call site is executed by a child goroutine and
reports a bug if so.

4 FIXING GO CONCURRENCY BUGS
This section describes GFix in detail. As shown in Figure 2, GFix
takes BMOC bugs detected by GCatch as input. Its dispatcher
component leverages static analysis to categorize input bugs, and
the corresponding patching component conducts source-to-source
transformation to fix the bugs.

The design philosophy of GFix is to leverage Go’s channel-related
language features to fix bugs. Those features are powerful and
frequently used by Go programmers. As a result, GFix’s patches
slightly change the buggy programs (in terms of lines of code) and
follow what developers usually do in reality. Thus, the patches
have good readability and are easily validated and accepted by
developers.

4.1 Overview
The current version of GFix can only fix a subset of BMOC bugs,
specifically BMOC bugs involving two goroutines and a single
channel. We leave more complex BMOC bugs (e.g., those with more
channels) to future work.

We formalize the problem scope of GFix as follows. Given a
BMOC bug in the scope, we assume the two involved goroutines
are Go-A and Go-B, and they interact with each other using local
channel c. (Since we require that only Go-A and Go-B access c and
it is difficult to statically identify how many goroutines share a
global channel, we require c to be a local channel.) When the bug
is triggered, Go-A fails to conduct an operation o1 on c, causing
Go-B to be blocked at another operation o2 on c forever. After fixing
the bug, Go-B can continue its execution after o2 or just stop its
execution at o2.

To guarantee a patch’s correctness, GFix must make sure there
is no race condition between instructions before o1 in Go-A and
instructions after o2 in Go-B, if Go-B continues its execution, since
the patch removes the order enforced by o1 and o2. GFix also needs
to guarantee that the patch (i.e., forcing B to continue or stop) does
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not change the original program semantics. For both of the two
requirements, GFix needs to inspect instructions after o2 in Go-B;
therefore we further limit GFix to only fix bugs where Go-B is a
child goroutine created by Go-A to have a clear scope and context
to analyze Go-B. We will use the parent (child) goroutine and Go-A
(Go-B) exchangeably in this section.

GFix provides three fixing strategies based on three different
directions for resolving bugs in the problem scope: how to make o2
non-blocking, how to force Go-A to always execute o1, and how to
make Go-A notify Go-B of its problem and stop Go-B’s execution at
o2. GFix does not take a generic fixing strategy, because it is difficult
to automatically generate generic patches with good readability.

Next, we will discuss how GFix identifies bugs for each fixing
strategy and the corresponding code transformation.

4.2 Strategy-I: Increasing Buffer Size
This strategy makes o2 non-blocking, so that Go-B can continue
its computation after o2. If o2 is a receiving operation, we have to
synthesize the received value for the computation after o2. This is
difficult, if not impossible. However, if o2 is a sending operation, we
can make o2 non-blocking simply by increasing channel c’s buffer
size. If Go-B conducts multiple sending operations on channel c,
increasing the buffer size may make sending operations other than
o2 non-blocking as well, potentially violating the original synchro-
nization requirement. Thus, this strategy fixes bugs where Go-B
conducts one single sending operation on an unbuffered channel.
We call these bugs single-sending bugs. To fix such bugs, GFix in-
creases channel c’s buffer size from zero to one.

Although single-sending bugs sound specific, they reflect a com-
mon design pattern [85]. Go developers usually create a goroutine
for a task with a message at the end to notify that the task is com-
plete or to send out the result. For example, we find 125 goroutines
are used in this way in Docker and Kubernetes. The bug in Figure 1
is a single-sending bug in Docker. Based on our formalization, Go-
A is the parent goroutine executing function Exec(), Go-B is the
child goroutine created at line 5, and channel outDone is the buggy
channel. Go-B conducts only one sending operation on channel
outDone. The bug is fixed by increasing outDone’s buffer size at
line 4 in Figure 1.

How to identify single-sending bugs? GCatch reports the block-
ing operations (e.g., line 7 in Figure 1) for each detected BMOC bug.
GFix takes the blocking operations as input and uses the following
four steps to decide whether the bug can be fixed by increasing the
buffer size from zero to one.

First, GFix checks whether there is only one blocking operation
reported, whether the operation is a sending operation, andwhether
the operation is on an unbuffered channel. If so, the channel is c
and the operation is o2 in our formalization.

Second, GFix inspects whether channel c is shared (or accessed)
by only two goroutines. The parent goroutine creating channel
c is one goroutine that accesses c (e.g., the parent in Figure 1).
GFix examines all child goroutines created in the variable scope
of channel c to search for another goroutine accessing c. If there
is more than one child goroutine accessing c, then the bug is not
a single-sending bug. After identifying the child goroutine, GFix
checks whether it is the one executing o2.

1 func TestRWDialer(t *testing.T) {
2 stop := make(chan struct{})
3 + defer func() {
4 + stop <- struct{}{}
5 + }()
6 go Start(stop)
7 conn, err := d.Dial(...)
8 if err != nil {
9 t.Fatalf( )

10 }
11 - stop <- struct{}{}
12 }

14 func Start(stop struct{}{}) {
15 ...
16 <-stop
17 }

Figure 3: A missing-interaction bug in etcd.

Third, GFix conducts inter-procedural, path-sensitive analysis to
count how many possible channel operations Go-B can conduct on
c in one of its executions, and filters out cases where Go-B conducts
operations on c other than o2 and cases where Go-B conducts o2
multiple times.

Fourth, GFix examines whether unblocking o2 violates the cor-
rectness and the original semantics. GFix inter-procedurally checks
whether any instruction after o2 calls a library function, conducts a
concurrency operation, or updates a variable defined outside Go-B.
If so, GFix considers that its fix may cause a side effect beyond
Go-B and that unblocking o2 may therefore cause a problem. In
such a case, GFix does not fix the bug. For example, in Figure 1, the
child goroutine does not execute any instruction after line 7 except
for the implicit return. Thus, increasing outDone’s buffer size can
unblock line 7 without changing the original program semantics.

4.3 Strategy-II: Deferring Channel Operation
This strategy forces o1 to be always executed, so that Go-B can
be unblocked at o2. Since c is a local channel, when Go-A leaves
c’s variable scope, it will not conduct any operation on c. If c’s
scope ends at the end of a function, we can use keyword defer
to guarantee that o1 will always be executed by Go-A, since Go’s
runtime automatically executes all deferred operations in a function
when the function returns.

We call bugs that can be fixed by this strategymissing-interaction
bugs. They are triggered when Go-A leaves the function where c is
valid (due to return or panic) without executing o1. To fix these
bugs, we add a defer with o1 as its operand early enough to cover
all execution paths of the function. We also remove the original o1s
if they exist. Figure 3 shows an example. When t.Fatalf() at line
9 executes, the testing function terminates and the sending at line
11 is skipped, causing the child created at line 6 to be blocked at
line 16 forever. The patch defers the sending operation at lines 3 –
5 and also removes the original sending at line 11.

How to identify andfixmissing-interaction bugs? GFix repeats
the four steps outlined in Section 4.2 to identify possible cases. The
only difference is that GFix allows o2 to be a receiving operation
(e.g., line 16 in Figure 3). GFix then takes four extra steps for missing-
interaction bugs.

First, GFix conducts inter-procedural analysis for all functions
called by the function declaring channel c (e.g., TestRWDialer()
in Figure 3) to examine whether any of them can cause a panic. If
so, GFix treats the call sites (e.g., line 9 in Figure 3) in the same way
as return in later steps.

Second, GFix checks whether every return in the function declar-
ing c is dominated by a static o1 instruction. There can be multiple
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func Interactive() {
scheduler = make(chan string)

+ stop = make(chan struct{})
+ defer close(stop)

for {
select {
case <-abort: return
case _, ok := <-scheduler:

if !ok { return }
}

}
}

5 go func() {
6 for {
7 line, err := Input()
8 if err != nil {
9 close(scheduler)

10 return
11 }
12 - scheduler <- line
13 + select {
14 + case scheduler <- line:
15 + case <- stop: return
16 +
17 }
18 }()

}

...

Figure 4: A multiple-operations bug in Go-Ethereum.

static o1s, but when the parent goroutine takes a path without any
static o1 on it, o2 cannot be unblocked. For example, when the
parent in Figure 3 executes line 9 and leaves TestRWDialer(), the
BMOC bug is triggered.

Since the patch basically moves an existing o1 to a point just
before the return post-dominating it, GFix needs to check whether
moving the o1 is safe. In the third step, GFix inspects each existing
o1 by examining whether instructions between the o1 and the re-
turn post-dominating it contain any synchronization operation or
have any data dependence relationship with o1 (if o1 is a receiving
operation). If so, GFix considers moving the o1 to be dangerous and
does not fix the bug.

Fourth, GFix decides where to put the defer. If all static o1s are
to close c, receive a value from c, or send out the same constant,
GFix inserts the defer right after channel c’s declaration (e.g., line
3 in Figure 3). If all o1s send the same variable, GFix checks whether
the code site defining the variable dominates all returns. If so, GFix
inserts the defer after that site. For all other cases, GFix does not
fix the bug.

4.4 Strategy-III: Adding Channel Stop
This strategy is to add channel stop to notify Go-B that Go-A has
encountered a problem, so that if Go-B blocks at o2, Go-B can stop
its execution. For Go-A, we can defer closing stop in the function
that declares c, and the closing operation tells Go-B that Go-A will
not conduct any operation on c (including o1) from now on. For
Go-B, we change o2 to a select with two cases, the first one is to
wait for the original o2, and the second one is to receive a message
from stop. We also force Go-B to stop its execution, if it proceeds
the second case.

We call bugs that can be fixed by this strategymultiple-operations
bugs, since they can be cases where Go-B conducts multiple op-
erations on c (even after o2). When a multiple-operations bug is
triggered, Go-A has left the function where c is valid, and no other
goroutine interacts with Go-B on c. Thus, all operations on c by
Go-B can be skipped.

Figure 4 shows a multiple-operations bug. In each loop iteration,
the child goroutine takes a line of inputs at line 7 and sends it to
the parent goroutine at line 12 through channel scheduler (the
buggy channel). When all inputs are processed, err at line 7 is not
nil, so that the child closes channel scheduler at line 9 and stops
its execution at line 10. When scheduler is closed, ok at line 22 is
false. The parent goroutine returns from function Interactive()

and the program successfully continues its execution. However, if
the parent receives a message from channel abort at line 21, the
bug is triggered and the child blocks at line 12 (o2 in our formaliza-
tion) forever. Since o2 is in a loop, if we simply unblock one of its
executions (e.g., by increasing the buffer size by one), the child will
block again at o2 in the next loop iteration.

The patch generated by GFix is also shown in Figure 4. GFix
adds channel stop at line 3, defers closing it at line 4, and replaces
o2 at line 12 with the select at lines 13–16. When the parent
goroutine returns from function Interactive(), the closing at
line 4 is conducted, and the case at line 15 becomes non-blocking.
The child proceeds the case and stops its execution.

How to identify multiple-operations bugs? GFix largely reuses
the checking mechanisms in the previous two strategies to identify
multiple-operations bugs, but there are several differences. First,
GFix does not require that Go-B conducts only one operation on
c. Second, since a patch in this strategy can unblock multiple gor-
outines blocking at o2, when identifying Go-B, GFix also considers
goroutines created in a loop. Third, GFix leverages return to stop
Go-B’s execution (e.g., line 15 in Figure 4), and thus GFix checks
whether Go-B conducts o2 in the function used to create Go-B.
Fourth, GFix only fixes a bug when instructions after o2 do not gen-
erate any side effect beyond Go-B, which is similar to the previous
two strategies. However, the difference is that here GFix does not
consider operations on c after o2 as having side effects.

5 IMPLEMENTATION AND EVALUATION
5.1 Methodology

Implementation, Configuration, and Platform.We implement
both GCatch and GFix using Go-1.14.2. All our static analysis is
based on the SSA package [21], which provides sufficient type, data
flow, and control flow analysis support. The code transformations
in GFix are achieved using the AST package [17], since modified
ASTs can be easily dumped to Go source code.

We leverage an existing alias analysis package [20] and modify it
to also inspect functions unreachable from main(), since wewant to
improve code coverage when analyzing Go libraries. The call-graph
analysis [18] we use has a limitation, in that when an interface
function or a function pointer is called, the analysis reports all
functions matching the signature as callees, leading to many false
positives. Thus, when the call-graph analysis reports more than one
callee for a call site of an interface function or a function pointer,
we ignore the results. This design decision may cause GCatch to
miss some bugs and report new false positives.

Different strategies in GFix result in patches with different levels
of readability or complexity (in terms of lines of changed code).
Strategy-I changes only one line of code and generates the simplest
patches. Strategy-III adds an extra channel. As a result, Strategy-
III patches are most complex and are most difficult to validate.
We configure GFix’s dispatcher component (Figure 2) to attempt
Strategy-I first, then Strategy-II, and finally Strategy-III, so that
GFix generates the simplest possible patch for each input bug. We
think this configuration matches how GFix will be used in reality.
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Table 1: Evaluation Results. Applications are ranked by the number of stars on GitHub. In the GCatch columns, BMOCC denotes BMOC
bugs only involving channels, BMOCM denotes BMOC bugs involving both channels andmutexes, xy denotes x real bugs and y false positives,
and ‘-’ denotes both bug and false positive numbers are zero. In the GFix columns, S. is short for strategy, and ‘-’ denotes bug number is zero.

GCatch GFix

App Forget Double Conflict Struct
Name BMOCC BMOCM Unlock Lock Lock Field Fatal Total S.-I S.-II S.-III Total

Go 212 11 83 02 10 25 30 3613 12 - 2 14
Kubernetes 145 10 10 10 - 56 100 3211 8 - - 8
Docker 498 - 11 23 10 31 - 5613 40 1 6 47
HUGO - - 20 01 - 21 - 42 - - - -
Gin - - - - - - - - - - - -
frp - - 10 - - - - 10 - - - -
Gogs - - - - - - - - - - - -
Syncthing 01 - 31 - - 12 - 44 - - - -
etcd 398 - 61 12 01 72 40 5714 24 1 9 34
v2ray-core - 01 - 21 21 30 - 73 - - - -
Prometheus 21 - 11 11 02 02 - 47 2 - - 2
fzf - - 01 - - - - 01 - - - -
traefik - - - - - - - - - - - -
Caddy - - - - - - - - - - -
Go-Ethereum 919 03 41 91 - 67 30 3131 6 - 2 8
Beego - - - - - 30 - 30 - - - -
mkcert - - - - - - - - - - - -
TiDB 10 - 06 30 20 02 - 68 1 - - 1

CockroachDB 42 - 50 04 21 03 - 1110 1 2 - 3
gRPC 60 - - 01 10 10 20 101 4 - 1 5
bbolt 20 - - - - - 40 60 1 - 1 2

Total 14746 25 3215 1916 95 3331 260 268118 99 4 21 124

All our experiments are conducted on several identical machines,
with Intel(R) Core(TM) i7-7700 CPU, 32GB RAM and Ubuntu-16.04.

Benchmarks. We selected Go projects on GitHub for our evalu-
ation. We first inspected the top 20 most popular Go projects on
GitHub (based on the number of stars). Of these, one project is a
list of Go projects [2] and another is an ebook on Go [4]. Neither
contains any code. Thus, we excluded these two from our evalua-
tion. We also chose all of the six Go projects used in an empirical
study on Go concurrency bugs [87]. Three of the six projects were
already included in the GitHub top 20 list. Thus, we selected a total
of 21 Go projects for our evaluation.

Our selected projects cover different types of Go applications
(e.g., container systems, web services). They represent typical us-
age of Go when implementing systems software. Several of the
projects are widely used infrastructure systems (e.g., Docker [12],
Kubernetes [22]) in cloud environments. It is essential to detect
bugs and ensure the correctness for these projects, since their cor-
rectness affects all the applications running on top of them. The
selected projects are of middle to large sizes, with lines of source
code ranging from one thousand to more than three million.

Evaluation Metrics. We evaluate GCatch and GFix separately. In
the case of GCatch, we want to assess its effectiveness, accuracy,
and coverage. To do this, we apply GCatch to all packages in the
latest versions of the selected applications. We count how many
bugs are detected and how many false positives are reported for
the effectiveness and the accuracy. However, since we don’t know

how many concurrency bugs are in the latest application versions,
we cannot use them to measure the coverage. Instead, we conduct
a manual study on a released set of Go concurrency bugs [87] and
count how many bugs there can be detected by GCatch.

We want to know the correctness, performance, and readabil-
ity of GFix’s patches. To assess correctness, we manually inspect
each patch to determine whether it can fix the bug and whether it
changes the original program semantics. To assess performance,
for every detected bug, we use all the unit tests that can execute the
buggy code to measure the runtime overhead incurred by the patch
(i.e., performance impact). We run each unit test ten times with
both the patched version and the original version. We compute the
overhead using the average execution time. To assess readability,
we count how many lines of source code are changed by each patch.

5.2 GCatch Results
As shown in Table 1, GCatch finds 149 previously unknown BMOC
bugs and 119 previously unknown traditional concurrency bugs.
We have reported all of the bugs to developers. At the time of
the writing, developers have already fixed 125 BMOC bugs and 85
traditional bugs in more recent application versions based on our
reporting and confirmed another 22 bugs as real bugs.

Results of the BMOC detector. The BMOC detector finds 149 new
bugs from ten different applications. Among them, only two are
caused by misuse of channels and mutexes (column “BMOCM ”
in Table 1), while all the others involve channels only (column
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“BMOCC ”). The large number of identified bugs demonstrates the
effectiveness of the BMOC detector. In most of the detected BMOC
bugs, a child goroutine is blocked forever and system resources
allocated to the child goroutine cannot be released. If the child
goroutine is repeatedly created and blocked, more system resources
will be occupied, which will in turn influence other goroutines and
programs running on the same machine.

The largest application in our evaluation (Kubernetes) contains
more than three million lines of code. The BMOC detector spends
25.6 hours inspecting all its packages and finds 15 bugs. This analy-
sis time is the longest among all applications we evaluate. These
results demonstrate the BMOC detector can scale to large, real Go
systems software. For ten small applications we evaluate (e.g., frp,
HUGO), the BMOC detector can finish its analysis in less than one
minute.

False positives. The BMOC detector is accurate. It reports 51 false
positives, and the true-bug-vs-false-positive rate is around 3:1. The
false positives come from three sources.

Twenty of the false positives are caused by infeasible paths.
GCatch only inspects branch conditions involving read-only vari-
ables and constants. Nine false positives are caused by path condi-
tions that involve non-read-only variables, and the conjunctions of
those conditions are unsatisfiable. For loops whose iteration num-
bers cannot be computed statically, GCatch unrolls them at most
twice. If this is wrong, sending/receiving operations inside those
loops will be counted incorrectly. The remaining 11 false positives
are due to this reason.

Another 17 false positives result from limitations of the alias
analysis. When a channel is sent to a goroutine through another
channel, the alias analysis cannot determine whether the received
channel is the same as the sent channel. Thus, GCatch fails to figure
out how a channel operation at the sender goroutine is unblocked
by the receiver. This is the reason for 15 false positives. The remain-
ing two alias-analysis false positives are cases in which a channel
is saved into an array, the blocking operation is conducted by re-
ferring to the array element, but the unblocking operation refers
to the channel variable. The alias analysis fails to identify the two
operations as being conducted on the same channel. Thus, GCatch
fails to figure out how the blocking operation is unblocked for the
two cases.

Finally, 14 false positives are due to limitations of the call-graph
analysis. Sometimes, the call-graph analysis fails to identify caller
functions for a callee, such as when the callee implements an in-
terface function. If the callee contains blocking operations, GCatch
may not know how the blocking operations can be unblocked,
leading to false positives.

It is not difficult to differentiate real bugs from false positives.
For each detection result, GCatch provides information about the
buggy channel, the blocking operations, the path combination,
related call chains, and the analysis scope. We take two steps to
inspect the information. First, we check whether the channel is
used only as the primitive to conduct a channel operation (e.g.,
sending, receiving). If so, the results of alias analysis are correct.
For almost all reported results, the channel is used only in this
way and it is used in less than ten places. There are very few cases
where a channel variable is used for other purposes (e.g., being sent

through another channel). We will further check whether the alias
results are correct for those cases and how the alias results impact
GCatch. Second, we check whether execution paths in the path
combination and the call chains are feasible. Since they are within
the channel’s analysis scope, they are usually very short. Based on
our own experience, it takes a GCatch user roughly five minutes to
analyze a reported result and decide whether it is a real bug or a
false positive.

Coverage. There are 49 BMOC bugs in the public Go concurrency
bug set [87]. We conduct a manual study on these bugs and find
that GCatch can detect 33 of them. Since the bug set is a random
sample of real-world Go concurrency bugs, the study result shows
that GCatch has a good coverage (i.e., 67%) of real-world BMOC
bugs. GCatch fails to detect the other bugs due to the following
reasons.

First, GCatch misses two BMOC bugs caused by conducting a
channel operation in a critical section. The reason is that the identi-
fied LCA function (Section 3.2) is called by the function containing
the critical section. GCatch only inspects operations in the LCA
function and its callees, and thus it misses the locking operation
protecting the critical section.

Second, some bugs can only be detected with dynamic informa-
tion. For example, there are three etcd bugs where a goroutine waits
to receive a particular value from a channel. If the received value is
not the right one, the goroutine waits to receive from the channel
again. However, GCatch does not know the waited-for value cannot
be sent out statically.

Third, GCatch does not model some concurrency primitives (e.g.,
WaitGroup, Cond) and libraries (e.g., time), and thus fails to detect
bugs caused by those primitives and libraries.

Fourth, GCatch does not conduct any data flow analysis, so that
it misses two bugs caused by assigning nil to a channel and then
sending a value to the channel, since sending to a nil channel
blocks a goroutine forever.

Evaluating the disentangling policy.We apply path enumeration (Sec-
tion 3.3) and BMOC bug detection (Section 3.4) to function main()
of each evaluated application directly without applying the disen-
tangling policy (Section 3.2). Compared with when GCatch analyzes
the package containing function main(), on average, disabling dis-
entangling leads to over 115X slowdown and 0.59X memory-usage
increase.

After inspecting the execution log, we find that disentangling
improves the performance of GCatch in two ways: 1) it significantly
shortens enumerated execution paths, since those paths are inside
channels’ analysis scopes, and 2) it significantly reduces the number
of constraints in constraint conjunctions analyzed by Z3, because
each channel is analyzed only with a few other primitives.

Results of the other five detectors. As shown in Table 1, the five
traditional detectors find 119 previously unknown bugs.

The traditional detectors report 67 false positives mainly for four
reasons. 18 false positives are due to semantic reasons. For example,
some functions are actually a wrapper of a locking operation, and
the acquired lock is released after the end of the function, but
GCatch mistakenly reports them as a lock-without-unlock. There
are 17 false positives caused by infeasible paths. Another nine false
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positives are due to errors when computing alias information for
mutex variables. Finally, nine false positives are caused by failing
to consider the calling context when computing the lockset for a
struct field access.

5.3 GFix Results

Overall results. GCatch reports 147 BMOC bugs involving channels
only (column “BMOCC ” in Table 1), which are targets of GFix.
In total, GFix generates patches for 124 of them. How the fixed
bugs distribute across different strategies is shown in Table 1. We
make our best effort in evaluating patches’ correctness through
code inspection and injecting random-length sleeps around the
channel operations causing each bug. We confirm that all generated
patches are correct, and that they can fix the bugs without changing
the original program semantics. We have provided the generated
patches when reporting the bugs. So far, developers have applied
87 of these patches directly.

GFix decides not to fix 23 of the bugs for four reasons. For nine
of the bugs, the blocking goroutine is the parent, and thus GCatch
decides not to fix them. For another ten bugs, there are side effects
after the o2 instruction, and if GFix unblocks the o2, the program
semantics may be changed. In one bug, the o1 instruction is a
receiving operation and the received value is used, so that GFix
cannot apply Strategy-II to defer the receiving. The remaining three
bugs involve one or more than two goroutines.

Patches’ performance. For 116 out of the 124 bugs fixed by GFix,
we find unit tests that can execute their buggy code. Thus, we
measure the runtime overhead after applying the patches for them.
The runtime overhead is small. The average overhead is 0.26%, the
maximum is 3.77%, and there are only 14 bugs with overhead larger
than 1%. These results show that GFix’s patches incur a negligible
performance impact.

Patches’ readability.We measure the readability of GFix’s patches
by counting the changed lines of source code. Changing lines of
source code includes adding new lines, removing existing lines, and
replacing existing lines with new lines. For example, the patch in
Figure 1 changes one line, and the patch in Figure 3 changes four
lines (three added and one removed).

On average, GFix changes 2.67 lines of code to fix a bug. There
are 99 bugs fixed by Strategy-I. For all of them, GFix changes only
one line of code. For the four bugs fixed by Strategy-II, GFix changes
four lines of code each. Strategy-III is the most complex strategy.
On average, GFix changes 10.3 lines for each bug fixed by this
strategy, and the largest patch involves 16 changed lines. Overall,
GFix changes very few lines of code to fix a bug, and its patches
have good readability.

GFix’s execution time.On average, GFix takes 90 seconds to generate
a patch. The patch generation time varies across different applica-
tions. Kubernetes is the largest application in our evaluation. On
average, GFix spends 178 seconds generating a patch for it, which
is the longest among all applications. Docker also contains more
than one million lines of code. The average patch generation time
for Docker is 151 seconds, and it is the second longest. Bbolt only
contains ten thousand lines of code, and GFix takes the shortest
average time to generate a patch for it (2.8 seconds).

After examining GFix’s execution time, we find that GFix spends
most of that time (i.e., 98%) converting an input program into SSA,
constructing the program’s call graph, and computing the alias rela-
tionships, since GFix relies on this information for its functionality.
After those preprocessing steps, GFix can figure out which fixing
strategy to use and conduct the corresponding code transformation
very quickly (1.9 seconds on average).

6 DISCUSSION AND FUTUREWORK
GCatch detects blocking misuse-of-channel (BMOC) bugs in Go,
while GFix synthesizes patches for the detected BMOC bugs us-
ing channels and channel-related language features (e.g., select,
defer). The two techniques construct an end-to-end system for
eliminating BMOC bugs in real Go systems software. In this section,
we briefly discuss the limitations of GCatch and GFix, future work
to improve them, and how to extend them to other programming
languages.

Limitations and FutureWork of GCatch. The constraint system
in GCatch models only channels and mutexes, and thus GCatch
can only detect BMOC bugs caused by them. However, after chang-
ing other primitives to channels (as we did for mutexes), GCatch
can detect blocking bugs caused by these primitives as well. For
example, to model a condition variable (Cond), we can change it
to an unbuffered channel, its Wait() operations to receiving from
the channel, its Signal() operations to sending to the channel in
a select with a default clause, and its Broadcast() operations
to repeatedly sending to the channel using a loop that contains a
select with a sending operation and a default clause.

Misuse of channels can also cause non-blocking bugs. Another di-
rection to extend GCatch is to model and detect when non-blocking
misuse-of-channel bugs happen. For example, sending to an already
closed channel triggers a panic. We can enhance GCatch to detect
bugs caused by this error by configuring a new type of bug con-
straints where a sending operation has a larger order variable value
than a closing operation conducted on the same channel.

GCatch does report some false positives. Many of these are due
to the limitations of the static analysis packages we use (e.g., alias
analysis, call-graph analysis). Future work can consider improving
classic static analysis for Go, which will in turn benefit GCatch. For
example, alias analysis can be enhanced to identify alias relation-
ships that are generated by passing an object through a channel,
which will help reduce GCatch’s false positives.

Limitations and FutureWork of GFix. Although GFix fixes only
those bugs that fit three specific patterns, our experimental results
show that it can still patch the majority of BMOC bugs detected by
GCatch. In the future, we will extend GFix with additional fixing
strategies, such as covering more buggy code patterns and using
other primitive types. Although in our experiments we manually
validate the patches’ correctness, we hope to automate this process.
We leave the design of an automated patch testing framework for
Go to future work.

Generalization to Other Programming Languages. Go covers
many concurrency features (e.g., channel, select) in many other
new programming languages (e.g., Rust, Kotlin), and thus our tech-
niques can potentially be applied to those languages after some
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design changes. For example, Rust supports both synchronous chan-
nels, which are identical to Go’s buffered channels, and asynchro-
nous channels, which have unlimited buffers. To enable GCatch on
Rust, we don’t need to change GCatch’s constraint system for Rust’s
synchronous channels, but we do need to extend it to allow sending
operations to always proceed for Rust’s asynchronous channels. As
another example, Kotlin organizes threads in a hierarchical way,
and when a parent thread stops due to cancellation or exception,
all its children are terminated. Thus, to apply GCatch to Kotlin, we
need to extend GCatch’s proceeding and blocking constraints by
considering how parent threads execute for their child threads.

7 RELATEDWORK

Empirical Studies on Go. Researchers have performed several
empirical studies on Go [34, 77, 87]. Ray et al. [77] inspect the cor-
relation between different types of bugs and different programming
languages (including Go). Dilley et al. [34] examine how channels
are used by analyzing 865 Go projects. Tu et al. [87] systematically
study concurrency bugs in Go. As we discussed in Section 2.2, their
findings have inspired the design of GCatch and GFix.

Static Concurrency Bug Detection. Many research works have
been conducted to statically detect deadlocks [49, 58, 75, 82] and
data races [54, 55, 67, 68, 74, 76, 89] in C/C++ and Java. Although
these algorithms promise to detect similar concurrency bugs in Go,
none of them are designed for concurrency bugs related to channels.
Fahndrich et al. [36] design a technique to identify deadlocks among
processes communicating through channels. However, a channel in
their context has no buffer, is only shared by two processes, and has
fewer channel operations than a Go channel. Thus, their technique
is not enough to detect BMOC bugs for Go.

Several blocking bug detection techniques are designed for Go [39,
59, 60, 70, 80]. These techniques extract a Go program’s execution
model by inspecting channel operations (and locking operations);
they then apply model checking to prove the liveness of the exe-
cution model or identify bugs. These techniques need to inspect
the whole input program from function main() and consider primi-
tives altogether. Thus, they have severe scalability issues. However,
GCatch models channel operations using a novel constraint system.
In addition, it disentangles primitives of an input program to scale
to large Go programs, even those with millions of lines of code.

There are two static bug detection tool suites built for Go: stat-
iccheck [23], and the built-in vet tool [9]. Each of them contains
four different concurrency-bug detectors. Unfortunately, those de-
tectors cover very specific buggy code patterns (e.g., deferring a
locking operation right after a locking operation on the same mu-
tex), and none of them aim to detect bugs caused by errors when
using channels. Thus, we don’t apply the two suites to the bench-
mark programs used in our evaluation and compare GCatch with
them directly. Instead, we manually examine each bug identified by
GCatch and count how many of them can be detected by the two
tool suites. Overall, the two suites can detect 0 out of 149 BMOC
bugs and 20 out of 119 traditional concurrency bugs reported by
GCatch. The 20 bugs that the two tool suites detect are all caused
by calling testing.Fatal() in a child goroutine.

Dynamic Concurrency Bug Detection. Many dynamic detection
techniques are designed for traditional programming languages

(e.g., C/C++, Java), and they can effectively identify concurrency
bugs caused by errors when accessing shared memory, like data
races [35, 43–46, 56, 62, 79, 81, 94, 95], atomicity violations [28, 37,
65, 71, 84, 90], order violations [40, 66, 93, 96] and deadlocks [26,
27]. Unfortunately, those techniques are not designed to identify
channel-related concurrency bugs.

Go provides two built-in dynamic detectors for deadlocks and
data races, respectively [11, 19]. However, a recent empirical study
shows that these two detectors can only identify a small portion of
blocking and non-blocking bugs in real Go programs [87].

There are dynamic detectors aiming to identify deadlocks in MPI
programs [38, 41, 42, 83, 88]. Although MPI programs also rely on
message passing for thread communication, their message-passing
model (actor model [7]) is different from Go’s message-passing
model (CSP model [10]). For example, a sending (or receiving) op-
eration in MPI needs to specify the process ID of the receiver (or
sender), while a sending (or receiving) operation in Go is conducted
through a reference to a channel. In addition, the techniques built
for MPI programs fail to model many important channel opera-
tions in Go (e.g., close(), select). Thus, these detectors cannot
effectively detect channel-related blocking bugs in Go.

Moreover, the effectiveness of dynamic techniques largely de-
pends on inputs to run the program and the observed interleavings.
In contrast, static techniques do not rely on inputs and have bet-
ter code and interleaving coverage. Therefore, we choose to build
GCatch based on static analysis.

Concurrency Bug Fixing. Existing techniques rely on controlling
thread scheduling to fix or avoid deadlocks caused by locking opera-
tions [53, 91, 92, 97]. There are also techniques that fix non-blocking
bugs, and they achieve their goal by disabling bad timing of access-
ing a shared resource [51, 52, 61, 64] or by eliminating the sharing
altogether [47]. Unlike these techniques, GFix (Section 4) focuses
on channel-related blocking bugs and generates patches with good
readability by leveraging Go’s unique language features (e.g., defer,
select).

8 CONCLUSION
This paper presents a new BMOC bug detection technique GCatch
and a new BMOC bug fixing technique GFix for Go. GCatch pro-
vides an effective disentangling strategy to separate concurrency
primitives of each input Go software and a novel constraint system
to model channel operations in Go. GFix contains three fixing strate-
gies to patch bugs detected by GCatch using Go’s unique language
features. In the experiments, GCatch finds more than one hundred
previously unknown BMOC bugs in large infrastructure software
and GFix successfully patches most of them. Future research can
further explore how to detect and fix other types of concurrency
bugs for Go.
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