
AppCracker: Widespread Vulnerabilities in User
and Session Authentication in Mobile Apps

Fangda Cai, Hao Chen
ShanghaiTech University

{caifd, chenhao}@shanghaitech.edu.cn

Yuanyi Wu
Zhejiang Sci-Tech University
wu_yuanyi@icloud.com

Yuan Zhang
Fudan University

yuanxzhang@fudan.edu.cn

Abstract—A fundamental security principle in developing net-
worked applications is end-to-end security, where the confiden-
tiality and integrity of the data transmitted over the network do
not rely on the security of the network. In response to the ever
increasing traffic from mobile apps, WiFi networks are spreading
fast and widely. Since WiFi networks are unregulated, a passive
attacker may eavesdrop on the traffic on open WiFi networks,
while an active attacker may set up his own WiFi network to
modify its traffic at will. In theory, end-to-end security should
protect mobile apps from both these attacks; in practice, however,
the situation is far less rosy.

We examine how the popular, important mobile apps on
Chinese Android markets defend themselves against untrusted
networks. We select top apps from major categories, such
as online shopping, banking, social networks, travel services,
and apps from companies with huge market capitalization. We
analyze both their code and their network traffic to identify
vulnerabilities. We design a mini-language for describing the
vulnerabilities and develop a tool, AppCracker, that launches
both passive and active attacks on these apps to verify their
vulnerabilities. AppCracker has confirmed that 100 apps from
69 companies are vulnerable during their user or session au-
thentication. These vulnerabilities allow an adversary to capture
the victim user’s login credentials or to hijack the victim’s
session. We describe these diverse types of vulnerabilities, many
of which are caused by the misuse of cryptography in their home-
grown cryptographic protocols. Finally, we discuss the lessons
learned during our investigation to help app developers avoid
similar pitfalls. We hope that our findings will raise awareness
of this problem among both the research community and app
developers, and will encourage research in automated tools for
detecting these vulnerabilities.

I. INTRODUCTION

We rely on mobile apps in many aspects of our life, such as
banking, online shopping, social networking, services, health,
and entertainment. We store our private information in these
apps and conduct financial transactions on these apps. The
importance of protecting apps from adversaries cannot be
overstated.

Mobile apps communicate with their servers via wireless
networks. Wireless networks have expanded rapidly in the
recent years in response to the explosive growth of mobile app
traffic. Notably, WiFi networks have sprouted widely because,
compared to cellular networks, they are less expensive, easier
to deploy, and unregulated. Anyone, including adversaries, can
set up WiFi networks legally.

To protect applications from untrusted networks, developers
must follow the fundamental principle of end-to-end security,

Category Number of Vulnerable Apps
Banking 2
Online shopping 17
Health 5
Social networking 9
Entertainment 22
Other services 45
Total 100

TABLE I: Number of Vulnerable Apps in Each Category

which enables applications to communicate with their servers
securely even in the presence of adversarial networks. In
theory, this principle should protect mobile apps from insecure
or malicious networks, but in practice, do app developers
follow this principle?

We take the first step to study how mobile apps meet end-
to-end security. We focus on the Chinese Android markets
because China has the largest mobile user population and
Android is the dominant mobile platform in China. As Google
Play is unavailable in China, Chinese users download most of
their apps from Chinese markets. Therefore, vulnerabilities in
critical Chinese apps would have high impact. We identify
major app categories (Table I) and pick top apps from each
category. We also select apps from companies that have high
market capitalization.

Our investigation consists of two stages. In the first stage,
we reverse-engineer and analyze app code. In the second stage,
we set up a WiFi access point and capture and analyze traffic
from mobile apps. We design a mini-language for describing
vulnerabilities in app traffic. To validate these vulnerabilities,
we develop an attack tool, AppCracker. It runs in two modes:
in the passive mode, it can eavesdrop on the app’s traffic; in the
active mode, it can insert, delete, or modify the app’s traffic.
The passive mode represents the scenario when the adversary
and victim are on the same open WiFi network, e.g., at coffee
shops, airport, and malls. The active mode represents when the
adversary creates his own malicious WiFi network to attract
unwary victims.

AppCracker has confirmed that 100 apps are vulnerable,
shown in the full version of this paper [4]. This finding is
significant in several ways. First, these apps are among the top
apps in all the categories that we have examined. Table I shows
the number of vulnerable apps in each category. Second, 44 of

these apps are from companies whose market capitalization is
over one billion US dollars [4]. Third, AppCracker confirms
that by exploiting these vulnerabilities, an adversary can steal
the victim’s login credentials or hijack the victim’s session.
Finally, the vulnerabilities are diverse, as described below.

In the passive attack, AppCracker eavesdrops on the traffic
between the app and its server. We found several types of
vulnerabilities during user authentication. The simplest one is
that many apps transmit username and password in plaintext or
encoded form (e.g., Base64). Some apps do use cryptography
to protect their data on the network; however, instead of using
standard secure channels such as SSL, they use home-grown
protocols and fall victim to various cryptographic pitfalls, such
as insecure selection of symmetric and public keys, insecure
distribution of keys, insecure modes of operation, insecure
message authentication code, or security by obscurity. Besides
user authentication, session authentication is also vulnerable in
some apps, as they fail to protect their session IDs in the HTTP
request body or cookie.

In the active attack, AppCracker can eavesdrop and modify
the traffic between the app and its server. We found that
many apps that use SSL to establish secure channels fail to
validate server certificates. Thus, AppCracker can successfully
launch the Man-In-The-Middle (MITM) attack by providing
a self-signed certificate to the app. Instead of using server
certificates, some apps request public keys directly from the
server but fail to validate them, which also facilitates the
MITM attack.

The primary lesson learned from our investigation is the
importance of end-to-end security in mobile apps. We also
show that developers should avoid home-grown cryptographic
protocols whenever possible, hide no secret in apps, avoid
security by obscurity, and build security into apps from the
very beginning.

We make the following contributions:

• We are the first to study the user and session authentica-
tion vulnerabilities in top mobile apps in major categories.
We found that 100 popular apps are vulnerable. Note
that this is a conservative number, as we report an app
as vulnerable only after we successfully attack it using
AppCracker.

• We describe the diverse vulnerabilities found in these
apps.

• We design a mini-language for describing these vulner-
abilities and develop a tool, AppCracker, for performing
passive and active attacks to validate these vulnerabilities.

• We discuss lessons learned during our investigation,
which would help app developers avoid similar vulnera-
bilities.

• We hope that our findings will raise awareness of these
vulnerabilities among both the research community and
app developers, and will encourage research in automated
tools for detecting these vulnerabilities.

The rest of this paper is organized as follows. Section II
defines the threat model and describes related background.

Section III describes the method, the mini-language for de-
scribing vulnerabilities, and the tool for validating them.
Section IV and Section V describe the vulnerabilities and
their exploits. Section VI discusses the lessons learned from
our investigation. Section VII describes the related work.
Section VIII concludes the paper.

II. THREAT MODEL AND BACKGROUND

A. Threat Model
We consider the following threat model in studying user and

session authentication.
a) Apps: We assume that apps are benign but potentially

vulnerable, but app servers are secure and impenetrable by
attackers.

b) Users: We assume that users are benign and well
behaved in that they would not perform actions that are
known to be dangerous, such as installing untrusted apps on
their devices, visiting untrusted domains in their browsers, or
clicking untrusted links. However, they often connect to WiFi
networks, including unencrypted or untrusted ones.

c) Adversaries: We assume that adversaries cannot ac-
cess the user’s device and do not have code running on the
user’s device. They cannot trick the user into taking insecure
actions. They cannot access the app’s server beyond the API
that the server provides to its app. However, they can access
the WiFi network that the app is running on in two scenarios:

• Eavesdroppers can capture all the traffic on an open WiFi
but cannot modify or delete any traffic.

• MITM attackers can not only capture but also modify
traffic. This is the case when the attacker owns or breaks
into a WiFi access point.

B. Reverse-engineering Tool Chain
We use a series of open source tools to obtain Java source

code and resources from Android application files (APK files).
• android-apktool [1] unpackages an .apk file and dissem-

bles Dalvik bytecode into smali code.
• dex2jar [6] converts Dalvik bytecode into Java bytecode.
• jd-gui [12] provides a GUI to view decompiled Java

source code from Java bytecode.
• procyon [17] is another tool to decompile Java bytecode

into source code.

III. METHODOLOGY

We combine offline analysis of Android app code with
online analysis of app traffic.

A. Offline Analysis
We download an app’s APK file, disassemble it with apk-

tool [1], convert its Dalvik bytecode in classes.dex to Java
bytecode using dex2jar [6], and decompile the Java bytecode
to get Java source files. We use two tools for decompiling
Java bytecode: jd-gui [12] and procyon [17], because they
occasionally fail on some class files but do not usually fail on
the same class file. We examine the decompiled Java source
files and the APK’s string resource files to try to identify
cryptographic methods and keys.

B. Online analysis

We use a Linux machine running ap-hotspot as the WiFi
access point and connect our Android phone to it. Then, we
capture packets from apps running on the phone. We use
different methods for capturing HTTP and HTTPS traffic.

• HTTP. We capture HTTP traffic from the app on a laptop
running Linux (other than the machine serving as the
WiFi access point). We configure the wireless card in
the monitor mode, which allows the wireless driver to
eavesdrop on all packets.

• HTTPS. Since HTTPS traffic is encrypted, we capture
and decrypt it using MITM (Man In The Middle) attack
on the WiFi AP. On this AP, we run a web server and
configure iptables to redirect all the incoming packets
destined for port 80 and 443 on other hosts to this web
server’s HTTP and HTTPS ports, respectively. This web
server provides our self-signed certificate during SSL
handshake and forwards each request to AppCracker to be
described in Section III-C. Note that this attack succeeds
only on apps that fail to validate certificates.

Once we capture packets, we examine the HTTP payload in
the packets to identify useful data — such as plaintext or en-
crypted username, password, cookies, session IDs, signatures,
etc — and modify them as needed, described in Section III-C.

C. AppCracker

We have developed a tool, AppCracker, to describe the
vulnerabilities in apps and to validate our attacks. The tool
runs in two modes:

• Passive mode (as an eavesdropper): AppCracker takes as
input packets from the app (e.g., the output of tshark,
a command line tool for dumping network traffic) and
extracts useful data from the packets.

• Active mode (as a MITM attacker): Figure 1 shows
AppCracker in the active attack mode.

Initially, we wrote individual code for analyzing each app
in AppCracker. But as the number of apps grows, the size of
the code quickly increases because there is much repetition
within the code. To mitigate this code complexity, we design
a mini-language to describe the vulnerabilities in each app.

The mini-language is in the YAML [23] format. The root
document is a dictionary where a key is the name of an app
and its value describes the fields that are interesting to the
adversary in the app’s payload. AppCracker extracts these
fields and records them in a database. Instead of providing
a formal specification, which might be difficult to understand,
we will demonstrate the simplicity and power of this mini-
language by examples. In these examples, text in bold font
represents keywords in the mini-language.

Figure 2a describes the app hello. It is a dictionary consist-
ing of the key hosts and rules. The value of hosts is a list
of host names as they appear in the Host header in HTTP.
Based on these host names, AppCracker classifies each HTTP
payload. The value of rules consists of a list of rules. Each
rule consists of the key predicate, request, response, and

App Web Server

AppCracker

App

Server

WiFi Access Point

Fig. 1: AppCracker running in the active attack mode. Ap-
pCracker interacts with an unmodified Apache web server
running on the same WiFi AP.

1) The app sends an HTTP(S) request to the WiFi AP. The
iptables running on the AP redirects the request to the
web server running on the same AP.

2) The web server forwards the request to AppCracker.
3) AppCracker modifies the request and sends it back to

the web server.
4) The web server forwards the request to the app server.
5) The web server receives the response from the app

server.
6) The web server forwards the response to AppCracker.
7) AppCracker modifies the response and sends it back to

the web server.
8) The web server forwards the response back to the app.

cookie. The value of predicate consists of the key path, args,
and form. Together they specify a filter to determine which
payload this rule applies to. path matches the path component
of the URL, and args and form match the keywords in the
URL parameters and in the form data from POST request,
respectively. request describes the action on the HTTP request
payload. It is a dictionary whose keys are args and form,
which describe the keys to examine in the URL parameters
and in the form data from POST request, respectively. When
AppCracker runs in the passive mode, it extracts the values of
these keys and stores them in a database. When it runs in the
active mode, it replaces the values of these keys with those
previously extracted and stored in the database.

On some apps, AppCracker needs to analyze the HTTP
payload in more complex ways than merely extracting values
of certain keys or replacing certain values with constants.
In these cases, we specify a user-defined function written
in Python for processing the payload. Figure 2b instructs
AppCracker to invoke the function hello_request() on
the HTTP request and the function hello_response() on
the HTTP response. The user may also instruct AppCracker
to extract or replace the HTTP cookie, shown in Figure 2c.

h e l l o :
hosts :

− m. h e l l o . xyz
− a p i . h e l l o . xyz

rules :
− predicate :

path : l o g i n
request :

args :
− username
− password

− predicate :
args :

− f u n c t i o n : o r d e r
request :

form :
− s e s s i o n i d

(a) Simple extraction or replacement of values of certain keys can be
specified entirely in the vulnerability specification.

h e l l o :
rules :

− request : h e l l o r e q u e s t ()
− response : h e l l o r e s p o n s e ()

. . .

(b) More complex operations on payload may be delegated to user-
defined python functions

h e l l o :
rules :

− cookie :
− JSESSIONID

. . .

(c) Extracting and replacing HTTP cookie

Fig. 2: Examples of vulnerability specification for AppCracker

D. Dataset

Since our investigation requires intensive manual effort,
we ought to prioritize on the importance of apps. We select
important apps by the following criteria:

• Top apps by number of downloads on the Baidu App
Market [3] in each of the major categories in Table I.

• Apps from companies with huge market capitalization.
From the above apps, we exclude apps that use SSL and

validate certificates, because neither the passive attack nor
the active attack of AppCracker would be effective. After
this stage, we were left with 113 apps. Among these apps,
AppCracker successfully launched attacks on 100 of them.

We report the results of our investigation in Sections IV
and V. The results are based on the versions of the apps
as of August and September of 2014. Some apps, such as
YiHaoDian, have since fixed their vulnerabilities, but we leave
them in this paper for reference.

More information about the apps whose vulnerabilities are
discussed below can be found in the full version of this

paper [4]. Section IX explains our rationale and policy for
disclosing vulnerability details.

IV. PASSIVE ATTACKS

In passive attacks, the adversary can only eavesdrop on the
traffic between the app and its server but not insert, modify,
or delete traffic. This is the case when the adversary is in the
same unencrypted WiFi network — e.g., at cafes, airports, and
malls — as the app.

A. Plaintext or Encoded Data

Some apps do not encrypt their traffic. DianPing is the most
popular app for reviewing businesses and purchasing discount
gift certificates. It does not encrypt its traffic. Once an attacker
penetrates the victim user’s account, e.g., by eavesdropping on
the password or hijacking a session, he can steal the secret
IDs of the gift certificates in the account. Some apps encrypt
their traffic during only certain, perhaps more security-critical,
phases. For example, YiHaoDian is a major online retailer in
China. It encrypts its traffic during login, but not during all
the other actions.

Eavesdropping on plaintext is trivial. For example, during
login, DangDang (another top online retailer) sends the user-
name and password in plaintext in the POST request. Some
apps try to achieve security through obscurity by encoding
confidential data. For example, Vancl, another online retailer,
encodes the username and password in Base64. Moreover,
in the pursuit of readability, it names the keys of the user-
name and password in its POST body as username and
password, which inadvertently helps the eavesdropper.

B. Encryption

Some apps do realize the need to protect confidential data.
However, instead of using common high-level protocols, such
as SSL, they home-brew their own protocols from crypto-
graphic primitives, such as symmetric key, public key, and
secure hash algorithms. In the process, they fall victim to
misusing cryptography.

1) Symmetric Key Encryption: Some apps use symmetric
key encryption. However, they fail to select secure keys, to
distribute keys securely, or to use secure modes of operation.

Insecure key selection Some apps fail to create random
keys. For example, IqiyiVideo, the most popular video service,
uses AES to encrypt the username and password during
login. Its key is iqiyi123)(*\x00\x00\x00\x00\x00,
which is hardly random as it starts with the domain name of
the company (iqiyi), followed by 123)(*, and padded with
zeros to 128 bits.

Even when an app chooses a random symmetric key, if the
app always uses the same key, it is still vulnerable as the
adversary can use the app as an encryption oracle even if he
does not know the key. For example, JuMeiYouPin, an online
retailer of discount luxury goods, uses DES to encrypt the
username and password during login. Its key is the constant
8e2bf219.

Insecure key distribution A difficulty with symmetric
key cryptography is how to distribute keys confidentially.

p u b l i c c l a s s Des
{

p u b l i c s t a t i c S t r i n g g e t D e f a u l t K e y () {
r e t u r n ”8e2bf219 ” ;

}
}

Fig. 3: JuMeiYouPin embeds its DES key in class
com.jm.android.jumei.tools.Des

Since adversaries have full access to apps’ bytecode and
data, it would be insecure to embed symmetric keys in apps.
Unfortunately, many apps commit this mistake.

JuMeiYouPin embeds its DES key in the class
com.jm.android.jumei.tools.Des, shown in
Figure 3.

IqiyiVideo embeds its AES key in the class
org.qiyi.android.corejar.k.a.at. Instead
of specifying the key as a string, it specifies the
key as a byte array, which translates to the string
iqiyi123)(*\x00\x00\x00\x00\x00 (Figure 4).

During login, Taobao, the largest online retailer, computes
a message authentication code over some of the fields in its
payload to protect message integrity. Besides these fields, the
signature algorithm also takes as input a value appsecret,
which does not appear in the payload. Purportedly, this
makes it difficult for an eavesdropper who can access only
the payload to fabricate the signature. Taobao computes
appsecret based on the data in the app and takes
several steps to obfuscate the process. First, it provides the
string appsecret in res/values/strings.xml
shown in Figure 5a. Next, the class
com.taobao.tao.util.Constants reads the string
into the variable Constants.appsecretSigned during
static initialization. Finally, the method getAppsecret
in the class com.taobao.tao.util.Constants
computes appsecret from the variable
Constants.appsecretsigned by subtracting i%5
from each character where i is the index of the character in
the string, shown in Figure 5b.

Insecure modes of operation ECB (Electronic Code
Book) mode of operation of block ciphers is insecure, be-
cause it encrypts identical blocks of plaintext into iden-
tical ciphertext blocks. However, many apps use ECB
mode of operation. IqiyiVideo uses AES in ECB mode
(AES/ECB/PKCS7Padding). JuMeiYouPin uses DES in
ECB mode. We are not surprised at this vulnerability, as prior
work found similar problems in English apps [7].

2) Public Key Encryption: We describe traps in using
public key cryptography in this section.

Insecure key selection TMall, JuHuaSuan, and 1688 are
e-commerce apps from Alibaba and share the same home-
grown cryptographic libraries. They use RSA to encrypt user
password during log in. First, the app sends a key request to
the server, and the server replies with a public key. Then, the

app uses the key to encrypt the user password. The encryption
exponent (e) in the public key returned by the server is always
3. This is a common choice because it allows the client to
compute encryption very efficiently. However, for this choice
of encryption exponent to be secure, the app must pad the
plaintext; otherwise, the adversary can decrypt the ciphertext
without knowing the private key if the plaintext is small.

In the case of TMall, JuHuaSuan, and 1688, the public
key provided by the server has 1024 bits. When the plaintext
has fewer than 1024/3 bits, the modulus n in the public key
has no effect on the ciphertext. In this case, to recover the
plaintext, the eavesdropper simply computes the cubic root of
the ciphetext (since the encryption exponent is 3). These apps
encode each character in the password as a byte, so as long as
the password has fewer than 1024/3/8 ≈ 42 characters, which
is almost always the case, the eavesdropper can recover the
password without knowing the private key.

Taobao is another app from Alibaba. Since it uses 65537
as the public exponent, it does not suffer from this vulnera-
bility. However, Section V-B will describe an active attack on
Taobao’s public key.

C. Message Integrity

When apps do not use SSL, besides home-growing their en-
cryption mechanisms to protect message confidentiality, they
sometimes home-grow their own mechanisms for protecting
message integrity too. Again, this attempt is often fraught with
traps.

Message authentication code TMall, JuHuaSuan, and 1688
use the same message authentication code (MAC) to protect
the integrity of the payload. They compute the MAC as the
MD5 over appkey, appsecret, api, v, imei, imsi,
data, and t. All of these values but appsecret are
available in the traffic, so apparently appsecret is intended
to serve as the secret key to this MAC. Section IV-B1 describes
how we discover appsecret in the app code.

Instead of applying MD5 directly, these apps use a
convoluted algorithm that applies MD5 multiple times.
Figure 6 shows this method getSign in the class
android.taobao.util .TaoApiSign. We conjecture
that the purpose of this complexity is to obfuscate the algo-
rithm, which might deter the adversaries who have no access
to this code. But once we located this code, it took us 10
minutes to reimplement it in Python (because AppCracker was
developed in Python) to start to forge MAC freely.

Obfuscated message authentication code During login,
JingDong, the second largest online retailer, sends the user-
name in plaintext. However, instead of sending the password
in plaintext, it sends the MD5 of the password, which makes it
difficult to recover the password barring the dictionary attack
and attacks on MD5. To prevent replay attacks, the payload
also includes a MAC. The MAC is taken over the username,
MD5 of the password, functionId, uuid, and current
time, all of which are available in the payload.

To deter reverse engineering, JingDong implements the
MAC algorithm in the native code whose source code is

p u b l i c c l a s s a t e x t e n d s con
{

p r i v a t e s t a t i c b y t e [] a = { 105 , 113 , 105 , 121 , 105 , 49 , 50 , 51 ,
41 , 40 , 42 , 0 , 0 , 0 , 0 , 0 } ;

}

Fig. 4: IqiyiVideo embeds its AES key in class org.qiyi.android.corejar.k.a.at.

< s t r i n g name=” a p p s e c r e t ”>756h ; d8g :429 d ; 5 7 c f&l t ; j 8 g 5 f : f3 : d&l t ; d4</ s t r i n g >

(a) The original string for appsecret in res/values/strings.xml.

p u b l i c c l a s s C o n s t a n t s
{

p u b l i c s t a t i c S t r i n g g e t A p p s e c r e t () {
i f (C o n s t a n t s . a p p s e c r e t == n u l l | | ” ” . e q u a l s (C o n s t a n t s . a p p s e c r e t)) {

S t r i n g s t r i n g = new S t r i n g () ;
f o r (i n t i = 0 ; i < C o n s t a n t s . a p p s e c r e t S i g n e d . l e n g t h () ; ++ i) {

s t r i n g += (c h a r) (C o n s t a n t s . a p p s e c r e t S i g n e d . ch a rA t (i)− i %5);
}
C o n s t a n t s . a p p s e c r e t = s t r i n g ;

}
TaoLog . Logd (” appkey ” , C o n s t a n t s . a p p s e c r e t) ;
r e t u r n C o n s t a n t s . a p p s e c r e t ;

}
}

(b) Taobao computes the final appsecret based on the original string in Figure 5a, apparently to obfuscate this value.

Fig. 5: Taobao embeds and obfuscates appsecret.

unavailable. The class com.jingdong.app.Sign defines
the native MAC method as:

p u b l i c s t a t i c n a t i v e Map getSignMap (
Map paramMap , L i s t p a r a m L i s t) ;

The MAC method, getSignMap, takes a Maps and a
List as parameters. Based on how JingDong’s Java code
invokes getSignMap, it appears that the MAC algorithm
iterates over the keys in List, retrieves their corresponding
values in Map, and uses these values in the input. The
keys are always functionId, body, and uuid. In Map,
functionId is the name of the API method on the server
that this request invokes, e.g., login. uuid is a constant.
body is the JSON representation of the MD5 of the password
and the plaintext of the username, e.g.,

{” log inpwd ”:”0123456789ABCDEF . . . ” ,
” log inname ” : ” root@abc . xyz ”}

To further deter the adversary from forging the MAC, the
current time is not an input parameter to getSignMap but
rather an output from getSignMap. getSignMap returns a
Map consists of three keys: sign, sv, and st. sign contains
the computed MAC, e.g., WHSyyVjZOe3mr7-07Qe0Ig,
sv is always 1, and st contains the current timestamp.
JingDong then appends these keys and their values to the URL
parameters.

getSignMap does not seem to use any common method
for computing hash values, as the sign value returned by
getSignMap does not meet any common encoding standard
based. getSignMap is provided in the native code library lib-
jdmobilesecurity.so, whose size is 17592 bytes. Since reverse-
engineering this library would be time consuming, we use the
native method getSignMap as an oracle during our attack.
We wrote a small Java app, jdtricker, that takes as input
functionId, body, and uuid, creates a Map and List,
calls getSignMap, and then extracts sign, sv, and st from
the returned Map.

Our replay attack proceeds as follows. First, during the
eavesdropping stage, AppCracker records functionId,
body, and uuid in the login traffic from the victim user.
Then, during the replay stage, AppCracker runs our jdtricker
in an Android emulator where we have installed libjd-
mobilesecurity.so. AppCracker sends the recorded victim’s
functionId, body, and uuid to jdtricker, which then calls
getSignMap to get sign, sv, and st, and returns them to
AppCracker. Finally, AppCracker replays the recorded login
traffic but replaces sign, sv, and st with the fresh values
returned from getSignMap.

D. Sessions

Since HTTP requests are stateless, web applications use
sessions to carry states between subsequent requests. Session

p u b l i c s t a t i c f i n a l S t r i n g g e t S i g n (Map<S t r i n g , S t r i n g > paramMap) {
w h i l e (t r u e) {

S t r i n g s t r 7 ;
t r y {

S t r i n g s t r 1 = (S t r i n g) paramMap . g e t (” appKey ”) ;
S t r i n g s t r 2 = (S t r i n g) paramMap . g e t (” a p p S e c r e t ”) ;
S t r i n g s t r 3 = (S t r i n g) paramMap . g e t (” a p i ”) ;
s t r 4 = (S t r i n g) paramMap . g e t (” v ”) ;
S t r i n g s t r 5 = (S t r i n g) paramMap . g e t (” ime i ”) ;
S t r i n g s t r 6 = (S t r i n g) paramMap . g e t (” i m s i ”) ;
s t r 7 = (S t r i n g) paramMap . g e t (” d a t a ”) ;
S t r i n g s t r 8 = (S t r i n g) paramMap . g e t (” t ”) ;
S t r i n g s t r 9 = (S t r i n g) paramMap . g e t (” ecode ”) ;
i f (s t r 4 != n u l l) {

i f (! ” ” . e q u a l s (s t r 4)) b r e a k l a b e l 3 8 1 ;
S t r i n g s t r 1 0 = D i g e s t U t i l s . md5ToHex (new B y t e A r r a y I n p u t S t r e a m (

s t r 1 . g e t B y t e s (”UTF−8 ”))) ;
S t r i n g B u f f e r l o c a l S t r i n g B u f f e r = new S t r i n g B u f f e r () ;
i f ((s t r 9 != n u l l) | | (” ” . e q u a l s (s t r 9))) {

l o c a l S t r i n g B u f f e r . append (s t r 9) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;

}
l o c a l S t r i n g B u f f e r . append (s t r 2) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;
l o c a l S t r i n g B u f f e r . append (s t r 1 0) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;
l o c a l S t r i n g B u f f e r . append (s t r 3) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;
l o c a l S t r i n g B u f f e r . append (s t r 4) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;
l o c a l S t r i n g B u f f e r . append (s t r 5) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;
l o c a l S t r i n g B u f f e r . append (s t r 6) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;
l o c a l S t r i n g B u f f e r . append (D i g e s t U t i l s . md5ToHex (

new B y t e A r r a y I n p u t S t r e a m (s t r 7 . g e t B y t e s (”UTF− 8 ”)))) ;
l o c a l S t r i n g B u f f e r . append (” & ”) ;
l o c a l S t r i n g B u f f e r . append (s t r 8) ;
S t r i n g s t r 1 1 = D i g e s t U t i l s . md5ToHex (new B y t e A r r a y I n p u t S t r e a m (

l o c a l S t r i n g B u f f e r . t o S t r i n g () . g e t B y t e s (”UTF−8 ”))) ;
r e t u r n s t r 1 1 ;

}
}

}

Fig. 6: TMall, JuHuaSuan, and 1688’s function for computing MAC

IDs are the data that web servers use to link requests to
sessions. Session IDs may be stored in URL parameters, the
request body, and the cookie. Since session IDs serve as the
authentication token, they must be protected.

Session ID in request body During user login, YiHaoDian
sends userToken in the URL parameters. After the authen-
tication succeeds, YiHaoDian includes userToken in all the
messages in the same session. Although YiHaoDian sends
login requests via HTTPS, it sends all subsequent messages
via HTTP. From these messages, AppCracker eavesdrops on
userToken of the victim user, and then replays it to hijack
the victim user’s session.

Session ID in cookie HZBank uses JSESSIONID in
the HTTP cookie as its session ID. PingAnBank uses the
combination of JSESSIONID and BIGipServerIBANK-IBP

little core test Pool in the HTTP cookie as its session ID.
By eavesdropping and then replaying these IDs, AppCracker
successfully hijacks the victim user’s session.

V. ACTIVE ATTACKS

In active attacks, the attacker may not only eavesdrop on the
traffic but also insert, modify, and delete traffic. The attacker
can accomplish this by penetrating a trusted WiFi router or
providing his own rogue router. This attack is referred to as
Man-In-The-Middle (MITM) attack.

A. Forged Certificate

A common mechanism for establishing a secure channel is
SSL. However, to defend against the MITM attacks, the client
must validate the server’s certificate. Unfortunately, most apps

that use SSL that we examined fail to validate certificates,
shown in the full version of this paper [4].

AppCracker creates its self-signed certificate whose com-
mon name is our domain, but all the above apps accept this
certificate. This indicates that they fail to verify at least two
items:

• that the certificate authority is trusted.
• that the common name in the certificate matches the

expected domain name.

B. Public key substitution

Taobao, TMall, JuHuaSuan, and 1688 are all apps from
Alibaba. During login, the apps first sends a request to the
server and the server returns a RSA public key. Then, the
app sends the username in plaintext but encrypts the password
using the public key.

Section IV-B2 describes the vulnerability in the public keys
sent to TMall, JuHuaSuan, and 1688: because they choose
the public exponent e to be 3 without padding the plaintext,
it becomes trivial for the attacker to decrypt the ciphertext
without knowing the private key. However, the exponent e in
the public key sent to Taobao is 65537, so the above passive
attack does not work.

Fortunately for the attacker, Taobao fails to validate the
public key returned by the server. AppCracker takes advantage
of this vulnerability to attack Taobao. It blocks the response
that contains the public key from Taobao’s server, saves the
public key in its database, replaces it with its own public key
in the response, and then forwards the modified response to
Taobao. Subsequently, when the app sends the next request
containing the password, which has been encrypted with
AppCracker’s public key, AppCracker blocks the request, de-
crypts the ciphertext of the password, reencrypts the password
with the saved original public key, and then forwards the
request to the server. During our attack, neither the app nor the
server seems to notice the attack because the app continues to
run properly.

VI. DISCUSSIONS

A. Lessons Learned

The primary lesson learned during our evaluation is that
end-to-end security matters. Since it would be infeasible to
always expect a secure network, apps must protect themselves
by establishing secure channels. We describe other lessons
below.

1) Use Standard Cryptograpic Protocols: Many apps do
not use SSL to establish a secure channel. Instead, they
home-brew their own cryptographic protocols. As shown in
Sections IV and V, these protocols are often prone to crypto-
graphic pitfalls.

We interviewed a few vendors about why they did not
use SSL. A common concern is its performance penalty.
Since the SSL protocol requires several round trips during the
handshake, it causes significant delays on wireless networks
with large latency, such as 2G (300-1000 ms) and some 3G
networks (100-500 ms) popular in small towns and villages. At

one point, a vendor switched their app from HTTP to HTTPS,
but only to reverse course after receiving an avalanche of user
complaints in just two days. While we sympathize with the
dilemma, we believe that developing ad hoc cryptographic
protocols is the wrong approach fraught with pitfalls. We
suggest that research be conducted on secure channels that
are less sensitive to network latency.

2) No Place to Hide in the App: Since the app is available
to any user, including adversaries, there is no place to hide
secrets in the app. Any component in the app, such as
resources, bytecode, and even native code, may be reverse-
engineered and analyzed. This observation implies that em-
bedding symmetric keys in the app is insecure.

3) Security through Obscurity doesn’t Work,: Several apps
try to prevent reverse-engineering by obfuscation in a number
of ways:

• Obfuscate Dalvik code. For example, ProGuard shrinks,
optimizes, and obfuscates your code by removing unused
code and renaming classes, fields, and methods with
semantically obscure names. [18] However, this won’t
deter the determined reverse-engineers – it merely makes
their jobs longer. We note that in such obfuscated Dalvik
code, although user-defined names have been obfuscated,
API method names (e.g., the Java Crypto Library) have
not been, which helps reverse-engineers.

• Use native code. Native code is much less readable
than Dalvik bytecode, which makes it more difficult
for the reverse engineer to understand its functions and
algorithms. However, as we showed in Section IV-C, we
were able to use JingDong’s native code library as a
signing oracle to forge messages with the correct MAC
without needing to understand the native code.

4) Build Security into Apps from the Beginning: Several
vendors told us that they did not believe that security was
critical in the beginning of their apps. For example, DianPing
started as an app for users to review businesses. Since it
supported no financial transactions, the developers believed
that they could not justify the overhead of using SSL to protect
network traffic. However, a few years later, the app began to
allow users to buy discount gift certificates and stores each
certificate’s unique ID in the user’s account. This new function
makes a user’s account much more valuable to adversaries,
because to redeem a certificate, one needs to know only its
ID. Since DianPing did not build security into its framework
in the beginning, it now finds it difficult to retrofit security in.

B. Limitations

Our work has a number of limitations. First, we con-
servatively consider an app vulnerable only after we have
successfully attacked it. There are many more apps that are
potentially vulnerable, but before we attack them successfully,
we do not report them as vulnerable. For example, some apps
send MD5 hash of the password in plaintext but also include a
MAC that we have not reverse-engineered or found an oracle
for. Even though an adversary may launch a dictionary attack

on the MD5 of the password, we do not report these apps as
vulnerable yet.

C. Future Work

Currently AppCracker relies on manual analysis of apps to
discover their vulnerabilities. We are working on automating
this process. As a first step, we try to automatically detect apps
that fail to encrypt secret credentials in their network traffic.

VII. RELATED WORK

A. App Vulnerabilities

Misuse of security libraries is a common cause of vulner-
abilities in apps. Fahl et al. [10] revealed six types of flaws
in the use of SSL/TLS by apps, such as missing validation
of sever certificates and allowing all host names. They de-
signed a tool to detect potential SSL vulnerabilities and found
8.0% of the apps potentially vulnerable to Man-In-The-Middle
attack. SMV-Hunter [20] combined static analysis and dy-
namic validation to improve the precision of detecting unsafe
SSL use. Georgiev et al. [11] revealed that many security-
critical apps and libraries failed to validate SSL certificate
correctly, mainly due to the badly designed APIs of SSL
implementations. While we also consider SSL vulnerabilities,
we examine a much wider range of vulnerabilities in user and
session authentication in apps. Particularly, we examine how
an eavesdropper, who is unable to launch a MITM attack on
SSL certificates, can compromise apps’ confidentiality.

Egele et al. [7] studied the misuse of cryptographic API
in Android apps and summarized six basic rules in using
cryptographic libraries. They designed a program analysis tool,
CryptoLint, to detect rule violations in 11,748 applications and
found 88% of the apps violating at least one rule. Similar to
CryptoLint, we also study the misuse of cryptography. But
different from CryptoLint, we discover concrete vulnerabilities
and demonstrate live attacks resulting from the misuse. We
also discover problems beyond the misuse of crytographic
API, such as weak home-grown message authentication code.

Schrittwieser et al. [19] evaluated the authentication mech-
anisms of nine popular mobile messaging and VoIP appli-
cations. They found that no additional authentication mech-
anisms other than the phone number were used by these
applications in authentication. Specifically, most of these apps
used SMS or phone calls to transmit authentication code. They
found that six apps were vulnerable to Account Hijack Vulner-
ability due to the insecure use of phone number to authenticate
users. By contrast, we study the misuse of cryptography during
user and session authentication.

In mobile apps, third-party SDKs are frequently used to
access online services, such as cloud storage, social network-
ing. These SDKs are intended to help developers integrate
their services; however integrating security-critical third-party
services securely is difficult. Wang et al. [21] identified serious
authentication and authorization flaws in applications that
integrate Single-Sign-On SDKs, even when developers strictly
follow the SDK documentation.

Dynamic class loading allows applications to load addi-
tional code from external resources at runtime. Poeplau et
al. [16] showed that developers of benign applications could
inadvertently introduce vulnerabilities when they dynamically
loaded code from untrusted resources. The insecure use of
dynamic class loading poses a great threat to the integrity and
confidentiality of application code and data. They found that
9.25% of 1,632 popular Android applications loaded external
code insecurely.

B. App Security Analysis

Enck et al. [8] evaluated the security of 1,100 popular
apps by examining the decompiled source code with the
ded [13] decompiler. They uncovered pervasive use/misuse of
personal/phone identifiers, and deep penetration of advertising
and analytics networks in Android apps. The dare decompiler
[14] extends the ded decompiler to support further analysis on
the decompiled class files. TaintDroid [9] is a dynamic flow
tracking tool for detecting information leak in Android apps.
Crussell et al. [5] designed a hybrid analysis tool, MAdFraud,
to investigate ad fraud in Android apps. MAdFraud could
automatically identify fraudulent apps that request ads while
the app is in the background or click on Ads without user
interaction. FlowDroid [2] is a highly-precise taint analysis
framework for Android apps. Epicc [15] supports precise inter-
component analysis for large-scale Android apps. Amandroid
[22] is a precise and general inter-component data flow anal-
ysis framework for security vetting of Android apps.

VIII. CONCLUSION

We took the first step to study user and session authentica-
tion in the most popular mobile apps on Chinese Android mar-
kets and confirmed that 100 apps from 69 companies contain
vulnerabilities. We designed a mini-language for describing
these vulnerabilities and developed a tool, AppCracker, to
launch passive and active attacks to verify these vulnerabilities.
Many of these vulnerabilities are caused by the misuse of
cryptography in the apps’ home-grown cryptographic proto-
cols, and violations of principles in security engineering. We
hope that our findings will raise awareness of this problem
among both the research community and app developers, and
will encourage research in automated tools for detecting these
vulnerabilities.

IX. DISCLOSURE

We endeavor to balance the protection of apps and vendors
and the dissemination of knowledge. Therefore, we notified
all the vendors in early October of 2014.

X. ACKNOWLEDGMENT

We thank HTC Corporation for providing smartphones for
the experiments.

REFERENCES

[1] Android Apktool. URL: https : / / code . google . com / p /
android-apktool.

[2] Steven Arzt et al. “FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Anal-
ysis for Android Apps”. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’14. Edinburgh,
United Kingdom, 2014, pp. 259–269. ISBN: 978-1-
4503-2784-8.

[3] Baidu App Market. URL: http://shouji.baidu.com.
[4] Fangda Cai, Hao Chen, Yuanyi Wu, and Yuan Zhang.

AppCracker: Widespread Vulnerabilities in User and
Session Authentication in Mobile Apps. (Full version
of this paper). URL: http://shtech.org/research/paper/
appcracker.pdf.

[5] Jonathan Crussell, Ryan Stevens, and Hao Chen. “MAd-
Fraud: Investigating Ad Fraud in Android Applica-
tions”. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Ser-
vices. MobiSys ’14. Bretton Woods, New Hampshire,
USA, 2014, pp. 123–134.

[6] dex2jar. URL: https://code.google.com/p/dex2jar.
[7] Manuel Egele, David Brumley, Yanick Fratantonio, and

Christopher Kruegel. “An Empirical Study of Cryp-
tographic Misuse in Android Applications”. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. CCS ’13.
Berlin, Germany, 2013, pp. 73–84. ISBN: 978-1-4503-
2477-9.

[8] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. “A Study of Android Application
Security”. In: Proceedings of the 20th USENIX Security
Symposium. USENIX Security’11. San Francisco, CA,
Aug. 2011.

[9] William Enck et al. “TaintDroid: an information-flow
tracking system for realtime privacy monitoring on
smartphones”. In: Proceedings of OSDI’10. 2010.

[10] Sascha Fahl et al. “Why Eve and Mallory Love An-
droid: An Analysis of Android SSL (in)Security”. In:
Proceedings of the 2012 ACM Conference on Computer
and Communications Security. CCS ’12. Raleigh, North
Carolina, USA, 2012, pp. 50–61.

[11] Martin Georgiev et al. “The most dangerous code in
the world: validating SSL certificates in non-browser
software”. In: ACM Conference on Computer and Com-
munications Security. 2012, pp. 38–49.

[12] JD-GUI. URL: http://jd.benow.ca.
[13] Damien Octeau, William Enck, and Patrick McDaniel.

The ded Decompiler. Tech. rep. NAS-TR-0140-2010.
Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA,
USA: Network and Security Research Center, Sept.
2010. URL: http:/ /siis .cse.psu.edu/ded/papers/NAS-
TR-0140-2010.pdf.

[14] Damien Octeau, Somesh Jha, and Patrick McDaniel.
“Retargeting Android Applications to Java Bytecode”.
In: Proceedings of the 20th ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engi-
neering. FSE ’12. Cary, North Carolina, 2012, 6:1–6:11.
ISBN: 978-1-4503-1614-9.

[15] Damien Octeau et al. “Effective Inter-Component Com-
munication Mapping in Android: An Essential Step
Towards Holistic Security Analysis”. In: Proceedings
of the 22nd USENIX Security Symposium (USENIX Se-
curity 13). Washington, D.C.: USENIX, 2013, pp. 543–
558. ISBN: 978-1-931971-03-4. URL: http://siis.cse.psu.
edu/epicc/papers/octeau-sec13.pdf.

[16] Sebastian Poeplau, Yanick Fratantonio, Antonio
Bianchi, Christopher Kruegel, and Giovanni Vigna.
“Execute This! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications”. In:
Proceedings of NDSS’14.

[17] Procyon. URL: https://bitbucket.org/mstrobel/procyon.
[18] ProGuard. URL: http : / /developer. android . com/ tools /

help/proguard.html.
[19] Sebastian Schrittwieser et al. “Guess Who Is Texting

You? Evaluating the Security of Smartphone Messaging
Applications”. In: Proceedings of NDSS’12. Feb. 2012.

[20] David Sounthiraraj, Justin Sahs, Garrett Greenwood,
Zhiqiang Lin, and Latifur Khan. “SMV-Hunter: Large
Scale, Automated Detection of SSL/TLS Man-in-the-
Middle Vulnerabilities in Android Apps”. In: Proceed-
ings of the 21st Annual Network and Distributed System
Security Symposium (NDSS’14). San Diego, CA, Feb.
2014.

[21] Rui Wang et al. “Explicating SDKs: Uncovering As-
sumptions Underlying Secure Authentication and Au-
thorization”. In: Proceedings of USENIX Security ’13.
Washington, DC.

[22] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby.
“CHEX: statically vetting Android apps for component
hijacking vulnerabilities”. In: Proceedings of CCS ’14.
Scottsdale, AZ, Nov. 2014.

[23] YAML. URL: http://www.yaml.org/.

https://code.google.com/p/android-apktool
https://code.google.com/p/android-apktool
http://shouji.baidu.com
http://shtech.org/research/paper/appcracker.pdf
http://shtech.org/research/paper/appcracker.pdf
https://code.google.com/p/dex2jar
http://jd.benow.ca
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
https://bitbucket.org/mstrobel/procyon
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
http://www.yaml.org/

	Introduction
	Threat Model and Background
	Threat Model
	Reverse-engineering Tool Chain

	Methodology
	Offline Analysis
	Online analysis
	AppCracker
	Dataset

	Passive Attacks
	Plaintext or Encoded Data
	Encryption
	Symmetric Key Encryption
	Public Key Encryption

	Message Integrity
	Sessions

	Active Attacks
	Forged Certificate
	Public key substitution

	Discussions
	Lessons Learned
	Use Standard Cryptograpic Protocols
	No Place to Hide in the App
	Security through Obscurity doesn't Work,
	Build Security into Apps from the Beginning

	Limitations
	Future Work

	Related Work
	App Vulnerabilities
	App Security Analysis

	Conclusion
	Disclosure
	Acknowledgment

