
Asking for (and about) Permissions
Used by Android Apps

Ryan Stevens, Jonathan Ganz, Vladimir Filkov, Premkumar Devanbu, and Hao Chen
University of California, Davis

Davis, CA, USA
{rcstevens, jmganz, chen}@ucdavis.edu {devanbu, filkov}@cs.ucdavis.edu

Abstract—Security policies, which specify what applications
are allowed to do, are notoriously difficult to specify correctly.
Many applications were found to request over-liberal permis-
sions. On mobile platforms, this might prevent a cautious user
from installing an otherwise harmless application or, even worse,
increase the attack surface in vulnerable applications. As a result
of such difficulties, programmers frequently ask about them in
on-line fora. Our goal is to gain some insight into both the misuse
of permissions and the discussions of permissions in on-line
fora. We analyze about 10,000 free apps from popular Android
markets and found a significant sub-linear relationship between
the popularity of a permission and the number of times when it
is misused. We also study the relationship of permission use and
the number of questions about the permission on StackOverflow.
Finally, we study the effect of the influence of a permission (the
functionality that it controls) and the interference of a permission
(the number of other permissions that influence the same classes)
on the occurrence of both permission misuse and permission
discussions in StackOverflow.

I. INTRODUCTION

Building and operating software securely is a major concern.
A key aspect of achieving this goal is to set up appropriate
security policies, which govern how applications are permitted
to use the resources and services provided by the platform they
operate on. For example, Java applets are typically prohibited
from reading and writing files. The proper configuration of
these security permissions provides a good operating point on
the well-known trade-off between security and convenience.
Correctly configured policies ensure that a) the applications
are protected from each other, b) the platform is protected
from the applications, c) the applications function correctly,
and d) the users are not unduly inconvenienced. However,
programmers often misuse these policy permissions, being
either too conservative or too liberal in requesting permissions.
Over-conservative security permissions can lead to inconve-
nient applications (e.g., the user being frequently asked for
various credentials) or even application failure (e.g., when the
application attempts an operation prohibited under the config-
ured policy regime but necessary for its function). Over-liberal
security permissions can be even worse: the application that
is over-liberally permissioned can maliciously or erroneously
cause harm at a scope larger than that what would be rea-
sonably expected by users of the application. An increasingly

common trend over the last decade or so is to specify these
permissions in XML configuration files, which are distinct
from the program source code. Separating these from the
code provides design conveniences as well as operational
conveniences. This is standard practice in container-based
web service applications, for example on the .NET or J3EE
platforms. The intent here is to change what applications are
allowed to do at configuration time, and also allow security
experts (who may not be same as the application develop-
ers) to configure the security permissions. Mobile platforms,
notably Android, also use XML-configured security policies.
However, the goal here is different: the permissions stated in
the application security XML configuration files is essentially
a declaration by applications of their intent to use certain
platform-provided services; this type of intent declaration is
called “provisioning”. An application, for example, can ask
for permission to use fine-grained geo-location, the network,
or the device’s microphone. When an application is installed,
these provisions can be either checked interactively with the
user (who may choose to deny them, which would abort the
installation) or checked against some previously-specified de-
faults. If an application uses services beyond what is specified
in the provisions, the application will throw an exception,
usually resulting in application termination. On the other hand,
if the application provisions for services beyond what it strictly
needs, a user may unnecessarily deny installation; or, if s/he
permits it, the application (because of error or malice) is
capable of causing harm or inconvenience to the user.

Like other kinds of complex programming activity, security
provisioning is fraught with human errors, and frequently a
subject of discussion and concern in public forums, and in
the media [11, 12, 7]. But how widespread is this problem?
What are the factors that influence the occurrence of error in
security permissioning? How much difficulty do programmers
experience in learning about these permissions? These impor-
tant questions are attractive ones for the software repository
miner. Unfortunately, until very recently, it had been difficult
to find large samples of applications that provision security
permissions. Now, however, it is possible to find thousands
of free applications in app marketplaces, such as Android
marketplaces. These applications come each with their own
security provisions. Furthermore, the use of high-level byte

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

31



code language allows the applications to be readily analyzed
to determine the resources they actually use. Finally, it is
now possible (thanks to StackOverflow) to obtain data relating
to the demand for documentation and knowledge concerning
permissions. With these observations in mind, we seek to
answer the above questions.

In this paper, we make the following contributions.
1) We mine data from approximately 10,000 free appli-

cations from Android markets, and analyze which per-
missions are commonly used and which are commonly
over provisioned. We relate the use of these permis-
sions with discussions that mention these permissions
in StackOverflow.

2) We examine the factors that influence permission mis-
use, including: the popularity of the permissions, the
influence of the permissions (how much functionality
they control) and the interference of the permission (how
much the permission interacts with other permissions).

3) We examine the effects of the above factors on the de-
mand for documentation about permissions, as measured
by degree to which these permissions come up in on-line
fora.

II. BACKGROUND

This section briefly outlines important topics which we refer
to in the paper. We also point out data sources available to
developers when searching for information, notably the official
Android documentation, and community help forums such as
StackOverflow.

A. Android and Permissions

Android applications (commonly referred to as apps) are
programmed in Java, and compiled into Dalvik bytecode; they
are then packaged as a .apk file (APK), which is similar
to Java’s JAR file format. An APK consists of the app’s
class files, static assets such as image or video data, and a
Manifest file, among other things. The Manifest is an XML
file that specifies a number of properties about the app, such
as what Android API level the app is targeted for, what
screen (called an Activity) the app should start on, and what
permissions the app requests. Permissions are the basis for
the Android security model; they are granted to the app for
its lifetime while installed on the device, with the exception
of updates which may change the app’s permissions. The
appropriate permission must be requested in order for an app
to access sensitive device functionality, such as the network
or GPS manager. Typically, each permission controls some
set of Android or Java API functions, and calling one of these
privileged functions without the appropriate permission will
cause a security exception (although note, it is not possible to
bypass a permission simply by bypassing the API, for example
through exec or native code). Developers who want more
information about the API and permissions rely on the official
Android documentation, which provides Android and Java API
documentation, as well as tutorials and examples of Android
development [1]. When a user installs an app, usually done

through an Android app marketplace, all permissions requested
by the app are presented to the user prior to installation, and
the user is given an all-or-nothing choice of granting all the
permissions and installing the app, or cancelling the install
altogether. Thus, the more permissions an app requests, the
more warnings users will be presented with, which may keep
concerned users from buying or installing the app.

B. Overprivileged Apps

Considering that requesting too many permissions may de-
crease the popularity of an app, it is surprising that developers
would request more permissions than they need; however
previous work by Felt, et al. has shown that the problem of
overpermissioning, when apps request more permissions than
what they need, is prevalent among Android apps [6]. The
authors found that one potential cause of overprivileged apps
is unclear or incorrect documentation, where Android API
documentation does not mention that a permission is required
or the wrong permission is documented. Since permission
errors result in exceptions during runtime, developers may
feel compelled to include more permissions than they need so
that users do not experience crashes after the app has been
uploaded to a market. Additionally, the authors developed
a tool called Stowaway that is able to detect when an app
contains unnecessary permissions, which we used for this
work. Stowaway provides a mapping of Android API functions
to permissions that control that function, and can detect
unnecessary permissions in an app by identifying all priviliged
API calls in the app’s bytecode and then mapping these back
to the minimal set of permissions that the app requires. Any
permissions in the app’s Manifest that are not in the minimal
set of permissions are then considered superfluous.

C. StackOverflow

StackOverflow is a software developement online forum
where users can ask questions related to a variety of software
development topics and receive answers from other users [19].
All questions asked in the open forums are publicly available
for anyone to view, regardless if they are registered with the
site. Questions are tagged with keywords that describe what
topics the question relates to. Android is a popular topic on
StackOverflow, being the fifth most used tag as of February
20131. In addition to being a useful source of information for
developers, StackOverflow provides researchers with insight
into what topics are being discussed by developers.

III. THEORY

Permissions are not misused equally. In our analysis, we
found that some permissions are rarely misused, for example
the WRITE CONTACTS permission. On the other hand, some
are almost always unnecessarily requested, such as the AC-
CESS LOCATION EXTRA COMMANDS permission. Addition-
ally, Felt et al. found that some permissions are more likely
to be superfluous among overprivieged apps [6]. We would

1See stackoverflow.com/tags

32



like to gain insight into why developers use some permissions
better than others using security-engineering related metrics
capturing the popularity, complexity, and influence of different
permissions. To that end, we model misuse as a function of
these predictors.

A. Quantifying Permission Properties

One potential predictor that naturally arises when measuring
premission misuse is the popularity of a permission, which
we call permission usage. We measure use simply as the
number of times the permission is requested in a manifest.
We consider permission misuse as the number of instances
a permission is requested by an app but not checked in any
Android API call present in the app. We might expect that as
a permission is used by more apps, it is also misused by more
apps, and that the relationship between these variables is linear.
However, it might also happen that developers do better at
properly using permissions that are more popular, which would
imply a sub-linear relationship between usage and overusage.
This may arise in the case that popular permissions are better
documented in the Android API or are discussed more often
by the Android development community, as indicated by more
demand for documentation.

Besides popularity, properties of the permission itself may
affect how often it is misused by developers. The associa-
tion between the permissions and their controlled API is a
difficult security engineering problem. Groups of APIs that
conceptually belong together, and often are used together,
should be grouped together for developer convenience. On
the other hand, if an API can at times be used by itself and
is a critical API from user’s point of view, then it would
make sense to assign a permission specifically to that API.
The trade-off between coarse- and fine-grained relationships
between permissions and the APIs they control is a complex
design problem. The Android platform includes both coarse-
and fine-grained permissions; it also includes permissions
that overlap with other permissions. In general, permission-
API relationships can be modeled as a directed bi-partite
graph, with edges between permissions and the resources they
control.

The structure of this bi-partite graph might influence the
ability of developers to understand them, and thus both the
potential of permission abuse, and the demand for knowledge
for them on fora like StackOverflow. For example, perhaps
permissions that influence a small portion of the Android API
are less likely to be misused, as apps which carelessly (viz.,
virtually at random) request permissions are less likely to use
an API function it controls; it also may be the case that the
relationship between the permission and the controlled API are
more coherent and easy to understand. Alternatively, the highly
influential permissions may be more likely to be misused,
as their precise purpose might be difficult for developers to
divine. The influence of a permission is a measurement of
how much of the Android API the permission controls. If
the APIs are grouped under a permission very well (namely,
all the APIs controlled by a permission are all used by an

application, or none of them are used) then it is unlikely
that the permission will ever be over-permissioned, that is,
requested unnecessarily.

Lastly, our intuition as to why developers over-request
permissions is based on the assumption that developers request
permissions primarily to ensure their app executes properly.
However, if many different permissions control the API they
are interested in, the developers may be confused about pre-
cisely which permission is the right one to request, so they may
have a tendency to over-provision. For example, a developer
working with some specific feature in the Android API (like
the GPS manager), may request all permissions that control
any part of that feature. We call this intuition interference
and expect that permissions with greater interference are more
likely to be misused, as they may get “lumped in” with their
interfering neighbors.

B. Research Questions

We have presented some intuitions concerning three poten-
tial mechanisms that might influence a developer’s tendency
to misuse a permission. With this in mind, we present our first
research interest in this paper:

RQ1: What is the effect of permission usage, influence,
and interference on permission misuse?

The precise metrics we use for measuring influence and
interference are described in the following section.

In addition to developers misusing a permission more often
when they do not understand it, they are also more likely to
seek help regarding the permission. Demand for documenta-
tion captures how often developers are seeking documentation
regarding the permission, which should be evident from An-
droid developer community fora such as StackOverflow. Using
this as our second dependent variable, we present our second
research direction:

RQ2: What is the effect of permission usage, influence,
and interference on demand for documentation?

Finally, we look at the relationship between permission
misuse and the demand for documentation.

RQ3: What is the a relationship between use (or mis-
use) and demand for documentation for the permissions?

We both quantify this relationship statistically and illustrate
it via a case study of example permissions which receive
higher, medium, or lower levels of documentation demand for
their corresponding levels of misuse.

IV. DATASET

In this section we describe our data sources and how we
measured the various metrics for each permission presented

33



in the previous section. We used two different data set for our
work:

1) The authors of Stowaway have made their tool publicly
available. We gathered a large collection (about 10,000)
of apps from various Android markets. We ran these
tools through stowaway, and determined a) how many
times each permission was used (ie., provisioned in
the manifest) and b) how many times it was used, but
the APIs it controls were not actually invoked in the
application. Of the 130 permissions recognized by the
Andriod documentation, we found 94 were actually used
in the applications, after removing false positives that are
not in Stowaway’s mapping.

2) StackOverflow includes a large group of messages
tagged with “Android”. We used these for our analysis of
the demand for information about different permissions.

A. Permission Properties

In order to determine properties of a permission like influ-
ence or interference, we need to know which API functions
a permission controls. We chose to use Stowaway’s publicly
available permission mapping to do so [20]. This database
provides a mapping from Android API functions to permis-
sions that control the function. Using the mapping, we built a
bipartite graph between permissions and API functions such
that an edge represents that a function is controlled by a
permission (similar to the graph in Figure 1, except the nodes
on the right are functions, rather than classes). In this graph,
the degree of a node from one part is a direct measure of
it’s relationships to nodes on the other part. We found the
average function indegree to be 1.12, indicating that most API
functions are controlled by exactly one permission (functions
that are not controlled by any permission are not in the graph).
We then measure the influence of a permission by its outdegree
in the graph, which we will refer to by the variable fout.

To measure the interference of a permission, we created
a similar bipartite graph, precisely of the kind shown in
Fig 1, between permissions and API classes, such that an edge
represents that a permission controls at least one function in a
class. Figure 1 shows an example graph with three permissions
and 4 classes. We define the variable twohop as the number of
permissions which can be reached from a permission in two
hops in the graph. Figure 1 shows an example graph with three
permission and explains their twohop values. We believe this
metric captures our notion of interference, where permissions
are requested simply because they control a similar part of the
API as other permissions.

B. Permission Misuse

Our application dataset consists of 10,300 free Android
apps that request at least one permission, downloaded from
various Android markets2. Using Stowaway, we determined

2By market: Play (6, 978), SlideME (552), m360 (493), Brothersoft (464),
androidonline.net (325), 1mobile (297), gfan.com (214), eoemarket.com
(165), GoApk (97), Freeware Lovers (42), AndAppStore (44), softportal.com
(37), androidsoft.org (12), Other (28)

Permissions API Classes

Class 1

Perm 1

Perm 2

Perm 3

Class 2

Class 3

Class 4

Fig. 1: Example bipartite graph between permissions and API classes.
An edge indicates the permission controls at least one function in the
class. The value of twohop for permissions 1, 2, and 3 is 1, 2, and
1 respectively.

what permissions each app requests and which of these
permissions are superfluous for each app. We found that
44% (4,565) of the apps contained at least one unnecessary
permission according to Stowaway, which is higher than the
33% reported in Felt, et al [6]. This discrepancy is likely due
Stowaway’s behavior, which will report any permissions not
in its mapping as superfluous, including any misspelled or
made-up permissions. When only considering permissions in
Stowaway’s mapping, the number of apps in our dataset with
at least one unnecessary permission decreases to 39% (4,055).
The remaining discrepancy can be explained by changes to the
Android API which have made Stowaway’s mapping stale, or
by the lower quality apps on third-party Android markets (Felt
et al. only considered apps from the official Android market).
It’s also entirely possible that permission misuse has become
more prevalent since the original study. Using our results, we
define two variables for each permission: popularity is the
number of times the permission is requested by an app in
our dataset, misused is the number of times the permission
is superfluously requested by an app in our dataset. Note
that misused ≤ popularity for all permissions; a permission
cannot be misused, unless it’s actually used.

C. StackOverflow

Finally, we used StackOverflow to measure the demand for
documentation. To do so, we used a publicly available database
dump from StackOverflow from August 2012, which contains
records of all questions and answers posted on StackOver-
flow [10]. We measured the demand for documentation for

34



each permission as the number of questions asked that contain
the permission name in the post body or title. To avoid false
positives, we ensured that the permission name was in all caps
(to avoid confusing the INTERNET permission with the word
“internet”, for example) and that all posts contain the keyword
“android” in the title, body, or tags (case insensitive). Lastly,
we found many posters will include their full Manifest file
when asking an Android-related question. This is a potential
confound. Permissions which occurred frequently would tend
to frequently appear in questions, thus increasing the risk that
we would see an artificial relationship between permission use
in manifests and permission mention in the StackOverflow
questions. So we removed full Manifest files from posts before
searching for a permission name in the body.

However, if only a fragment of a of a Manifest is mentioned
in a body, this indicates the poster’s belief that the part of the
Manifest is related to the question in some way. The variable
questions represents the number of questions asked about a
permission, such that the question body or title contains the
permission’s name after the above data grooming has been
done. Summary statistics of these variables is presented in
Table I.

TABLE I: Summary of the variables which we measured from our
datasets. N is the number of permissions which we included in our
study.

Statistic N Mean St. Dev. Min Max

fout 94 14.723 19.902 1 124
twohop 94 7.819 7.334 0 34
popularity 94 811.617 1,792.216 1 9,789
misused 94 84.064 115.006 1 547
questions 94 55.638 142.638 0 1,015

V. ANALYSIS

We present our analysis of the Stowaway and StackOverflow
data based on the measurements presented in the previous
section and our research questions presented in Section III.
We first present a model for predicting permission misuse
based on our variables, then we do the same for demand for
documentation. Lastly, we examine the relationship between
permission misuse and the demand for documentation.

A. Permission Misuse

We first build a linear regression model for predicting
misuse based on our independent variables popularity, fout,
and twohop. We would expect there to be a strong relationship
between popularity and misused, regardless of our other
variables, however the model only produces a modest fit for
our data, with a Pearson correlation of 0.3. Looking at the
effects of each independent variable on its own, we find that
popularity explains most of the variance, while the effects of
our other variables are minimal. Interestingly, the Spearman
rank coefficient between popularity and misused is 0.89.
The significantly higher rank correlation between popularity

and misused indicates the presence of a strong, but positive
monotonic relationship; when popularity increases, so does
misuse; however, the smaller Pearson correlation indicates
that the relationship is not linear.

We adjusted our model by taking the logarithm of misused
and popularity. We didn’t log scale the other variables. since
they had much lower variances (indeed log-scaling them did
not provide a significantly better model fit as indicated by the
non-nested Cox test for linear models). This yields a model
that fits our data much better, with an R2 of 0.73. and a p-value
< 0.01. A summary of this model is presented in Table II.
We find that the effect of the influence measure fout and
the interference measure twohop are insignificant. Thus, we
conclude that our data does not support the hypothesis that
our measures of interference and influence affect the degree
of misuse.

TABLE II: Summary of our model of permission misuse.

Dependent variable:

log(misused)

Constant 0.916∗∗∗

(0.210)

log(popularity) 0.579∗∗∗

(0.040)

fout −0.003
(0.005)

twohop −0.006
(0.011)

Observations 94
R2 0.729
Adjusted R2 0.720
Residual Std. Error 0.790(df = 90)
F statistic 80.549∗∗∗(df = 3; 90)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Regardless, the strong non-linear relationship between
popularity and misused warrants further investigation. Fig-
ure 2 presents a log-log plot of these two variables, which
shows the relationship between popularity and misused is
sub-linear (the log-log plot has a linear trend with slope,
s = 0.588). This indicates that as a permission gets more
popular, developers get better at using it in the correct context,
and not over provisioning the permission. One factor that
contributes to correct usage of security policies in general is a
useful body of documentation. As the Android documentation
does not describe correct usage of any specific permission,
we speculate that the primary source of examples and use
cases for each permission comes from community fora such as
StackOverflow. If popular permissions were more thoroughly
documented on such fora, we should be able to observe these
trends by analyzing permissions’ demand for documentation.

35



●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
1
0

log(popularity)

lo
g
(m

is
u
s
e
d
)

s=0.588

x = y

Fig. 2: Log-log plot of popularity versus misuse for each permission.
The black line represents the best fit regression line for the points,
while the dashed blue line is simply x = y, included for reference.
The points that lie near x = y are permissions which are almost
always misused.

B. Demand for Documentation

There are around 5,300 questions (after data grooming to
remove full Manifests, and non-capitalized permissions) that
explicitly mention an Android permission. In this section, we
consider the demand for documentation about permissions in
this clearly important on-line forum, and examine the influence
on this demand, of popuarlity and misuse, as well as the
influence and interference measure we discussed earlier.

As before, we build a linear model that describes demand
for documentation by using questions, the questions asked
on StackOverflow, as our dependent variable and popularity,
fout, and twohop as our independent variables. We find our
model fits our data reasonably well, with an R2 of 0.58,
however most of the variance is explained by popularity,
with the other variables contributing very little. In order to
account for nonlinear relationships, we build a model using
the logarithm of questions and popularity, while leaving the
other variables unchanged, as we did with permission misuse.
A summary is presented in Table III. This model fits our
data better than the previous model (Cox’s non-nested model
comparison test indicates a much better fit after log-scaling).
Interestingly, now we find the variables fout and twohop
provide significant explanatory power, with popularity still
the most influential. Looking at the log-log plot of popularity
and questions in Figure 4a, we see that their relationship
is sub-linear, indicating that as a permission gets more pop-
ular, its ratio of questions to popularity goes down. This
“leveling off” is likely due to etiquette on StackOverflow,
where users are discouraged from asking questions that have

Frequency of Use

R
at

io
 o

f A
ns

w
er

s 
to

 Q
ue

st
io

ns

1.0

1.5

2.0

2.5

0 2000 4000 6000 8000 10000

count
2

4

6

8

10

12

14

Fig. 3: Hexbin plot showing the variation of the answer/question
ration with the frquency of use. While there is more variance in
the number of answers per question for less popular permissions,
questions about permissions used more than a few hundred times
never go unanswered.

been already adequately answered on the forum; the popular
permissions have had the common questions asked about them
already, and only get new questions when new or uncommon
problems are experienced by developers. However, clearly,
popular permissions do see a lot of questions that mention
them on StackOverflow. We note here (See figure 3) that even
extremely popular permissions which already have a large
corpus of answers don’t get neglected by the StackOverlow
community. In fact, while some questions about less popular
permissions get many answers, and others get none, the most
popular permissions never get ignored, receiving an average
of about 1.5 answers per question. This supports our previous
claim that popular permissions are less likely to be misused
because they have a more complete set of documentation from
the community.

We now breifly look at the effects of influence and
interference on demand for documentation. Since fout is
weakly positively correlated with questions, this implies
that more influential permissions have more questions asked
about them. Again considering that StackOverflow discourages
repeat questions, we can see that influential permissions will
apply in more contexts than uninfluential ones, and thus need
more questions to saturate their demand for documentation.
Strangely, twohop is negatively correlated with questions,
meaning permissions with greater interference have less de-
mand for documentation, although the effect is weak. We spec-
ulate this is due to a type of suppressive dyadic effect that is
common in network settings. Consider a particular permission
p, controlling a class c, and another permission p′ which is two
hops from p. It may be that a pre-existing discussion about

36



the influence of p′ on c helps clarify a question that someone
may have about the p − c relationship. Thus, the more p′s
(two-hop connections) a particular permission p has, the more
opportunity there is for this type of suppression. Further study
is required to show this conclusively.

TABLE III: Summary of our model of demand for documentation.

Dependent variable:

log(questions)

log(popularity) 0.448∗∗∗

(0.043)

fout 0.014∗∗∗

(0.005)

twohop −0.038∗∗∗

(0.012)

Constant 0.805∗∗∗

(0.225)

Observations 94
R2 0.664
Adjusted R2 0.653
Residual Std. Error 0.847(df = 90)
F statistic 59.277∗∗∗(df = 3; 90)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

C. Misuse and Documentation

In the previous sections, we found as popularity increases,
permissions become less and less likely to be misused. Our
analysis of StackOverflow indicates that more widely used
permissions get mentioned more often in questions, and fur-
thermore, that these questions do get answered on StackOver-
flow. Next, we investigate the reason that some permissions are
misused more heavily. To do so, we examine the relationship
between permission misuse and demand for documentation.
We observe that the Pearson correlation coefficient between
misuse and questions is 0.43, while the Spearman rank is
0.72, indicating a non-linear relationship as in our previous
cases. Figure 4b shows a log-log plot of misused versus
questions, where the relationship is once again sub-linear.
The “levelling off” of questions is less severe than when
observing popularity, indicating that developers’ demand for
documentation does not decrease with misuse as it does for
popularity. This indicates that the demand for documentations
for the misused permissions is not satisfied, or rather that
the documentation for these permissions is still incomplete.
We can see from these trends that StackOverflow provides
measurable benefit to developers in terms of permission usage,
and having many posts that reference permissions satisfies
developers’ demand for documentation regarding these per-
missions. In the next section, we observe the content of these
posts in more detail to better understand how the permissions
are documented.

VI. CASE STUDIES

In this section, we present case studies of a few permissions
that we manually analyzed in more detail. We first investigate
the content of questions from StackOverflow to get an idea
of how permissions are documented on the forum. Then, we
present few permissions which have unusually high rates of
misuse among our apps, and finally look at a permission with
unusually low rates of misuse.

To get a better idea of how permissions are documented
on StackOverflow, we manually analyzed few permissions in
detail. The ACCESS FINE LOCATION permission is used to
access the GPS coordinates of the device, and is one of the
most popular permissions both in our app dataset, and on
StackOverflow. We find that many of the posts that contain
this permission name are not specifically asking about the
permission, but about part of the API that is controlled by the
permission. Often times, the question and top answer taken
together form an example of how to use the API in question,
and include the permissions needed to make the example work.
Developers who rely on these examples to help them use the
Android API will likely also use the suggested permissions,
so it is important that the permissions they contain are correct
and minimal. We manually verified a number of examples
and found that they almost always contain the minimal set of
permissions required to make the example execute properly.
For example, Figure 5 shows a question where the poster
is confused about why an API function is not working in
their app, and mentions the permissions s/he includes. The top
answer responds to the question, and points out that one of the
permissions is actually unnecessary. We found similar results
for other permissions as well, including the WAKE LOCK
permission, which is used for keeping the device from going
to sleep, as well as for the less popular (and less asked about)
CHANGE WIFI STATE permission, used for configuring the
device’s wireless LAN connection.

Two permissions, MOUNT UNMOUNT FILESYSTEMS and
ACCESS LOCATION EXTRA COMMANDS are almost always
misused in our dataset (> 99% of the time), de-
spite being requested by 438 and 429 apps, respectively.
The MOUNT UNMOUNT FILESYSTEMS allows developers to
mount filesystems on the device, which could be used
for managing the SD card, for example. This permission
is likely a false positive from Stowaway, as developers
may choose to execute Linux commands directly through
exec instead of using the API, which Stowaway would
not be able to detect as proper usage of the permission.
The ACCESS LOCATION EXTRA COMMANDS, on the other
hand, is used for adding special behavior to Android’s lo-
cation manager, and developers would most likely not by-
pass the API as in the previous case, as the permission
controls Android-specific behavior. One reason for this is
interference from the more popular and similarly named
ACCESS COARSE LOCATION and ACCESS FINE LOCATION
permissions, which are only misused 3% of the time. If
developers want to ensure that code that interfaces with the

37



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
1
0

log(popularity)

lo
g
(q

u
e
s
ti
o
n
s
)

s=0.499

x = y

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

log(misused)

lo
g
(q

u
e
s
ti
o
n
s
)

s=0.687

x = y

(b)

Fig. 4: Log-log plots of permission popularity and misuse versus questions for the permission in our data set. The black line represents
a best fit regression line for the points, while the dashed blue line represents y = x, included for reference.

location manager works properly, they may feel compelled to
request all permissions that control some part of the location
manager.

The DUMP permission, which is used for reading state
information of system services, is the least often misused
permission in our dataset, and is only overprovisioned 0.1%
of the time despite being requested by 1, 820 apps. This case
is interesting as DUMP is only granted to system applications
or apps signed with the platform key. Developer apps will
still run if they request this permission, however they will
not actually be granted the permission and will crash if they
attempt to use a privileged function that requires it. Since it
is rarely misused, developers must also have code in their app
that executes these privileged functions. It may be that this is
dead code, that the security exceptions are properly handled,
or that these apps are buggy and prone to crash. However,
a more likely explanation is that these apps are designed
to run on rooted devices (where the user has unlocked the
root user account), allowing them to hold system permissions.
Although the official Android market does not allow such
apps, many of our apps are from third-party markets where
apps that require root access are allowed. One would expect
that if a developer were to include a system-level permission
that requires their app run as root, they would be sure to
use it, otherwise they are limiting their target audience for no
reason. However, two other system level permissions which we
observe in our dataset, INSTALL LOCATION PROVIDER and
ACCOUNT MANAGER have very high rates of misuse. Further
study can shed more light on this trend.

We have presented a number of statistically significant
trends in our dataset and attempted to gain better insight

into these trends through a few case studies. We would now
like to point out potential threats to validity that may have
affected our analysis, followed by related work, and finally
our conclusions.

VII. THREATS TO VALIDITY

A. Stowaway

Stowaway consists of two distinct parts: a dynamic analysis
tool that builds the permission mapping, and a static analysis
tool that uses the mapping to find overprivileged Android
apps. Although the dynamic analysis tool is very accurate, the
static analysis tool suffers from shortcomings when developers
request a permission but use it outside the Android API,
for example through exec or native code. We were able to
identify a few permissions for which this behavior produced
a significant number of false positives (an example presented
in Section VI). However, these permissions constitute a small
fraction of all permissions we observed.

Perhaps a more serious threat is that Stowaway’s permission
mapping was derived from Android 2.2 (API version 8), which
was released in May 2010. Although most of the apps in our
dataset were downloaded more recently, by analyzing their
Manifest files we determined that 94% (9,632 apps) of them
have a minSdkVersion at or below 8. This means that these
apps are designed to be backwards compatible with Android
2.2, and our Stowaway results should not be heavily impacted
by changes to the API since version 8. Additionally, we can
see from [22] that developer permissions (that is, “dangerous”
and “normal”) are not added or removed often, and these
permissions constituted the bulk of our analysis.

38



Fig. 5: Example StackOverflow question where the poster is confused
about the getLastKnownLocations API function. The poster includes
the permissions they think they need (the first red rectangle), and the
top answer mentions that one of them is unnecessary (the second red
rectangle).

B. StackOverflow

We present two potential threats to validity in our analysis
of the StackOverflow data. First, the StackOverflow dataset
represents a snapshot of the site from August 2012, but as
previously mentioned, Stowaway’s mapping is for a version
of Android released May 2010. A simple way to alleviate
the mismatch between the datasets would be to truncate the
StackOverflow dataset and only consider posts before a certain
date. However, there is a delay between when a new version
of Android is released, and when it is adopted by the general
public (as of March 2013, [17] shows only 14% of users are
using the most recent version of Android). Thus, we expect
developers to ask questions about older API versions, even as
new ones come out. Another approach would be to infer what
API version a post is asking about, but the vast majority of
posts contain no information about what version the developer
is targeting. Additionally, in manually analyzing posts we
observed many are applicable to multiple versions of Android

and thus any attempt to infer the target API version would
likely muddy our results more than it would help. Regardless,
we acknowledge there may be noise in the posts we selected
from StackOverflow as a result of developers asking questions
that are specific to an Android version other than 2.2.

The second threat to validy is regarding the precision and
recall of StackOverflow posts. When selecting relevant posts
from the StackOverflow corpus, we chose to be conservative
in the posts we selected as relevant (see Section IV-C).
Although manually analyzing the results indicates that the
selected posts are related to the permission, it is hard to
state a concrete definition of a post representing demand for
documentation regarding a permission. Recall is even more
difficult to empirically measure, although we can speculate that
most of our false negatives would occur from posters asking
about API functions without knowing they are controlled by a
permission. Assuming this is not more likely to occur with one
permission over another, this should only reduce the number
of posts we selected, not skew them towards selecting one
permission over another. Thus, in our selection of posts we
attempt to be precise over being complete, but we acknowledge
that we may have false positives and false negatives in the
selected posts.

VIII. RELATED WORK

Alternatives to Stowaway include Andrubis, an extension
of the Windows malware analysis tool Anubis, which is able
to detect superfluous permissions in addition to malicious
apps [2], and AndroidLeaks which is a static analysis tool for
Android that is able to build permission mapping by finding
permission checks in the Android API [8]. This differs from
Stowaway which uses dynamic analysis to build its mapping.
Vidas et al. [21] built a permission checking tool as a plugin
for Eclipse, which notifies developers when a permission is not
used in their app (similar to how Eclipse notifies developers
about unused imported libraries).

Previous work has looked at privilege escalation in Android
through inter-process communication (IPC) between applica-
tions. One such attack is called the confused deputy attack,
where a benign-but-priviliged app mistakenly leaks sensitive
data through IPC to less priviliged apps. Similarly, two mali-
cious apps may collude to share sensitive data over IPC. Quire,
an extension to the Android framework, is able to detect such
attacks by keeping track of the origin of all data sent over
IPC [5]. AppFence is another Android modification which is
able to protect users from permission-hungry applications by
blocking transmissions of data which the user does not want
to leave the device, and can replace such data with shadow
data [4]. Additionally, Grace et al. [9] found that many stock
Android smartphones come with apps installed that expose
sensitive device functionality through IPC, allowing apps to
bypass certain permissions.

Prior work identifying APIs on StackOverflow includes
Parnin et al. [16] who measured the coverage of the Android
and Java APIs on StackOverflow, and Parnin and Truede [15],
who measured the coverage of jQuery’s API on various

39



development sites, including StackOverflow. Barua et al. char-
acterize popular topics on StackOverflow via natural language
processing [3]. Additionally, previous work has been done
identifying experts in community forums, such as StackOver-
flow [14, 13, 18].

IX. CONCLUSION

We have gathered apps from Android markets and con-
nected them to questions about security permissions use on
StackOverflow. We presented statistical models for predicting
permission misuse and demand for permission documentation.
We found that the popularity of a permission is strongly as-
sociated with its misuse, while other factors such as influence
and interference had little effect. Our analysis of the Stack-
Overflow data indicates that more widely used permissions get
mentioned more often in questions, and furthermore, that these
questions do get answered on StackOverflow. These findings
suggest one reason for the decreasing likelihood of misuse
with increasing popularity: this is a result of more complete
documentation being available to more popular permissions.
This indicates that developers do better at properly using
a permission as it is discussed on community fora such as
StackOverflow.

ACKNOWLEDGEMENTS

This paper is based upon work supported by the National
Science Foundation under Grant No. 1018964.

REFERENCES

[1] Android Developer Documentation. URL: http : / / developer .
android.com/.

[2] Anubis: Analyzing Unknown Binaries. Jan. 2013. URL: http:
//anubis.iseclab.org/.

[3] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan.
“What are developers talking about? An analysis of topics
and trends in Stack Overflow”. In: Empirical Software Engi-
neering (2012), To.

[4] Sven Bugiel et al. “Towards taming privilege-escalation at-
tacks on Android”. In: Proceedings of the 19th Annual Sym-
posium on Network and Distributed System Security. 2012.

[5] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu,
and Dan S Wallach. “Quire: Lightweight provenance for
smart phone operating systems”. In: 20th USENIX Security
Symposium. 2011.

[6] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song,
and David Wagner. “Android permissions demystified”. In:
Proceedings of the 18th ACM conference on Computer and
communications security. ACM. 2011, pp. 627–638.

[7] Sean Gallagher. Researchers find privacy and security holes
in Android apps with ads. Mar. 2012. URL: http://arstechnica.
com/business/2012/03/researchers-find-privacy-and-security-
holes-in-android-apps-with-ads/.

[8] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. “AndroidLeaks: automatically detecting potential pri-
vacy leaks in android applications on a large scale”. In: Trust
and Trustworthy Computing (2012), pp. 291–307.

[9] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang.
“Systematic detection of capability leaks in stock Android
smartphones”. In: Proceedings of the 19th Annual Symposium
on Network and Distributed System Security. 2012.

[10] Chris Hewgill. Stack Overflow Creative Commons Data
Dump. June 2009. URL: http://blog.stackoverflow.com/2009/
06/stack-overflow-creative-commons-data-dump/.

[11] Rob Lightner. How to check your Android device for rogue
apps. June 2011. URL: http://howto.cnet.com/8301-11310 39-
20073434-285/how-to-check-your-android-device-for-rogue-
apps/.

[12] Josh Lowensohn. Photo theft security loophole found in
Android too. Mar. 2012. URL: http:/ /news.cnet.com/8301-
1035 3-57388797-94/photo- theft- security- loophole- found-
in-android-too/.

[13] Aditya Pal, Rosta Farzan, Joseph A. Konstan, and Robert E.
Kraut. “Early Detection of Potential Experts in Question
Answering Communities”. In: UMAP. 2011, pp. 231–242.

[14] Aditya Pal, F. Maxwell Harper, and Joseph A. Konstan.
“Exploring Question Selection Bias to Identify Experts and
Potential Experts in Community Question Answering”. In:
ACM Trans. Inf. Syst. 30.2 (2012), p. 10.

[15] Chris Parnin and Christoph Treude. “Measuring api documen-
tation on the web”. In: Proceedings of the 2nd international
workshop on Web. Vol. 2. 2011, pp. 25–30.

[16] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-
Anne Storey. “Crowd documentation: Exploring the coverage
and the dynamics of API discussions on Stack Overflow”. In:
Georgia Institute of Technology, Tech. Rep (2012).

[17] Platform Versions. Mar. 2013. URL: http://developer.android.
com/about/dashboards/index.html.

[18] Daryl Posnett, Eric Warburg, Premkumar Devanbu, and
Vladimir Filkov. “Mining Stack Exchange: Expertise is Evi-
dent From Initial Contributions”. In: 2012 ASE International
Conference on Social Informatics. 2012.

[19] StackOverflow. URL: http://stackoverflow.com/.
[20] Stowaway. URL: http://android-permissions.org.
[21] Timothy Vidas, Nicolas Christin, and L Cranor. “Curbing

android permission creep”. In: Proceedings of the Web. Vol. 2.
2011.

[22] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis
Faloutsos. “Permission Evolution in the Android Ecosystem”.
In: (2012).

40


