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Predictive Behavior Within Microbial
Genetic Networks
Ilias Tagkopoulos,1,2* Yir-Chung Liu,2,3* Saeed Tavazoie2,3†

The homeostatic framework has dominated our understanding of cellular physiology. We question
whether homeostasis alone adequately explains microbial responses to environmental stimuli, and
explore the capacity of intracellular networks for predictive behavior in a fashion similar to
metazoan nervous systems. We show that in silico biochemical networks, evolving randomly under
precisely defined complex habitats, capture the dynamical, multidimensional structure of diverse
environments by forming internal representations that allow prediction of environmental change.
We provide evidence for such anticipatory behavior by revealing striking correlations of Escherichia
coli transcriptional responses to temperature and oxygen perturbations—precisely mirroring the
covariation of these parameters upon transitions between the outside world and the mammalian
gastrointestinal tract. We further show that these internal correlations reflect a true associative
learning paradigm, because they show rapid decoupling upon exposure to novel environments.

Although originally conceived in the con-
text of human physiological adaptation
(1), homeostasis has also become the de

facto framework for understanding cellular
behavior. In its most essential form, the homeo-
static response is an attempt to maintain the
“constancy of the internal state” in response to
perturbations resulting from environmental fluc-
tuations (e.g., expression of osmoprotectants in
response to osmolarity stress). When such fluc-
tuations are essentially random (unpredictable),
the cell may directly or indirectly sense the
perturbation and enact the appropriate response
program. On the other hand, if such variations are
perfectly predictable, such as periodic changes in
photon flux due to Earth’s rotation, an internal
model (circadian rhythm) can be used to antic-
ipate relevant changes. The organism can then
mount a “preemptive” response—for example,
by gearing up the photosynthetic machinery
before sunrise. The widespread use of internal
circadian models, from unicellular cyanobacteria
to humans (2), suggests that this predictive mode
of behavior confers considerable fitness advan-
tages to organisms that have evolved it.

Environmental variables that show purely ran-
dom fluctuations or perfectly periodic rhythms
define idealized extremes. In fact, some param-
eters whose fluctuations may seem randomwhen
viewed in isolation can nonetheless be highly
“predictable” when considered in the temporal
context of variation in other parameters (Fig. 1).
As such, variations in one environmental variable
can convey substantial information about varia-
tion in another. For example, a bacterium may
experience strong covariation in temperature and
photon flux as it traverses the upper layers of a

stratified marine ecosystem. Such temporally
structured correlations can exist on multiple time
scales, reflecting the highly structured (non-
random) habitats of free-living organisms. Tem-
poral delays are a typical feature of these
correlations. For example, an increase in temper-
ature may herald an impending decrease in O2

levels some 20 min later. An organism that is
capable of learning (internalizing) these correla-
tions can then exploit them in order to anticipate
vital changes in the environment—for example,
preparing for resource fluctuations or mounting
protective responses to extreme perturbations.

Within metazoans, the basic capacity for pre-
dictive behavior requires complex neural network
architecture. Here we hypothesize that an analog
of this capacity, implemented by networks of
biochemical reactions, exists in unicellular mi-
crobes. To demonstrate this potential, we have
developed a biochemically realistic computer
simulation for evolving populations of organisms
under precisely defined environments where
multiple time-varying signals encode information
about resource abundance. Randomly evolving
biochemical networks of these organisms form
internal representations of their dynamic environ-
ments that enable predictive behavior. We pro-
vide experimental evidence for this capacity by
revealing strong correlations in genome-wide
transcriptional responses of E. coli to transitions

in oxygen and temperature. These correlations do
not reflect an essential biochemical coupling
between oxygen and temperature because they
are rapidly decoupled in the context of selection
in a novel environment.

Emergence of predictive behavior in
simulated biochemical networks. Computa-
tional simulations of biological systems are
yielding unique insights into a variety of
fundamental questions in biology (3–10). We
developed a simulation framework, called Evo-
lution in Variable Environment (EVE), aimed at
exploring the capacity of biochemical networks
to evolve predictive internal models of complex
environments (11). Within EVE, biochemical
networks are structured around the “central
dogma” and they evolve in an asynchronous
and stochastic manner, achieving the temporal
dynamics of cascades of biochemical interactions/
transformations (including transcription, transla-
tion, and protein modification) that are present in
real cells (Fig. 2A). Each node in the biochemical
network of an organism is parameterized by sev-
eral continuous variables mapping to biological
parameters such as basal expression, degradation,
and regulatory strength. At any point during the
simulation, random mutations (e.g., transcription
rate change, node duplication, node deletion)
may alter any of the organism’s parameters and
consequently its phenotype (Fig. 2B). Environ-
mental signals, conveying information about
resources, may couple and stochastically regulate
any action (e.g., transcription, translation, or
transformation) in the organism’s internal net-
work. A node can regulate any other node,
although one may restrict unlikely interactions
using a probabilistic model (for instance, we may
choose to make RNA-mediated protein mod-
ification a rare event). Each organism possesses a
generic and stable response pathway through
which it can interact with the environment,
whether for energy extraction or response to
stress. Expression of the response pathway is
modeled to have a high energy cost; thus, there is
strong selection for organisms whose response
correlates with the appropriate environmental
event (e.g., presence of food). Organisms evolve
in the context of a constant population size,
where growth rate is directly proportional to the
amount of energy per cell. The energy of each
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Fig. 1. Predictability emerges
from temporal context of correlated
random variables. When viewed in
isolation, events X and Y have a
random temporal structure (left) as
manifested by the large uncertainty
in the inter-event interval tx and ty
(right). However, the occurrence of
event X is highly predictable within
the temporal context of event Y
(left), with a relatively tight dis-
tribution of temporal delay between
the two events tx,y (right).
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cell depends on the energy extraction rate from
the environment as well as on the metabolic
demands of expressing and maintaining network
components (Fig. 2C).

Within this in silico ecology, evolving orga-
nisms with random initial networks compete
against each other in structured environments
where signals and resources fluctuate with a dis-
tinct temporal correlation structure. In a typical
experiment, the combinatorial states of multi-
ple signals convey information about the avail-
ability of extractable energy resources in the
near future. Cells that can efficiently “learn” such
correlations are able to express the energy-
extracting metabolic pathway at the appropri-
ate time, giving them sizable fitness advantage
over their competitors.

We conducted large-scale simulations of nine
temporally structured environments across muta-
tion rates spanning four orders of magnitude. A
variety of environments were imposed, including
those that selected for one of five delayed logic
gates, oscillators, bistable switches, and duration
inference mechanisms. Despite the complex na-
ture of many of these environments, high-fitness
organisms emerged with variable success rate in
every case (table S1 and figs. S4 and S5).

The full historical documentation of the
evolutionary process in EVE allowed us to con-
nect evolutionary dynamics, phenotypic behav-
ior, and network structure in ways that are
difficult to do in naturally evolved biological
systems. In a particularly challenging environ-
ment, the abundance of resource (food) is related
to the signals through a delayed dynamic exclu-
sive OR (XOR) relationship, where resources
become abundant shortly (within 1000 time units)
after the presence of either signal S1 or signal S2
alone, but not when they co-occur. Fitness is
defined as the Pearson correlation (PC) between
the abundance of resource and response pathway
expression. Interestingly, the fitness trajectory of
the fittest organism displays nonmonotonic be-
havior (Fig. 3A). In the first 5.4 × 106 time units
(1100 epochs), there is no stable phenotype in the
population whose response protein expression
correlates well with the presence of resources in
the environment (Fig. 3B, 1). However, several
advantageousmutations in the next 4.5 × 105 time
units (100 epochs) lead to a phenotype where the
expression of the response protein loosely
couples to the presence of signal S1 and the
absence of signal S2 (Fig. 3B, 2). Subsequent
mutations give rise to a fit (PC > 0.8) but unstable
phenotype (Fig. 3B, 3) where a noisy dynamic
XOR is achieved. Instead of stabilization of the
fittest phenotype at the time, we observe an
abrupt decline of fitness and subsequent fixation
to a suboptimal fitness peak (Fig. 3B, 4). The
next fitness increase occurs after 3.6 × 105 time
units (800 epochs) when a gene duplication event
(fig. S6) allows the newly formed gene and its
protein and modified protein products to take on
their own course in evolution, thus giving rise to
an optimal final phenotype (Fig. 3B, 5). The

evolutionary impact of gene duplication was also
observed in other experiments, most of which
displayed monotonically increasing fitness trajec-
tories (figs. S7 and S8).

The evolved biochemical networks displayed
a high level of redundancy, as the majority of
single node/link “knockouts” did not reveal a
sizable fitness effect. In an attempt to identify a
“minimal network” that was sufficient to express
the evolved behavior, we devised a procedure
(11) that sequentially knocks out links until the
network hits a critical mass that cannot be
reduced without a large (>5%) decrease in the
organism’s fitness. We found that such minimal
networks were considerably more informative
about the relationship between network structure
and function relative to the initial networks they
were derived from.

The full and minimal networks belonging to
the fittest organism evolved under the delayed
XOR selection are displayed in Fig. 4A; the
expression profile of all the nodes in the full
network is shown in Fig. 4B. From a total of 31
links, only 11 were found to be essential as de-
fined above. Signals S1 and S2 serve as direct
observable environmental inputs, whereas re-
sources can be harvested only when response
protein (RP1) is expressed. The presence of S1
catalyzes the translation of RNA2 to P2, which in
turn leads to the activation of G1 and subsequent
translation of its RNA to P1. Once P1 is created, it
can undergo modification and become response

protein RP1. However, this step is not completed
immediately, as P2 also inhibits P1’s modification.
Modification can occur after signal S1 goes down
and the high degradation rate of P2 leads to its
rapid drop. This in turn introduces a delay interval
that is large enough to allow the expression of RP1
to coincide precisely with the presence of the
resource. Once expressed, RP1, operating in a
negative feedback loop, represses the expression of
G1. The low degradation rate of RNA1 and self-
activation of P1 contribute to the network’s ability
to stay in standby mode where P1 molecules are
constantly replenished but not modified to RP1.
With thismechanism, the time delay is easily tuned
through changes in the kinetic constants of one
protein, namely P2. Similarly, when only S2 is
present, the response pathway is activated through
P0 in an analogous fashion. However, when both
signals S1 and S2 are present, P0 and P2 are
unable to activate G1 transcription because the
two environmental signals cross-catalyze themod-
ification of these proteins to their inactive states
(MP0 and MP2). Additionally, the high degrada-
tion rate of MP0 and MP2 makes transitions from
MP0 to P0 or from MP2 to P2 unlikely.

In general, careful inspection revealed how
behavior emerges from the topology and ki-
netics of the evolved minimal networks (11).
However, we found variable success in the
ability of standard reverse-engineering methods
(12, 13) to reveal network structure from
behavior (figs. S14 to S16).

Fig. 2. A biochemically realistic
simulation framework. (A) The
networks are structured around
the “central dogma”: Activation
of gene transcription creates
RNA that can be translated to
protein, which in turn can be
modified to change its state. (B)
Possible mutational scenarios
for generic nodes (representing
RNA, protein, or modified pro-
tein). For example, node 3 can
be duplicated (b1); be destroyed
(b2); undergo mild mutation,
changing the strength of its
regulation of node 2 (b3); or
mutate strongly, causing its decoupling from node 2 and coupling to node 1 (b4). In addition to network
topology, mutations may change node parameters such as basal transcription rate, degradation rate, and
interaction affinity. (C) Organisms that accumulate enough energy undergo duplication and increase their
representation in the population. Duplication is accompanied by deletion of the organism with the least
energy in the population.
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Correlated transcriptional responses of
E. coli to oxygen and temperature perturbations.
The evolution of predictive behavior in simu-
lated networks suggested that this capacity
might exist in naturally evolved microbial net-
works. Looking for evidence of such predictive
modeling requires knowledge of microbial
habitat structures well beyond what currently
exists for most organisms. However, for some
microbes, recurrent transitions in and out of a
dominant niche are accompanied by determinis-
tic correlations in important environmental varia-
bles. For example, transition from the outside
environment into the oral cavity exposes the
bacterium E. coli to an immediate increase in
temperature from ambient (<30°C) to 37°C. This

is followed by an impending drop in oxygen lev-
els as the bacterium transitions into the gastro-
intestinal tract (Fig. 5A). The complex ecology of
the mammalian GI tract imposes strong com-
petitive selection for colonization (14). In this
setting, appropriate expression of adaptive func-
tions confers strong fitness advantages. From a
purely homeostatic perspective, physiological
transition from aerobic to anaerobic respiration
should only take place immediately after a drop
in oxygen levels. However, the fitness benefits of
such a reflexive response will not be optimal, in
terms of shutting down superfluous capacities
(such as aerobic respiration) as well as the time
delay required to fully express beneficial func-
tions (such as anaerobic respiration). On the other

hand, if bacteria use the immediate increase in
temperature as a predictive signal of impending
oxygen drop, they could respond in an anticipa-
tory fashion and be in the optimal physiological
state at the time oxygen levels drop. If this were
true, we would expect that an increase in tem-
perature may lead to a similar physiological re-
sponse to a decrease in oxygen—even in the
presence of maximal oxygen levels.

To test this hypothesis, we used microarray
transcriptional profiling (15) to observe the
global cellular state correlates of such physio-
logical responses. Oxygen and temperature
were precisely controlled in the context of
growth within bioreactors (11). These experi-
ments included temperature transitions between

Fig. 3. Emergence of a delayed XOR phenotype. (A) Fitness trajectory of
an experiment where the presence of one (and only one) signal indicates
the future availability of resources. Red and black lines correspond to the
highest and mean fitness in the population at each epoch (4500 time
units), respectively. (B) The phenotypic behavior of the fittest organism at

different points along the evolutionary trajectory. Each subplot consists
of four rows. The first row depicts the abundance profiles of the RNA
(blue), protein (green), and modified protein (red) of the response
pathway. The second, third, and fourth rows correspond to resource
abundance and environmental signals S1 and S2, respectively.

Fig. 4. Network topology and expression profiles of molecular
components. (A) The regulatory network of an organism evolved under
low mutation rate within a delayed dynamic XOR environment. Each node
represents mRNA/siRNA (RNA), protein (P), or modified protein (MP). The
environmental resource harvested at each time point is proportional to
the number of response protein molecules (red RP1 node) and resource

abundance at the time. Regulatory interactions can be positive
(activating; red arrows) or negative (repressing; blue arrows). Solid lines
represent essential links. (B) Expression profile of all nine nodes,
environmental signals (S1 and S2), and resource (R) during two epochs
(9000 time units). The color scale refers to the number of molecules
present.
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25°C and 37°C, and shifts between anaerobic
(0% dissolved O2) and aerobic (16 to 21%
dissolved O2) growth. Duplicate experiments
revealed highly reproducible temperature and
oxygen profiles (fig. S17) and gene expression
patterns (fig. S18).

Consistent with the predictive behavioral
framework above, we found a striking correla-
tion between global transcriptional responses to
temperature upshift and oxygen downshift, cor-
responding to the transition of E. coli into the GI
tract (Fig. 5A). For instance, we found a highly
significant overlap between the set of genes
down-regulated by temperature upshift and those
down-regulated by oxygen downshift (hyper-
geometric P < 10−58). As predicted, these genes
are highly enriched for aerobic respiration func-
tions such as the tricarboxylic acid cycle (TCA)
and glyoxylate cycle (P < 10−8) and cytochrome
bo3 oxidase complex (P < 10−4), the dominant
electron donor under aerobic conditions (16).

Likewise, temperature downshift and oxygen
upshift—corresponding to the transition out of
the GI tract—induced strikingly similar gene ex-
pression responses (P < 10−28) (fig. S19).We also
compared the global similarity in transcriptional
responses through Pearson correlation (Fig. 5B).
As expected, oxygen downshift and oxygen
upshift are highly anticorrelated (Pearson r =
–0.50; P < 10−148), as are reverse perturbations in
temperature (r = –0.56; P < 10−171). The strong
correlation between temperature upshift and
oxygen downshift was most striking (r = +0.39;
P < 10−79), consistent with the similarity in dif-
ferentially regulated genes. The relatively small
correlation between oxygen downshift and un-
related perturbations such as ultraviolet exposure
(17) (r = –0.06; P < 0.02) and osmolarity stress
(18) (r = 0.11; P < 10−7) makes it unlikely that
these correlated behaviors may be due to a
generic response to external perturbations (Fig.
5B), as seen, for example, in the common
“stress” response in yeast (19). What is remark-
able is the rapid transcriptional reprogramming
from aerobic to anaerobic, during temperature
increase, as reflected by the strong repression of
genes encoding components of the TCA cycle
and cytochrome bo3 oxidase complex (Fig. 5C).
These changes are accompanied by concomitant
induction of genes encoding components of
cytochrome bd oxidase complex—the preferred
electron donor in low-oxygen environments (16)
(Fig. 5C). Strikingly, this anaerobic transcription-
al reprogramming occurs under a highly aerobic
environment (18% dissolved O2), representing a
seemingly maladaptive response—at least from
the perspective of a homeostatic behavioral
framework. Alternatively, the anticipatory repres-
sion of oxidative respiration seems adaptive
when viewed in the context of the ecologically
crucial transition of E. coli from the external
world into the mammalian GI tract.

We observed that a temperature upshift (25°C
to 37°C) led to the induction of the heat shock
response regulon, a set of operons activated

through the expression and activity of the s32

alternative sigma factor (20). This robust re-
sponse allowed us to explore the possibility of a
reciprocal associative coupling, in which oxy-
gen downshift leads to the induction of heat
shock response in much the same way as tem-
perature upshift causes respiratory repression.
Remarkably, this is exactly what was observed
(Fig. 5C).

Novel environment decouples correlated
transcriptional responses. Strong correlations
in the expression of distinct biochemical path-
ways may reflect compatibility or mutual de-
pendence between pathway operations—as seen
in the spatiotemporal separation of photosyn-
thesis and nitrogen fixation in cyanobacteria
(21)—rather than reflecting ecological structure
per se. To show that the observed correlations are
due to an “associative learning” paradigm, we
evolved a population of E. coli under a dynamic
environment where temperature and oxygen fluc-
tuations had a temporal relationship counter to
that expected in nature (Fig. 6A). Wild-type
E. coli should perform poorly in this environ-
ment, because a temperature upshift will cause
repression of aerobic respiratory pathways, just
when oxygen saturation has achieved maximum
levels. This inverted environment imposes strong
selection for bacteria that fully or partially de-
couple the native behavior because it is highly
maladaptive. If such a reprogramming can occur,
then the originally observed correlated responses
to temperature upshift and oxygen downshift
cannot be due to hard biochemical constraints,
but rather is a reflection of a common response to
correlated changes in temperature and oxygen
that has evolved over geological time scales.

Previous evolution experiments in bacteria
have focused mostly on adaptation to “steady-
state” conditions, with sizable fitness increases
(~30%) occurring only after thousands of gen-
erations (22). Remarkably, we witnessed large
increases in reproductive fitness occurring in
fewer than a hundred generations (Fig. 6B).
Population growth rate increased only marginally
in the 25°C and 0%O2 regime, but showed more
than a 50% increase within the 37°C and 21%O2

regime. We attribute this rapid increase in fitness
to the strength of recurring selection occurring
over many cycles. Isolation of individual bacteria
and competition with the parental strain (23)
confirmed the fitness advantage of the evolved
strain (fig. S21).

To more precisely characterize the nature of
the fitness gains, we monitored growth rates of
the parental and evolved strains at a higher tem-
poral resolution across a single cycle of selec-
tion (Fig. 6C). As expected, the increase in
growth rate of the evolved strain was most pro-
nounced immediately after the temperature
upshift, with maximal difference occurring im-
mediately after the upshift in O2. This suggests
that at least part of the adaptation may have been
due to the expected decoupling between temper-
ature upshift and repression of aerobic respira-
tion. To test this possibility, we performed
transcriptional profiling of parental and evolved
strains in the context of a temperature upshift
from 25°C to 37°C. We used Pearson correlation
to measure the global similarity in transcriptional
responses between the original oxygen downshift
perturbation and temperature upshift. As can be
seen, the strong correlation between oxygen down-
shift and temperature upshift is considerably

Fig. 5. Global responses to
oxygen and temperature perturba-
tions reflect ecological correlation
structure. (A) Transition of E. coli
between the outside environment
and the mammalian GI tract is
accompanied by anticorrelated
changes in temperature and oxy-
gen. Correspondingly, highly sig-
nificant overlap is seen in sets of
genes down-regulated by temper-
ature upshift and oxygen down-
shift (transition into the GI tract;
P < 10−58). Similarly, a highly
significant overlap is seen in sets of
genes induced by temperature
downshift and oxygen upshift
(transition out of the GI tract; P <
10−28). (B) Pearson correlation of
global changes in gene expression
between oxygen downshift and
other perturbations: oxygen upshift (r = –0.50; P < 10−148), temperature upshift (r = +0.39; P < 10−79),
ultraviolet exposure (r = –0.06; P < 0.02), and osmolarity stress (r = 0.11; P < 10−7). (C) The average relative
change (log2) of TCA (acnA, acnB, fumB, gltA,mdhA, sdhA, sdhB, sucB, sucC, and sucD), cytochrome bo3 (cyoA,
cyoB, cyoC, cyoE), cytochrome bd (cydA and cydB), and heat shock–regulated (clpB, dnaJ, grpE, hslU, hslV,
htpX, and lon) genes displaying reciprocal cross-regulation of aerobic respiration and heat shock in response to
temperature and oxygen perturbations.
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reduced in the evolved strain relative to the pa-
rental strain, both at early (16 min; parental, r =
0.53; evolved, r = 0.19) and late (44 min;
parental, r = 0.39; evolved, r = 0.06) time points
(Fig. 6D). This global decrease in correlation in
the evolved strain was accompanied by a marked
reduction in repression of TCA and cytochrome
bo3 oxidase genes, as well as reduction in the
activation of genes encoding cytochrome bd oxi-
dase (Fig. 6E).

Dynamic representations and predictive
behavior. Molecular interactions and catalytic
transformations are the fundamental building
blocks in all cellular processes. We have shown
that randomly evolving networks composed of
these basic elements are able to internalize
dynamic representations of their complex envi-
ronments, enabling predictive behavior, and that
this ability explains the seemingly maladaptive
responses of E. coli to transitions in oxygen and
temperature. Although the correlated responses
we observe precisely correspond to transitions of
E. coli between the outside world and the mam-
malian GI tract, it is formally possible that they
may be due to some other unknown ecological
structure in the wild. What is critical, however, is
that these correlations show “plasticity” over the
course of laboratory experimental evolution. Our
findings motivate an alternative interpretation of
cellular responses to nominally stressful stimuli

(24); such “stresses” may be important to the
organism not because of their immediate and
direct fitness consequences, but in the informa-
tion that they convey about the overall state of the
environment and its likely trajectory.

Here, we have focused on the utility of learn-
ing temporally phased correlations for predicting
sequential events in the environment (e.g., tem-
perature upshift followed by oxygen downshift).
However, the reciprocal cross-regulation of heat
shock response and respiratory repression (Fig.
5C) suggests that E. coli also uses the simulta-
neous co-occurrence of events to reinforce per-
ception of its immediate environment. More
generally, the correlation structure of the en-
vironment can be internalized as a probabilistic
model in the high-dimensional space of an
organism’s complete sensory perception. As
such, the very organization of microbial regu-
latory networks may, in large part, represent the
physical instantiation of this probabilistic model.
From this perspective, inferences regarding the
functional utility of biological networks, includ-
ing notions of modularity and optimality, may be
incomplete, or even inaccurate, without consid-
ering habitat structure. Experiments of the flavor
we have presented here may allow biologists to
essentially go in the opposite direction and
“reverse-engineer” ecological structure from
physiological observations in the laboratory.

Although our work on E. coli focused primarily
on parameter changes that reflect macroscopic
transitions in the environment, the dominant
forces shaping microbial regulatory networks
are likely to arise from microscopic correlation
structure present in the complex chemistry of
intra- and interspecies interactions (25, 26).
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Fig. 6. Partial decoupling of correlated responses over
the course of laboratory experimental evolution. (A)
Experimental evolution of E. coli under a dynamic
environment where temperature and oxygen vary in an
opposite pattern to the ecologically native structure. An
oxygen transition from 0% to 21% occurs 40 min after
a temperature transition from 25°C to 37°C. Similarly,
oxygen transition from 21% to 0% occurs 40 min after
a temperature decrease from 37°C to 25°C. Duration
intervals were sampled randomly from a Gaussian
distribution to avoid periodic selection (11). (B)
Progressive increase in population growth rate over
the course of 42 cycles of selection. Growth rate within
the optimal regime (37°C and 21% oxygen) showed
more than a 50% increase, whereas growth rate
increased only marginally within the 25°C and 0%
oxygen regime. The measurement circled in green is an
outlier. (C) High-resolution monitoring of growth rate in
the parental and evolved strains shows that the fitness

differential is maximal immediately after the oxygen upshift. (D) Pearson correlation of global changes in
gene expression between the oxygen downshift and temperature upshift perturbations in the parental and
evolved strains at 16 and 44 min after the temperature upshift. (E) Average relative change of gene
expression for the TCA, cytochrome bo3, and cytochrome bd gene sets at 16min after a temperature increase
in both the parental and evolved strains.
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