
SBROME: A Scalable Optimization and Module Matching Framework
for Automated Biosystems Design
Linh Huynh,† Athanasios Tsoukalas,† Matthias Köppe,‡ and Ilias Tagkopoulos*,†

†Department of Computer Science and UC Davis Genome Center and ‡Department of Mathematics, University of California,
Davis, California 95616 United States

ABSTRACT: The development of a scalable framework for
biodesign automation is a formidable challenge given the ex-
pected increase in part availability and the ever-growing
complexity of synthetic circuits. To allow for (a) the use of
previously constructed and characterized circuits or modules
and (b) the implementation of designs that can scale up to
hundreds of nodes, we here propose a divide-and-conquer
Synthetic Biology Reusable Optimization Methodology
(SBROME). An abstract user-defined circuit is first transfor-
med and matched against a module database that incorporates
circuits that have previously been experimentally characterized.
Then the resulting circuit is decomposed to subcircuits that are
populated with the set of parts that best approximate the desired
function. Finally, all subcircuits are subsequently characterized and deposited back to the module database for future reuse. We
successfully applied SBROME toward two alternative designs of a modular 3-input multiplexer that utilize pre-existing logic gates and
characterized biological parts.

KEYWORDS: biodesign automation, CAD tool, computer-aided design, modular design, module matching, part selection, multiplexer

One of the major challenges in synthetic biology is the
development of methodologies that are scalable with respect

to the number of parts and circuit complexity. In addition, it is highly
desired to reuse previously constructed synthetic circuits wherever
possible due to the time-consuming nature of any bioengineering
effort.1−3 Although this may lead to larger and less fine-tuned
circuits compared to those that are designed ab initio, the increase
in design compatibility and the significant decrease of the time-
to-market outweighs these shortcomings. Moreover, the appli-
cation of engineering principles to bioengineering will considerably
enhance our ability to design, control, and understand biological
systems in general and gene regulatory circuits specifically. In the
past decade, a number of groups have introduced modular cir-
cuits that have been reused successfully to design systems of
higher complexity.4−8 This year, an experimental methodology
for modular design was introduced, and its utility was demonstrated
by reconfiguring a genetic toggle switch9 to produce feed-forward
loops.10 In the computational realm, there has been a similar
effort to support the efficient simulation of modular structures.
For example, the process modeling tool PROMOT allows the
user to define modular structures so that pre-existing models can
be reused.11 The modular model definition language Antimony
employs similar concepts to capture modularity in design,12 and
a hierarchical modeling approach was recently introduced from
the same group.13 The GEC language goes a step further by
enabling users to define modules with abstract parts, such as
repressors and activators.14 The Eugene specification language15

operates in a similar fashion to define gene circuits that are then
compiled to meet the user specifications. These efforts provide

the language level formalism necessary for the future develop-
ment of synthetic biology computer-aided design (CAD) tools,
which have evolved considerably from early approaches16 and
have already achieved notable advances (a recent review of
the CAD tools available17). An end-to-end framework called
TASBE18 has also been introduced recently and aspires to
provide an efficient pipeline to computationally driven synthetic
circuit design.
Despite the several advances in the field, there is still a long

road ahead to create CAD-based solutions that are of high value
to experimentalists. Currently few tools support optimization
methods for automated circuit design (e.g., see refs 19 and 20)
that are based on heuristics and hence cannot guarantee opti-
mality or provide bounds for the proposed solution.21−23

Similarly, with the exception of a method published earlier this
year,24 current tools do not provide an automatic matching
method for reusable designs. Furthermore, as more parts become
available, there will be an increasing need of algorithms that
are scalable both in time and space. To bridge this gap, we
introduce a Synthetic Biology Reusable Optimization Method-
ology (SBROME) that can scale well to circuits with dozens to
hundreds of parts. Toward this goal, we first curated the synthetic
biology literature and built an online module database with
circuits with two or more components. Then, we built a relational

Special Issue: IWBDA 2012

Received: September 23, 2012
Published: February 26, 2013

Research Article

pubs.acs.org/synthbio

© 2013 American Chemical Society 263 dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273

pubs.acs.org/synthbio


part database with part characterization information that can
be used for synthetic circuit design. Special emphasis was
given to libraries of promoter variants that have been
quantitatively characterized and can be alternatively selected
by the optimization tool to achieve the desired expression level.
The SBROME framework first uses graph isomorphism
algorithms to match modules to topology and then decompose
the resulting topology to subcircuits that can be efficiently
solved through exact or approximate optimization methods.
Its methods include graph-theoretic approaches that allow both
abstract and specific definitions of parts and modules. This
allows multiple architectures to be considered as possible
solutions and can accommodate the diversity that is present
in biological systems (summarized in ref 25 and extended in
Table 1).

■ METHODS
AnOverview of the Integrated SBROME Framework. In

ref 26, we have decomposed the problem of synthetic circuit
design in three independent phases: (a) identification of abstract
network topology, (b) assignment of proteins and promoters to
the abstract network topology to create a fixed network topology,
and (c) assignment of optimal mutants for the proteins and
promoters that were selected in phases one and two to create the
final specific network topology. In a recent paper,27 we provided
an exact optimization algorithm for the subproblem of optimal

part selection once the circuit topology has been specified (phase 3).
Here, we adhere to the same three-phase framework and present
a novel approach to address the problem of assigning specific
promoters and proteins given an abstract network topology
(phase 2). In addition, we describe and evaluate a circuit de-
composition method to facilitate the application of optimal part
variant selection (phase 3) with exact and approximate methods.
Figure 1 illustrates the proposed “divide-and-conquer” ap-

proach. In the first step of the SBROME platform, a module
library with preconstructed designs is queried to find possible
partial or full matches to the given abstract circuit topology,
which has been specified by the user. To do so, both module and
abstract circuit networks have to be transformed in an equivalent
graph representation that can support the complex relationships
and diverse dependencies that are encoded within a synthetic
circuit diagram. After we match existing modules to the trans-
formed network, we decompose the circuit into subcircuits of
relatively small size (4−6 components) by applying graph
partitioning algorithms that minimize interconnectivity among
circuit partitions. The link values are subsequently quantized,
which reduces the problem dimensionality and allows for exact
methods to be applied efficiently in order to find the part
combination that minimizes the difference between the desired
and actual gene expression values. Finally, the computationally
inferred subcircuits are experimentally characterized and then
integrated to comprise the final construct. All newly charac-
terized circuits are deposited in the module database for
future use.

Graph Representation and Transformation (Figure 2).
The user-defined input network may consist of abstract
topological features that can be either elementary part types or
generalized devices. Under elementary part types, we incorporate
genes, promoters, and ribosome binding sites, while amplifiers,
oscillators, and logic gates are the generalized devices that are
currently considered in SBROME. Network nodes that represent
these generalized devices are called functional nodes and can be
either specific or abstract, depending on whether they map for a
specific physical topology. For example, a user has the option to
specify that a node is an AND gate without any other constraints
on its topology and underlying parts (abstract functional node)
or a specific AND gate design that has been previously published
(specific functional node). This option allows the user to select
the level of abstraction that is optimal for the application at hand.
Once the user has specified the initial input network, SBROME
transforms it to a standard graph so that graph matching and
isomorphism algorithms can be systematically applied. The final
transformed graph consists of only three node types (namely,
mRNAs, proteins, and ligands), their combinations, and any
functional nodes that are yet to be decomposed into parts. The
edges in the directed graph correspond in one of the following
categories:
•molecular binding: binding of a molecular species to another,

e.g., a ligand binds to a protein to make a ligand−protein
complex. Since both molecular species have to be present for this
reaction to occur, the relationship that this link encodes is similar
to an AND function.
• transcription: The contribution of transcription factors to

mRNA can be either activatory or inhibitory, depending on the
role of these proteins during transcription. Edges of this type
capture an AND relationship during graph transformation (in the
case of repressors, a negation of the input precedes the AND
integration)

Table 1. Node Types andNames That Are Currently Available
in SBROME

node type TV node name LV refs

molecular species
ligand IPTG, aTc, L-arabinose, Mg2+, Sal,

3OC6-HSL, 3OC12-HSL, C4-HSL,
nalidixic acid, DOX

protein lacI, tetR, araC, cI, luxR, luxI, lasR, lasI,
rhlR, rhlI, lexA, ntrC, lacZ, gfp, yfp,
rfp, cI434, hrpR, hrpS, nahR

RNA pCONST, pLAC, pTET, pBAD,
pLAMBDA, pLUX, pLAS, pRHL,
phrpL, pmgrB, pT7, pSAL, pSOS

ligand−protein
complex

L-arabinose-araC, 3OC6-HSL-luxR,
3OC12-HSL-lasR, C4-HSL-rhlR

RNA complex taRNA-crRNA
protein complex hrpR-hrpS

functional nodes
YES-gate pLAC-gfp, pBAD-gfp, pLUX-gfp 5

pTET-yfp 47
pBAD-cI-pOROlac-gfp 48

NOT-gate pLtet−O1-luxR-pOmpC-cI-plux−lambda-lacZ 49
pLAC-cI-pLAMBDA-gfp 5
pTET-lacI-pLAC-yfp 47

AND-gate pSAL-supD-pBAD-T7ptag-pT7-gfp,
pLUX-supD-pmgrB-T7ptag-pT7-gfp,
pSAL-supD-pmgrB-T7ptag-pT7-gfp

4

pLAC-hrpR-pBAD-hrpS-phrpL-gfp,
pLUX-hrpR-pBAD-hrpS-phrpL-gfp

5

pTET-luxR-pLUX-gfp 50
pbla-LuxR-pCONST-lacI-pluxI−lacO-gfp 51

NOR-gate pBAD-pTET-lasI, pBAD-pTET-yfp,
pBAD-pLAS-rhlI, pBAD-pLAS-yfp,
pTET-pLAS-rhlI, pTET-pLAS-yfp

6

oscillator pLAC-tetR-pTET-cI-pLAMBDA-lacI 52
plac/ara-lacI-plac/ara-araC-yfp 53
glnAp2-glnG-glnKp-lacI 54

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273264



• translation: The contribution of mRNA to its respective
protein is always positive. In the presence of multiple gene copies
that contribute to the same protein pool, this captures an additive
relationship.
Although the edges are treated equally during the graph

matching step, these categories are important at the simulation
step as they correspond to processes that are modeled differently
(see Gene Expression Model section). The same transformation
rules apply to the modules that comprise the module database.
A more formal treatment of the graph transformation is given

below. The circuit specification that the user supplies to SBROME
includes an abstract circuit topology and a desired behavior that is an
input-output relationship under steady state conditions. Since both

the inputs and the outputs of biological circuits are usually
molecular species (for example, inputs can be ligands and outputs
can be reporter proteins), we can represent their interactions as a
directed graph in which each node represents a molecular species
and each edge represents an interaction between the source
and target nodes. Formally, a circuit graph is defined as in the
following:
Definition 1. For given sets of node types TV, node names LV,

and edge typesTE. A circuit graph is a 7-tupleG = (V, E,VI,VO, τ1,
τ2, ν) where
1. V is a finite set of nodes,
2. E ⊂ V × V is a set of directed edges without any self-loop,
3. VI ⊆ V is a set of input nodes,

Figure 1.Workflow overview of the synthetic circuit design framework. User circuit specifications and an abstract circuit topology serve as inputs to the
SBROME platform that produces a fully defined circuit, which is further used for simulation and refinement. SBROME can itself be decomposed into
three sequential steps. In the module and part family selection step, already built modules and part types are matched to the abstract circuit. Then the
circuit is decomposed in the circuit decomposition step by using standard graph partitioning algorithms. In the last part optimization step, the specific part
variants are being chosen so that the circuit behavior best approximates the desired behavior that has been specified by the user.

Figure 2. Gene circuit graph representation and transformation. (A) Protein−DNA interaction. (B) Protein−DNA interaction in cases where more
than one gene copy exists. (C) Protein−protein interaction. (D) Ligand−protein interaction, where only the active form of the protein is shown. (E)
RNA−RNA interaction.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273265



4. VO ⊆ V is a set of output nodes,
5. τ1:V→TV is the node type function that assigns each node v

∈ V with a node type τ1(v) ∈ TV,
6. τ2: E→ TE is the edge type function that assigns each edge e

∈ E with an edge type τ2(e) ∈ TE,
7. ν: V→ LV is the label function that assigns each node v ∈ V

with a node name ν(v).
Let (TV, LV, TE) denote the set of all circuit graphs for given

sets TV, LV, TE.
A circuit may contain nodes with name values set to

“unknown” to support an abstract topology, which is formally
defined as follows.
Definition 2. For given sets TV, LV, TE. Each element in the set
(TV, LV, TE) = {(V, E, VI, VO, τ1, τ2, ν) ∈ (TV, LV ∪

{unknown},TE)|∃v ∈ V: ν(v) = unknown}is called an abstract
circuit topology.
As shown in Table 1, the node type set TV contains six mole-

cular species, and the edge type set TE contains two relationship
types. In this basic setting, however, the user is restricted to use
an explicitly defined circuit topology, which is limiting as in many

cases only the functional behavior is known and not the specific
topological design. For this reason, SBROME groups specific
subcircuits that carry out the same function into one group that is
represented with a single node in the graph. By doing that,
SBROME captures the logical and/or functional behavior of that
node and proceeds to determine the actual physical design later
on. To accommodate this, the node type set TV is extended by
adding five more functional node types (Table 1). Since TVM

and

TVF
denote the set of molecular species and functional node

types, respectively, the complete node type set is TV = TVM
∪ TVF

.
SBROME uses two node mapping functions to substitute and

expand abstract functional nodes. The first is a topological
substitution of an abstract functional node with a specific physical
topology. This function is performed when a match has been
identified between a functional node and a specific module in the
database. Its format definition is the following:
Definition 3.A substitution is amapping α:TVM

× LV→ (TV,

LV, TE) that maps each functional node of type t∈ TVM
and name

l ∈ LV to a subcircuit α(t, l) ∈ (TV, LV, TE).

Figure 3. Example of the SBROME workflow. The user provides specifications that include the desired I/O behavior, an abstract topology, and other
related constraints. SBROME searches its module database for possible matches betweenmodules and subgraphs in the user-defined abstract network. If
the design cannot be fully specified as given, the unmatched objects are expanded through a module expansion step, where objects with higher level of
abstraction are substituted by topologies that contain only fundamental parts (here the YES gate is expanded to one of the two known topologies). This
expansion continues until the circuit has been fully specified. In the next step, SBROME partitions the design in loosely connected subcircuits and
proceeds to the final step, which is the mutant/variant selection. In that step, a specific variant of the defined part is selected from a mutant library (e.g.,
TetR promoters with mutations that alter downstream expression) so that the whole circuit behavior approximates the one specified by the user.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273266



The second function is the topological expansion of an abstract
functional node to a physical topology with elements that are not
yet specified. The expansion function is used when a match
between a functional node and any module in the database
cannot be found and hence the substitution function cannot be
applied. The expansion of the functional node to a physical
topology allows the platform to search for possible mappings for
each of the corresponding expanded parts (nodes). The expansion
function is defined as follows.
Definition 4. A module expansion is a mapping β: TVM

→

2 (TV, LV, TE) that maps each functional node of type t ∈ TVM
to a

set of abstract topology circuits β(t) = {H1,H2, ...,Hk} whereHi∈
(TV, LV, TE) for all i = 1, ..., k.
Module Query. To reuse existing modules, the module

database, which contains circuits that belong to the (TV, LV,TE)
set, is queried for matches against the transformed circuit
which is an element of the (TV, LV, TE) set. The procedure
ModuleMatching that is described in algorithm 1 is used for the
purpose of finding isomorphic (sub)graphs. This procedure uses
a greedy search algorithm with respect to module size and con-
fidence level of circuit reliability, if this information is available.
Generally, large modules that have been marked as validated
have higher priority in the matching algorithm. Modules in the
module library L are sorted by their priority order and are
matched one by one with the circuit graph through the method
Match. During this procedure, the method IsComplete checks if
all nodes of the abstract topology have been specified. Once a
matching module has been identified, the procedure Update
creates a copy G′ of the abstract circuit G, in which the matched
nodes in G are replaced by the corresponding nodes in the
matching module. In the case where one or more matched nodes
are functional nodes that are still abstract (e.g., an AND gate
without a specific topology), their physical topology is specified
through the substitution process α. A focal point of the procedure
ModuleMatching is the method Match that finds all matches
between a module and an abstract circuit topology. For circuit
topologies that are less than a few hundred nodes and in the
presence of unspecified nodes where no other assumptions can
be taken into account, the backtracking graph isomorphism
algorithm proposed by Ullmann28 has the highest performance
(see review in ref 29), and this is what we have adopted here.
The ModuleMatching procedure is part of the TopologyDer-

ivation procedure that aims to derive k possible specified circuit
topologies from a given abstract topology, and it is described in
algorithm 2. In the case where the ModuleMatching procedure
fails to produce k possible fixed topologies, due to the lack of
matching modules, a functional node from the abstract topology
is chosen and then expanded to an abstract physical topology by
calling the procedures ExtractFunctionComponent and Extrac-
tImplementation, respectively. This is achieved through the
expansion function β (definition 4) to retrieve a list of possible
topologies that correspond to the same functional behavior. It is
important to clarify that this procedure will lead to an abstract
physical topology (as is depicted for the expansion of the abstract
YES gate in Figure 3). This will allow the nodes within the
expanded topology to be further matched by the Topology-
Derivation procedure. The procedure TopologyDerivation con-
tinues recursively until it has found k fixed topologies (with k
being a parameter that is defined by the user) or has determined
that a module and part matching solution does not exist.
Currently, there is no cost function for evaluating the quality of a
match.Once amatch has been identified, the respective subcircuit in

the original graph is contracted into one node (i.e., module
overlap is not allowed), and the search continues until all modules
havebeenqueried.Thefinal circuit graph is thenpartitioned to smaller
subcircuits so mutant search can be applied efficiently (Figure 3).

Circuit Partitioning. After the module search, the equivalent
graph is partitioned into subgraphs so that the number of inter-
circuit links (i.e., links between two subcircuits) is minimized. By
minimizing the intercircuit links, we identify connected com-
ponents that have few dependencies to each other, which is
desired because of both retroactivity among modules and com-
putational efficiency, since the computational complexity of the
mutant search increases exponentially with the number of the
intercircuit links (see Complexity Analysis section). The min-
cut-max-flow approach can be used here to partition the graph
into two parts30 and then continue partitioning these parts
recursively until they all reach the desired size for applying
mutant search (4−6 genes per subgraph). However, this method
will yield only a locally optimal partition as iterative pairwise
partitioning does not guarantee to produce the globally optimal
partition set. Community detection ormodularity search algorithms31

can also be applied, but the resulting subcircuits may have large
variation in sizes, which is undesirable as it may lead to load-
balancing and feasibility issues. Instead, we use a multilevel
partition algorithm32 that can partition a graph with n nodes into
k nearly equal-size parts with O(n4 log n) complexity. Since the
mixed interger nonlinear programming (MINLP) approach that
we presented in ref 27 can effectively find the optimal part set for
circuits of 6 genes or less, we set k = n/6. The algorithm guarantees
subcircuit orthogonality by disallowing cases of cross-talk and col-
lision on part outputs, where this can affect circuit performance.

Mutant Search. The final step in the SBROME framework is
finding the optimal part variants. SBROME supports the exi-
stence of parts variants with distinct characteristics that can be
used interchangeably to achieve a better match to the desired
system dynamics. For instance, we have recently developed and
experimentally tested a library of pLAC promoters through random

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273267



mutagenesis, each of which corresponds to different levels of
downstream expression. Algorithm 3 gives in pseudocode how
this “mutant” or variant search is performed. First we need to
discretize the values of intercircuit links since they have con-
tinuous values and otherwise the optimization problem would be
intractable. The number of discrete values is determined by the
“resolution” parameter R that is user-defined. Once this is set, we
use the mixed-integer nonlinear programming technique that
was presented in ref 27 to find the optimal variants within each
mutant library. As an alternative method, SBROME uses a genetic
algorithm approach that has been found to provide similar approxi-
mate solutions to the link discretization method but without the
ability to provide a bounded solution. The nonlinear expression
model that is presented in the next section is used in both methods
(i.e., the heuristic genetic algorithm and exact MINLP method) to
describe the regulatory effect of transcription factors to protein
expression and drive the MutantSearch procedure in algorithm 3.
The total error of the final solution is calculated as the sum of
individual subcircuit approximation errors for all subcircuits. In the
future, stochastic microbial simulators33−35 and whole-cell models36

may also be integrated to simulate the top ranked circuits and drive
further their refinement.

Gene Expression Model. To estimate gene expression,
SBROME uses the nonlinear model that has been introduced in
ref 27 and incorporates regulation, degradation, transcription,
and translation. The concentration rate for protein i is given by

∑ ∏

∏

α α
β

β

β
μ

= +
+

×
+

− +

η

η

η

∈ ∈

∈

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f

t

f

f

f
d f

d

d 1

1
1

( )

i

k pro i
k k

a act k

ak a

ak a

r rep k rk r
i i

( )
0

( )

( )

ak

ak

rk
(1)

where f i(t), fa(t), and f r(t) are the concentration at time point t of
proteins i, a, and r, respectively, and pro(i) is the set of all
promoters that are upstream of the one or more copies of gene i.
The various promoters may include transcription factor binding
sites (TFBS) that will be part of the cis-regulatory region of a
gene. For each promoter k in pro(i) the (possibly empty) sets
act(k) and rep(k) contain all activator and repressor proteins that
are present in promoter k, respectively. For each promoter k in
pro(i), α0k and αk are its basal production and protein synthesis
coefficient, ηak and ηrk are the cooperativity coefficients for
activator a and repressor r, and βak and βrk are the binding affi-
nities of activator a and repressor r. The degradation of protein
i is captured by parameter di. The growth rate is represented with
μ, and it is considered to be zero in stationary phase.
In many cases, gene expression is controlled by exogenously

applied chemicals that induce gene expression throughmolecular
binding. We can incorporate the effect of ligands by explicitly

modeling the total amount of any protein j in the cell as the sum
of the free ( f j

free) and ligand-bound protein ( f j
bound), which results

in the following Hill equation model:

= +f f fj j j
free bound

(2)

θ

θ
=

+

η

η ηf
f

[ligand]j
jfree

(3)

θ
=

+

η

η ηf
f[ligand]

[ligand]j
jbound

(4)

where [ligand] is the ligand concentration, η is theHill coefficient
(cooperativity factor), and θ is the dissociation constant. Note
that eqs 2−4 apply for both activators and repressors and in cases
where binding of the ligand renders the transcription factor
either active or inactive. For example, when ligand binding to the
transcription factor activates transcription (as it is the case with
araC and L-arabinose), then the activator concentration fa in the
RHS of eq 1 is given by fa

bound from eq 4. All necessary parameters
for calculating the expression levels for each molecular species
that participate in the circuit design are provided by the module
and parts databases.

Complexity Analysis. The worst-case complexity of the
module matching procedure is O(2nmk) where m is the circuit
size (i.e., number of nodes in the graph representation respec-
tively), n is the number of modules in the library, and k is
the maximum module size (i.e., the maximum number of nodes
in each module graph). Although this worst-case complexity is
exponential, the running time in pratice is much better since we
take advantage of the look-ahead information to prune a lot of
unnecessary cases through the Ullman algorithm28 and through
the greedy algorithm.
For the mutant search, suppose that we have n genes and

k promoter mutants to select from, for every gene. With
exhaustive search, we need to search all kn possible combinations.
In our approach, if we partition the circuit into d modules and
each module has 2θ “linkage” edges on average, each represented
by l expression levels, we need at most O(n4 log n) to partition
the circuit graph. In addition, searching for all possible combina-
tions of linkage protein concentrations yields a O(lθddkn/d) com-
plexity. Therefore, the total computational complexity isO(n4 log n)+
O(lθddkn/d), which is less than that of the exhaustive search
approach when n log k > d(θd log l + log d)/(d − 1). The speed
up will greatly increase with library expansion (i.e., higher k) or
circuit complexity (i.e., higher n). The downside of the proposed
method is that this is achieved at the expense of global optimality
guarantee, since we have to impose discrete concentration levels
for the linkage edges. Still, since we perform global optimization
at the module level and propose a scheme to reuse past modules
for future designs, this approach has the potential to be used
through automatic circuit design of very large number of components.

■ RESULTS
Multiplexer Circuit. To evaluate the capacity of the

SBROME framework to yield synthetic circuits with the desired
characteristics, we assessed its performance with the multiplexer
circuit. The choice of the multiplexer circuit as a proof-of-con-
cept and evaluation case was based on the following criteria: (a) a
synthetic circuit with adequate complexity so it can be decomposed
into smaller subcircuits, (b) a circuit that can be designed so that
it reuses other synthetic circuits that have been experimentally

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273268



verified, and (c) a circuit that exhibits an analog behavior but can
be characterized in its general form with a truth table. A multi-
plexer is a common component in electrical engineering that uses
a selector signal to make the selection between two other input
signals. The digital behavior of a multiplexer is illustrated by the
truth table in Figure 4B: when the selector input is high, then the
output is equal to the first input, whereas if the selector input is
low, the second input is propagated to the output. There are
several synthetic designs to make a biological multiplexer,
including the designs described in refs 37 and 38. Nevertheless,
the high complexity of the first circuit and the absence of a
complete experimentally validated circuit for the second circuit
necessitate a further investigation on how to achieve multi-
plexer implementations that are simpler to construct and have a
considerable chance of successful operation. Toward this goal,
we here use SBROME to design a multiplexer by using a standard
multiplexer schematic from electrical engineering (Figure 4A
with a truth table depicted in Figure 4B) and reusing previously
constructed and well-characterized modules. We used a module
database of 43 circuits that have been published in the past and a
parts database that consists of 101 parts that have been experi-
mentally characterized. After the application of our pipeline, our
framework came up with the multiplexer design that is shown in
Figure 4C that consists of a RNA−RNA AND gate (published in
ref 4) and the protein−protein interaction-based AND gate from
ref 5 and a NOT gate in ref 5 where the coding region for gfp is
replaced by the coding region for luxI. In Figure 5, a propotype
graphical user interface for SBROME is shown that includes the
resulting automatic layout of the multiplexer circuit. The output
expression levels for this automatically designed, modular
multiplexer circuit are depicted in Figure 6. At the same time,
we optimized ab initio our design by performing a mutant search
that selects the optimal mutants for the four constitutive
promoters and two pLAC promoters to achieve a given behavior.
As discussed above, we used the mutant library for the
constitutive promoter from ref 39 and the mutant library for
the pLAC promoter from ref 40. A comparison between the
solution provide by the SBROME framework and an exhaustive

search is shown in Figure 6, and Table 2 depicts the running
time and error of both approaches. Remarkably, the modular
design exhibited a digital on/off characteristic that closely
follows the truth table that was depicted in Figure 4B. In
contrast, when exhaustive search was applied, the resulting
circuit exhibited a more analog behavior that tracked better
(hence the lower error in Table 2) the noisy “desired” signal but
propagated a distorted input signal to the circuit output. Indeed,
when the output concentration is compared with a “high/low”
signal (Table 2), the modular design performs more closely to a
binary selector.
Interestingly, if we change the topology of the circuit to an

alternative design with two NOR gates, one AND gate, and one
OR gate as in Figure 7A, the tool will come up with a solution
where we can take advantage of the design of two NOR gates in
ref 6 and the AND gate design in ref 5. For compatibility
purposes the yfp gene was replaced by our framework in the
second NOR gate to gfp to make the final OR wiring available.
Figure 7B demonstrate this alternative multiplexer design and
corresponding parts.

■ DISCUSSION

The automated circuit design methodology SBROME provides a
useful framework to create modular designs that reuse pre-
existing constructs. The proof-of-concept multiplexer design
illustrates an additional advantage of using pre-existing modules
in digital biosystems design: while global optimization of part
selection is prone to individual noise levels and approximation
errors, utilizing digital modules with saturating input/output
functions can restore or regenerate the signal propagation and
improve the input/output characteristic function of the whole
circuit.
There are several extensions that will be explored for further

improvement of the algorithmic and practical efficiency of SBROME.
When it comes to module search, feasibility rules may be applied
if we are dealing with larger graphs to speedup the search,41 and for
large module libraries, a library reorganization as in ref 42 can

Figure 4. Implementation of a multiplexer circuit. (A) A design with two AND gates, one NOT gate, and one OR gate. (B) Truth table for the
multiplexer circuit. (C) A physical implementation of the multiplexer design shown in panel A.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273269



significantly reduce the running time. Heuristic algorithms have
been successfully employed in electrical circuit design to address

similar challenges in module searching,43 and similar extensions
can be used here to reduce the search space and hence improve

Figure 5.Graphical user interface of the SBROME platform that depicts the automatically designedmultiplexer topology that best approximates the I/O
characteristic that was supplied by the user.

Figure 6. Comparison between solutions of modular search (MS) and exhaustive search (ES) for the multiplexer case study.

Table 2. Comparison of Steady State Running Time

exhaustive search modular search

design library size time (s) error error w.r.t. digital on/off time (s) error error w.r.t. digital on/off

multiplexer 8264 4.5 × 103 0.19 0.32 4.2 × 102 0.47 0.09

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273270



computational performance. Similarly, in the mutant search step,
we can introduce approximation algorithms such as approximate
dynamic programing and other optimization techniques to find
approximate solutions with guaranteed bounds, but in less com-
putational time. As more biological information becomes available,
the SBROME pipeline will be extended to incorporate features that
can lead to more robust and reconfigurable circuits. Some of
these features are the compatibility between the various modules
and parts, as well as the expected cross-talk or retroactivity that
may interfere with the final circuit behavior. Retroactivity, the
phenomenon where a downstream module affects the behavior
of an upstream component, can be detrimental for modular
design as the final circuit behavior may vary considerably.44−46

Since SBROME is a part-matching and optimization framework
when the abstract design is already given, it does not directly
address this challenge. Still, since the current framework mini-
mizes the interconnections among the various subcircuits in the
partition phase, it actually creates designs that tend to have low
retroactivity a priori, if no other information is known.
Recently, a similar methodology was proposed to deal with

modular design of synthetic circuits (named “MatchMaker”24).
MatchMaker uses a two-step approach where the abstract gene
regulatory network (AGRN) is first matched with a feature GRN,
which is a supergraph that contains all known regulatory inter-
actions to determine specific parts in the circuit (which is similar
to phase 2 of the three-phase framework described in ref 26).
In the second step, the resulting GRN (that now has “fixed”
parts) is matched with a module library to figure out the optimal
way to assemble the circuit from modules in this library. This
innovative approach has the advantage that it can scale well with
the increase in module library size, assuming that the feature
GRNdoes not grow significantly (e.g., the increase in the engineered
or native associations that are introduced is small), and the feature
graph provides a useful map of all possible interactions in the parts
that we have at hand. However, this approach becomes inefficient
in cases where one or more matches exist between the abstract
and feature GRNs, but no actual modules exist to be used for
further assembly. For example, there are many ways to design a
cascade with three genes, but there is only one reliable design that
has been characterized experimentally,47 in which case using a
feature GRN is inefficient. In the approach presented here, we
only use one step to match directly from the abstract topology to

the existing module set, while at the same time we skip all cases
that lead to utilizing modules that are not available in the
database. This is achieved at the expense of having to ensure that
the interactions between modules are preserved. Database reorganiza-
tion techniques similar to the ones presented in ref 42 have the
potential to decrease the module search time in any module matching
method mentioned above.
Future extensions of the SBROME framework will include the

incorporation of other regulatory, proteomic, and metabolic relation-
ships. Especially in the case of the metabolic interactions, the
integration of a flux balancemodel that is based on linear optimization
is a natural extension of the part selection algorithms that are based in
mathematical optimization such as the one that we introduced for
mutant search. Extending the tool to take into account inter-
actions across multiple “omics” layers will empower the user to
seek optimized universal solutions and will be a step closer to an
ultimate platform in automated biosystems design.
SBROME is available as a resource and online tool at http://

tagkopouloslab.ucdavis.edu/software.html.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: itagkopoulos@ucdavis.edu.

Author Contributions
L.H. wrote the code and performed the experiments. A.T.
implemented the SBROME GUI and online service. M.K.
advised on the mathematical techniques. I.T. conceived the
project and supervised all development and analysis. L.H. and
I.T. wrote the paper.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We would like to acknowledge the support from NSF (grants
0941360 and 1146926). We thank Vadim Mozhayskiy for his
help with the production of Figure 3.

■ REFERENCES
(1) Purnick, P. E. M., and Weiss, R. (2009) The second wave of
synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10,
410−422.

Figure 7. Alternative implementation of the multiplexer circuit. (A) A design with one AND gate, one OR gate, and two NOR gates. (B) A physical
implementation of the multiplexer design shown in panel A.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273271

http://tagkopouloslab.ucdavis.edu/software.html
http://tagkopouloslab.ucdavis.edu/software.html
mailto:itagkopoulos@ucdavis.edu


(2) Cooling, M. T., Rouilly, V., Misirli, G., Lawson, J. R., Yu, T.,
Hallinan, J., and Wipat, A. (2010) Standard virtual biological parts: a
repository of modular modeling components for synthetic biology.
Bioinformatics 26, 925−931.
(3) Landrain, T. E., Carrera, J., Kirov, B., Rodrigo, G., and Jaramillo, A.
(2009) Modular model-based design for heterologous bioproduction in
bacteria. Curr. Opin. Biotechnol. 20, 272−279.
(4) Anderson, J. C., Voigt, C. A., and Arkin, A. P. (2007)
Environmental signal integration by a modular AND gate. Mol. Syst.
Biol., DOI: 10.1038/msb4100173.
(5) Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011) Engineering
modular and orthogonal genetic logic gates for robust digital-like
synthetic biology. Nat. Commun. 2, 508+.
(6) Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011) Robust multicellular
computing using genetically encoded NOR gates and chemical “wires.
Nature 469, 212−215.
(7) Lou, C. (2010) Synthesizing a novel genetic sequential logic circuit:
a push-on push-off switch. Mol. Syst. Biol., DOI: 10.1038/msb.2010.2.
(8) Miller, M., Hafner, M., Sontag, E., Davidsohn, N., Subramanian, S.,
Purnick, P. E. M., Lauffenburger, D., and Weiss, R. (2012) Modular
design of artificial tissue homeostasis: robust control through synthetic
cellular heterogeneity. PLoS Comput. Biol. 8, No. e1002579.
(9) Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000) Construction
of a genetic toggle switch in Escherichia coli. Nature 403, 339−342.
(10) Litcofsky, K., Afeyan, R., R., K., Khalil, A., and Collins, J. (2012)
Iterative plug-and-play methodology for constructing and modifying
synthetic gene networks. Nat. Methods 9, 1077−1080.
(11) Ginkel, M., Kremling, A., Nutsch, T., Rehner, R., and Gilles, E. D.
(2003) Modular modeling of cellular systems with ProMoT/Diva.
Bioinformatics 19, 1169−1176.
(12) Smith, L. P., Bergmann, F. T., Chandran, D., and Sauro, H. M.
(2009) Antimony: a modular model definition language. Bioinformatics
25, 2452−2454.
(13) Chandran, D., and Sauro, H. M. (2012) Hierarchical modeling for
synthetic biology. ACS Synth. Biol. 1, 353−364.
(14) Pedersen, M., and Phillips, A. (2009) Towards programming
languages for genetic engineering of living cells. J. R. Soc., Interface 6,
S437−S450.
(15) Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia,
M., Anderson, J. C., and Densmore, D. (2011) Eugene - a domain
specific language for specifying and constraining synthetic biological
parts, devices, and systems. PLoS ONE 6, No. e18882.
(16) Goler, J. A. (2004) BioJADE: a design and simulation tool for
synthetic biological systems, AI Technical Report 2004-003, MIT
Computer Science and Artificial Intelligence Laboratory, Cambridge.
(17) Slusarczyk, A. L., Lin, A., and Weiss, R. (2012) Foundations for
the design and implementation of synthetic genetic circuits. Nat. Rev.
Genet. 13, 406−420.
(18) Beal, J., Weiss, R., Densmore, D., Adler, A., Appleton, E., Babb, J.,
Bhatia, S., Davidsohn, N., Haddock, T., Loyall, J., Schantz, R., Vasilev, V.,
and Yaman, F. (2012) An end-to-end workflow for engineering of
biological networks from high-level specifications. ACS Synth. Biol. 1,
317−331.
(19) Chandran, D., Bergmann, F., and Sauro, H. (2009) TinkerCell:
modular CAD tool for synthetic biology. J. Biol. Eng 3, 19.
(20) Marchisio, M. A., and Stelling, J. (2011) Automatic design of
digital synthetic gene circuits. PLoS Comput. Biol. 7, e1001083.
(21) Rodrigo, G., Carrera, J., and Jaramillo, A. (2007) Genetdes:
automatic design of transcriptional networks. Bioinformatics 23, 1857−
1858.
(22) Wu, C.-H., Lee, H.-C., and Chen, B.-S. (2011) Robust synthetic
gene network design via library-based search method. Bioinformatics 27,
2700−2706.
(23) Rodrigo, G., and Jaramillo, A. (2013) AutoBioCAD: full biodesign
automation of genetic circuits. ACS Synth. Biol. 1, 1−2.
(24) Yaman, F., Bhatia, S., Adler, A., Densmore, D., and Beal, J. (2012)
Automated selection of synthetic biology parts for genetic regulatory
networks. ACS Synth. Biol. 1, 332−344.

(25) Miyamoto, T., Razavi, S., DeRose, R., and Inoue, T. (2012)
Synthesizing biomolecule-based Boolean logic gates. ACS Synth. Biol. 2,
72−82.
(26) Hunyh, L., and Tagkopoulos, I. (2012) A robust, library-based,
optimization-driven method for automatic gene circuit design, in
Computational Advances in Bio and Medical Sciences, 2012 IEEE 2nd
International Conference, pp 1−6, IEEE, New York.
(27) Huynh, L., Kececioglu, J., Köppe, M., and Tagkopoulos, I. (2012)
Automatic design of synthetic gene circuits through mixed integer non-
linear programming. PLoS ONE 7, No. e35529.
(28) Ullmann, J. R. (1976) An Algorithm for Subgraph Isomorphism. J.
Assoc. Comput. Mach. 23, 31−42.
(29) Messmer, B. (1995) Efficient graph matching algorithms for
preprocessed model graphs. Ph.D. thesis, University of Bern, Switzer-
land.
(30) Hao, J., and Orlin, J. B. (1994) A faster algorithm for finding the
minimum cut in a directed graph. J. Algorithms 17, 424−446.
(31) Newman, M. E. J. (2004) Fast algorithm for detecting community
structure in networks. Phys. Rev. E 69, 066133+.
(32) Karypis, G., and Kumar, V. (1998) A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput.
20, 359−392.
(33) Tagkopoulos, I., Liu, Y. C., and Tavazoie, S. (2008) Predictive
behavior within microbial genetic networks. Science 320, 1313−1317.
(34) Mozhayskiy, V., Miller, B., Ma, K.-L., and Tagkopoulos, I. (2011)
A scalable multi-scale framework for parallel simulation and visualization
of microbial evolution,in Proceedings of the 2011 TeraGrid Conference:
Extreme Digital Discovery, 7:1−7:8, Association for Ccomputing
Machinery, New York.
(35) Mozhayskiy, V., and Tagkopoulos, I. (2012) Horizontal gene
transfer dynamics and distribution of fitness effects during microbial in
silico evolution. BMC Bioinformatics 13, S13.
(36) Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs,
J. M., Bolival, B., Assad-Garcia, N., Glass, J. I., and Covert, M. W. (2012)
A whole-cell computational model predicts phenotype from genotype.
Cell 150, 389−401.
(37) Moon, T. S., Clarke, E. J., Groban, E. S., Tamsir, A., Clark, R. M.,
Eames, M., Kortemme, T., and Voigt, C. A. (2011) Construction of a
genetic multiplexer to toggle between chemosensory pathways in
Escherichia coli. J. Mol. Biol. 406, 215−227.
(38) Pasotti, L., Quattrocelli, M., Galli, D., De Angelis, M. G. C., and
Magni, P. (2011) Multiplexing and demultiplexing logic functions for
computing signal processing tasks in synthetic biology. Biotechnol. J. 6,
784−795.
(39) Berkeley 2006 iGEM Team. Constitutive promoter family
(retrieved August, 2012). http://partsregistry.org/Promoters/Catalog/
Anderson.
(40) Ellis, T., Wang, X., and Collins, J. (2009) Diversity-based, model-
guided construction of synthetic gene networks with predicted
functions. Nat. Biotechnol. 27, 465−471.
(41) Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2004) A
(sub)graph isomorphism algorithm for matching large graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 26, 1367−1372.
(42) Messmer, B. T., and Bunke, H. (2000) Efficient subgraph
isomorphism detection: a decomposition approach. IEEE Trans. Knowl.
Data Eng. 12, 307−323.
(43) Ohlrich, M., Ebeling, C., Ginting, E., and Sather, L. (1993)
SubGemini: identifying subcircuits using a fast subgraph isomorphism
algorithm, in Proceedings of the 30th international Conference on Design
Automation, pp 31−37, IEEE, New York
(44) Del Vecchio, D., Ninfa, A. J., and Sontag, E. D. (2008) Modular
cell biology: retroactivity and insulation. Mol. Syst. Biol. 4, 161.
(45) Saez-Rodriguez, J., Gayer, S., Ginkel, M., and Gilles, E. D. (2008)
Automatic decomposition of kinetic models of signaling networks
minimizing the retroactivity among modules. Bioinformatics 24, i213−
i219.
(46) Voigt, C., Ed. (2011) Synthetic Biology: Methods for Building and
Programming Life, Methods in Enzymology Vol. 497, Academic Press,
New York.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273272

http://partsregistry.org/Promoters/Catalog/Anderson
http://partsregistry.org/Promoters/Catalog/Anderson


(47) Hooshangi, S., Thiberge, S., and Weiss, R. (2005) Ultrasensitivity
and noise propagation in a synthetic transcriptional cascade. Proc. Natl.
Acad. Sci. U.S.A. 102, 3581−3586.
(48) Guido, N. J., Wang, X., Adalsteinsson, D., Mcmillen, D., Hasty, J.,
Cantor, C. R., Elston, T. C., and Collins, J. J. (2006) A bottom-up
approach to gene regulation. Nature 439, 856−60.
(49) Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya,
A., Marcotte, E. M., Voigt, C. A., and Ellington, A. D. (2009) A synthetic
genetic edge detection program. Cell 137, 1272−1281.
(50) Canton, B., Labno, A., and Endy, D. (2008) Refinement and
standardization of synthetic biological parts and devices.Nat. Biotechnol.
26, 787−793.
(51) Sayut, D. J., Niu, Y., and Sun, L. (2009) Construction and
enhancement of a minimal genetic AND logic gate. Appl. Environ.
Microbiol. 75, 637−642.
(52) Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory
network of transcriptional regulators. Nature 403, 335−338.
(53) Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring,
L. S., and Hasty, J. (2008) A fast, robust and tunable synthetic gene
oscillator. Nature 456, 516−519.
(54) Atkinson, M. R., Savageau, M. A., Myers, J. T., and Ninfa, A. J.
(2003) Development of genetic circuitry exhibiting toggle switch or
oscillatory behavior in Escherichia coli. Cell 113, 597−607.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300095m | ACS Synth. Biol. 2013, 2, 263−273273


