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AlphaFold 1
AlphaFold 2
Predicting residue contacts
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Predicting residue contacts

1. Given a multiple sequence alignment (MSA):

2. Compute “mean” sequence and covariance matrix.
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3. Compute contact J(ij)
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Predicting residue contacts

No! We need to pay attention to indirect effects:

<—> Physically coupled
<> Transitively linked
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No! We need to pay attention to indirect effects:

Gaussian model.

Each sequence X; in the MSA is drawn from a multivariate Gaussian distribution

characterized by a mean vector # and a covariance matrix X, with the probability:
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Predicting residue contacts

No! We need to pay attention to indirect effects:

Gaussian model:
Each sequence X; in the MSA is drawn from a multivariate Gaussian distribution
characterized by a mean vector # and a covariance matrix X, with the probability:

e 1
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Assuming that the N sequences in the MSA are statistical independent,
the probability, or likelihood of the data under this model is given by

N
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<—> Physically coupled
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Predicting residue contacts

0! We need to pay attention to indirect effects:

Gaussian model:
Each sequence X; in the MSA is drawn from a multivariate Gaussian distribution
characterized by a mean vector # and a covariance matrix X, with the probability:

, 1
POG |, ) = 2077 |E| Fexp [—?Xn — WX, — )

Assuming that the N sequences in the MSA are statistical independent,
the probability, or likelihood of the data under this model is given by

N
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Using the maximum likelihood estimator for this probability
<—> Physically coupled
» Transitively linked
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Predicting residue contacts

No! We need to pay attention to indirect effects:

Gaussian model.
) 1
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n=X “(MSA, X)
Note that:
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This shows that (£™)(k, /) serves as a coupling between positions k and I

in the MSA.

Therefore:

J =3 = (C(MSA,X))™"

<—> Physically coupled
» Transitively linked




Predicting residue contacts

Query Sequence
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Feature Generation Deep Neural Network

Distance Map
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Inter-residue Hydrogen Bonds
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Predicting residue contacts: How well does it work?

Actual contacts Predicted distances to residue 29
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AlphaFold 1
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AlphaFold 1

Reminder:
To compare two sets of points (atoms) A={ay, @y ..ax} and B={by, by, ....byj:
-Define a I-to-1 correspondence between A and B
for example, a, corresponds to b, for all i in [1,N]

-Compute RMS as: Compute TM score:
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d(ay,by) is the Euclidian distance between , and byafter optimal alignment of B onto A

RMS: the lower, the better TM: between [0,1]; the higher the better
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AlphaFold 1
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AlphaFold 1: Success
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AlphaFold 2
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AlphaFold 2: some intuition
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AlphaFold 2: the structure module

Predicting backbone:

the residues form a gas soup of triangles whose relative positions are characterized by affine transformation
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Predicting side chains:




Successes at CASP14
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Successes at CASP14
STRUCTURE SOLVER
a DeepMind's AlphaFold 2 algorithm significantly
outperformed other teams at the CASP14 protein-
o folding contest — and its previous version's
performance at the last CASP.
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Credit: Tom Terwilliger, Los Alamos NL




Multi - Residues that co-vary are

Lz o 3 probably close in 3D structure

EVGLVESOaCLQPGOSLALS CAASGENTYSSS HNVRGAPGEGLEWVAYT

—_—
All sequences in alignment
should be compatible with the
right structure

Sequence coverage ——> Confidence

Sequence coverage Preicted DD per posiion

Data from 7ms, Cater, R, et al. (2021). Nature 595, 315-319

Credit: Tom Terwilliger, Los Alamos NL

AlphaFold

esidues 100-120
Low sequence coverage, low
confidence, low accuracy

Residues I-100

High sequence coverage and confidence

Data from 7ms, Cater, R}, et al. (2021). Nature 595, 315-319

Credit: Tom Terwilliger, Los Alamos NL

Multimeric proteins

AlphaFold
(multimer prediction)

Data from 7bg) Johnson, S. et al. (2021).
Nat Microbiol 6, 712-721

Credit: Tom Terwilliger, Los Alamos NL




Only protein —_

* Trained on
good and poor
structures

* Little information abol
residues that are far
apart

No water, ions, covalent
modifications, carbohydrates,
ligands, DNA, RNA

Parameters may systematically

include poor geometry

Models may have
distortions and
incorrect domain
relationships

Credit: Tom Terwilliger, Los Alamos NL




