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Exercise 1

Show that ∀n ∈ N,
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Let P (n) be the proposition:

n∑
i=1

i2 =
n(n + 1)(2n + 1)

2
. Let us also define LHS(n) =

n∑
i=1

i2

and RHS(n) =
n(n + 1)(2n + 1)

2

• Basis step: P (1) is true:

LHS(1) =

1∑
i=1

i2 = 1

RHS(1) =
1(1 + 1)(2 + 1)

6
=

2× 3

6
= 1

• Inductive step: Let k be a positive integer (k ≤ 0), and let us suppose that P (k) is true. We
want to show that P (k + 1) is true.

Let us compute LHS(k + 1) =
k+1∑
i=1

i2:
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LHS(k + 1) =
k∑

i=1

i2 + (k + 1)2

= LHS(k) + (k + 1)2

= RHS(k) + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

And:

RHS(k + 1) =
(k + 1)(k + 2)(2k + 3)

6

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Exercise 2

Show that ∀n ∈ N,
n∑

i=1

i(i + 1)(i + 2) =
n(n + 1)(n + 2)(n + 3)

4
.

Let P (n) be the proposition:
n∑

i=1

i(i+1)(i+2) =
n(n + 1)(n + 2)(n + 3)

4
. We define LHS(n) =

n∑
i=1

i(i + 1)(i + 2) and RHS(n) =
n(n + 1)(n + 2)(n + 3)

4

• Basis step: P (1) is true:

LHS(1) = 1 ∗ (1 + 1) ∗ (1 + 2) = 6

RHS(1) =
1 ∗ (1 + 1) ∗ (1 + 2) ∗ (1 + 3)

4
= 6

• Inductive step: Let k be a positive integer (k ≤ 0), and let us suppose that P (k) is true. We
want to show that P (k + 1) is true.
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Let us compute LHS(k + 1):

LHS(k + 1) = =
k+1∑
i=1

i(i + 1)(i + 2)

= LHS(k) + (k + 1)(k + 2)(k + 3)

=
k(k + 1)(k + 2)(k + 3)

4
+ (k + 1)(k + 2)(k + 3)

=
k(k + 1)(k + 2)(k + 3)

4
+

4(k + 1)(k + 2)(k + 3)

4

=
(k + 1)(k + 2)(k + 3)(k + 4)

4

Let us compute RHS(k + 1):

RHS(k + 1) =
(k + 1)(k + 2)(k + 3)(k + 4)

4

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n.

Exercise 3

Show that ∀n ∈ N, n > 1,
n∑

i=1

1

i2
< 2− 1

n
.

Let P (n) be the proposition:
n∑

i=1

1

i2
< 2 − 1

n
. Let us define LHS(n) =

n∑
i=1

1

i2
and RHS(n) =

2− 1

n
. We want to show that P (n) is true for all n > 1.

• Basis step: We show that P (2) is true:

LHS(2) = 1 +
1

4
=

5

4

RHS(2) = 2− 1

2
=

6

4

Therefore LHS(2) < RHS(2) and P (2) is true.

• Inductive step: Let k be a positive integer greater than 1 (k > 1), and let us suppose that
P (k) is true. We want to show that P (k + 1) is true.

LHS(k + 1) = LHS(k) +
1

(k + 1)2
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Since P(k) is true, we find:

LHS(k + 1) < 2− 1

k
+

1

(k + 1)2

Since k + 1 > k,
1

(k + 1)2
<

1

k(k + 1)
.

Therefore

LHS(k + 1) < 2− 1

k
+

1

k(k + 1)

We can use the property :
1

k(k + 1)
=

1

k
− 1

k + 1
:

LHS(k + 1) < 2− 1

k
+

1

k
− 1

k + 1

LHS(k + 1) < 2− 1

k + 1

Since RHS(k + 1) = 2 − 1

k + 1
, we get LHS(k + 1) < RHS(k + 1) which validates that

P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n > 1.

Exercise 4

Use a proof by induction to show that ∀n ∈ N, n > 3, n2 − 7n + 12 ≥ 0.

Let P (n) be the proposition: n2−7n+12 ≥ 0. We want to show that P (n) is true for n greater
than 3. Let us define LHS(n) = n2 − 7n + 12.
Notice that LHS(1) = 6, LHS(2) = 2 and LHS(3) = 0 hence P (1), P (2) and P (3) are true.

• Basis step: P (4) is true:

LHS(4) = 42 − 7 ∗ 4 + 12 = 0

Therefore LHS(4) ≥ 0 and P (4) is true.

• Inductive step: Let k be a positive integer greater than 3 (k > 3), and let us suppose that
P (k) is true. We want to show that P (k + 1) is true.

LHS(k + 1) = (k + 1)2 − 7(k + 1) + 12

= k2 + 2k + 1− 7k − 7 + 12

= (k2 − 7k + 12) + (2k − 6)

Since P (k) is true, we know that k2 − 7k + 12 ≥ 0. Since k ≥ 4, 2k − 6 > 0. Therefore,
(k + 1)2 − 7(k + 1) + 12 > 0.
This validates that P (k + 1) is true.
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The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n > 3.

Exercise 5: 10 points

A sequence a0, a1, . . . , an of natural numbers is defined by a0 = 2 and an+1 = (an)2 , ∀n ∈ N.
Find a closed form formula for the term an and prove that your formula is correct.

Let is first compute a few terms in the sequence:

a0 = 2 = 20

a1 = (a0)
2 = 4 = 22

a2 = (a1)
2 = 16 = 24

a3 = (a2)
2 = 196 = 28

We notice two things:

i) each term an is a power of 2

ii) the power coefficient is itself a power of 2

Based on these observations, we assume that an = 22
n
. Note that this is true for n = 0, n = 1,

n = 2, and n = 3. Let us show that it is true for all n non negative integers.
Let us define: A(n) = 22

n
and let us define P (n) : an = A(n); we want to show that P (n) is

true, for all n ∈ Z, n ≥ 0.

a) Basis step: we want to show that P (0) is true.
a0 = 2
A(0) = 22

0
= 21 = 2

Therefore a0 = A(0) and p(0) is true.

b) Inductive Step
I want to show p(k)→ p(k + 1) whenever k ≥ 0

Hypothesis: p(k) is true, i.e. ak = A(k)¡ i.e. ak = 22
k
.

Then:

ak+1 = (ak)2

=
(

22
k
)2

= 22
k×2

= 22
k+1

= Ak+1

Therefore ak+1 = A(k + 1) which validates that p(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that p(n) is true for all
n ≥ 0.
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Exercise 6

Show that ∀n ∈ Nf2
1 + f2

2 + . . . + f2
n = fnfn+1 where fn are the Fibonacci numbers.

Let P (n) be the proposition: f2
1 + f2

2 + . . . + f2
n = fnfn+1

where fn are the Fibonacci numbers. Let us define LHS(n) = f2
1 + f2

2 + . . . + f2
n and RHS(n) =

fnfn+1.
We want to show that P (n) is true for all n; we use a proof by induction.

• Basis step: P (1) is true:

LHS(2) = f2
1 = 12 = 1

RHS(2) = f1f2 = 1.

• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. We want to
show that P (k + 1) is true.
Then

LHS(k + 1) = f2
1 + f2

2 + ... + f2
k + f2

k+1

= fkfk+1 + f2
k+1

= fk+1(fk + fk+1)

= fk+1fk+2

and

RHS(k + 1) = fk+1fk+2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Exercise 7

Show that ∀n ∈ Nf0− f1 + f2− . . .− f2n−1 + f2n = f2n−1− 1 where fn are the Fibonacci numbers.

Let P (n) be the proposition: f0 − f1 + f2 − . . .− f2n−1 + f2n = f2n−1 − 1
where fn are the Fibonacci numbers. Let us define LHS(n) = f0 − f1 + f2 − . . .− f2n−1 + f2n and
RHS(n) = f2n−1 − 1.

We want to show that P (n) is true for all n > 0; we use a proof by induction.

• Basis step:

LHS(1) = f0 − f1 + f2 = 0− 1 + 1 = 0

RHS(1) = f1 − 1 = 1− 1 = 0

Therefore LHS(1) = RHS(1) and P (1) is true.
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• Inductive step: Let k be a positive integer, and let us suppose that P (k) is true. We want to
show that P (k + 1) is true.
Then

LHS(k + 1) = f0 − f1 + ...− f2k−1 + f2k − f2k+1 + f2k+2

= f2k−1 − 1− f2k+1 + f2k+2

= f2k−1 − 1− f2k+1 + (f2k + f2k+1)

= f2k−1 + f2k − 1

= f2k+1 − 1

and

RHS(k + 1) = f2k+1 − 1

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all n.

Exercise 8: 10 points

Use the method of proof by induction to show that any amount of postage of 12 cents or more can
be formed using just 4-cent and 5-cent stamps.

Let P (n) be the property: the amount of postage of n cents can be formed using just 4-cent
and 5-cent stamps. We want the show that P (n) is true, for all n ≥ 12.

Let us first analyze what this property means. We can rewrite it as: ”There exists two non-
negative integers m and p such that n = 4m + 5p. We prove the property using induction.

• Basis step: We want to show that P (12) is true.

Note that 12 = 4 × 3 + 5 × 0. We found a pair of non negative integers (m, p) = (3, 0) such
that 12 = 4m + 5p. P(12) is therefore true.

• induction step: We suppose that P (k) is true, for k ≥ 12, and we want to show that P (k+ 1)
is true.

Since P (k) is true, there exists two non negative integers (m, p) such that

k = 4m + 5p

Adding 1 to this equation, we get:

k + 1 = 4m + 5p + 1

We notice that 1 can be written as 5 - 4. In which case:

k + 1 = 4m + 5p + 5− 4

= 4(m− 1) + 5(p + 1)

m− 1 may not be non-negative however, based on the value of m. We therefore distinguish
two cases:
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– m 6= 0 In this case, m − 1 is non negative. We found a pair of non negative integers
(m′, p′) = (m− 1, p + 1) such that k + 1 = 4m′ + 5p′. P(k+1) is therefore true.

– m = 0 In this case, m− 1 is negative. Let us go back to

k + 1 = 4m + 5p + 1

= 5p + 1

Since m = 0. We note first that p ≥ 3 as k ≥ 12. We notice then that 1 = 16 − 15. In
this case:

k + 1 = 5p + 16− 15

= 4× 4 + 5(p− 3)

with 4 and p−3 being non negative. We found a pair of non negative integers (m′, p′) =
(4, p− 3) such that k + 1 = 4m′ + 5p′. P(k+1) is therefore true.

In both cases, P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 12.
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