Data, Logic, and Computing

ECS 17 (Winter 2024)

Patrice Koehl koehl@cs.ucdavis.edu

February 18, 2024

Homework 8 - For 3/06/2024

Exercise 1

Show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Let P(n) be the proposition: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{2}$. Let us also define $LHS(n) = \sum_{i=1}^{n} i^2$ and $RHS(n) = \frac{n(n+1)(2n+1)}{2}$

• Basis step: P(1) is true:

$$LHS(1) = \sum_{i=1}^{1} i^{2} = 1$$

$$RHS(1) = \frac{1(1+1)(2+1)}{6} = \frac{2 \times 3}{6} = 1$$

• Inductive step: Let k be a positive integer $(k \le 0)$, and let us suppose that P(k) is true. We want to show that P(k+1) is true.

Let us compute $LHS(k+1) = \sum_{i=1}^{k+1} i^2$:

$$LHS(k+1) = \sum_{i=1}^{k} i^{2} + (k+1)^{2}$$

$$= LHS(k) + (k+1)^{2}$$

$$= RHS(k) + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)(2k^{2} + k + 6k + 6)}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

And:

$$RHS(k+1) = \frac{(k+1)(k+2)(2k+3)}{6}$$

Therefore LHS(k+1) = RHS(k+1), which validates that P(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.

Exercise 2

Show that
$$\forall n \in \mathbb{N}, \sum_{i=1}^{n} i(i+1)(i+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$
.

Let
$$P(n)$$
 be the proposition: $\sum_{i=1}^{n} i(i+1)(i+2) = \frac{n(n+1)(n+2)(n+3)}{4}$. We define $LHS(n) = \sum_{i=1}^{n} i(i+1)(i+2)$ and $RHS(n) = \frac{n(n+1)(n+2)(n+3)}{4}$

• Basis step: P(1) is true:

$$LHS(1) = 1*(1+1)*(1+2) = 6$$

$$RHS(1) = \frac{1*(1+1)*(1+2)*(1+3)}{4} = 6$$

• Inductive step: Let k be a positive integer $(k \le 0)$, and let us suppose that P(k) is true. We want to show that P(k+1) is true.

Let us compute LHS(k+1):

$$LHS(k+1) = \sum_{i=1}^{k+1} i(i+1)(i+2)$$

$$= LHS(k) + (k+1)(k+2)(k+3)$$

$$= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3)$$

$$= \frac{k(k+1)(k+2)(k+3)}{4} + \frac{4(k+1)(k+2)(k+3)}{4}$$

$$= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

Let us compute RHS(k+1):

$$RHS(k+1) = \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

Therefore LHS(k+1) = RHS(k+1), which validates that P(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.

Exercise 3

Show that
$$\forall n \in \mathbb{N}, n > 1, \sum_{i=1}^{n} \frac{1}{i^2} < 2 - \frac{1}{n}$$
.

Let P(n) be the proposition: $\sum_{i=1}^{n} \frac{1}{i^2} < 2 - \frac{1}{n}$. Let us define $LHS(n) = \sum_{i=1}^{n} \frac{1}{i^2}$ and $RHS(n) = 2 - \frac{1}{n}$. We want to show that P(n) is true for all n > 1.

• Basis step: We show that P(2) is true:

$$LHS(2) = 1 + \frac{1}{4} = \frac{5}{4}$$
$$RHS(2) = 2 - \frac{1}{2} = \frac{6}{4}$$

Therefore LHS(2) < RHS(2) and P(2) is true.

• Inductive step: Let k be a positive integer greater than 1 (k > 1), and let us suppose that P(k) is true. We want to show that P(k+1) is true.

$$LHS(k+1) = LHS(k) + \frac{1}{(k+1)^2}$$

Since P(k) is true, we find:

$$LHS(k+1) < 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$$

Since k+1 > k, $\frac{1}{(k+1)^2} < \frac{1}{k(k+1)}$.

Therefore

$$LHS(k+1) < 2 - \frac{1}{k} + \frac{1}{k(k+1)}$$

We can use the property : $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$:

$$LHS(k+1) < 2 - \frac{1}{k} + \frac{1}{k} - \frac{1}{k+1}$$

 $LHS(k+1) < 2 - \frac{1}{k+1}$

Since $RHS(k+1) = 2 - \frac{1}{k+1}$, we get LHS(k+1) < RHS(k+1) which validates that P(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n > 1.

Exercise 4

Use a proof by induction to show that $\forall n \in \mathbb{N}, n > 3, n^2 - 7n + 12 \ge 0$.

Let P(n) be the proposition: $n^2 - 7n + 12 \ge 0$. We want to show that P(n) is true for n greater than 3. Let us define $LHS(n) = n^2 - 7n + 12$.

Notice that LHS(1)=6, LHS(2)=2 and LHS(3)=0 hence P(1), P(2) and P(3) are true.

• Basis step: P(4) is true:

$$LHS(4) = 4^2 - 7 * 4 + 12 = 0$$

Therefore $LHS(4) \geq 0$ and P(4) is true.

• Inductive step: Let k be a positive integer greater than 3 (k > 3), and let us suppose that P(k) is true. We want to show that P(k + 1) is true.

$$LHS(k+1) = (k+1)^{2} - 7(k+1) + 12$$
$$= k^{2} + 2k + 1 - 7k - 7 + 12$$
$$= (k^{2} - 7k + 12) + (2k - 6)$$

Since P(k) is true, we know that $k^2 - 7k + 12 \ge 0$. Since $k \ge 4$, 2k - 6 > 0. Therefore, $(k+1)^2 - 7(k+1) + 12 > 0$.

This validates that P(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n > 3.

Exercise 5: 10 points

A sequence a_0, a_1, \ldots, a_n of natural numbers is defined by $a_0 = 2$ and $a_{n+1} = (a_n)^2$, $\forall n \in \mathbb{N}$. Find a closed form formula for the term a_n and prove that your formula is correct.

Let is first compute a few terms in the sequence:

$$a_0 = 2 = 2^0$$

 $a_1 = (a_0)^2 = 4 = 2^2$
 $a_2 = (a_1)^2 = 16 = 2^4$
 $a_3 = (a_2)^2 = 196 = 2^8$

We notice two things:

- i) each term a_n is a power of 2
- ii) the power coefficient is itself a power of 2

Based on these observations, we assume that $a_n = 2^{2^n}$. Note that this is true for n = 0, n = 1, n = 2, and n = 3. Let us show that it is true for all n non negative integers.

Let us define: $A(n) = 2^{2^n}$ and let us define $P(n) : a_n = A(n)$; we want to show that P(n) is true, for all $n \in \mathbb{Z}, n \geq 0$.

a) Basis step: we want to show that P(0) is true.

$$a_0 = 2$$

 $A(0) = 2^{2^0} = 2^1 = 2$
Therefore $a_0 = A(0)$ and $p(0)$ is true.

b) Inductive Step

I want to show $p(k) \to p(k+1)$ whenever $k \ge 0$

Hypothesis: p(k) is true, i.e. $a_k = A(k)$; i.e. $a_k = 2^{2^k}$. Then:

$$a_{k+1} = (a_k)^2$$

$$= (2^{2^k})^2$$

$$= 2^{2^k \times 2}$$

$$= 2^{2^{k+1}}$$

$$= A_{k+1}$$

Therefore $a_{k+1} = A(k+1)$ which validates that p(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that p(n) is true for all $n \ge 0$.

Exercise 6

Show that $\forall n \in \mathbb{N} f_1^2 + f_2^2 + \ldots + f_n^2 = f_n f_{n+1}$ where f_n are the Fibonacci numbers.

Let P(n) be the proposition: $f_1^2 + f_2^2 + \ldots + f_n^2 = f_n f_{n+1}$ where f_n are the Fibonacci numbers. Let us define $LHS(n) = f_1^2 + f_2^2 + \ldots + f_n^2$ and $RHS(n) = f_n f_{n+1}$.

We want to show that P(n) is true for all n; we use a proof by induction.

• Basis step: P(1) is true:

$$LHS(2) = f_1^2 = 1^2 = 1$$

 $RHS(2) = f_1f_2 = 1$.

• Inductive step: Let k be a positive integer, and let us suppose that P(k) is true. We want to show that P(k+1) is true. Then

$$LHS(k+1) = f_1^2 + f_2^2 + \dots + f_k^2 + f_{k+1}^2$$

$$= f_k f_{k+1} + f_{k+1}^2$$

$$= f_{k+1} (f_k + f_{k+1})$$

$$= f_{k+1} f_{k+2}$$

and

$$RHS(k+1) = f_{k+1}f_{k+2}$$

Therefore LHS(k+1) = RHS(k+1), which validates that P(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.

Exercise 7

Show that $\forall n \in \mathbb{N} f_0 - f_1 + f_2 - \ldots - f_{2n-1} + f_{2n} = f_{2n-1} - 1$ where f_n are the Fibonacci numbers.

Let P(n) be the proposition: $f_0 - f_1 + f_2 - \ldots - f_{2n-1} + f_{2n} = f_{2n-1} - 1$ where f_n are the Fibonacci numbers. Let us define $LHS(n) = f_0 - f_1 + f_2 - \ldots - f_{2n-1} + f_{2n}$ and $RHS(n) = f_{2n-1} - 1$.

We want to show that P(n) is true for all n > 0; we use a proof by induction.

• Basis step:

$$LHS(1) = f_0 - f_1 + f_2 = 0 - 1 + 1 = 0$$
$$RHS(1) = f_1 - 1 = 1 - 1 = 0$$

Therefore LHS(1) = RHS(1) and P(1) is true.

• Inductive step: Let k be a positive integer, and let us suppose that P(k) is true. We want to show that P(k+1) is true.

Then

$$LHS(k+1) = f_0 - f_1 + \dots - f_{2k-1} + f_{2k} - f_{2k+1} + f_{2k+2}$$

$$= f_{2k-1} - 1 - f_{2k+1} + f_{2k+2}$$

$$= f_{2k-1} - 1 - f_{2k+1} + (f_{2k} + f_{2k+1})$$

$$= f_{2k-1} + f_{2k} - 1$$

$$= f_{2k+1} - 1$$

and

$$RHS(k+1) = f_{2k+1} - 1$$

Therefore LHS(k+1) = RHS(k+1), which validates that P(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.

Exercise 8: 10 points

Use the method of proof by induction to show that any amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Let P(n) be the property: the amount of postage of n cents can be formed using just 4-cent and 5-cent stamps. We want the show that P(n) is true, for all $n \ge 12$.

Let us first analyze what this property means. We can rewrite it as: "There exists two non-negative integers m and p such that n = 4m + 5p. We prove the property using induction.

- Basis step: We want to show that P(12) is true. Note that $12 = 4 \times 3 + 5 \times 0$. We found a pair of non negative integers (m, p) = (3, 0) such that 12 = 4m + 5p. P(12) is therefore true.
- induction step: We suppose that P(k) is true, for $k \ge 12$, and we want to show that P(k+1) is true.

Since P(k) is true, there exists two non negative integers (m, p) such that

$$k = 4m + 5p$$

Adding 1 to this equation, we get:

$$k+1 = 4m + 5p + 1$$

We notice that 1 can be written as 5 - 4. In which case:

$$k+1 = 4m + 5p + 5 - 4$$

= $4(m-1) + 5(p+1)$

m-1 may not be non-negative however, based on the value of m. We therefore distinguish two cases:

- $-m \neq 0$ In this case, m-1 is non negative. We found a pair of non negative integers (m',p')=(m-1,p+1) such that k+1=4m'+5p'. P(k+1) is therefore true.
- -m=0 In this case, m-1 is negative. Let us go back to

$$k+1 = 4m + 5p + 1$$
$$= 5p + 1$$

Since m=0. We note first that $p\geq 3$ as $k\geq 12$. We notice then that 1=16-15. In this case:

$$k+1 = 5p+16-15$$

= $4 \times 4 + 5(p-3)$

with 4 and p-3 being non negative. We found a pair of non negative integers (m', p') = (4, p-3) such that k+1 = 4m' + 5p'. P(k+1) is therefore true.

In both cases, P(k+1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all $n \ge 12$.