
ECS20 
Homework 8: Number theory and Summations 

Due March 5, 2019 
 
 
Number theory:  
 
Exercise 1 (10 points) 
 
Let a, b and n be three positive integers with gcd(a,n) = 1 and gcd(b,n) = 1. Show that 
gcd(ab,n) = 1 
 
Exercise 2 (10 points) 
 
Prove that there are no solutions in integers x and y to the equation 2x2+5y2=14. (Hint: 
consider this equation modulo 5) 
 
Exercise 3 (10 points each; 20 points total) 
 
Use Fermat’s little theorem to evaluate: 

(i) 2302 mod 7 
(ii) 5123 mod 61 

 
Exercise 4 (10 points) 
 
Let n be an integer. Show that if n>3 then n, n+2 and n+4 cannot all be prime 
 
Sequence, Summation:  
 
Exercise 5 (5 points each; total: 20 points) 
 
Find the value of each of these sums ( * means multiply):  
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Exercise 6 (10 points) 
 

Using the identity 
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Exercise 7 (10 points) 

Without using mathematical induction, show that 
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Exercise 8 (10 points) 
 
Without using mathematical induction, prove that: 
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 for all natural numbers n ≥ 1. 

 
 
Extra credit (3 points) 
Let a and b be two natural numbers. 

a) Show that if gcd(a,b) = 1 then gcd(a+b, ab) = 1 
b) Show that if gcd(a,b) = 1 then gcd(a2+b2,ab) = 1 

 
 


