

Quantitative and Comparative Visualization Applied to Cosmological Simulations

James Ahrens

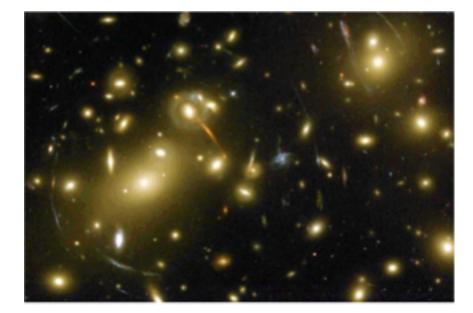
Katrin Heitmann, Salman Habib

Lee Ankeny, Patrick S. McCormick, Jeff Inman

Los Alamos National Laboratory

Ryan Armstrong, Kwan-Liu Ma

University of California at Davis SciDAC 2006


June 25-29 Denver

The Content of the Universe

- Standard Model of Cosmology
 - ~73% of a mysterious dark energy
 - ~23% of an unknown dark matter component
 - ~4% baryons
 - Constraints on ~20 cosmological parameters, including optical depth, spectral index, hubble constant, …
 - Values are known to an accuracy of +/- 10%
- For comparison: the parameters of the "Standard Model for Particle Physics" are known with 0.1% accuracy

Understanding the Universe

- Science today
 - Theory
 - Simulation
 - Observation / Experiment
- Cosmological simulations follow the formation of nonlinear structure in dark and luminous matter.
- Our goal is to understand sources of inconsistency between different cosmological simulation codes.

Robustness of Cosmological Simulations: Large Scale Structure – Heitmann, Ricker, Warren and Habib, ApJS, 160, 128, (2005)

- How well do different N-body codes agree on various statistics?
- Test and compare 6 different Nbody codes for simulations of structure formation, dark matter only
- Every code starts from identical particle initial conditions

Robustness of Cosmological Simulations: Large Scale Structure - Codes

- Mesh-based Cosmology Code
 - Multi-species particle mesh code (Habib et al. in prep.)
 - FLASH
 - Adaptive mesh refinement
 - Hydrodynamics and dark matter code (Fryxell et al. 2000)
 - Hashed-Oct Tree
 - Tree code with SPH (Warren & Salmon 1993)
 - Galaxies with Dark matter and Gas intEracTions
 - Tree code with SPH (Springel et al. 2001)
- HYDRA, AP³M code with SPH (Couchman et al. 1995)

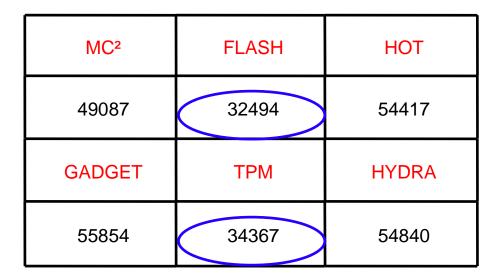
TreePM, pure dark matter code (Xu 1995, Bode et al. 2000)

- For each simulation
 - 16 million particles
 - Point, velocity, mass and tag variables
- http://t8web.lanl.gov/people/heitmann/arxiv/

Our Visualization and Analysis Approach

- Scientific method
 - 1) Form hypothesis
 - 2) Qualitative Visualization
 - Intuitive exploration
 - 3) Quantitative Analysis
 - Define and measure
- Tight integration

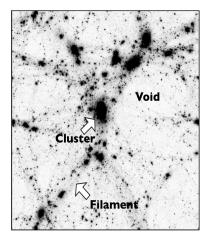
- Bottom-up or top-down focus?
 - Bottom-up application focus
 - Learn and generalize over time
- Work towards significantly improving the scientific analysis process by incorporating quantitative analysis as the driver for visualization.


Initial Approach for Cosmology Problem

Initially

COMPUTER

- Define halos
 - Particles within 1/5 of the mean distance from each other form a halo
- Count the halos
- Form hypothesis
 - Each simulation
 should generate the
 same number of halos



- Quantitative Analysis
 - MC² (PM code, uniform grid) and FLASH (AMR code) have similar force resolution
 - Highest resolution (after refinement) of FLASH is the same as the MC² resolution throughout
 - FLASH is missing ~40% of the halos! Why?

Refined Approach for Cosmology Problem

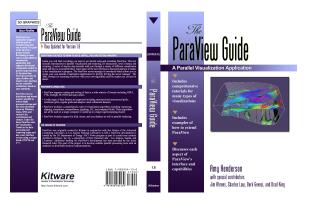
- Form hypothesis
 - Low density regions do not form as many halos as other density regions
- Qualitative Visualization
 - Comparative visualization
- Quantitative Analysis
 - Science-based feature definition and manipulation
 - Define density
 - Given a grid, map the particles into the grid elements, density is particle count
 - Count halos as a function of density
 - Also, consider only halos above a certain mass

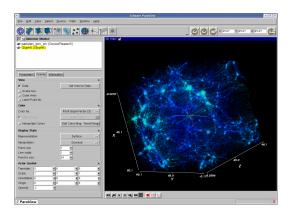
Additional requirements

- High-performance
 - Reduce time to visual result or analysis
- Scalable
 - Handle massive data sets

Application of the approach

- Paraview open-source large data visualization package
 - Scalable
 - Comparative
- Scout an analysis-language based, hardwareaccelerated visualization package
 - High-performance
 - Quantitative




Vtk and ParaView - An Open Source Visualization Tool Suite for Scientists

• VTK

COMPUTER 8

- An open-source objectoriented visualization toolkit
- www.vtk.org
- ParaView
 - An open-source, scalable multi-platform visualization application
 - Creates an open, flexible, and intuitive user interface for VTK
 - Project Lead: James Ahrens
 - www.paraview.org

- Agency funding
 NSF, NIH, DOE, DOD
- Entities using/developing
 - Laboratories
 - ANL, NCSA, EVL
 - LANL, LLNL, SNL
 - CEA, CHCH
 - ARL
 - Commercial Companies
 - GE, DuPont
 - Universities
 - Stanford, UNC, Utah
- ~2000 mailing list participants

ParaView Overview

- Full functionality
 - Isosurfacing, cutting, clipping, volume rendering...
- Serial and parallel portability
 - Run on most serial and parallel platforms
 - Binaries for Windows, Linux, Mac
 - Distributed-memory execution
 - Commodity clusters
- Scalability
 - Data parallelism and incremental processing
 - Visualized a petabyte-sized test problem in 2001

- Advanced displays and rendering
 - Stereo, Tiled walls, CAVE
 - Automatic level of detail rendering
 - Compression for remote data transfer
- Supercomputing services
 - Parallel data server
 - Parallel rendering server
 - Client
- Visualization research with a realworld impact...

Refined Approach Using ParaView

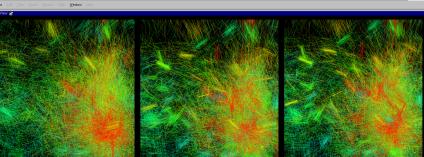
• Qualitative - Visualization

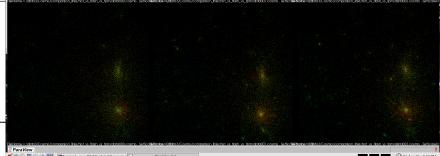
COMPUTER &

SCIENCES

- Automated comparative visualization
- Quantitative Analysis
 - Create modules and interfaces in ParaView that:
 - Define density, halos
 - Count and query on halos and density

	Kitware ParaView
<u>Eile Edit ⊻iew Select Source Filter Window H</u> elp	
E T Selection Window	View 😭
Parameters Display Information	
View	
Data Set View to Data	
🔄 Scalar bar	2278
Color x	
Color by: Point GlyphVector (3) -	
T Map Scalars Actor Color	
Interpolate Colors	
Display Stylex	45.1
Representation: Surface -	x ^{45.1}
Interpolation: Gouraud -	90.1
Point size: 1	50.1
Line width:	
Point Id size: 24	45.0
- Actor Control × -	z
Translate: 0 > 0 > Scale: 1 > 1 > 1 >	90.1
Orientation: 0 > 0 > 0	90.1 45.0 -0.179.0386 V
Origin: 0 + 0 + 0	
Opacity: .2	
ParaView	

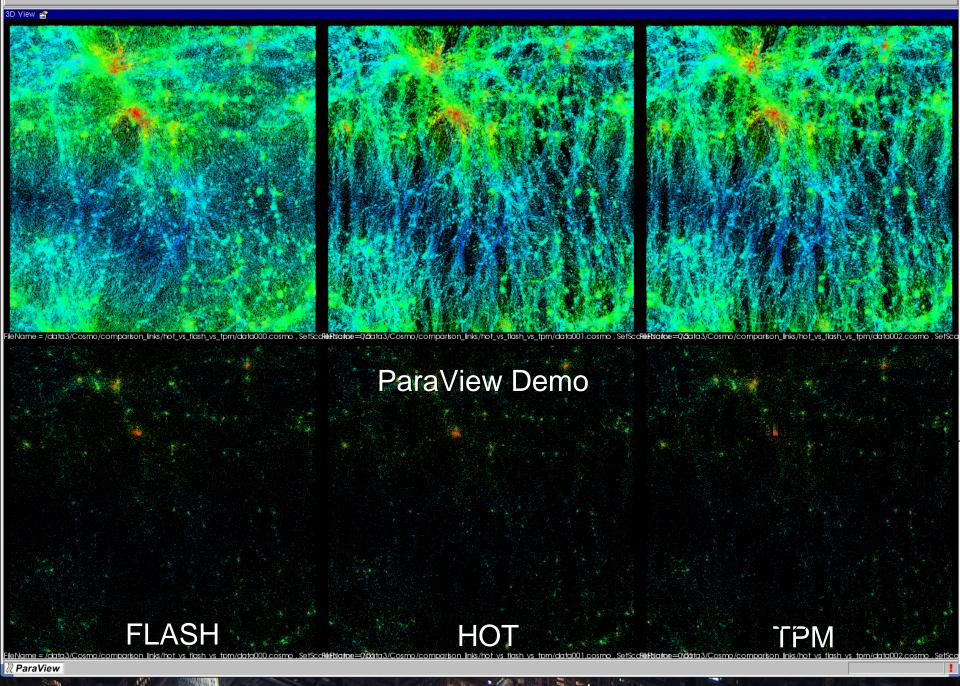

COMPUTER & COMPUTATIONAL SCIENCES

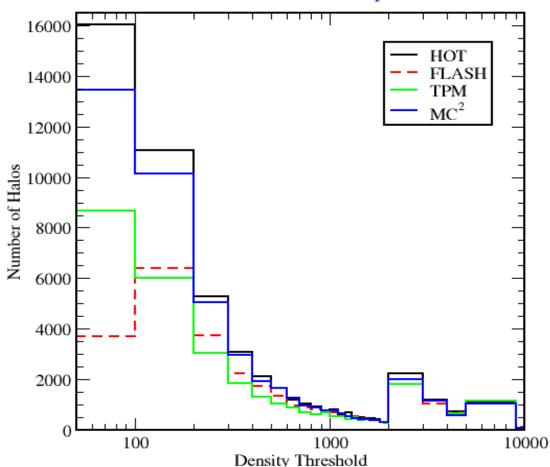

ParaView: Automated Comparative

Visualization

v		Kitware ParaView		-		
<u>E</u> ile <u>E</u> dit <u>V</u> iew <u>S</u> elect <u>S</u> ource	Fi <u>l</u> ter <u>₩</u> indow	Help				
	mparative Visualiz	ations ×		X 45.071 Y 45.07 Z 45.07		
Image: Selection Ourrent Visualization Image: Selection Comparative Vis 2 Image: Selection Comparative Vis 2	ons		alization	×		
	Visualization Name: Comparative Vis 2					
Parameters C		Comparative Vis Properties Source: 0.cosmo (CosmoRead		Aumber of Frames: 3		
Tota Create Delet	te Edit					
Scalar bar Cube Axes	Close	Active Key Frame Properties Current Track: halo000.cosmo (CosmoReader7) : FileNa	ame	×		
🔟 Label Point Ìds		Time:		2		
Color	Delateres	Value: /data3/Cosmo/comparison_links/tpm_vs_mc2_vs_ho	/halo002.cosmo 🛁	1.00		
Color by:	Point mass	Interpolation:				
	t Color Map Reset	Add KeyFrame		Delete KeyFrame		
Display Style				V Kitw Ele		
Representation:	Surface			SD View		
Interpolation:	Gouraud					
Point size: 2	ŀ					
Line width: 1 Point Id size: 24						
- Actor Control						
Translate: 0 • 0	▶ 0					
Scale: 1 1	1					
Orientation: 0 D	• 0					
Origin: 0 • 0 Opacity: 1 •	• 0	ОК	Car	icel		
🖉 ParaView						

- Vary parameters in X and Y
- Create multiple linked visualizations
- Spreadsheet style visual presentation
- Synchronized cameras

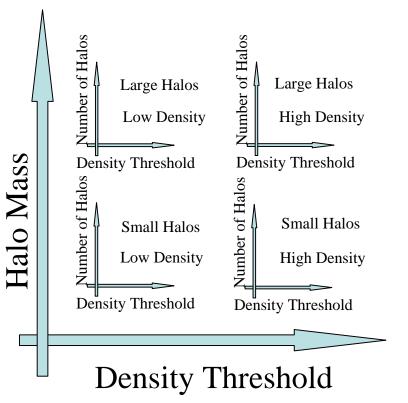



💙 Kitware ParaView

File Edit View Select Source Filter Window Help

ParaView: Quantitative Results

Halos with more than 10 particles


Note: Bin sizes are not the same in all density regions! This leads to "jumps", e.g., at 2000.

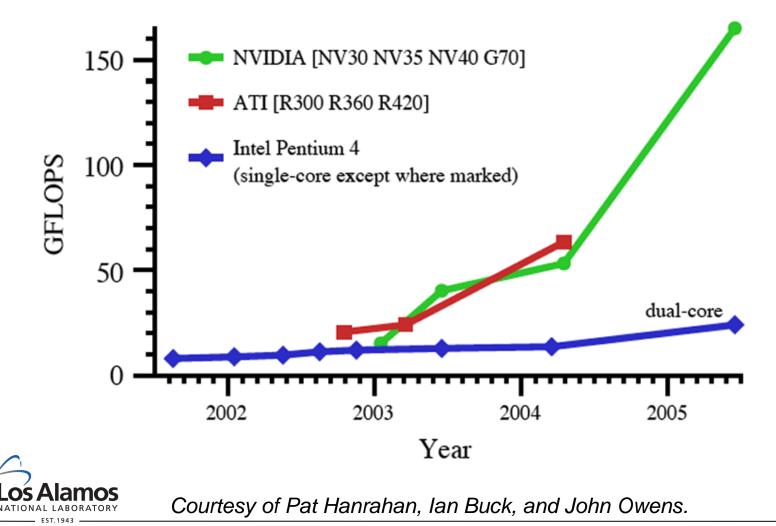
ParaView Quantitative Results Summary

- FLASH has a severe lack of halos ~40%
- Paraview allows us to identify halos and halo counts in different density regions
 - Qualitative: FLASH loses halos in low density regions
 - Quantitative: confirmed with Paraview (no need for extra analysis codes!)
- Understand the relationship between halo size and density:
 - FLASH has large deficit in low density regions,
 OK in very high density regions
 - Very small halos live dominantly in low density

Future: Merging Comparative and Quantitative Visualization Together

COMPUTER 8

- The current base grid in FLASH allows us to resolve only very large halos (which live in the high density regions)
 - To resolve all halos need a much finer base grid is required
 - Need new force resolution criteria... refine when appropriate
- Hot topic in cosmology research
 - Study of halo properties and formation as a function of their environment (as defined by density)

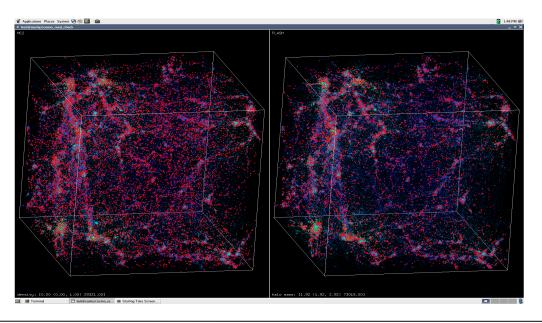

Scout Overview

- Patrick McCormick PI
- High-performance
 - Hardware-acceleration via the multi-core GPU
- Quantitative
 - Define and analyze data via programming language

- Scientist-focused programming language
 - Express both general computations and visualization results
 - Explicit data parallelism
 - Take advantage of data parallel nature of graphics hardware
 - Hide other nuances introduced by graphics API and hardware

Refined Approach Using Scout

- Qualitative Visualization
 - Merged as one program
- Quantitative Analysis
 - Create a program that:
 - Define density, halos
 - <u>Interactively query</u> on halos and density


Los Alamos NATIONAL LABORATORY

The Scout Program

```
viewport "MC2" (0.0, 0.0, 0.5, 0.5) {
float mag(shapeof(mc2_velocity));
compute with shapeof(mc2_velocity) {
  mag = magnitude(mc2_velocity);
render points with shapeof(mc2_points) {
  where(density >= ... )
    image=hsva(240*(max(mag)-mag) /
        (max(mag)-min(mag)),1,1,1);
    image = null;
render points with shapeof(mc2_halos) {
  where(mass >= ... && density >= ...)
    image = rgba(1,0,0,1);
  else
    image = null;
```


- Performance
 - ParaView halos (~50K) using geometry *(# of visualizations)
 - Scout halos (~50K), particles (~2 million) using points and queries * (# of visualizations)

- Integrated approach to visualization and analysis
 - Qualitative and quantitative
- Solutions
 - ParaView
 - Open-source large data visualization
 - Comparative visualization
 - www.paraview.org
 - Scout
 - Hardware-accelerated language-based visualization and analysis
 - Contact us expected binary release end of this year

• Los Alamos