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Synopsis

This course presents the current state of the art about virtual hands with a focus on how
to capture and synthesize hand motions for virtual reality. We furthermore show how
hands are represented in current applications and summarize insights from perceptual
studies on virtual hands.

Abstract

We use our hands every day: to grasp a cup of co�ee, write text on a keyboard, or
signal that we are about to say something important. We use our hands to interact with
our environment and to help us communicate with each other without thinking about it.
Wouldn’t it be great to be able to do the same in virtual reality? However, accurate hand
motions are not trivial to capture. In this course, we present the current state of the
art when it comes to virtual hands. Starting with current examples for controlling and
depicting hands in virtual reality (VR), we dive into the latest methods and technologies
to capture hand motions. As hands can currently not be captured in every situation
and as constraints stopping us from intersecting with objects are typically not available
in VR, we present research on how to synthesize hand motions and simulate grasping
motions. Finally, we provide an overview of our knowledge of how virtual hands are
being perceived, resulting in practical tips on how to represent and handle virtual hands.

Our goals are (a) to present a broad state of the art of the current usage of hands in
VR, (b) to provide more in-depth knowledge about the functioning of current hand mo-
tion tracking and hand motion synthesis methods, (c) to give insights on our perception
of hand motions in VR and how to use those insights when developing new applications,
and �nally (d) to identify gaps in knowledge that might be investigated next. While the
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focus of this course is on VR, many parts also apply to augmented reality, mixed reality,
and character animation in general, and some content originates from these areas.

Course Overview

15 minutes: Introduction

Welcome and Overview (5 Minutes)

Sophie Jörg
Overview of the course goals and motivations for attending. Speaker introductions.

Introduction to Virtual Hands (10 minutes)

Sophie Jörg
How are virtual hands currently used in applications? What are the standard devices
for interactions (controllers), how are they represented? Examples of current games and
applications. We furthermore introduce the basic anatomy of hands.

75 Minutes: Motion Capturing Fingers

Optical Marker-Based Approaches (25 Minutes)

Yuting Ye
Using markers to capture �nger motions are proven to be challenging due to the small
real estate on a hand comparing to the body. We will discuss commercial solutions in
hand motion capture and how researchers tackle technical challenges such as automatic
marker labeling and marker occlusion.

Gloves and Non-Optical Approaches (10 Minutes)

Michael Neff
Advantages and drawbacks of capturing hand motions with wearable sensors or gloves.
Presenting di�erent technologies and models.

Image- and Depth-Sensor-Based Approaches (40 Minutes)

Franziska Mueller
Recent advancements in deep learning enables marker-less motion capture of hands from
images. These techniques greatly reduce the friction of capturing and using hand mo-
tions.

5 Minutes: Break

45 Minutes: Hand Motion Synthesis

Kinematic Hand Motion Synthesis (15 Minutes)

Michael Neff
How can we synthesize hand motions if we can not capture them? Introducing data-
driven and procedural approaches.
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Physical Modeling (30 minutes)

Victor Zordan
Interacting with objects in VR is still a challenge. Presenting current state and advances
in hand object interaction and grasping.

25 minutes: Perception of Virtual Hands

Sophie Jörg
What are the consequences of having inaccurate hand motions? Discussing the e�ect
of hand motions on the perception of virtual characters, the virtual hand illusion, the
inuence of di�erent hand representations, and visualizations for virtual grasping, giving
practical tips.

15 minutes: Conclusions and Q&A

Everyone
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1 Introduction

1.1 Welcome and Overview

Course Motivation We use our hands every day: to grasp a cup of co�ee, write text
on a keyboard, or signal that we are about to say something important. We use our
hands to interact with our environment and to help us communicate with each other
without thinking about it. Wouldn’t it be great to be able to do the same in virtual
reality? However, hand motions are detailed and hands have many degrees of freedom,
which is why their accurate motions are not trivial to capture. In this course, we present
the current state of the art when it comes to virtual hands. Starting with current
examples for controlling and representing hands in virtual reality (VR), we dive into
the latest methods and technologies to motion capture and represent hands in VR. As
hands can currently not be captured in every situation and as constraints stopping us
from intersecting with objects are typically not available in VR, we present research on
how to synthesize hand motions and simulate grasping motions. Finally, we provide an
overview of our knowledge of how virtual hands are being perceived, resulting in practical
tips on how to represent and handle virtual hands.

As technology evolves quickly in this �eld and many people join it and need to get
to the current state of the art, this course will provide a great foundation and appeal to
a broad public.

Intended Audience Our target audience includes researchers at all levels, developers
especially of motion capture devices, designers of virtual reality (VR) applications, as
well as users of games and applications in virtual environments. Several topics are
accessible for a wider audience without previous knowledge, such as current methods
of interactions with virtual hands, the perception of virtual hands including the virtual
hand illusion, as well as some of the basics of motion capturing hands. Other parts,
are aimed for an audience with some general knowledge in computer graphics, such as
newer motion capturing techniques using deep learning or motion synthesis methods
using physics-based animation.

Prerequisites While some parts of our course are accessible to a broad audience, other
parts are aimed for an audience with some general knowledge in computer animation.
For example, newer motion capturing techniques use deep learning and some motion
synthesis methods use physics-based animation or motion graphs.

1.2 Introduction to Virtual Hands

Using your own hands in virtual reality: what once was pure science �ction is becoming
a reality for consumers. While the hardware to experience virtual reality (VR) and to
capture the motions of one’s own hands used to be very expensive, the equipment is now
more a�ordable and has been spreading beyond research labs and industry facilities for
a few years. New hardware is entering the market every year and more and more games
and applications are o�ered. However, while hand tracking is possible, most commercial
applications use controllers to interact with the virtual environments.

Despite a lot of recent progress, accurately motion capturing hands remains a chal-
lenge [130]. Doing so in real-time without expensive equipment is even more challenging.
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Hands have a high number of degrees of freedom and are smaller relative to the body.
They have a complex anatomical structure and parts of a hand can be occluded. All
these reasons make it a di�cult task.

An additional issue that arises when tracking and visualizing one’s real hands in VR,
aside from accurate tracking, is the timely recognition of grasp actions. A controller has
the advantage of having buttons that allow for reliable detection of any grasp from the
user. When interacting with tracked hands, however, a grasp has to be inferred from the
user’s motions which might { depending on the algorithm used and the performance of the
user { be slower or not always successful. Current research indicates that controllers can
be more e�cient when it comes to accomplishing a task that involves grasping compared
to tracking hand motions directly using a glove with optical markers [55]. Still, in the
presented study, gloves were preferred by the majority of participants for various reasons
including that they were simply \more fun".

Finally, a general issue when using virtual hands, whether it is with a controller or
with tracked hands, is how to represent interactions. If a user grasps an virtual object,
there is no solid surface that keeps the user from intersecting with the geometry. A
common solution or workaround to this problem is to hide the virtual hand geometry as
soon as an object is being grasped, so that the player only sees a oating object. The
game Job Simulator [76] is an example of such an implementation. A di�erent solution
is to automatically adjust the hand poses to match the geometry such as in the games
The Climb [15] or Lone Echo [86].

2 Motion Capturing Fingers

To use our own hands in virtual environments, we need to be able to track their motions
in real time. In this largest part of the course, we describe di�erent methods to capture
the detailed motions of �ngers.

2.1 Optical Marker-Based Approaches

Optical marker-based motion capture (mocap) of full body motions has been widely
used in video games and special e�ects. Hand motions, especially �ne-grained �nger
movements, are however more challenging to capture and therefore less utilized. The
di�culty comes from the smaller size of hands comparing to the body, and their highly
articulated nature. Large markers that work well on the body will need to cluster densely
on a hand to capture all its articulations. A dense set of large markers are di�cult to
identify for tracking purpose. Large markers are also bulky and uncomfortable to put
on, limiting the freedom of motion for the hand. As a result, smaller markers are usually
used to capture more detailed and subtle hand motions (see Figure 1(a)). However,
smaller markers are harder to identify robustly and easier to get occluded. Depending
on the application, setting up motion capture for hands needs to consider marker sizes
and density, camera resolution, camera coverage and their distance to the hands, and
the desired motion detail. Once the 3D markers are captured, they need to be labeled
according to the desired layout and calibrated against a suitable hand model. Finally,
with labeled and calibrated 3D markers, an inverse kinematics (IK) problem can be
solved to reconstruct the hand pose.

The suitable marker layout for �nger capture depends on the speci�c applications.
Dense marker layouts are more commonly used in biomedical research to analyze subtle
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(a) (b) (c) (d)

Figure 1: Example marker sizes and layouts on the hand. (a) Smaller makers are used
on the hands to capture subtle motions. They are harder to identify compared to larger
markers used on the body. (b) A full marker set that can capture the movements of all �n-
ger joints. (c) A reduced marker set layout with mixed marker sizes [1] ( c©Alexanderson
et al.). (d) A dense marker layout to capture subtle �nger movements, usually to study
the underlying biomechanical structure [13] ( c©Elsevier).

�nger movements, especially for intricate thumb rotations [122, 121, 13]. In this case,
multiple tiny markers are placed onto a single �nger segment to capture its detailed rigid
motion (see Figure 1(d)). For better marker visibility, the capture volume is usually
limited and therefore the range of hand motion is constrained. On the other hand, a
reduced marker layout (see Figure 1(c)) is often used together with body motion capture
to animate virtual avatars. A sparse marker layout permits the use of larger marker sizes
and less unconstrained movements in a larger capture volume.

While a reduced marker layout is easier for tracking markers in 3D, it is not su�cient
to constrain all the degrees of freedom (DOFs) of the �ngers. How to reconstruct plausi-
ble �nger motions with incomplete observation becomes an interesting research question
[37]. In addition, it is important to place the reduced marker set strategically so as
to optimize the quality of the reconstructed motion. Schr�oder et al. [96, 95] devised an
optimization procedure to compute marker placements such that they can best constrain
the hand pose while minimizing occlusion. Kang et al. [46] utilized a dataset of the tar-
get motion to pick marker combinations that minimize the motion reconstruction error.
Wheatland et al. [129] applied Principle Component Analysis (PCA) to rank and pick
important markers based on the target motion content. Various results suggest six to
eight markers are usually su�cient to capture conversational gestures or common poses
in the American Sign Language (ASL).

Even with a reduced marker set, labeling each marker correctly remains a challenging
task that usually requires tedious manual e�ort. Alexanderson et al. [1, 2] proposed an
automatic marker labeling algorithm using multi-hypothesis tracking. They use Gaus-
sian Mixture Models (GMMs) to represent the spatial distribution of marker positions
local to the hand. The temporal transition probabilities of markers are modeled using
Kalman �lter [45]. With these two probability distributions, the most probable label
assignment can then be selected using the Viterbi algorithm [25]. Recently, with the
rapid advancement of deep learning techniques, even a full marker set can now be la-
beled automatically in real time using convolutional neural networks. Han et al. [31]
formulated the marker labeling problem as an image regression problem. An unordered
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set of markers are rendered into a depth image. A convolutional neural network then
predicts the 3D marker positions in the desired order from the input image. By match-
ing the unordered input positions with the predicted ordered positions using bipartite
matching, the marker labels are recovered.

Alternatively, the marker labeling problem can be solved by using active markers.
These are LEDs that emit light at unique frequencies or phases to automatically identify
themselves. In the past, only a small number of active markers are supported at the same
time due to the frequency or phase limits, and the added electronics increase the friction
of usage. However in recent years, active LED markers become more mature with smaller
form factor, improved hardware specs, and smooth software integration from commercial
products [75, 120, 79], making them an attractive �nger tracking solution [5].

An inherent problem with optical motion capture is marker occlusion. It can be
especially severe for heavy interactions, such as two-hand interaction or dexterous object
manipulation. Pavllo et al. [77, 78] used a deep neural network to predict occluded
active marker positions. An auto-encoder is trained to reconstruct marker positions
by randomly omitting input markers, a procedure similar to dropout. The network
therefore learns to �ll in the missing markers through their correlations with the visible
markers. While e�ective for sporadic occlusions, it cannot yet handle long occlusion
period or when more markers are missing. A promising future direction is to explore
sensor fusion between active makers and non-optical sensors. The next subsection will
introduce alternative sensing techniques for capturing �nger movements.

In conclusion, optical motion capture can accurately track subtle �nger movements
in real time, providing a high degree of embodiment and immersion for VR. However,
due to the expensive equipment and dedicated space requirement, it is not a suitable
consumer solution, but rather a time machine to explore the potential of accurate �nger
tracking in VR applications.

2.2 Gloves and Non-Optical Approaches

Non-optical hand tracking remains a signi�cant focus in both research and commercial
development, especially with the development of new materials with embedded sensing.
Non-optical approaches normally use gloves, or occasionally straps or glue, to attach
some form of sensor to the users’ hands. The output of these sensors is then mapped
to the joint angles of a hand skeleton. In contrast to optical marker-based motion
capture approaches, these approaches o�er the advantage of robustly providing data
in any environment. They are not impacted by occlusions and there is generally no
limitation on the capture volume. A disadvantage is that additional hardware is required.
However, this can be augmented with additional devices that provide sensory feedback
such as pseudohaptics.

Glove-based methods to capture hand motions became popular in the late 1980s, at
�rst as an interface for gesture input for virtual environments [105]. Since then many
di�erent types and techniques have been proposed, some of them being commercially
available, others remaining experimental prototypes (see Figure 2). Variation includes
the type of sensor, number of sensors, accuracy, frame rate and calibration process.
Gloves may also be wired or wireless and vary in size and weight of both the glove and
required battery packs and transmitters.

Sensor con�gurations vary between a low of �ve sensors, one for each �nger, to 22
sensors, one for each phalangeal joint with further sensors placed to record abduction
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(a) (b) (c)

Figure 2: Examples of gloves: (a) Stretch-sensing glove with capacitive sensors presented
at SIGGRAPH 2019 [29]; (b) Pair of CyberGloves 2 with 18 bend sensors [17]; (c) The
glove Dexmo provides force feedback

and adduction of each digit as well wrist motion and the arch of the palm. Some recent
work even employs more sensors than there are hand DOFs [29].

Below we will summarize the main sensor technologies used in gloves. More detailed
surveys can be found in [85] and [20].

Bend Sensors: A traditional approach to glove design employs piezoresistive
sensors that change their resistance as they are bent. This creates measurable voltage
changes that can be mapped to changes in joint angles. A design goal is to build linear
sensors, which makes it easier to create the mapping between the signal and desired joint
angle. The sensors are sewn into gloves that e�ectively position them over the joints of
interest. The CyberGlove is a commercial system based on bend sensors [17].

Bend sensors can be e�ectively attached over exion joints, such as the proximal inter-
phalangeal joints. This provides a one-to-one mapping between the joint movement and
sensor reading that allows for accurate measurement. It is more di�cult to accurately
measure joints involved in abduction and adduction. Joint movement will generally im-
pact multiple sensors and this cross-talk can lead to lower quality reconstruction and/or
the need for more complex calibration processes.

Stretch Sensors: Recent approaches have explored using materials that provide
a changing signal as they stretch. These materials may change in either resistance or
capacitance. Capacitive sensors are relatively small, allowing a large number to be
placed on a glove. In recent work, this has exceeded the degrees of freedom of the
hand [29]. A commercially available glove made of stretch sensors has been released by
StretchSense [100].

IMUs: Inertial Measurement Units, or IMUs, consist of 3-axis accelerometers and
gyroscopes, sometimes with the inclusion of magnetometers (e.g. [24]). These measure
acceleration, rotational speed and orientation respectively. This data is integrated to
track the IMU from a known starting con�guration. IMUs are relatively low cost and
can have very high sampling rates. The major drawback of IMUs is that because the
signal is integrated, even small errors can accumulate, leading to drift. This can cause
increasing error over time. Limiting this error has been a signi�cant focus of research and
development. The Perception Neuron glove is one commercial example of an IMU-based
data glove [71].

Electromagnetic Tracking: This form of tracking consists of a transmitter that
generates a low-frequency magnetic �eld and sensors consisting of three orthogonal coils
used to measure relative magnetic ux. Each sensor provides 6-DOF position and ori-
entation information, relative to the transmitter. The sensors have been miniaturized,
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making them suitable for hand tracking. Compared to marker-based motion capture,
electromagnetic sensors do not need to be labeled and do not su�er from occlusions.
The main issue with electromagnetic tracking is that magnetic interference is ubiquitous,
which can warp the magnetic �eld and impact accuracy and/or calibration requirements.
Polhemus is a commercial provider of magnetic tracking solutions [80].

Hybrid approaches: Several approaches have tried to combine the strengths
of di�erent sensing technologies. For example, Rokoko combines IMUs with magnetic
tracking [90]. ManusVR combines bend sensors with IMUs [61]. Combining approaches
aim to mitigate the drift of IMUs, the poor abduction tracking of bend sensors and the
interference of magnetic systems.

No matter the type of sensor that is used, a mapping must be constructed that goes
from the sensor output to joint angles of the �ngers, which are the desired output for
most applications. Some devices will allow direct measurement of all �nger DOFs. For
others, inverse kinematics may be used, for example to calculate internal joint angles
from the position of �nger tips relative to the palm. Relationships between the DIP and
PIP angles can also be enforced to reduce the active number of degrees of freedom [88].

A calibration process tunes the mapping from sensor signals to joint angles. Calibra-
tion must normally be done on a per-subject basis as hand size and �nger length vary.
Sometimes this is done every time a glove is worn to accommodate any variations in �t.
It is desirable, therefore, for the calibration process to be fast. Calibration may prioritize
hand shape or accuracy in end e�ector position, to for example ensure that if a �nger
and thumb touch in real life, they touch in the reconstruction. Discrepancies between
hand shape and end e�ector position can arise even with accurate angle measurements
if the proportions of the �nger in the skeleton model are not an exact match for those
of the subject.

Traditional calibration approaches rely on sensors being approximately linear so that
calibration can be done with a small number of poses; as few as two. This allows for
fast and easy calibration. Newer techniques have grown more algorithmically complex
and require more data (e.g. [127]). This increase in complexity and calibration time
provides more accurate reconstructions. Recently, neural networks have been employed
with a million samples (e.g. [29]) to learn a more complex mapping function. The trained
network can be customized to particular users.

If users are willing to wear gloves for a given application, this opens up the possi-
bility of also incorporating haptic feedback into these devices. Some approaches add
vibrotactile feedback to existing tracking technologies, such as bend sensors (e.g. Cyber-
Touch [17]), or active LED markers (e.g. ART [5]). Other approaches use mechanical
exoskeletons to provide force feedback (e.g. Dexamo [89] and Haptx [32]).

Glove systems share many of the same advantages and disadvantages. A leading
advantage is that they are essentially impervious to occlusions. There are also no re-
quirements for additional equipment to be mounted in the capture space and the working
volume is very exible. As discussed, there are a wide range of options.

Disadvantages include that users must wear a device, providing extra encumbrance
and set up time. Calibration may also take some time. Accuracy varies and it is di�cult
to match the accuracy of optical motion capture. Most gloves do not provide global
position, and orientation relying on another tracking solution for this. While cheaper
than optical motion capture systems, gloves still generally run in the thousands of dollars,
making them inaccessible for many home users.
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2.3 Image- and Depth-Sensor-Based Approaches

Image- and depth-sensor-based approaches for hand motion capture have been actively
researched since they alleviate the need for instrumentation of the hand|in contrast to
marker-based or glove-based approaches.

Earlier works have employed multi-camera setups consisting of multiple calibrated
RGB and/or depth cameras to leverage multi-view constraints [6]. However, calibration
of these setups is tedious and may be hard for non-expert users. Furthermore, calibrated
setups are inexible and hence unsuitable for applications in VR/AR or mobile devices.
Therefore, more recent approaches have focused on hand motion capture from a single
RGB [66, 102, 139, 9] or depth camera [133, 106]. Products have been developed in this
area such as the Leap motion [51] or the Oculus Quest [73].

Approaches for image-based hand tracking can in general be divided into three cate-
gories:

1. generative or model-based,

2. discriminative or data-driven,

3. hybrid.

2.3.1 Generative Methods

Generative methods make use of a hand model and optimization techniques to recon-
struct hand motion from observations in images.

Modeling the Hand. Hand models typically have an underlying kinematic skeleton, a
hierarchy of transforms which corresponds to the joints and bones of the hand. The out-
put of model-based hand motion capture methods are model parameters which describe
the con�guration of the hand model, namely rigid transform, hand pose, and occasion-
ally hand shape. A hand model further needs to model the surface or the volume of
the hand since these are observable in the input images, in contrast to just the bones.
Many di�erent hand models have been successfully used in the past, e.g., collections
of geometric primitives [74], surface meshes [118, 92], sphere meshes [115], subdivision
surfaces [112], articulated distance functions [113], or Sum of Gaussians models [104].

Optimization-based Model Fitting. Generative methods are based on the analysis-
by-synthesis principle. The hand model at the current parameter hypothesis is compared
to the observation in the input image. The comparison uses an objective function which is
designed to measure discrepancy between the model and the input image. Optimization
techniques are used to minimize the objective function and hence �nd the set of parame-
ters which produces the best �t to the input observation. The objective function usually
consists of several terms which can be divided into data terms and regularizers. Data
terms compare the model at the current hypothesis to the input, e.g., based on silhou-
ettes, point cloud alignment, or color similarity. Regularizers are priors that encourage
plausible results and include, for example, temporal smoothness [66, 107], joint angle lim-
its [115, 103], pose subspaces [92, 67, 109, 107], and interpenetration avoidance [118, 67].
Especially when only a single RGB or depth camera is used, prior knowledge can help
to resolve ambiguities. Various optimization techniques have been used for hand motion
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capture, e.g., gradient descent, Gauss-Newton, Particle Swarm Optimization. Depend-
ing on the optimizer, the generative method is more or less dependent on a good initial
parameter hypothesis.

2.3.2 Discriminative Methods

Discriminative methods, in contrast to generative methods, often run independently
per frame and do hence not depend on good initialization. They make use of a large
data corpus to either build a database for pose look-up [91] or train machine learning
components, like random decision forests [47, 123, 110] and|in more recent years|
neural networks [116]. Especially when using depth images, many di�erent choices for
input representations have been explored, including images, point clouds [27], and voxel
grids [64]. The prediction tasks di�er across the literature. Some methods perform
a per-pixel classi�cation of the image into hand parts and obtain joint positions in a
post-processing step [47]. Others estimate 3D joint positions directly and in addition
minimize the projection error in the image to encourage accurate results in both 2D and
3D [66]. In this course, we discuss variations of deep learning techniques for hand pose
estimation.

Input Encoders. Given an input RGB or depth image, the �rst part of the neural net-
work, the so called input encoder, processes the input image to obtain an abstract feature
representation. There are di�erent possible choices of input encoders, some depending
on the input modality (RGB or depth). While there are many popular architectures for
neural networks [33, 72], we focus on core operations and building blocks here.

The widely used 2D convolutional neural networks (2D CNNS) employ convolution
�lters in image space to process an input image [21]. An input image with width w,
height h, and c channels is encoded to a feature representation of size w

x × h
y × f , where

f is a chosen number of feature maps. Since 2D CNNs operate on images, they can be
applied to both RGB and depth images.

In contrast, 3D CNNs require volumetric input data, as obtained for example from
a depth image [63]. Starting from a voxel grid of resolution w × h × d containing the
input data, volumetric convolutions are applied to obtain a feature representation of size
w
x × h

y × d
z × f [64]. While 3D CNNs directly encode data in 3D, they generally have a

larger memory requirement than 2D CNNs.
A PointNet is another possible input encoder that is designed for 3D input data,

speci�cally pointclouds [82]. Starting from a set of n points, each represented by their 3D
coordinates and possibly other features (e.g. normal or color), a Multi-Layer Perceptron
is used to obtain a feature representation of size n × f from which a global feature can
be extracted by a pooling operation. To capture local structures better, the hierarchical
PointNet has been proposed as an extension, where the features are aggregated in a local
neighborhood before being processed by the next level PointNet [83, 27].

Output Representations. Once the input RGB or depth image has been encoded,
the resulting feature representation is further processed to obtain the desired output,
the 3D hand pose. Note that for monocular RGB data, there is always an inherent scale
ambiguity, i.e., the 3D hand pose in world coordinates can only be calculated up to a
single scale factor. This has to be properly handled in the output, e.g., by regressing
normalized 3D coordinates relative to a reference joint. Although regression of absolute
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3D coordinates is possible with depth input data, some kind of normalization is often
used to reduce the variance in the input and output data, making learning easier. There
are di�erent choices for representing the output 3D hand pose.

The most straightforward output representation are vectorized joint positions [139,
66]. Starting from the feature representation, linear layers, possibly in combination with
non-linearities, are applied to obtain the output of size NJ × 3, where NJ is the number
of joints. Due to the use of the linear layers, the output usually lies on a low-dimensional
manifold of plausible 3D hand poses. Note that what the network learns as \plausible"
depends on the training data and can easily lead to biases if the whole hand pose space is
not equally covered. Furthermore, predicted vectorized joint positions might not project
well onto the input image without the use of an explicit reprojection loss [10, 66].

Hence, several output representations that are closer to the input image have been
proposed. For 2D joint heatmaps, the network produces a single-channel output image
for each joint [116]. This output heatmap shows where the network believes the joint
to be in the input image. Ideally, the heatmap for each joint should only contain a
single peak and be 0 everywhere else. A \smudged" heatmap, i.e., where the values are
spread out, usually indicates that the network is not con�dent in its prediction for this
joint. The spatial size of the heatmaps can be the same as the original input image or a
fraction thereof. There is a trade-o� between spatial accuracy and runtime/memory cost.
To go from the condensed feature representation to the output heatmaps, transposed
convolutions are used [21]. 2D heatmaps only encode 2D hand pose. To obtain the 3D
hand pose, the 2D hand pose can be lifted by a separate network [139] or a kinematic
skeleton can be �tted to the 2D hand pose [116]. The concept of heatmaps can be
generalized to 3D input and output, where the input is a 3D voxel grid and the output
is a 3D heatmap grid per joint [64].

Furthermore, 2D heatmaps can be combined with other output representations in
order to represent a 3D hand pose. Location Maps [62] consist of 3 additional output
images per joint, encoding the 3D x, y, and z position or o�set from a reference joint.
Once the 2D location of a joint is determined (e.g., by non-maxima suppression in the
heatmap), the respective location maps can be read out at that 2D location to obtain
the 3D pose.

Another image-based extension to 2D heatmaps are 3D Part Orientation Fields [58,
131], which are based on 2D Part A�nity Fields [12]. Per bone, 3 additional output
images are predicted that form a vector �eld and describe the 3D orientation of the
bone. Given the 2D locations of the two joints that form the bone as predicted in the
heatmaps, the x,y, and z values for the 3D orientation can be read from the vector �eld.

2.3.3 Hybrid Methods

To combine the best of both worlds, the discriminative and generative methods, many
works have investigated hybrid methods [111, 67]. Earlier hybrid methods were often in
large parts still generative model-based optimization systems. They employed discrimi-
native components to obtain better initializations for the optimizer [84, 113] or to enhance
the objective function with predictions like hand parts or salient points [103, 118]. With
the advent of deep learning, the capacity of discriminative methods has greatly improved.
Therefore, some more recent methods rely mostly on the output of a neural network,
like joint locations, and �t a kinematic skeleton to these predictions in an optimization-
based framework [116, 68]. This additional �tting step ensures temporally consistent and

14



physically plausible poses. During the last years, some approaches have taken one step
further and directly integrated hand models into neural networks layers. These networks
usually regress hand model parameters and the objective function terms established in
generative model-�tting frameworks can readily be used as losses for end-to-end train-
ing [19, 125]. Neural networks trained in this way learn to explain the input observations
and are hence more robust to possible annotation biases in training datasets.

3 Hand Motion Synthesis

So far in this course, we have covered a range of approaches to capture detailed �nger
motions, ranging from optical marker-based methods to various non-optical sensors and
gloves to using images or depth sensors. However, sometimes none of these methods are
adequate. The hands might be outside of the capture area, the motion may not match
the constraints of the virtual environment or hand motion might be required for non-
tracked characters. It is still possible to create hand motions in these cases. In this part
of the course, we will present several approaches that have been suggested to synthesize
hand motions if only the body or wrist motions are available. The �rst section will focus
on kinematic techniques that do not make reference on the underlying forces required to
generate the motion and the second on the use of physical simulation to produce hand
motion.

3.1 Kinematic Hand Motion Synthesis

Kinematic Data-Driven Physics-Based
Non-Procedural Keyframing Motion Playback Ragdoll
Procedural Inverse Kinematics Statistical Pose

Models, Motion
Repurposing

Controllers, Con-
strained Optimiza-
tion

Table 1: A categorization of animation techniques with key exemplars of each.

Capturing hand motions for virtual reality has two main applications. One applica-
tion is as an input modality. Here it is important to recognize a user’s gestures in order
to employ them to provide di�erent forms of control input. While the base tracking
technologies discussed here could be used as the input to such approaches, the input ap-
plication is outside of the scope of this course. A second application is the generation of
�nger motion for characters, which is the focus of the material presented here. Charac-
ters can be divided into two broad categories. Avatars are direct representations of real
people in a VR world. \Non-player characters" are other animated people in the world
which are not projections of tracked users. Avatars have the additional requirement that
their displayed movements must match the movements of the user. For self-presence, it
can lead to a disconnect if a person sees their avatar moving di�erently to them. There
is more exibility when the avatar is displayed for other users, but inconsistency with
the actual movement raises potential ethical and trust concerns.

Finger motion plays a central role in nonverbal communication and in manipulation of
objects in the environment. Communication can roughly be divided into gesture and sign
languages, although even self manipulations like scratching convey important information
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about a person’s personality (e.g. [70]). Finger motion accompanying gesture generally
involves more open-space movement where the �ngers do not touch, but hand shapes like
a �st or purse involve contact. Both the shape created by the �ngers and the motion of
the �ngers can convey content. Sign languages rely on hand poses that can be relatively
more complex and involve close interaction of the �ngers. For example, the letter \T" in
American Sign Language �ngerspelling involves inserting the thumb between the index
and middle �nger while making a �st. Object manipulation relies on contact between
the hand and the object. This contact can involve any or all of the �ngers, ranging
from the �nger tip to the entire length of the �nger. It may also involve the palm.
Grasp is an important class of these manipulations which has been extensively studied.
Other applications include touching other people and playing musical instruments. For
the latter, both the design of the instrument and the music being played can de�ne a
sequence of required touch points.

For the purpose of this discussion, we will divide animation techniques into kine-
matic, data-driven and physics-based. Kinematic techniques describe motion in terms of
positions and velocities, without reference to the underlying forces required to generate
the motion. Data-driven techniques require motion data as input. These are also nor-
mally kinematic, but is useful to distinguish between data-driven and non-data based
techniques (our base \kinematic" category). Physics-based techniques explicitly model
the forces used to generate the motion and will be described in the next section. Each
of these techniques can be split into procedural and non-procedural approaches. Proce-
dural techniques rely on signi�cant algorithmic work to generate the motion whereas
non-procedural techniques do not. An overview is contained in Table 1

Non-procedural, Kinematic: Keyframing is the main technique in this category.
In this approach, an artist speci�es �nger poses at key moments in time and controls the
shape of interpolation curves that control the motion between these poses. Keyframing
is appealing because it provides complete control over the motion, but this comes at
the cost of potentially substantial manual labor, particularly for long sequences. Skilled
animators can create very high quality motion and this can be customized for particular
characters. The level of control has made it appealing for communication applications
(e.g. [69]). In VR applications that rely on controller input, it can be a good option
as a di�erent hand shape can be speci�ed for each button. It also can be useful where
complex object interactions are required, such as gripping a gun [14]. Keyframes can
also be a useful building block in algorithmic work.

Procedural, Kinematic: Inverse kinematics (IK) is the main procedural kinematic
technique that is used for posing �ngers in VR. IK takes as input a set of position and
orientation constraints and solves for joint angles in order to achieve these. The most
common formulation for IK is for constraints to be placed on the end e�ector of a
kinematic chain. With hands, the palm position is often assumed to be set and IK is
used to solve for the angles in each �nger kinematic chain with these chains rooted at the
palm. Some applications may also require contact with the palm or more parts of the
�nger than the end e�ector. Often rather small adjustments of the �ngers are required
in order to ensure contact with objects and avoid interpenetration.

A range of techniques have been proposed for solving inverse kinematics problems.
For simple con�gurations of hinge joints, basic trigonometry can be su�cient. Heuristics
like the two-thirds rule can simplify the problem [88]. Iterative approaches calculate
the pseudo-inverse of the Jacobian at each pose which relates changes in joint angle
to changes in position. They then take multiple small steps towards the solution [28].
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Optimization [136] approaches based on sampling data [93] have also been developed.
Believable object interaction requires understanding the a�ordances of the object

being manipulated. There are particular places where items are grasped (these can de�ne
IK targets), they may also have allowable orientations and particular ranges of motion.
For example, a mug is held by its handle with the opening oriented upwards. A drawer
moves in and out along its tracks and is pulled by its handle. Early work introduced
\smart-objects" which knew their a�ordances and allowed pre-designed animations to be
triggered for interaction in VR [44]. In work with musical instruments, the touch points
are de�ned by the instrument design and the music being played [23, 138]. In general
with these approaches, there is a tension between motion �delity and remaining true
to the actual user’s movements. Triggering an animation may provide the best motion
�delity, but will likely not match the participant’s motion. Small adaptations on top of
actual tracking are often desired as a way to maximize immersion.

Grasp has emerged as an important game mechanic. For instance, \The Climb" o�ers
a VR mountain climbing experience in which players must grasp rock holds. In \Lone
Echo," players grasp objects in order to pull themselves through a space environment.
Developers for this game built a system that would search for the environment object
closest to the characters palm and then use simple IK, treating the �ngers as hinge joints,
in order to rotate the �ngers to make contact [14]. Interestingly, they avoided physics
due to concerns about computational cost and the need for graceful failure when players
did penetrate objects with their hands.

Grasp also entails physical requirements, in that the grasp must be appropriate to
support the weight of the object. This has been exploited by techniques that use the
physical requirement of supporting an object in order to determine appropriate contact
points for grasping it [132, 65]. The motion of the object is taken as input and the grasp
is not physically simulated, but the forces required to support the object are used as a
source of information to determine the correct contact points for the grasp.

Non-procedural, Data-driven: Sometimes �nger motion is recorded to accom-
pany a particular body motion and can simply be played back at runtime. This can
provide excellent quality motion, but is not exible and may require signi�cant labor if
many clips are required.

Procedural, Data-Driven: Grasp synthesis techniques have also made use of data-
driven approaches. For example, Li et al. [53] build a motion capture database of di�erent
people grasping various objects. This implicitly de�nes the required touch constraints
for a grasp. At runtime when the user wishes to pick up a new object, the system
runs a shape match against the database to obtain potential grasp matches. These are
clustered and then pruned based on a grasp quality measure, the resultant pose being
used to generate the required animation.

A similar problem arises when people wish their avatars to touch in VR, say to shake
hands or give a high �ve. For the motion to look plausible, the hands must touch,
but not interpenetrate. This requires understanding appropriate contact points for these
motions. Lee et al. [52] built a database of touch locations for such motions. At runtime,
users’ intended touch type can be identi�ed and the implied touch locations can then be
used to re�ne the animation of the remote participant in an avatar interaction.

Animation hand skeletons will often contain 20 DOFs or more per hand, leading
to a high dimensional pose problem. In practice, however, there are many correlations
between these DOFs and the \real" dimensionality of hand movement is much lower.
Data has often been used to create lower dimensional embeddings, using either linear

17



techniques like PCA (e.g. [129]), or nonlinear methods. A related issue is determining
what do do with �ngers that are not involved in a motion when only some �ngers are
required to satisfy touch constraints. ElKoura and Singh [23] encountered this situation
when certain �ngers were required to hold strings on a guitar and some were not. They
used a collection of hand data and nearest neighbor search to determine the pose of
uninvolved �ngers.

A common process when dealing with �ngers is \hand-over" animation. This reects
the traditional di�culty in tracking �nger movement. Body and hand movement are
recorded separately and then merged to create a �nal animation. Majkowska et al. [60]
o�ered one of the early algorithmic approaches to this work. Hand and body motion
were captured separately, in di�erent capture volumes, but four markers were present in
both captures. These markers were then used to time warp the hand motion to align
better with the body motion.

While hand-over techniques were �rst envisioned for o�ine use, they may be adapt-
able to realtime applications in VR. This class of data-driven techniques follows a similar,
three stage process. After motion is recorded, it is segmented into movement phases.
These phases may correspond to phases of gesture behavior or grasps, for instance. At
runtime, a match must be found between this pre-recorded data and the motion of the
body. Nearest neighbor search, rule-based methods and optimization have all been used
in this step. In a �nal phase, the recorded motion is adapted to best �t the body motion.
This could be done with smoothing, blending, IK adjustment or physical simulation.

One application of these techniques has been to extend capture technologies. For
example, colored gloves recorded by camera [126] or a reduced set of recorded markers [46,
129] were used to retrieve higher quality, full �nger clips. In a communication application,
J�org et al. [42] followed the three stage approach to add �nger data to body animations
of gesture behavior by matching information about the arm and wrist movement. They
experimentally validated the best matching heuristics.

3.2 Physical Modeling

Moving toward natural interface metaphors and generic manipulation with hands in
VR, a promising path forward is the employment of physical simulation for hands, as
in [81, 137, 48, 114, 18] among others. The key insight is that the force-based interaction
a�orded by physical simulation mimics the manner in which we a�ect the real world with
our hands. However, there are a number of standing challenges, such as discrepancies
between the real world and the simulated as well as limited controller sophistication,
that must be addressed to make the technique useful in everyday VR.

In the recent advances in hand simulation, two distinct areas are important to hands
in VR. One focus has been physical modeling and control of the articulated skeleton. This
type of hand simulation holds promise of generic but nuanced hand interaction through
the \virtual" physical interaction of the human user (driving a virtual hand) and the
virtual environment. However, along with these bene�ts come a set of problems especially
pertaining to assumptions of rigid-body hands and unrealistic contacts that dictate how
virtual hands can be controlled and how they interact with objects in the virtual world.
The second form of simulation aims to model an anatomically based simulation. Here the
focus is on the physical and biomechanical components that create realistic appearances
of the hand. Because of the complexity of anatomical hand simulation, we have not seen
much overlap between the two topics to date, although the areas are complementary.
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Figure 3: An example system for using physics in VR, image from Delrieu et
al. [18] c©IEEE.

Often in the latter, a kinematic skeleton drives the physical model, while in the former,
a simpli�ed surface model is most often used to promote interactivity.

As real-world hands are the super instrument by which humans manipulate their
world, building humanoid avatar, character and robotic hands has been a key focus in
support of natural interaction. As in Figure 3, physical manipulation modeling aims to
address motion planning coupled with control for joint articulation in order to build sys-
tems that are capable of the span of behaviors hands see everyday. As such, physical sys-
tems for hand grasping has been the focus of research for many years, as [81, 56, 65, 137].
Much of this work aims to solve the control for general manipulation through grasp shape
and approach planning [53], coordinated compliant control [81], and dexterous manip-
ulation [57, 3]. Motion data examples, libraries, and heuristics as well as optimization
and automation techniques have been assembled in various capacities in the exploration
of directable and believable simulated hand motion. For example, we have seen spe-
cialised sensor-based \interaction capture" performed to extract model parameters that
are employed to create manipulation for physical interaction [50].

Virtual physical hands have been developed for a broad array of manipulation ap-
plications. In recent years, a focus growing in attention has become interactive physical
models with an aim set on Virtual Reality applications [48, 35, 119]. Intuitive activities in
VR enhance engagement and interactivity that contribute to enriched user experiences.
However, the development of interfaces that bridge the gap between real-world input and
virtual interpretation remains challenging due to a number of factors [39, 18, 114, 35].
Foremost, speed is key for real-time performance. However, there is also the inevitable
discrepancy between objects that may appear in the virtual world, but that do not have
presence in the physical. Further, while haptic devices hold appeal [38], their implemen-
tation and applicability remain limited. Thus, there is a feedback gap between the virtual
and real that make it di�cult to judge and correct actions as well as foil believability
and responsiveness when considering a wide range of actions [11].

There has been some work in using simulated deformation, e.g. �nite element model-
ing (FEM), to improve hand contact in VR [39, 108, 34]. A variety of FEM approaches
have appeared in the literature [49, 26, 124]. The goal here is to use volume based
deformation to generate the bulging, wrinkling, and stretching of the skin surrounding
the hand as well as its underlying biological structure under di�erent settings. As an
example, recent work in this form of hand simulation supports deformation with FEM
which has been �t to MRI data to create high �delity hand shape and deformation using
a kinematically animated skeleton [124]. The related work in support of VR primarily

19



(a) (b)

Figure 4: Examples of virtual hand models that have been used in experiments investi-
gating the virtual hand illusion (a) from Argelaguet et al. 2016 [4] ( c©IEEE); (b) from
Lin and J�org [54]

highlights contact deformation, in an e�ort to synthesize better grasps, by speci�cally
building deformation in the �nger tips which increases contact area when the virtual
hand touches an object.

4 Perception of Virtual Hands

After discussing approaches to capture hand motions and methods to synthesize them,
a question that remains is: What happens if hand motions are not tracked accurately or
not at all? Do we notice errors in hand motions? Do they a�ect the impression other
people have from a character? Do our e�orts to visualize hand motions accurately make
a di�erence?

Previous research has shown that people are very good at perceiving subtle motions.
When it comes to body motions, we know that we can recognize a walk within a tenth
of a second even if we just see a few points attached to a person [40]. Based on so called
point-light walkers, we also know that we can even identify a friend, just based on the
way they move [16]. Experiments have indeed shown that errors in hand motions of a
virtual character can be perceived and that they can even change the interpretation of a
scene. For example, we can perceive that body and �nger motions are desynchronized,
even if they are just out of sync by 0.1 seconds (however, it depends on the motion) and
delays in �nger motions of 0.5 seconds can even change how we interpret a scene [41].
Furthermore, the detailed motions of the �ngers alter the way we perceive the personality
of a virtual character [128].

When it comes to perceiving our own hands in a virtual environment, the virtual
hand illusion (VHI) becomes important. The VHI is a body ownership illusion in virtual
reality that is similar to the rubber hand illusion (RHI). Botvinich and Cohen [8] showed
in an experiment that participants, when they saw an object touching a simple rubber
hand and synchronously felt the sensation of the touch on their own hand, report a
sensation that the rubber hand is part of their body. This type of experiment - inducing
a feeling of ownership for a rubber hand or similar objects through synchronized touch
and visual feedback - has been repeated many times also with alterations when it comes
to objects and procedures and is known as the rubber hand illusion [22, 117].

While some studies have reported that participants have described a certain degree
of ownership over objects that are not hand-shaped or even over empty spaces [30], it
seems that a resemblance of the object to a hand is typically required for the illusion to
occur [87]. It has been shown that active or passive motion can also induce the illusion
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[43]. Reported onset times for the illusion to occur vary between about 10 to 110 seconds
and might depend on the details of the study as well as the selection of participants [87].

The VHI illusion is a similar e�ect in a virtual environment, where the rubber hand
is replaced by a tracked virtual hand [101, 134]. The feeling that the virtual hand is
part of one’s body now comes from the synchrony between visual and proprioceptive
information together with motor activity [94]. While there are still many open questions
about the details of this illusion, experiments have shown that the virtual hand illusion
can be generated for a variety of hand appearances as well as for more abstract objects.
Examples include a square that changes in size or color [59], a balloon [59], a cat claw
[135], abstract hands [4, 99], and hands with more or less �ngers [36, 97]. However, the
e�ect is stronger for more realistic hand models, see Figure 4 [4, 54]. It also seems that
results vary widely between participants, with some participants feeling a strong sense of
ownership even for abstract models while others do not feel any e�ect even for a realistic
hand. One study found that female participants preferred female hands whereas male
participants accepted avatar hands of both genders [98].

While we can not add all possible solid objects to the real world to avoid that our
virtual hands intersect with virtual geometries, we can create user feedback for these
cases. Especially when grasping, user feedback might be important to increase speed.
Borst et al. [7] and Canales et al. [11] have investigated a series of visualizations for
grasping interactions. Amongst other results, Canales et al. found that visualizing a
tracked hand leads to the best performance among the tested options. Still, on average
users preferred visualizations that prevent hand-object interpenetrations whereas hiding
the virtual hand when grasping was liked least and reduced ownership of the virtual
hand.
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VIRTUAL HANDS IN VR
Motion Capture, Synthesis, and Perception



INTRODUCTION

Sophie Jörg





SELECTION OF VR MEETING SPACES AND 
HARDWARE AVAILABLE

Example products:

VR meeting spaces: 
VRChat, Facebook Horizon, Mozilla Hubs, 
AltSpace VR, Engage

HMDs: HTC Vive Cosmos, Oculus Rift S, 
Sony PlayStation VR, Valve Index

Hand/Finger Tracking: Oculus Quest, Leap



COURSE OVERVIEW
• Introduction (15 Minutes)

• Welcome and Overview (5 minutes)
• Introduction to Virtual Hands (10 minutes)

• Motion Capturing Hands (75 Minutes)
• Optical Marker-Based Motion Capture (25 Minutes) 
• Gloves and Non-Optical Approaches (10 Minutes)
• Image- and Depth-Sensor-Based Methods (40 Minutes)

• Break (5 Minutes)

• Hand Motion Synthesis (45 Minutes)
• Kinematic Hand Motion Synthesis (15 Minutes)
• Physical Hand Simulation (30 Minutes)

• Perception of Virtual Hands (25 Minutes) 

• Conclusions and Q&A (15 Minutes)
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INTRODUCTION TO 
VIRTUAL HANDS

Sophie Jörg
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JOB SIMULATOR

Selected hand poses are displayed based on controller input

Graspable objects are highlighted

The hand disappears when the object is grasped

The object then follows the invisible hand

Vibration gives feedback to user when an object is grasped or released



FURTHER EXAMPLES

In some games, the hand pose adjusts to the environment. 
Examples: The Climb (Crytek), Lone Echo (Ready at Dawn)

More and more games appear with directly tracked hand motions, 
e.g, using the Leap Motion or Oculus Quest
One can, for example, play a virtual piano



CHALLENGES

• Accurate hand tracking
• High number of degrees of freedom (DOF)
• Different in scale from the body (smaller scale)
• Self-occlusions

• Human perception

• Responsive grasp and release recognition

• Haptic feedback

• Lack of solid surfaces that would prevent intersections



USING CONTROLLERS VS. TRACKING HANDS

Experiment comparing the usage of gloves and 
controllers for a game-like pick and place task.

The Effect of Hand Size and Interaction Modality on the Virtual 
Hand Illusion. Lorraine Lin, Aline Normovle, Alexandra Adkins, 
Yu Sun, Andrew Robb, Yuting Ye, Massimiliano Di Luca, and 
Sophie Jörg. IEEE VR 2018.



USING CONTROLLERS VS. TRACKING HANDS

Controller felt more efficient, task duration was shorter and the number of grabs and of drops was lower
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USING CONTROLLERS VS. TRACKING HANDS

Ownership was rated higher when using the gloves, and the virtual hands looked more realistic to 
the participants
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USING CONTROLLERS VS. TRACKING HANDS

Glove 13 “easier to control,” “it felt more realistic,” “more immersive,” “more fun,” “more 
comfortable,” “I prefer the gloves since I was able to move all of my fingers 
and it looked just like my own hands,” “I felt like I was [going to] drop the 
controllers because I had to keep thinking ‘I’m using controllers, I can’t let go 
of these.”
6 participants who preferred the Glove condition reported that they felt
the Controller condition had better feedback.

Controller 6 “it was more precise when I was picking things up,” “more responsive,” “the 
gloves were more immersive, but the controllers seemed to work better,” 
“with the gloves there wasn’t any real feedback.”
1 participant would prefer the gloves if they “worked like my real hands.”

No preference 1

When asked for their preferences:



HOW THE HANDS MOVE

• Flexion: Bending in the anterior direction 
(making a fist)

• Extension: Straightening or bending in the 
posterior direction



HOW THE HANDS MOVE

• Abduction: Movement away from the center 
of the body (fingers spread)

• Adduction: Movement toward the center of 
the body (fingers together)

• Medial/Lateral Rotation



BONES OF THE HAND

• 27 Bones
o Carpus
o Metacarpals
o Phalanges

• Joints
o CMC: Carpometacarpal joint
o MCP: Metacarpophalangeal joint
o PIP: Proximal interphalangeal joint
o DIP: Distal interphalangeal joint

© Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). 
DOI:10.15347/wjm/2014.010. ISSN 2002-4436. 
http://commons.wikimedia.org/wiki/file:blausen_0440_handbones.png, edits made for this publication



• Fully anatomical model is complicated to replicate and computationally expensive for many applications

• Simplifications often made, supported by anatomy
o Bones represented using rigid bodies
o Reduced number of bones or joints, e.g., some wrist bones/articulations considered negligible
o Joints represented with fewer DOFs

• Personalized skeletons possible
• Very accurate motions possible
• Centers/axes of rotation can be determined for each joint using optical motion capture or medical imaging

HAND MODEL REPRESENTATIONS



MOTION CAPTURING FINGERS
Yuting Ye    Michael Neff    Franziska Mueller



APPLICATIONS IN THE VR MARKET

Elixir on Oculus Quest 
© Magnopus © Facebook Reality Labs 

ArchVis on Oculus Rift + Leap Motion 
© matburr@Youtube, CC BY 



TECHNOLOGIES FOR FINGER MOTION CAPTURE

o Optical markers
o Gloves and non-optical sensors
o Images and depth sensors



MOTION CAPTURING FINGERS: 
OPTICAL MARKER-BASED 
APPROACHES

Yuting Ye

©  2 0 2 0  S I G G R A P H .  A L L  R I G H T S  R E S E R V E D .



TECHNOLOGIES FOR FINGER MOTION CAPTURE

Markers

• Accurate world space 
positional tracking

• High framerate
• Relatively easy to use with 

mature solutions
• Require a dedicated 

instrumented space
• Labeling and occlusion
• Costs $$$

Gloves Images



MOTION CAPTURE PIPELINE

3D marker reconstruction Marker labeling Hand pose fitting



MARKER LAYOUTS

• Marker size and shape
• Visibility
• Density

• Attachment methods
• Glue 
• Velcro
• Glove

• Marker placement
• Freedom of movement
• Easy to recover poses[Alexanderson et al. 2017]

© Alexanderson et al.
[Chang and Pollard 2007]
© Elsevier



REDUCED MARKER LAYOUT AND ANIMATION

• Apply PCA to all markers 
in a dataset and pick the 
important ones 

• Run regression from 
reduced marker set 
positions to joint angle 
PCs

• Recover full joint angles 
from regressed PCs

Automatic Hand-Over Animation using Principle Component Analysis. 
Nkenge Wheatland, Sophie Joerg, Victor Zordan. Motion In Games 2013



REDUCED MARKER LAYOUT AND ANIMATION



LABELING REDUCED MARKER SETS

©  2 0 2 0  S I G G R A P H .  A L L  R I G H T S  R E S E R V E D .

Real-time labeling of non-rigid motion capture marker sets. 
Simon Alexanderson, Carol O’Sullivan, and Jonas Beskow. 
Computers & Graphics 2017. © Alexanderson et al.



LABELING REDUCED MARKER SETS

1. Apply Kalman filter to 
maker positions from 
the previous frame

2. Compute current frame 
marker position 
probability based on 
GMM

3. Apply Viterbi algorithm 
to obtain most likely 
labels from history

Fingertip 
positions

Viterbi 
algorithm



LABELING REDUCED MARKER SETS



LABELING A FULL MARKER SET

Online optical marker-based hand tracking with deep labels.
Shangchen Han, Beibei Liu, Rob Wang, Yuting Ye, Chris Twigg, Kenrick Kin. SIGGRAPH 2018 



LABELING AS DEEP IMAGE REGRESSION

Bipartite 
matching

Render

Unordered 3D points Unique label for 
each markerDepth image 3D points



SYNTHETIC TRAINING DATA

Real hand motion + synthetic marker positions

Motion from depth based hand tracking A pre-defined marker set

"Spread" "Pinch"



DATA AUGMENTATION

OcclusionGaussian noise

Random camera view Ghost marker

Original



LABELING A FULL MARKER SET

100.00% 99.24%
93.73% 98.26%90.49%

29.62%
8.91%

52.21%

Ours [Alexanderson et al. 2017]



ACTIVE MARKERS

• LED markers emit light 
rather than reflect light

• Self-identifying for 
automatic labeling

• Larger capture volume
• More complex setup: 

wires, power, sync
• (More) prone to occlusion

Real-time neural network prediction for handling two-hands mutual occlusions.
D. Pavllo, M. Delahaye, T. Porssut, B. Herbelin, R. Boulic, Computers & Graphics 2019 ©Pavllo et al.
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HANDLE MARKER OCCLUSION

• Autoencoder 
architecture

• Randomly dropout 
input markers in 
training

• Blend occluded 
markers in and out to 
reduce discontinuity

0
0
0



HANDLE MARKER OCCLUSION

LK last known position, MA moving average, AC affine combinations, NN neural network
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APPLICATIONS

• Applications in VR
• Prototyping and user studies
• Commercial VR experiences (eg. VR Arcade)
• Digital avatars

• Applications in research
• Combined body and hands capture in real time
• Complex hand-object interaction capture
• High quality hand motions for deep learning
• Synthetic data for image based deep learning



MOTION CAPTURING FINGERS: 
GLOVES AND NON-OPTICAL 
APPROACHES

Michael Neff



OPTICAL ALTERNATIVES

• All optical techniques suffer from potential occlusions
• Gloves allow sensors to be attached to the hands

• Non-optical techniques avoid occlusions
• Require setup

[CC0, Max Pixel]



TECHNOLOGIES



BEND SENSORS

• How they work:
• Resistance changes as physical sensors bend

• Creates variation in electric signal
• Aim for linear relationship between bend and signal
• Attach sensors to specific DOFs using gloves

CyberGlove II



GLOVE SENSOR & KINEMATIC HAND MODEL

Glove attaches physical sensors to the hand.



GLOVE CALIBRATION: 
MULTIPLE SENSORS PER DOF

• Single DOF movements affect multiple sensors
• Model of one-sensor to one-joint angle isn’t accurate
• Abduction sensors most impacted 

• Mapping must take multiple sensors as input
• Need sampling process to obtain calibration data



ADVANTAGES AND CHALLENGES

Advantages
o No occlusion problems
o Large working volume
o May be wireless
o Accurate for flexion

Challenges
o Noise  
o Cross coupling
o Issues for abduction/adduction

o No world space positions
o Some physical encumbrance



STRETCH SENSORS

• How they work
• Resistive

• piezoresistive material, an elastic conductive yarn 
or conductive liquid

• Capacitive stretch sensors
• Soft capacitors that can be stretched or squeezed, 

adjusting the capacitance of the material
• Commercial and research prototypes

• Advantages:
• High sensor density (can exceed DOFs)
• Potential for good accuracy

• Disadvantages:
• Encumbrance
• No world-space positioning

[© Stretch Sense]

[©Glauser et al. 2019 ]



INERTIAL MEASUREMENT UNITS

• How they work:
• 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer
• Measure acceleration, rotational rate and orientation
• Integrate sensor readings to update position/orientation 

• Advantages:
• Potentially very high sample rate
• Low cost
• Compact

• Disadvantages:
• Drift
• Relatively blocky

[©Noitom Ltd. 2020]



ELECTROMAGNETIC SYSTEMS

• How they work:
• Low-frequency magnetic field is generated by a 

transmitter
• Sensors consist of three orthogonal coils used to 

measure relative magnetic flux
• Provide position and orientation, relative to 

transmitter

• Advantages:
• Six DOF tracking
• Sensors have been miniaturized
• No labeling or occlusion problems

• Disadvantages:
• Magnetic interference is ubiquitous
• Calibration

[© Polhemus]



ELECTROMAGNETIC MARKERS

5
6

[© Polhemus]



HYBRID APPROACHES

• Combine multiple sensing technologies in a single solution



HYBRID SOLUTIONS: BEND SENSORS WITH IMU

• Combine bend senors with IMUs on each finger

[The Manus Prime II glove for 
motion capture and VR © Manus]



HYBRID SOLUTIONS: IMU’S AND MAGNETIC

• Combine IMUs with magnetic tracking

[© Rokoko Electronics Aps]



CALIBRATION

• Must map between glove sensor output and finger joint angles
• Calibration defines this mapping
• May prioritize hand shape (FK) or touch accuracy (IK)
• Normally done per subject

• Variation in hand size and sensor location

• Calibration is increasing in algorithmic sophistication and data 
requirements
• Traditional: rely on the linearity of the sensor (calibrate with two data 

samples)
• More sophisticated mapping approaches, with increased data needs (e.g. 

Wang and Neff 2013, tens of samples)
• Train neural networks with large data needs (e.g. Glauser et al. 2019, 1 

million samples)



HAPTIC FEEDBACK

• Since sensors are already being added to the hand, can add 
feedback devices

• Mechanical systems can provide sensing and feedback

[© HaptX Inc.][© Copyright © 2020 Dexta Robotics. All rights reserved.]

[© CyberGlove Systems]



TECHNOLOGIES FOR FINGER MOTION CAPTURE

Markers

• Accurate world space 
positional tracking

• High framerate
• Relatively easy to use 

with mature solutions
• Require a dedicated 

instrumented space
• Labeling and occlusion
• Cost $$$

Gloves Images



TECHNOLOGIES FOR FINGER MOTION CAPTURE

Markers

• Accurate world space 
positional tracking

• High framerate
• Relatively easy to use 

with mature solutions
• Require a dedicated 

instrumented space
• Labeling and occlusion
• Cost $$$

Gloves

• Occlusions are not a problem

• Wide range of options

• No capture space 
requirements

• Flexible working volume

• Users must wear a device

• Calibration may be an issue

• Accuracy varies

• No global position, in general

• Cost $$

Images



MOTION CAPTURING FINGERS:  
IMAGE- AND DEPTH-SENSOR-
BASED METHODS

Franziska Mueller

©  2 0 2 0  S I G G R A P H .  A L L  R I G H T S  R E S E R V E D .



GOAL

Although earlier method used calibrated multi-view setups, 
we will focus on single camera methods: 
- easier setup 
- more flexible for mobile applications 

Depth and/or Color Image Reconstructed Hand Motion



TECHNOLOGIES FOR FINGER MOTION CAPTURE

• Accurate world space 
positional tracking 

• High framerate 
• Relatively easy to use with 

mature solutions 



CLASSES OF METHODS

• assume availability of a 
parametric hand model 

• hand pose is obtained by 
minimizing the 
discrepancy between the 
model and the input 
observation 

• does not have a training 
stage -> independent of 
available data

• assume availability of 
large data corpora 

• hand pose is obtained by 
either database lookup or 
evaluating a trained 
machine learning model 

• can exploit prior 
knowledge from data -> 
often more robust 

• combination of 
generative and 
discriminative concepts 

• try to get „the best of 
both worlds“

HybridDiscriminativeGenerative
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MODELING MOTION: KINEMATIC SKELETONS

• describe hand pose, i.e., configuration of hand bones 
• hierarchy (tree) of rigid transforms 
• transforms are centered at the joints and are local 

– transform a 3D point from child’s coordinate system to 
parent’s coordinate system 

– translation = bone length 
– rotation = relative bone rotation 

• rotation matrices are constrained by degrees of 
freedom (DOF) of each joint 

root



FORWARD KINEMATICS

given values  for the DOF (pose parameters), 
calculate the global position of all joints and bones: 

• construct the local-to-global transform by walking up 
the tree 

• multiply it with local coordinates of joints / fingertips 
to get global position

✓
<latexit sha1_base64="JM6zO54H4dTXtLEH5bzCwTJaU+Y="></latexit>

root



NOW WE HAVE BONES…

• … but they are not directly observable in the 
input images 

• need to model the surface or volume of the 
hand to measure discrepancy to input



MODELING SURFACE OR VOLUME

Geometric Primitives

Oikonomidis et al. 2012

Meshes

Tzionas et al. 2016 Sridhar et al. 2014

Sum of Gaussians

©IEEE

Sphere Meshes

Tkach et al. 2016

©
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©Springer

Subdivision Surfaces (Taylor et al. 2016), 
Articulated Distance Functions (Taylor et al. 2017), 
…



COUPLING WITH THE SKELETON

• rigid attachment to a single bone (e.g. for 
each primitive) 

• skinning (e.g. for meshes): vertices can be 
influenced by multiple bones, especially close 
to joints where multiple bones meet 

• note that positions of vertices or primitives 
can be easily computed using the local-to-
global transforms as described before



GOAL

Hand Model

Depth and/or Color Image
Reconstructed Hand Motion

Parameters (e.g. DOF values) 
of a parametric hand model



FINDING THE BEST DOF VALUES

• follows the analysis-by-synthesis principle: 

– (1) we synthesize an initial „image“ using the hand model at some pose hypothesis 

– (2) we calculate a discrepancy measure between the hypothesized image and the input image 

– (3) we try to refine the pose s.t. the synthesized „image“ has smaller discrepancy 

– (4) the final pose is the one that minimizes the discrepancy measure



COMPARING HYPOTHESIS AND OBSERVATION

• discrepancy measure: usually called objective function or energy 
• function of the pose parameters ✓<latexit sha1_base64="JM6zO54H4dTXtLEH5bzCwTJaU+Y=">AAACz3ichVFNS8NAEH3Gz9avqkcvxSJ4KqkK6q3gB16EFuwH2CKbdNvGpklItpUqildvXvWf6W/x4MsaBS3ihs3MvnnzdmbHClwnUqb5OmFMTk3PzM6l0vMLi0vLmZXVauQPQltWbN/1w7olIuk6nqwoR7myHoRS9C1X1qzeYRyvDWUYOb53rkaBbPZFx3Paji0UoWpDdaUSl5mcmTf1yo47hcTJIVklP/OGBlrwYWOAPiQ8KPouBCJ+FyjARECsiVtiIT1HxyXukGbugCxJhiDa47/D00WCejzHmpHOtnmLyx0yM4tN7hOtaJEd3yrpR7Tv3Dca6/x5w61Wjisc0VpUTGnFM+IKXTL+y+wnzK9a/s+Mu1JoY19347C+QCNxn/a3zhEjIbGejmRxrJkdalj6POQLeLQVVhC/8pdCVnfcohXaSq3iJYqCeiFt/Pqsh2Mu/B7quFPdzhd28tvl3VzxIBn4HNaxgS1OdQ9FnKLEOmxc4QnPeDHKxrVxbzx8Uo2JJGcNP5bx+AGMh5Ew</latexit>
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EXAMPLE: FITTING A HAND MESH TO DEPTH

Iterative Closest Point (ICP): 

• find closest input point c(i) for each vertex i 
• minimize sum of distances to closest point 
• iterate

E(✓) =

|V(✓)|X

i=1

⌘i · kV(✓)i � c(i)k2
2
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OPTIMIZATION

• global optimization usually not possible 
• differentiability of the energy function enables fast optimization 
• derivatives can be used in iterative solvers, e.g., gradient descent, Gauss-Newton, 

Levenberg-Marquardt,… 
• derivatives can be calculated: 

– by hand 
– by optimization libraries, e.g., Ceres 
– your favorite Deep Learning framework 

• disadvantage of local solvers: sensitivity to initial pose hypothesis and local optima

@E(✓)

@✓i
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THE NEED FOR REGULARIZERS

• objective functions are often non-convex with many local optima 
– it is easy to „get stuck“ at a wrong pose hypothesis 

• generative methods do not have a training stage 
– no implicit extraction of prior knowledge from data 

• explicit regularizers help to reshape the energy landscape s.t. these wrong poses have 
higher energy



EXAMPLES FOR REGULARIZERS

Joint Angle Limits Interpenetration Pose Subspaces

distance field penalty

e.g. Tzionas [2016], Mueller [2019] e.g. Tagliasacchi [2015], Tan [2016], 
Taylor [2016], Mueller [2019]
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SUMMARY: GENERATIVE METHODS

• Advantages: 
– independent of data  

• generalization to unseen user / settings 

• no time-consuming / expensive annotations

• Disadvantages: 
– sensitive to initial pose hypothesis 

• can easily „get stuck“ in local minima 

– need for explicit regularizers



CLASSES OF METHODS

• assume availability of a 
parametric hand model 

• hand pose is obtained by 
minimizing the 
discrepancy between the 
model and the input 
observation 

• does not have a training 
stage -> independent of 
available data

• assume availability of 
large data corpora 

• hand pose is obtained by 
either database lookup or 
evaluating a trained 
machine learning model 

• can exploit prior 
knowledge from data -> 
often more robust 

• combination of 
generative and 
discriminative concepts 

• try to get „the best of 
both worlds“

HybridDiscriminativeGenerative
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DISCRIMINATIVE METHODS

e.g. Romero [2010] 

Database Search Trained Predictors 
(pre-deep-learning), 
e.g. Random Forests

Neural Networks / 
Deep Learning 

e.g. Keskin [2012], Tang [2014],  
Wan [2016]

majority of methods in recent years 
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GOAL

Depth and/or Color Image Reconstructed Hand Motion

• Joint positions of  joints 

• Parameters (e.g. DOF values) 
of a parametric hand model

NJ

Training Stage: large (annotated) depth and/or color image corpus

Testing Stage:



NEURAL NETS: INPUT DATA ENCODERS

Depth and/or Color Image

Feature 
Encoding



NEURAL NETS: INPUT DATA ENCODERS

Encoder

Depth and/or Color Image

Feature 
Encoding



NEURAL NETS: INPUT DATA ENCODERS

2D convolutions: 
• can be applied to both RGB and depth images

[ Dumoulin and Visin, 2018 ] 
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NEURAL NETS: INPUT DATA ENCODERS

3D convolutions: 
• used for voxelized depth data
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[ Moon et al. 2018 (hand specific), Milletari et al. 2016 (general) ]



NEURAL NETS: INPUT DATA ENCODERS

PointNets (Multi-Layer Perceptron): 
• used for point cloud data (e.g. from depth)

[ Ge et al. 2018 (hand specific), Qi et al. 2017 (general) ]

n × fi MLP n × fo fo
pool



NEURAL NETS: INPUT DATA ENCODERS

PointNets (Multi-Layer Perceptron): 
• used for point cloud data (e.g. from depth)

[ Ge et al. 2018 (hand specific), Qi et al. 2017 (general) ]

Ge et al. 2018, ©IEEE

n × fi

Level : sample  points around 
each of  centroids

l n
c

MLP n × fo fo
pool

… … ……

(shared weights)

 re
gi

on
s

c  points of dimensionality  are the 
point cloud for the next level 
c fo

l + 1



COMPARISON: INPUT DATA ENCODERS

2D CNN 3D CNN PointNet

Possible Input Data RGB and depth images voxelized depth data point cloud (e.g. from 
depth image)

Input Size basic: 
more features: 

Feature Size          , possibility to 
aggregate to a single 
feature 

Core Operation/
Processing Block

2D convolution (slide 
kernel in 2D)

volumetric convolution 
(slide kernel in 3D)

Multi-Layer Perceptron

w
x

× h
y

× f

w × h w × h × d

w
x

× h
y

× d
z

× f

n × 3
n × (3 + fi)

n × fo
fo



NEURAL NETS: INPUT DATA ENCODERS

Depth and/or Color Image

Feature 
Encoding



NEURAL NETS: INPUT DATA ENCODERS

Depth and/or Color Image

Feature 
Encoding

Encoder



NEURAL NETS: OUTPUT REPRESENTATIONS

< some 
processing >

Hand Pose OutputDepth and/or Color Image

Feature 
Encoding



NEURAL NETS: OUTPUT REPRESENTATIONS

< some 
processing >

Hand Pose OutputDepth and/or Color Image

Feature 
Encoding



NEURAL NETS: OUTPUT REPRESENTATIONS

Vectorized Joint Positions 

• output vector of size:  
• for monocular RGB, there is depth-scale ambiguity ➔ 3D positions are regressed relative 

to some reference joint (e.g. wrist or middle MCP)

NJ × 3

usually preceded by a 
linear layer*

(*it is possible to find convolution kernel sizes and strides to obtain the right dimensionality) 

x y z

joint 1

x y z

joint n

…



NEURAL NETS: OUTPUT REPRESENTATIONS

Heatmaps (2D / 3D) 
• 2D: resolution can be the same as input image or smaller ➔ speed-accuracy trade-off 
• 3D: accuracy highly dependent on 3D grid resolution ➔ larger memory cost
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3D:



NEURAL NETS: OUTPUT REPRESENTATIONS

Location Maps 
• used together with 2D heatmaps to enable 3D pose prediction
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[ Mehta et al. 2017 ]



NEURAL NETS: OUTPUT REPRESENTATIONS

Part Orientation Fields 
• encode offsets between child and parent joints
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[ Luo et al. 2018 (3D), Xiang et al. 2019 (3D) ]  
[ Cao et al. 2017 (2D) ]



COMPARISON: OUTPUT REPRESENTATIONS

Vectorized Joint Positions Heatmaps (2D/3D) Location Maps (LM) Part Orientation 
Fields (POF)

Output Size 2D:  
3D: 

Processing linear layers (+ non-
linearities)

transposed convolution 
(2D/3D)

transposed convolution 
(2D)

transposed convolution 
(2D)

Pro • compact 
• linear layers encourage 

pose prior

• closer to input image 
➜ better reprojection 
error

• single read-out per 
joint (vs. POF)

• takes bones into 
account

Con • less spatial correlation to 
input image

• not compact 
• less robust to e.g. 

occlusions 
• 2D: no 3D pose 
• 3D: memory cost

• prerequisite: 2D 
heatmaps 

• not compact

• prerequisite: 2D 
heatmaps 

• not compact 
• more complicated 

read-out (vs. LM)

NJ × 3 NJ × w × h
NJ × w × h × d

3NJ × w × h3NJ × w × h



SUMMARY: DISCRIMINATIVE METHODS

• Advantages: 
– implicitly learned prior over training data 
– do not require initialization at test time

• Disadvantages: 
– need for training data 

• less generalization to unseen data 

• time-consuming / expensive annotations



CLASSES OF METHODS

• assume availability of a 
parametric hand model 

• hand pose is obtained by 
minimizing the 
discrepancy between the 
model and the input 
observation 

• does not have a training 
stage -> independent of 
available data

• assume availability of 
large data corpora 

• hand pose is obtained by 
either database lookup or 
evaluating a trained 
machine learning model 

• can exploit prior 
knowledge from data -> 
often more robust 

• combination of 
generative and 
discriminative concepts 

• try to get „the best of 
both worlds“

HybridDiscriminativeGenerative
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HYBRID METHODS

• designing regressors according to hand model structure 
– easier training & more robustness at test time 

• using discriminative output as initialization for generative fitting 
– less sensitive to initial pose 

• using discriminative output in an energy term 
– prevent poor local optima 

• using a generative hand model inside a neural network, e.g. as non-trainable layer



EXAMPLES: DESIGN & INITIALIZATION

• build regressor hierarchy according 
to hand model (Tang et al. 2015)

Hand Model

• initialize mesh correspondences instead 
of closest points (Mueller et al. 2019)
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EXAMPLES: USAGE IN ENERGY TERMS

• use regressed part label information 
for weighting discrepancy in energy 
function (Sridhar et al. 2015)

Hand ModelKeypoint Energy Term

Part Labels Hand ModelDepth Image

• minimize distance between regressed 
keypoints and model (Tzionas et al. 
2016)
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Ground-Truth 
Hand Pose

EXAMPLE: SELF-SUPERVISED LOSS

Supervised Learning:
Loss

Hand Pose 
Output

Depth and/or Color Image



Ground-Truth 
Hand Pose

EXAMPLE: SELF-SUPERVISED LOSS

Loss

Hand Pose 
Output

Depth and/or Color Image

Self-Supervised Learning:
?



EXAMPLE: SELF-SUPERVISED LOSS

Self-Supervised Learning:

generative model fitting does not need any ground truth

➔ make use of similar objective functions as loss

[ e.g. Dibra et al. 2017, Wang et al. 2020 ]

Loss ?



EXAMPLE: SELF-SUPERVISED LOSS

Objective Function Layer using a 
Generative Hand Model

Hand Model 
Parameters ✓<latexit sha1_base64="JM6zO54H4dTXtLEH5bzCwTJaU+Y="></latexit>

LossDepth and/or Color Image



EXAMPLE: SELF-SUPERVISED LOSS

Hand Model Parameters ✓<latexit sha1_base64="JM6zO54H4dTXtLEH5bzCwTJaU+Y="></latexit>

Loss

E(✓) = ||
<latexit sha1_base64="3B3Mb2qWXxHDDdtwPiJcMiW6ZlY="></latexit>

||
<latexit sha1_base64="R+QrkVGLM3lNM00easCHFbrLuPk="></latexit>

�<latexit sha1_base64="psWeBO5L06wWWN8h6Mri0BdVIv4="></latexit>(✓)
<latexit sha1_base64="KSEsGXd2OzE8RdRQvtvWfQF6nyQ="></latexit>

+ regularizer terms

„Rendering“ Layer

Input Image



EXAMPLE: SELF-SUPERVISED LOSS

Dissimilarity 
Loss

Depth Image

Keypoints

Joint 
Loss

Collision Prior

Autoencoder ‘Rendered’ Model
CNN Encoder Model Decoder3D Code Vector

Resnet-18 ‘Rendering’ Layer

(θ, β) ∈ ℝ𝟒𝟔

Quadtree Image Summary
Bone Length Prior

Joint Limits

[ Wang et al. 2020 ]



INFLUENCE OF THE SELF-SUPERVISED LOSS

• reduces the amount of annotations that 
are necessary for training 
– only fingertips (Wang et al. 2020) 
– no keypoints (Dibra et al. 2017) 

• the machine learning predictor is learning 
to explain evidence in the input data 
– counters annotation biases in training 

datasets
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[ Wang et al. 2020 ]



SUMMARY: HYBRID METHODS

• Advantages: 
– often more robust than generative or 

discriminative methods alone 
– do not solely rely on training data and 

annotations 
– make knowledge about generative model 

fitting re-usable

• Disadvantages: 
– might require more complicated 

implementation



MOTION CAPTURING FINGERS:  
SUMMARY

Franziska Mueller



TECHNOLOGIES FOR FINGER MOTION CAPTURE

• Accurate world space 
positional tracking 

• High framerate 
• Relatively easy to use with 

mature solutions 
• Require a dedicated 

instrumented space 
• Labeling and occlusion 
• Cost $$$

• Occlusions are not a problem 

• Wide range of options 

• No capture space requirements 

• Flexible working volume 

• Users must wear a device 

• Calibration may be an issue 

• Accuracy varies 

• No global position, in general 

• Cost $$

• No instrumentation of the hand 

• Global position available (up-
to-scale for monocular RGB) 

• Easy to setup and use by non-
experts, commodity equipment 

• Cost $ 

• Occlusions 

• Accuracy lower than marker-
based solutions

ImagesGlovesMarkers



HAND MOTION SYNTHESIS
Michael Neff Victor Zordan
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KINEMATIC HAND 
MOTION SYNTHESIS

Michael Neff



FINGERS AND VIRTUAL REALITY

Fingers in VR

Character 
VisualizationInteraction

e.g. Gesture input

Avatars:
Correspondence 

with actual 
movement 

matters

“Non-Player 
Characters”



APPLICATION OF FINGER ANIMATION IN VR

©  2 0 2 0  S I G G R A P H .  A L L  R I G H T S  R E S E R V E D .

Finger Applications

ManipulationCommunication

Grasp

Complex 
Interaction:
e.g. Playing 
Instruments

Gesture Sign Languages



APPROACHES TO HAND ANIMATION
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Kinematic Data-Driven Physics-
Based

Non-
procedural

Procedural



APPROACHES TO HAND ANIMATION
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Kinematic Data-Driven Physics-
Based

Non-
procedural

Ragdoll

Procedural



APPROACHES TO HAND ANIMATION
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Kinematic Data-Driven Physics-
Based

Non-
procedural

Ragdoll

Procedural
Controllers,
Constrained 
Optimization



APPROACHES TO HAND ANIMATION
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Kinematic Data-Driven Physics-
Based

Non-
procedural

Keyframing Ragdoll

Procedural
Controllers,
Constrained 
Optimization



KEYFRAMING

o Can be realistic or heavily stylized
o Depends on skill of animator
o Laborious, but provides full control



KEYFRAMING

©  2 0 2 0  S I G G R A P H .  A L L  R I G H T S  R E S E R V E D .

• Device input features a small set of key poses
• Well suited to keyframing

• Used to augment full body motion that might 
be generated differently
• Associate finger pose with gesture phase



WheAtland et al./Hand and Finger Modeling and Animation

o Keyframing quality depends on skill and time
o Un-restricted keyframes = high quality hand motion
o Preferred to motion capture [Adamo-Villani 2008]

o Keyframes restricted to reflect limited time
o Motion capture preferred [Jӧrg et al. 2010]

[Adamo-Villani 2008][Jӧrg et al. 2010]
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APPROACHES TO HAND ANIMATION
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Kinematic Data-Driven Physics-
Based

Non-
procedural

Keyframing Ragdoll

Procedural Inverse
Kinematics Controllers,

Constrained 
Optimization



INVERSE KINEMATICS AND HANDS

• Given a set of position and/or orientation constraints, 
solve for a set of joint angles to achieve those constraints

• Often assume palm location is known, solve for fingers
• Constraints: finger tips, finger bodies, palm, thumb
• Avoid interpenetration
• Solution Methods:

• Trigonometry
• Heuristics
• (Damped) pseudo-inverse of the Jacobian
• Optimization
• Data sampling 
• Combinations of the above



OBJECT AFFORDANCES

• Object’s have affordances:
• Places where they are touched
• Orientation constraints
• Allowable movements

• Information must be encoded
• Constraints must be passed 

to animation/IK system
• Adaptation must be done on 

the fly



OBJECT INTERACTION

• Must manage hand-object interaction
• Avoid collision
• Correctly react to objects
• “Smart-objects” know their affordances
• Musical Instruments

• Technologies
• Hierarchical motor control
• Inverse kinematics

• Triggered Animations            Direct Interaction

[Kallmann and Thalmann, 1999 ©ACM]

[Zhu et al. 2013]



GRASP AS A GAME MECHANIC

• The Climb
• Rock climbing VR game

• Lone Echo
• Grasp to move through space environment
• Algorithm:

• Pre-author poses for complicated touch like holding a gun
• Otherwise, search for objects nearest palm
• Apply IK to have fingers make contact
• Allow repositioning of hand, but minimize
• Discarded physics:

• Concerns about performance
• Need for graceful failure



OBJECT INTERACTION WITH PHYSICS

• Examine the physical requirements of 
supporting objects

• Solve for possible contact points that meet 
physical requirements

• May assume object motion is known
• Examples [Ye and Liu, 2012], [Mordatch et 

al., 2012]

(Ye and Liu, 2012)



APPROACHES TO HAND ANIMATION
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Kinematic Data-Driven Physics-
Based

Non-
procedural

Keyframing Motion 
Playback

Ragdoll

Procedural Inverse
Kinematics Controllers,

Constrained 
Optimization



DATA-DRIVEN, NON-PROCEDURAL

• Record separate hand motion, timed to body motion
• Combine two data streams for final animation
• Pros:

• High quality motion

• Cons:
• Labor intensive
• Inflexible (must record all necessary motion, with appropriate timing to match body motion)



APPROACHES TO HAND ANIMATION
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Kinematic Data-Driven Physics-
Based

Non-
procedural

Keyframing Motion 
Playback

Ragdoll

Procedural Inverse
Kinematics

Statistical 
Pose Models,  
Motion 
Repurposing

Controllers,
Constrained 
Optimization



DATA-DRIVEN, PROCEDURAL:
TOUCH INTERACTION

• Data-Driven Grasp Synthesis (Li et al. 2007)
• Capture a database of people interacting with objects
• At runtime, shape match against database to find 

potential poses
• Prune based on grasp quality measure
• Apply best pose

[Li et al. 2007, © IEEE]



DATA-DRIVEN, PROCEDURAL:
TOUCH INTERACTION

• Data-Driven Grasp Synthesis (Li et al. 2007)
• Capture a database of people interacting with objects
• At runtime, shape match against database to find 

potential poses
• Prune based on grasp quality measure
• Apply best pose

• Data-Driven hand interaction with remote subjects 
(Lee et al. 2017)
• Identify touch locations for important hand poses
• At run time, identify type of touch
• Query touch locations
• Adapt remote participant’s pose with IK to maintain 

proper contact

[© Youjin Lee 2017]



DATA-DRIVEN, PROCEDURAL: 
DIMENSIONALITY REDUCTION

• High dimensionality of hand pose
• Fingers have a large number of degrees of freedom (20+)
• Actual hand poses lie in a lower dimensional space

• i.e. there are correlations between joints
• Data is a good way to capture this

• Approaches
• PCA
• Non-linear dimensionality reduction



HAND-OVER ANIMATION

• Merge finger animation with pre-existing full body motion
• Reflects challenges of simultaneous finger capture
• May record partial finger motion to guide process



ADAPT HAND MOTIONS TO FIT BODY MOTIONS

Capture body and finger motions separately so that the hand motions can be captured in a 
smaller area [Majkowska et al. 2006]

Four markers on hand, wrist, and forearm present in both captures [©Majkowska et al. 2006]



ADAPT HAND MOTIONS TO FIT BODY MOTIONS

• Motion from hand and body aligned in three steps:
• align movement phases using dynamic time warping (DTW) and acceleration and velocity profiles
• align frames within phases with DTW based on the angle between forearm and palm of the hand
• smooth resulting motions

[©Majkowska et al. 2006]



GENERAL APPROACH

• Segment motion
• poses/frames
• movement phases

• Choose match in a database
• nearest neighbor
• rule based
• optimization function

• Adapt motion to fit final motion
• dynamic time warping
• smoothing
• physics based simulation
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GENERAL APPROACH

• Segment motions
• poses/frames
• movement phases

• Choose match in a database
• nearest neighbor
• rule based
• optimization function

• Adapt motion to fit final motion
• dynamic time warping
• smoothing
• physics based simulation



EXAMPLE USES

•Improve motion capturing of data
•Augment body motions with hand motions
•Compute parameters for procedural 
animation

•Animate conversational characters based on 
text or speech



IMPROVE MOTION CAPTURING

•Retrieve high resolution finger motion 
• Based on reduced marker set with optical motion 

capture  [Kang et al. 2012, Wheatland et al. 2013]
• Based on 3D hand posed with a glove-based input 

[Wang and Popović 2009] Wheatland 
et al. [2013]

Kang et al. 
[2012]

[Wang and Popović 2009, ©ACM ]



AUGMENT BODY MOTIONS WITH HAND MOTIONS

Jörg et al. [2012]
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AUGMENT BODY MOTIONS WITH HAND MOTIONS

Jörg et al. [2012]



SUMMARY

• Keyframing
• Excellent control, high manual labor cost for quality results

• Procedural, Kinematic
• Flexible, fast and can be reasonable quality
• Generally lower quality than data, more manual labor

• Motion capture
• High motion quality, but requires good data of needed motions
• Difficult to adapt motion to new situations



PHYSICAL MODELING 
FOR HANDS IN VR

Victor Zordan



©IEEE [Tian et al 2019]

Dextrous, Intuitive, Immersive Manipulation 

Raycast “select” Data-driven grasp Physical grasp

Why use physics-based hands in VR?



Why use physics-based hands in VR?

Motivation

Physics provides a known 
“language” for interaction

Force as natural interface

©IEEE [Kim and Park 2015]



Introduction to physical modeling for hands

Taxonomy

KinematicsData driven Physics 
Modeling



Taxonomy

Kinematics

Optimization Dynamics 
Simulation Hybrid

Data driven Physics 
Modeling

Introduction to physical modeling for hands



Taxonomy

Kinematics

Optimization Dynamics 
Simulation Hybrid

Rigid body Deformation Anatomy

Data driven Physics 
Modeling

Introduction to physical modeling for hands



Taxonomy

Kinematics

Optimization Dynamics 
Simulation Hybrid

Rigid body Deformation Anatomy

Data driven Physics 
Modeling

[Pollard & Zordan 2005]

Introduction to physical modeling for hands



Taxonomy

Kinematics

Optimization Dynamics 
Simulation Hybrid



Taxonomy

Kinematics

Optimization Dynamics 
Simulation Hybrid

Rigid body Deformation Anatomy

Data driven Physics 
Modeling

Introduction to physical modeling for hands

©IEEE [Jacobs and Froelich 2011]



Taxonomy

Kinematics

Optimization Dynamics 
Simulation Hybrid

Rigid body Deformation Anatomy

Data driven Physics 
Modeling

[Sueda et al 2008]

Introduction to physical modeling for hands



VR with physical modeling layout

Dynamics Simulation and VR

Most game engines support
some physics (e.g. Bullet…)

Hand motion becomes a special
plugin input to physics library

©IEEE [Jacob and Froelich 2011]



Simulation – equations of motion

Rigid body formulation

Control Hand dynamics Contact = +

©IEEE [Delrieu et al 2020]



Simulation – basic controller

Tracking Control

©IEEE [Delrieu et al 2020]



Limitations of physically based hands in VR

Physical Limitations

• Discrepancies between physics and user

• Tracking Latency

• Correspondence issues

• Poor grasp / contact

• Control limitations
©IEEE [Jacobs and Froelich 2011]
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Physical Limitations

• Discrepancies between physics and user

• Tracking Latency

• Correspondence issues

• Poor grasp / contact

• Control limitations
©IEEE [Jacobs and Froelich 2011]

Limitations of physically based hands in VR



Physical Limitations

• Discrepancies between physics and user

• Tracking Latency

• Correspondence issues

• Poor grasp / contact

• Control limitations

Real hand interpenetrates Physics delays release 

©IEEE [Delrieu et al 2020]

Limitations of physically based hands in VR



Physical Limitations

• Discrepancies between physics and user

• Tracking Latency

• Correspondence issues

• Poor grasp / contact

• Control limitations ©IEEE [Tian et al 2019]

Limitations of physically based hands in VR



Physical Limitations

• Discrepancies between physics and user

• Tracking Latency

• Correspondence issues

• Poor grasp / contact

• Control limitations

Limitations of physically based hands in VR



Contact modeling for physics VR hands 

Contact  force calculation

• Contact force, various friction models

©IEEE [Holl et al 2018]



Particle-based Interaction

Contact modeling for physics VR hands 

©IEEE [Kim and Park 2015]



Physical modeling with elastic tracking

Elastic tracking

• Purposeful discrepancies from real hand

• More natural interactions

PushingBall grasp

©IEEE [Verschoor et al 2018]



Physical interaction capture

Capturing Physical Interaction

• Extending examples to new settings

[Kry and Pai 2006]



Passive Response

ligaments
tendons
skin…

Active Control

muscle activation
to achieve a task

time dependent

Separating passive and active control



CLOSING

GRIPPING

RELEASING

OPENING 

RELAXING

OPENING 

NEUTRAL

State machine

Most transitions triggered by distance from hand to object

Active 
Control

Controller implementation



Grasp assistant controller

State based augmentation 
State machine for grasping

• Identifying phase of manipulation

• Augment grasp forces to aid behavior

• Forces account for inertial influences

• Remove forces when release is triggered 

©IEEE [Tian et al 2019]



Improving contact with deformation

Deformation changes contact

• Deformation complies to surface

• Improved contact 

©IEEE [Talvas et al 2015]



Manipulation Deformation

Force Contacts©IEEE [Hirota and Tawagata 2016]

Improving contact with deformation



Deformation Model to improve contact

• Deformable phalanges collide

• Increased contact surface

©IEEE [Talvas et al 2015]

Improving contact with deformation



Hybrid solutions with physics hands in VR

Hybrid Solutions 

“RTN” Realtime Hand-Object Interaction Using Learned Grasp Space for Virtual Environments

©IEEE [Tian et al 2019]



Challenges 

• RTN user study

©IEEE [Tian et al 2019]

Pinch graspRaycast grasp RTN grasp

Hybrid solutions with physics hands in VR



RTN grasp  vs Pinch grasp RTN grasp  vs Raycast grasp

©IEEE [Tian et al 2019]

Hybrid solutions with physics hands in VR



Physical modeling plus haptics

Haptic feedback can augment the effectiveness of physical models (Humberston and Pai 2015)

©Humberston and Pai



PERCEPTION
Sophie Jörg
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OVERVIEW

• Hand motion in videos of other virtual characters (social presence)
o Noticeability of errors
o Effect on interpretation
o Effect on personality

• Hand motion in virtual reality of own hand (self presence)
o Rubber hand illusion
o Virtual hand illusion
o Manipulation in VR



Are errors in finger 
motions noticeable?

IS THIS MOTION MODIFIED OR NOT MODIFIED?

Count Drink

Snap Point

The Perception of Finger Motions, Sophie Jörg, 
Jessica Hodgins, and Carol O’Sullivan, ACM 
Symposium on Applied Perception in Graphics and 
Visualization (APGV) 2010



Participants recognize delays as 
little as 0.1 seconds

However, no single threshold could 
be found

SUBTLE DELAYS CAN BE NOTICED

Count Drink

Snap Point
y-axes: percentage of motions rated as unmodified



Can hand 
motion change 

the 
interpretation of 

a scene?



PERCEIVING INCORRECT HAND MOTIONS

Descriptions in free form text:

Five-point scale response data: between groups ANOVA



INCORRECT HAND MOTIONS CHANGE 
INTERPRETATION

Finger motion can alter the interpretation of a scene, 
even without altering its perceived quality.



HAND POSES AFFECT PERCEIVED PERSONALITY

Assessing the Impact of Hand Motion on Virtual 
Character Personality, Yingying Wang, Jean E. 
Fox Tree, Marilyn Walker and Michael Neff, ACM 
Transactions on Applied Perception 2016

Selected results:
• Spread most extraverted, Touching 

and Rest least 
• Rest is most emotionally stable, Fist 

and Spread least 
• Rest is most agreeable, Fist is least
• Spread less conscientious than all 

other poses
• Spread most open, Fist least



RUBBER HAND ILLUSION

• Feeling that a rubber hand is part of one’s own body

• First reported by Botvinick and Cohen in 1998

• Interaction between vision, touch, and proprioception
o Participant sits, left arm rests on a table, hidden from view
o Rubber hand and arm place in front of participant
o Participant looks at rubber hand
o Rubber hand and real hand are stroked synchronously with two 

paintbrushes
o A questionnaire is filled out after 10 minutes
o Proprioception affected, proprioceptive drift

Rubber hands ‘feel’ touch that eyes see, Matthew 
Botvinick and Jonathan Cohen, Nature 1998

Participant

Experimenter



RUBBER HAND ILLUSION

• Multisensory integration

• Typically induced by visuotactile input: synchronous touching and visual feedback
o Synchronous active movements or synchronous passive movements also possible
o No effect with asynchronous stimulation
o No effect when the rubber hand is positioned in an anatomically implausible way
o Induction phase of less than 1 minute is typically long enough, sometimes only 10s are needed

• Influenced by hand appearance, anatomy, realism, and similarity of fake hand

• 20-30% of participants do not experience the illusion



VIRTUAL HAND ILLUSION

Feeling that a virtual hand is part of one’s body
Induced by visuomotor feedback

Is the rubber hand illusion induced by immersive 
virtual reality?, Ye Yuan and Anthony Steed, IEEE 
Virtual Reality Conference 2010

© IEEE



Participants can feel ownership for a: 
• Square or rectangle
• Balloon
• Cat claw

VHI CAN BE INDUCED FOR VARIOUS 
REPRESENTATIONS

© Elsevier

Is the rubber hand illusion induced by immersive 
virtual reality?, Ye Yuan and Anthony Steed, IEEE 
Virtual Reality Conference 2010



Participants can feel ownership for a: 
• Square or rectangle
• Balloon
• Cat claw
• Abstract or iconic hands

VHI CAN BE INDUCED FOR VARIOUS 
REPRESENTATIONS

[Argelaguetet al. 2016]

Touch with foreign hands: the effect of virtual hand appearance on visual-haptic 
integration, Valentin Schwind, Lorraine Lin, Massimiliano Di Luca, Sophie Joerg, 
and James Hillis, ACM Symposium on Applied Perception 2018

© IEEE



Participants can feel ownership for a: 
• Square or rectangle
• Balloon
• Cat claw
• Abstract or iconic hands
• Hands with more or less fingers

VHI CAN BE INDUCED FOR VARIOUS 
REPRESENTATIONS

"Wow! I Have Six Fingers!": Would You Accept 
Structural Changes of Your Hand in VR?, Ludovic 
Hoyet, Ferran Argelaguet, Corentin Nicole, and 
Anatole Lécuyer, Frontiers in Robotics and AI 
2016



Strongest 
effect

Weakest effect

VHI CAN BE INDUCED FOR VARIOUS 
REPRESENTATIONS

In direct comparison, anthropomorphic models lead to a stronger 
illusion and a realistic human model leads to the strongest effects. 

[Lin and Jörg 2016]



Top-Down Processing 
(contextual information)

Bottom-Up Processing 
(sensory input)

TOP-DOWN AND BOTTOM-UP PROCESSING



HOW DO WE MEASURE BODY-OWNERSHIP 
ILLUSIONS?

• Self-reports, questionnaires (typically using Likert scales)
• Body Ownership, e.g., “Sometimes I felt as if the virtual hand on the screen was my own hand”
• Agency, e.g., “The movements of the virtual hand on the screen were caused by myself”
• Self-location, e.g., “It sometimes seemed my own hand was located on the screen”

• Perceived position of the own hand, proprioceptive drift

• Reaction to threat
• Avoidance, time to complete task
• Skin conductance response

The role of interaction in virtual embodiment: Effects 
of the virtual hand representation, Ferran Argelaguet , 
Ludovic Hoyet, Michael Trico, Anatole Lecuyer, IEEE 
Virtual Reality (VR) 2016

© IEEE



EXAMPLE EXPERIMENT DESIGN AND PROCEDURE

• Within-groups design, 15 participants
• Real rubber hand illusion pre-test

• Participants experienced each model for two minutes
• Catch task, then threat
• Participants were read statements and asked to 

choose a rating on the 7-point Likert scale

Need a Hand? How Appearance Affects the 
Virtual Hand Illusion, Lorraine Lin and Sophie 
Jörg, ACM Symposium on Applied Perception 
2016



EXPERIMENT RESULTS

• Q-B5. Sometimes I felt as if the virtual hand on 
the screen was my own hand. (Ownership) 

• H,  T,   V,   Z,   R    >   B

The boxes indicate inter-quartile ranges and 
the bars show the range of the ratings.



EXPERIMENT RESULTS

• Q-B5. Sometimes I felt as if the virtual hand on 
the screen was my own hand. (Ownership) 

• H,  T,   V    >   Z

The boxes indicate inter-quartile ranges and 
the bars show the range of the ratings.



EXPERIMENT RESULTS

• Q-B7. During the experiment there were 
moments in which it seemed that my own hand 
was catching the ball. (Ownership)

• H,  T,   V,   Z,  R    >    B

The boxes indicate inter-quartile ranges 
and the bars show the range of the ratings.



EXPERIMENT RESULTS

• Q-B7. During the experiment there were 
moments in which it seemed that my own hand 
was catching the ball. (Ownership)

• H    >  V,   Z,  B

The boxes indicate inter-quartile ranges 
and the bars show the range of the ratings.



EXPERIMENT RESULTS

• Q-B8. I thought the virtual hand on the screen 
looked realistic. (Realism) 

• H,  T,   V,   Z,  R     >   B

The boxes indicate inter-quartile ranges 
and the bars show the range of the ratings.



EXPERIMENT RESULTS

• Q-B8. I thought the virtual hand on the screen 
looked realistic. (Realism) 

• H    >  V,   Z,  R,  B

The boxes indicate inter-quartile ranges 
and the bars show the range of the ratings.



GRASPING FEEDBACK

Virtual Grasping Feedback and Virtual Hand Ownership, Ryan Canales, Aline Normoyle, Yu Sun, 
Yuting Ye, Massimiliano Di Luca, and Sophie Jörg, ACM Symposium on Applied Perception 2019
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