
DesCaRTeS: A Run-Time System with SR-like Functionality

for Programming a Network of Embedded Systems∗

Justin T. Maris, Matthew D. Roper, and Ronald A. Olsson

Department of Computer Science

University of California, Davis

Davis, CA 95616-8562 U.S.A.

{maris,roper,olsson}@cs.ucdavis.edu

October 2, 2003

Notes to Publisher:

• Please send correspondence regarding this paper to Olsson

Abstract

This paper describes a run-time system (DesCaRTeS) that has been used for devel-
oping applications that run on a network of embedded system controllers. DesCaRTeS is
written in Dynamic C and provides Dynamic C programs with easy-to-use functionality
to run on such networks, send and receive messages, perform remote procedure calls, and
dynamically create processes. This paper reports on some of the applications for which
DesCaRTeS has been used, the experience in developing them using DesCaRTeS, and
the experience gained in developing DesCaRTeS. It also presents performance compar-
isons between these applications written using DesCaRTeS and equivalent applications
written using native Dynamic C.

Keywords: concurrent programming models, concurrent programming languages, co-
operative multithreading, embedded systems, run-time systems.

∗This research was supported in part by Z-World, Inc. and the University of California under the MICRO
program.

1

1 Introduction

The cooperative multithreading execution model (CM) is a specialized model of concurrent

program execution. In this model, threads execute one at a time. A thread executes until

it chooses to yield the processor or to wait for an event such as a shared variable meet-

ing a particular condition, a device completing some operation, or a timeout occurring.

This model of execution is especially well-suited for writing programs for real-world pro-

grammable controllers for embedded systems [1], such as those found in irrigation control

systems and railroad crossing control systems. One language for writing these controllers is

Z-World’s Dynamic C [2], which is used for programming Z-World’s Rabbit processor. The

Rabbits, compared to common PCs, are very slow and limited in memory.

The SR concurrent programming language [3] provides a variety of synchronization

mechanisms: remote procedure call (RPC), asynchronous message passing, rendezvous,

and dynamic process creation. It is intended for programs that run under the more general

concurrent programming model (CP), in which process execution is non-deterministic and

multiple processes can execute at the same time on multiple processors, e.g., on a shared-

memory multiprocessor or in a network of workstations.

SR’s high-level abstraction of interprocess communication motivated the design of a run-

time system, similar to that of SR’s, that runs on a network of Rabbits. The SR run-time

system was used as a model to develop DesCaRTeS: a Dynamic C Run-Time System. This

run-time system provides Dynamic C programs with functionality similar to that used in SR

programs, namely, the abilities to run programs on a network of systems, send and receive

messages, perform remote procedure calls, and dynamically create processes. Although this

functionality can be achieved with native Dynamic C programs with the TCP/IP library,

using DesCaRTeS can reduce the programming effort. Moreover, DesCaRTeS is a CM-style

library, utilizing the benefits that accompany CM-style programming. While some CP-style

programming languages (e.g., Ada and Java) provide similar functionality on embedded

2

system controllers, this research aimed to use a CM-style programming language to provide

interprocess communication between embedded systems.

To gain feedback on the design and implementation of DesCaRTeS, it has been used

to develop several applications. This paper reports on two of those applications. The

first application is a simple “ping pong” program. It is a micro-benchmark designed to

illustrate the costs of the basic DesCaRTeS mechanisms. The second application is a solution

to the classic Readers/Writers Problem. It is a macro-benchmark designed to illustrate

the overhead of using DesCaRTeS within a more realistic program. We have also used

DesCaRTeS in experiments with load balancing algorithms for variants of Readers/Writers

and Dining Philosophers; further details appear in Reference [4].

Our work has three goals. First, it aims to provide a richer communication scheme for

an embedded system. It allows programmers to perform operations such as sending and

receiving messages using mechanisms at a high-level of abstraction. Second, this research

provides experience using the CM-style programming language Dynamic C. This experi-

ence has provided feedback and insight into the benefits and limitations of using such a

language. Although programming in a CM-style language such as Dynamic C uses simple

shared variable synchronization, the responsibility of introducing context switches in cor-

rect locations requires an increased level of attention to detail. Furthermore, Dynamic C’s

inability to dynamically manage memory can hinder a programmer, especially when trying

to provide features such as dynamic process creation. However, Dynamic C does provide

the necessary tools needed to implement a library such as DesCaRTeS. Finally, our work

assesses the performance overhead in using DesCaRTeS compared to native Dynamic C.

Our results show that for the micro-benchmark program, DesCaRTeS programs generally

require about 100–200% additional execution time, but for the macro-benchmark program,

DesCaRTeS programs generally require about 0–20% additional execution time. This paper

analyzes and explains these results. Some of the high overhead is due to DesCaRTeS’s use of

slower memory, extra copying of messages, extra layers of procedure calls in using a library

3

like DesCaRTeS, and type checking. These factors are not present in the native Dynamic C

programs. Thus, the extra layer of abstraction provided by DesCaRTeS results in degraded

performance. That is analogous in some ways to other abstraction/performance tradeoffs

such as seen in programs written in C (or other higher-level languages) versus those written

in assembly language.

The rest of this paper is organized as follows. Section 2 presents relevant background ma-

terial: overviews of the SR language, Dynamic C language, and Rabbit processor. Section 3

introduces DesCaRTeS and outlines its use and features. Section 4 describes the applica-

tions developed using DesCaRTeS and gives performance comparisons. Section 5 discusses

the experience gained in developing DesCaRTeS and the applications using DesCaRTeS.

Section 6 presents the conclusions. Further details and discussion appear in Reference [5].

2 Background

This section discusses relevant background material. Section 2.1 provides an overview of the

SR programming language. Section 2.2 presents an overview of the Dynamic C programming

language. Section 2.3 discusses the Rabbit processor.

2.1 SR Overview

The SR programming language [3] provides high-level abstractions for concurrent program

execution. The key concepts are are virtual machines, resources, and operations.

A virtual machine (VM) represents an address space. VMs are used for distributing

a program onto physical machines. Each VM resides on one physical machine. VMs are

created dynamically.

SR provides resources as its key modular component. A resource is essentially a template

that can be used to dynamically create instances of that resource. Each resource may also

spawn more processes or create additional resource instances.

4

Processes in SR communicate using operations. A process may invoke these operations,

sometimes with parameters, by using a send or call statement. Invocations via send are

asynchronous; the invoker continues immediately after the invocation is made. Invocations

via call are synchronous; the invoker blocks until the invocation is serviced. Invocations

are serviced by input statements (defined by the keyword in) or procedures. An input

statement receives an invocation from any of the operations it specifies. The invocation

selected is determined on a FCFS basis. This selection method, however, can be modified

two clauses: st and by. The st clause causes the operation to be serviced only if the

condition following the clause is evaluated to be true. An input statement can also give

preference to invocations according to an ordering determined by the expression that follows

the by clause. Once an invocation has been selected, additional code can be executed as

part of the servicing of that invocation. Once that code is executed, a reply is sent back

to the invoker if the invocation was made with a call. The invoker may then continue. If

the invocation was made with a send, however, no such reply is sent because the invoker

has already continued after the send. Input statements can also respond to the invoker

before the entire invocation servicing code has executed by using SR’s reply statement; the

waiting invoker can continue with its execution once it gets the reply. When invocations are

serviced by procedures, a new process is spawned to handle the call. These procedure calls

can either be local or remote. SR also provides semaphores, which are abbreviated versions

of operations. The P and V primitives, which are simplified input and send statements,

respectively, are used on semaphores.

As noted above, VMs, resources, and operations are created dynamically and hence SR

programs need a way to reference instances of such. SR uses capabilities for this purpose.

A capability acts as a pointer and can be assigned to variables and passed as parameters,

thus permitting, for example, dynamic communication paths.

To illustrate many of SR’s features discussed in this section, Figures 1 and 2 give SR

solutions for two classic concurrency problems [3]: the Dining Philosophers problem and the

5

Reader/Writers problem. The Dining Philosophers problem involves a number of philoso-

phers gathered around a table. Each philosopher spends time either eating or thinking.

In order to eat, a philosopher must grab both its left fork and its right fork. These forks,

however, are shared with a philosopher’s left and right neighbors. These forks must be

obtained in a way that guarantees exclusive access. As a result, no two neighboring philoso-

phers may eat at the same time. The Readers/Writers problem involves a number of readers

and writers that all attempt to periodically access a centralized database. However, certain

restrictions apply. Any number of readers may access the database simultaneously, provided

no writer currently has access. Each writer, on the other hand, must have exclusive access.

Thus, no other reader or writer may be accessing the database while a writer has access.

The Dining Philosophers solution presented in Figure 1 (from Reference [3]) uses a

centralized controller (i.e., the server process) that manages the distribution of forks. Sim-

ilarly, the Readers/Writers solution presented in Figure 2 also uses a centralized controller

(i.e., the RW allocator process) that handles requests to the database. These requests

are serviced with a FCFS policy, thus not starving any process. When choosing between

waiting readers or writers, the controller gives preference to whichever has been waiting

longest. Furthermore, readers that have arrived before any waiting writer are allowed to

proceed [6].

Although SR is intended as a language in which to write CP-style programs, it can

also be used to write CM-style programs. The SR implementation provides a compile-time

option that inhibits implicit context switches when the generated code is executed. Also,

a process can use SR’s nap function to effect the equivalent of an explicit yield statement

(i.e., to force a context switch) in a CM-style SR program. Passing nap a value of 0 simply

causes the process to yield until it is scheduled to execute again. (Passing nap a non-zero

value puts the process to sleep for the given amount of time.)

Figure 3 illustrates a philosopher from Dining Philosophers written in both CP-style

and in CM-style. This version of the Dining Philosophers problem presents a decentralized

6

resource Servant

op getforks(id: int) # called by Philosophers

op relforks(id: int)

body Servant(n: int)

process server

var eating[1:n] := ([n] false)

do true ->

in getforks(id) st not eating[(id mod n) + 1]

and not eating[((id-2) mod n) + 1] ->

eating[id] := true

[] relforks(id) ->

eating[id] := false

ni

od

end

end

resource Philosopher

import Servant

body Philosopher(s: cap Servant; id, t: int)

process phil

fa i := 1 to t ->

s.getforks(id)

write("Philosopher", id, "is eating") # eat

s.relforks(id)

write("Philosopher", id, "is thinking") # think

af

end

end

resource Main()

import Philosopher, Servant

var n:= 5, t:= 5

create the Servant and Philosophers

var s: cap Servant

s := create Servant(n)

fa i := 1 to n ->

create Philosopher(s, i, t)

af

end

Figure 1: Dining Philosophers written in SR

7

resource rw()

op start_read()

op end_read()

op start_write()

op end_write()

process RW_allocator

var nr := 0

do true ->

all input statements take advantage of FCFS servicing of invocations.

in start_read() ->

reply

nr++

do nr > 0 ->

in start_read() -> nr++

[] start_write() ->

don’t let it proceed until all

reads have finished

do nr > 0 ->

in end_read() -> nr-- ni

od

nr=0, so let the write proceed; then

wait for it to finish.

reply

receive end_write()

at this point nr=0 so outer do nr>0 loop

will terminate too.

[] end_read() -> nr--

ni

od

[] start_write() ->

reply

receive end_write()

ni

od

end

process one

fa i := 1 to 5 ->

start_read()

read

write("process one is reading")

end_read()

af

end

process two

start_read()

read

write("process two is reading")

end_read()

fa i := 1 to 3 ->

start_write()

write

write("process two is writing")

end_write()

af

end

end

Figure 2: Reader/Writers with fairness written in SR

8

do true ->

think

...

get forks

(use semaphore operations

on shared sem array fork;

left and right are indices

of neighboring philosophers)

P(fork[left])

P(fork[right])

eat

...

release forks

V(fork[left]);V(fork[right])

od

do true ->

think

...

get forks

(basically test and set

on shared integer array fork;

left and right are indices

of neighboring philosophers)

do fork[left] = 0 ->

nap(0) # i.e., yield

od

fork[left] := 0

do fork[right] = 0 ->

nap(0) # i.e., yield

od

fork[right] := 0

eat

...

release forks

fork[left] := 1; fork[right] := 1

od

(a) CP-style (b) CM-style

Figure 3: Code for a philosopher in Dining Philosophers

solution. That is, compared with the version presented in Figure 1, this version has no

centralized servant that manages the forks; instead, the philosophers themselves manage

the forks. In the CP code, philosophers acquire forks through semaphores. In the CM code,

philosophers acquire forks using shared variables. Most philosophers grab their left forks

first and their right forks second. To prevent deadlock due to a circular wait condition in

either the CM or CP code, the code introduces an asymmetric philosopher (not shown).

This philosopher grabs its right fork first and its left fork second.

2.2 Dynamic C Overview

Dynamic C [2] extends the C language with various features to support programming in

the CM model. Its costate statement defines a block of statements, which executes as a

separate thread with its own hidden instruction counter. A thread executes until it chooses

to yield the processor or to wait for some event to become true. Yielding the processor is

accomplished via explicit statements: yield and waitfor. yield context switches to another

ready thread, if any, or resumes the current thread if no other thread is ready. waitfor

9

evaluates the condition. If true, the thread continues; otherwise, the thread yields and will,

therefore, reevaluate the condition when it runs again. A thread can also abort, which also

yields the processor; execution will begin at the beginning of the costate’s block the next

time the costatement is executed.

Each costate statement may specify a CoData structure, which can be used to control

the thread’s execution. This structure has two relevant flags: STOPPED and INIT. The

STOPPED flag is set when the thread is currently not scheduled to execute. The INIT

flag is set when the thread is going to start execution at the first statement defined within

the costate block. By default, a costate statement has both the INIT and STOPPED

flags set. This initial state can be altered, however, by using the init on flag immediately

after the costate’s name. This flag sets INIT but clears STOPPED, causing the thread

to execute when first reached by the program. Four functions can alter the INIT and

STOPPED values: CoBegin, CoReset, CoPause, and CoResume.

• void CoBegin(CoData * cd)

Clears the STOPPED flag and sets the INIT flag.

• void CoReset(CoData * cd)

Sets both the STOPPED and INIT flags.

• void CoPause(CoData * cd)

Sets the STOPPED flag and clears the INIT flag.

• void CoResume(CoData * cd)

Clears both the STOPPED and INIT flag.

cofunc functions are useful when multiple costate statements wish to execute the

same code. These are the only kind of functions that can use yield or waitfor statements.

However, to allow multiple calls to a cofunc function, multiple instances of the function

10

#define T 1000

#define N 5

int lfork[N];

cofunc void philosopher[N](int right, int left){

int i;

for(i = 1; i <= T; i++){

// grab forks

while(fork[left] == 0){ yield; }

fork[left] = 0;

while(fork[right] == 0){ yield; }

fork[right] = 0;

// eat

// release forks

fork[left] = 1;

fork[right] = 1;

//think

}

}

main(){

int i;

CoData philosopher0, philosopher1,

philosopher2, philosopher3,

philosopher4;

// start the philosophers

CoBegin(philosopher0);

CoBegin(philosopher1);

CoBegin(philosopher2);

CoBegin(philosopher3);

CoBegin(philosopher4);

// initialize forks

for(i = 0; i < N; i++){

fork[i] = 1

}

// execute all of the threads

for(;;){

costate philosopher0{

wfd philosopher[0](0, 1);

}

costate philosopher1{

wfd philosopher[1](1, 2);

}

costate philosopher2{

wfd philosopher[2](2, 3);

}

costate philosopher3{

wfd philosopher[3](3, 4);

}

// the asymmetric philosopher

costate philosopher4{

wfd philosopher[4](5, 4);

}

}

}

Figure 4: Dining Philosophers in Dynamic C

11

must be declared. When the function is called, the caller must designate which instance

it is using. Calling an instance of a cofunc function that is already in use will cause the

earlier call to be terminated. Instances of cofunc function must be called within an wfd

(wait for done) statement. The wfd statement may specify multiple cofunc functions. This

statement yields if any of the cofunc functions do not complete execution as a result of

explicit yields. When the thread runs again, the cofunc functions resumes execution of all

uncompleted cofunc functions.

Figure 4 gives the Dynamic C equivalent of the solution to the Dining Philosophers

problem given in Figure 3(b). This solution uses many of the Dynamic C features mentioned

in this section.

2.3 Rabbit Processor

The specific embedded system controllers used for this research are Z World’s Rabbit 2000

TCP/IP development boards. The Rabbit 2000 is an 8-bit processor with an 18 MHz clock

speed. Each Rabbit provides 256K of Flash EPROM for program and data, 256K for file

storage, and 128K of SRAM.

The Rabbit’s memory structure has a major impact on the benchmark results in Sec-

tion 4. Although the Rabbit’s memory is limited in size, it is sufficient for most embedded

applications. However, it may not be sufficient for applications that have larger data space

requirements. DesCaRTeS itself uses various internal tables (see Section 3); applications

using DesCaRTeS might also require more space. The Rabbit allows access to additional

data space, which is called xmem (for extended memory) to distinguish it from rootmem

(for root memory). However, access to xmem is indirect and is more costly. For example,

consider how to set to zero the x field of the S structure pointed at by p. If p points to root

memory, then the Dynamic C code is the usual

p->x = 0;

However, if p points to xmem, then the code is

12

xmem2root(s, p, sizeof(S)); // copy from xmem to rootmem

s.x = 0;

root2xmem(p, s, sizeof(S)); // copy from rootmem to xmem

(where s is an S structure in root memory). This copying from xmem to rootmem and back

again is much more expensive than updating directly within rootmem. Each “copy” above

requires two procedure calls to map the 16-bit logical rootmem pointer into a 20-bit physical

address and then at least 70 assembly instructions to save registers, setup and perform the

copy, and then restore the registers.

3 Dynamic C Run-time System (DesCaRTeS)

We developed a run-time system (RTS) in Dynamic C to provide many of the features of the

SR language (see Section 2.1). These features include operations, capabilities, semaphores,

interprocess communication, and process creation. This RTS, called DesCaRTeS, mimics

the run-time system of SR [3], but with some changes due to different functionality and

different target environment. DesCaRTeS defines new datatypes, constants, and functions.

These various components will be seen in the discussion and examples in the rest of this

section. Their specific purposes should be reasonably clear by their names. Appendix A

presents the details of these DesCaRTeS library components.

3.1 DesCaRTeS Overview

DesCaRTeS provides programs written in Dynamic C with SR-like features by using data

structures and algorithms that provide semantics similar to those of SR. This section pro-

vides an overview of DesCaRTeS. It also provides a general template for developing programs

and sample code to illustrate the library’s usage.

DesCaRTeS uses the TCP/IP library available with the Dynamic C distribution to pro-

vide interprocess communication across a network. This library allows a programmer to

open and close connections, read and write from sockets, and use the many other features

typically found in a TCP/IP library. DesCaRTeS also uses this library to establish con-

13

nections with other processors. This is similar to SR’s virtual machine creation. Each

connection established is stored in a table. Processes communicating with another machine

use an index into that table to signify message destinations.

DesCaRTeS provides a simplified form of SR-like operations through which processes

communicate. These operations are stored within a table internal to DesCaRTeS. Each

entry in the table has an invocation queue and a blocking queue. Whenever a process sends

an invocation of an operation, that invocation is placed in the invocation queue of that

operation. When a process receives from an operation, one of two things can occur. If an

invocation for the operation exists, the process takes the invocation and proceeds. If no

such invocation is present, the process places itself on the blocking queue for the operation

and blocks; once an invocation becomes available, the process is then restarted.

Operations often have parameter lists. DesCaRTeS, being a run-time system (i.e., not a

translator), has no idea of the number of parameters or their types. Thus, the correctness

of building and parsing the messages that are passed to operations is the responsibility of

the programmer, with help from functions in the DesCaRTeS library. (See Sections 3.1.2

and 3.2 for details.)

3.1.1 DesCaRTeS Template

Programs intending to use DesCaRTeS must follow a specific format to ensure correct

functionality of the library. Figure 5 provides a basic template for writing programs using

DesCaRTeS. The code uses various DesCaRTeS constants, datatypes, and functions. Lines

1 through 25 illustrate header code that should be included. This includes any redefinitions

of macros used by DesCaRTeS. All global constants, forward process declarations, and

global variables should be declared here. Lines 27 through 51 illustrate how an SR resource

should be written using Dynamic C and DesCaRTeS. Lines 52 through 84 show how the

main program should be written. The for loop insidemain contains multiple costatements,

which represent all of the potential resource instances and processes, including the RTS.

14

The RTS costatement should always use the init on flag (see Section 2.2). This starts the

RTS as soon as the program is started. The only other process that should use this flag

is the main resource. Much of this template is optional, depending on the structure of the

program, but certain parts are required. Generally, those parts that are required appear as

code in the template. Parts not required appear as comments.

3.1.2 Process Communication

Communication between processes is achieved in the same fashion as in SR. Processes can

declare operations and send invocations to and receive invocations from those operations.

Capabilities to operations (see Section 2.1) can be passed to other processes as well.

To illustrate, consider the SR code in Figure 6. Execution begins in resource A. The

code creates an instance of resource B and then invokes operation b within that resource

instance. It then receives an invocation on operation a.

Figure 7 shows code written using DesCaRTeS that is functionally equivalent to the SR

code in Figure 6. Process A declares an operation a and sends the capability to a newly

created process B. Capabilities to operations of a newly created process are sent back to

the creator after the operations have been declared. These capabilities are then explicitly

parsed. Thus, process B returns the capability to its operation b back to process A. Now

both processes A and B can use both operations a and b. Process A creates invocations

using RTSSend and services invocations using RTSReceive. Process B creates invoca-

tions using RTSCall and services invocations using DesCaRTeS’s functions that simulate

input statements.

The DesCaRTeS library performs run-time type checking to ensure that the parameters

in a message match the type of those in the operation named in the receive. For example,

the code for process B in Figure 7 uses RTSParseInt to parse an integer. The RTSParseInt

procedure checks that the type of field in the message is actually an integer. (See Section 3.2

for details.)

15

1 #memmap xmem

2

3 // Change these from the TCP/IP library

4 // defaults.

4 #define MY_IP_ADDRESS "10.1.1.1"

5 #define MY_NETMASK "255.255.255.248"

6

7 // Change this if this machine will be

8 // communicating with more than 4 other

9 // machines. The default is 4.

10 #define MAX_SOCKETS 4

11

12 // declare global constants

13

14 // import the rts library

15 #use "rts.lib"

16

17 // Forward declarations of CoData structures.

18 // These represent all possible resource

19 // instances as well as any additional

20 // processes which may be created.

21 CoData process1;

22 ...

23 CoData processn;

24

25 // declaration of global variables

26

27 // resource instances

28 cofunc void proc_cofunc[n](CoData * p){

29 // Special variables needed for RTS

30 // should be declared, ie: buffers

31

32 // declare local operations, variables

33 // and semaphores

34

35 // This should/must be called after all

36 // variable declarations

37 RTSSTART_PROCESS(p);

38

39 // Grab and Parse any creation

40 // parameters

41

42 // Call RTSOpDelare and RTSSemInit on

43 // all ops and sems

44

45 // Initialize local variables

46

47 // process code

48

49 // Finish process

50 RTSEND_PROCESS;

51 }

52 main(){

53 // Special variables needed for RTS

54 // should be declared, ie: buffers

55

56 // Initialize the RTS

57 RTSInit()

58

59 // Register resource instances in the RTS

60 RTSRegCoData(&process1, "process")

61 ...

62 RTSRegCoData(&processn, "process")

63

64 // Global initialization code

65

66 // This loop contains costates for all

67 // potential resource instances and

68 // processes, including the RTS. A

69 // process other than RTSprocess should

70 // be init_on only if this is the

71 // main machine.

72 for(;;){

73 costate RTSprocess init_on{

74 wfd RTS();

75 }

76 costate process1{

77 wfd proc_cofunc[1](&process1);

78 }

79 ...

80 costate processn{

81 wfd proc_cofunc[n](&processn);

82 }

83 }

84 }

Figure 5: Template for using DesCaRTeS

16

resource A()

import B

op a(int) {call}

var resB : cap B

var i : int

create a resource instance of B

resB := create B(a)

create an invocation of B.b

send resB.b();

service an invocation of a

receive a(i);

end

resource B

op b()

body B(a : cap(int) {call})

reply # resource creation completes early due to this reply.

i.e., creator continues and initial process in this

instance continues into the loop below.

var i := 0

do true ->

in a(j) st i = 0 ->

service an invocation of a

write(j)

[] b() ->

service an invocation of b

call a(2)

ni

od

end

Figure 6: Sample SR code with resource creation and operation invocations

17

cofunc void A(CoData * p){

ParamBuffer params;

ParamBuffer rtn;

// A’s operation

OP a;

// capability to B’s operation

CAP b;

int i;

RTSSTART_PROCESS(p);

RTSOpDeclare(a, INTEGER, CALL);

// build the parameter list to B

RTSStartParams(params);

RTSAddCap(¶ms, a);

// create process_B

RTSCreate("process_B", ¶ms, &rtn, -1);

// parse return parameters, a capability to B’s operation

RTSParseCap(&rtn, &b);

// create an invocation of b

RTSSend(b, NULL);

// receive an invocation of a

RTSReceive(a, ¶ms);

RTSParseInt(¶ms, &i);

RTSEND_PROCESS();

}

cofunc void B(CoData * p){

ParamBuffer params;

ParamBuffer rtn;

CAP caparray[2];

// B’s operation

OP b;

// capability to B’s operation

CAP a;

int i;

int j;

// declare operations and send them back to A

RTSSTART_PROCESS(p);

RTSOpDeclare(b, NULL, SENDCALL);

// grab and parse the creation parameters

RTSGetParams(¶ms);

RTSParseCap(¶ms, &a);

RTSReply(NULL);

i = 0;

caparray[0] = a;

caparray[1] = b;

while(TRUE){

RTSInBegin(caparray, 2);

RTSInArmBegin(a, i == 0, ¶ms, caparray, 2);

// service an invocation of a, provided i == 0

RTSParseInt(¶ms, &j);

printf("%d", j);

RTSInArmEnd(a, NULL);

RTSInArmBegin(b, TRUE, NULL, caparray, 2);

// service an invocation of b

RTSStartParams(params);

RTSAddInt(¶ms, 2);

RTSCall(a, ¶ms, NULL);

RTSInArmEnd(b, NULL);

RTSInEnd(caparray, 2);

}

RTSEND_PROCESS();

}

Figure 7: Dynamic C code functionally equivalent to the SR code in Figure 6

18

3.1.3 Procedure Calls

Generally, simulating procedure calls using operations is not difficult. Standard procedure

calls without any implicit or explicit yields can be written as Dynamic C functions. Pro-

cedure calls with yields, however, require a different approach. Typically the solution is

to just write the procedure code in-line. Remote procedure calls, however, require more

work. Figure 8 illustrates how a remote procedure call, with the limitations described later

in Section 5.1, can be simulated. Here, a procedure is represented by a process, explicitly

created by its parent process, that contains an infinite loop that services two operations.

The first operation is the one that handles the remote procedure call. The second opera-

tion is invoked when the process that created the procedure is terminating. This second

operation signals the remote procedure handling process to terminate as well. Of course,

the programmer must supply the explicit call to this terminating operation. With these

key elements in place, a program using DesCaRTeS can support remote procedure calls like

those in SR.

3.2 DesCaRTeS Memory Placement and Message Formats

The previous discussion described the general design and some of the details of DesCaRTeS.

Two other aspects of DesCaRTeS can have a major impact on performance and are impor-

tant in understanding the benchmark results in Section 4. They are: whether a data object

is stored in xmem or rootmem and whether messages are encoded in ASCII format or bi-

nary format. DesCaRTeS has implementations for each of these possible combinations.

The specific implementation of DesCaRTeS are referred to as RTSf,m, where f indicates

the message format (a for ASCII or b for binary) and m indicates the kind of memory (x

for xmem or r for rootmem). For example, RTSa,r is the version of DesCaRTeS that uses

ASCII message format and rootmem.

Section 2.3 discussed xmem and rootmem. As noted in Section 3.1, DesCaRTeS requires

various internal data structures for representing processes and operation invocations. These

19

// this cofunction is the resource instance which creates the procedure

cofunc void parent_cofunc(CoData * p){

ParamBuffer rtn;

...

// remote procedure calls can be made using the proc capability

CAP proc;

CAP procdie;

...

RTSSTART_PROCESS(p);

...

// create the process to handle remote procedure calls to proc

RTSCreate("proc_handler", NULL, &rtn, -1);

RTSParseCap(&rtn, &proc);

RTSParseCap(&rtn, &procdie);

...

// explicitly kill the process handling the remote procedure calls

RTSCall(procdie, NULL, NULL);

RTSEND_PROCESS();

}

// this cofunction handles procedure calls to proc

cofunc void proc_handler(CoData * p){

ParamBuffer params;

ParamBuffer rtn;

CAP caparray[2];

int loopstop;

OP proc;

OP procdie;

RTSSTART_PROCESS(p);

// declare operations and send them back to the parent

// 2 NULLs below should be replaced to reflect actual parameters to procedures

RTSOpDeclare(proc, NULL, SENDCALL);

RTSOpDeclare(procdie, NULL, CALL);

caparray[0] = proc;

caparray[1] = procdie;

loopstop = FALSE;

while(!loopstop){

RTSInBegin(caparray, 2);

RTSInArmBegin(proc, TRUE, ¶ms, caparray, 2);

// procedure code

// the rtn below is any parameters

// the procedure may return

RTSInArmEnd(proc, &rtn);

RTSInArmBegin(procdie, TRUE, NULL, caparray, 2);

// kill this process

loopstop = TRUE;

RTSInArmEnd(procdie, NULL);

RTSInEnd(caparray, 2);

}

RTSEND_PROCESS();

}

Figure 8: Template for remote procedure calls using DesCaRTeS

20

data structures can be stored in either xmem or rootmem. If stored in rootmem, the user

must specify through #define directives the maximum number of each kind of structure

required for the program. If stored in xmem, DesCaRTeS provides dynamic memory allo-

cation and deallocation (within xmem; see Appendix A.3) for its internal data structures.

(But, see Section 5.1 for further discussion.) When a message is received by DesCaRTeS, it

is placed into rootmem. For the xmem versions of DesCaRTeS, the message is copied to the

invocation list for the operation, which resides in xmem. Later, when a user process selects

the message for servicing, the message is copied back from xmem to rootmem.

The Dynamic C TCP/IP library supports messages sent between systems in ASCII

format or binary format. In general, binary format is more space efficient (shorter messages)

and time efficient (less and faster code to marshal and unmarshal parameters), but ASCII

format is helpful for program development and debugging (e.g., ASCII messages can be

observed using a sniffer on the network of Rabbits).

The messages DesCaRTeS sends encode parameter values and their types. The latter

is needed so that, on receipt of a message, DesCaRTeS can check that the parameters in

the message match the type of those in the operation named in the receive (as described

in Section 3.1.2). In ASCII format, the integer 273, for example, appears as the string

_INT(273). In binary format, the above parameter is represented as a byte specifying an

integer type (the “type-byte”) followed by the actual binary representation of 273. The

code that handles ASCII messages is considerably less efficient than the code that handles

binary messages for two reasons. First, the code that handles ASCII messages uses a series

of strcmp tests to determine the type of the message, whereas the code that handles binary

messages uses a switch statement on the “type-byte”. Second, the code that handles ASCII

messages converts each integer into a string, sends the string as part of the message, and

then converts the string back into an integer. The cost of this conversion, therefore, depends

on the value of the integer. The code that handles binary messages just sends the integer as

part of the message with no conversion on either side. Hence, the cost of sending an integer

21

parameter depends on the value of the integer, but such cost is fixed in the binary versions.

4 Performance Comparisons

We developed several applications that used DesCaRTeS and compared them with native

Dynamic C programs.1 These applications can be viewed as micro-benchmarks and macro-

benchmarks. The micro-benchmark is intended to measure the basic overhead in using

DesCaRTeS compared to native Dynamic C. The macro-benchmark is designed to measure

the overhead of using DesCaRTeS within a more realistic program. We have also used

DesCaRTeS in experiments with load balancing algorithms for variants of Readers/Writers

and Dining Philosophers [4].

We ran our performance experiments on a network of Rabbits (see Section 2.3). The

applications used two or three Rabbits on a 10 Mb ethernet network. The network uses a

hub (not a switch), so collisions can occur on applications that use more than two Rabbits.

4.1 Micro-benchmarks

The first application (micro-benchmark) is a “ping pong” program, which runs on two

machines. A process on one machine sends a message to the second machine and waits for

a response; a process on the second machine waits for a message from the first machine

and then sends a response. The essence of the program, in SR-like pseudo-code, is given

in Figure 9. In this program, f and g are operations that take parameters. The actual

parameter lists are represented by P and R; these parameters are received into variable lists

represented by Q and S. Appendix B gives the actual code for the ping pong program written

in Dynamic C and in DesCaRTeS.

Table 1 shows the execution time per pair of invocations for the ping pong programs,

1For brevity, we refer to the former as “DesCaRTeS programs” and the latter as “Dynamic C” programs.

These terms are less precise (but we hope are not confusing) because DesCaRTeS is really a run-time system

for use with Dynamic C programs, not a language, and that both kinds of programs are Dynamic C programs.

22

process A (on machine 1) # process B (on machine 2)

fa k := 1 to N -> fa k := 1 to N ->

send f(P) receive f(Q)

receive g(S) send g(R)

af af

Figure 9: SR-like ping pong program

Parameters DyCa DyCb RTSa,x RTSa,r RTSb,x RTSb,r

0 9.38 6.67 28.68 17.91 22.54 12.11
1 11.28 6.79 32.82 22.03 23.09 12.66
2 12.85 6.93 36.81 25.88 23.46 13.02
5 17.97 7.35 48.47 37.78 24.61 14.34

10 26.86 8.06 68.65 58.03 26.71 16.33
15 36.01 8.76 89.55 78.53 28.79 18.35
20 45.45 9.47 110.70 100.00 30.71 20.39
25 55.45 10.17 133.33 121.95 32.72 22.34
30 65.50 10.87 156.25 144.23 34.80 24.33

Table 1: Round-trip invocation times (msecs) for the ping-pong programs

i.e., the time it takes for one iteration of the loop in Figure 9. Figure 10 show these

data graphically. Data are presented for the four DesCaRTeS implementations described

in Section 3.2 and two versions of the Dynamic C program, one using ASCII messages and

the other using binary messages, respectively denoted DyCa and DyCb (both of which used

only rootmem). The data do not include the program start-up costs. The data represent

averages of multiple executions. The variances were insignificant. The table shows data

for different numbers of integer parameters in the operation, i.e., that get sent in messages.

Each execution used randomly selected values for the parameter values in the message. (The

parameter value affects message length for the ASCII versions as described in Section 3.2.)

As can be seen from the data in Table 1 and the graphs in Figure 10 (and as one

might expect), DyCb performs the best and RTSa,x performs the worst. The major factors

contributing to the differences in performance are:

• ASCII versus binary message format (see Section 3.2).

• message copying. As described in Section 3.2 the xmem versions of DesCaRTeS copy

23

0 10 20 30
number of parameters

50

100

150

E
xe

cu
ti

on
 t

im
e

(m
se

cs
)

pe
r

ro
un

d-
tr

ip
 in

vo
ca

ti
on

DyCa
DyCb
RTSa,x
RTSa,r
RTSb,x
RTSb,r

Figure 10: Round-trip invocation times (msecs) for the ping-pong programs

messages from rootmem to xmem and back again.

• extra layers of procedure calls due to the structure of the DesCaRTeS library. Each

call to a DesCaRTeS library procedure may involve several other procedure calls.

For example, a message receive in the DesCaRTeS program takes six procedure calls

(plus additional procedure calls for allocating and deallocating memory in the xmem

versions of DesCaRTeS), whereas it takes just one in the Dynamic C program.

• operation lookup in DesCaRTeS internal tables. Each send or receive of a message

requires DesCaRTeS to lookup the specified operation in its operation table to locate

the machine on which the operation is located. The Dynamic C program does no such

lookup; it just sends the message directly on the socket.

24

Parameters RTSa,x/DyCa RTSa,r/DyCa RTSb,x/DyCb RTSb,r/DyCb

0 3.06 1.91 3.38 1.82
1 2.91 1.95 3.40 1.86
2 2.86 2.01 3.39 1.88
5 2.70 2.10 3.35 1.95

10 2.56 2.16 3.31 2.03
15 2.49 2.18 3.29 2.09
20 2.44 2.20 3.24 2.15
25 2.40 2.20 3.22 2.20
30 2.39 2.20 3.20 2.24

Table 2: Ratios of execution times for the ping-pong programs (from Table 1)

• run-time type checking. As noted in Sections 3.1.2 and 3.2, DesCaRTeS programs

check that the types of parameters in a message match the types of those in the

operation named in the receive. The Dynamic C program does no such type checking.

To make clearer the relative performance of the programs, Table 2 shows the ratios of

execution times, specifically,

Time(DesCaRTeS)/T ime(Dynamic C)

The ratios shown compare DesCaRTeS and Dynamic C programs that use the same message

format (ASCII or binary). As shown by the ratios in Table 2, DesCaRTeS programs incur a

significant overhead compared to their Dynamic C counterparts, for the reasons enumerated

above. Notice that in Table 2 as the number of parameters increases the ratios in the third

and fifth columns increase but the ratios in the second and fourth columns decrease. As seen

in Figure 10, the overall execution times are roughly linear in the number of parameters,

N .2 In the limit as N increases, each ratio approaches the ratio of the slopes of the lines.

As N increases, whether a specific ratio increases, decreases, or is constant is determined

by the specific values of the lines’ slopes and y-intercepts. Intuitively, these differing trends

2They are not exactly linear due to factors such as memory allocation and splitting up messages into

multiple TCP packets. Also, when a message contains any parameters, some parameter handling setup code

is executed, but it is skipped over when a message has no parameters.

25

in the ratios reflect where the programs spend most of their execution time. The overall

execution time can be viewed as the sum of the times for message copying and for handling

the parameters (i.e., marshaling, unmarshaling, and type checking). For example, when N is

small, the DesCaRTeS programs that use xmem spend more time relatively in copying than

in handling (and they are being compared with the DyC programs, which use rootmem).

But, as N increases, the time they spend in handling increases, so the ratios in the second

and fourth columns decrease.

4.2 Macro-benchmarks

We used DesCaRTeS to implement a version of the Readers/Writers problem. This version

extends the classic problem, presented in Section 2, to allow readers and writers to period-

ically enter and leave the system. A new process enters the system as a reader or a writer

and performs a certain number of iterations of local work and accessing the database. Once

the process has completed all of its iterations, it then terminates. We refer to this version

of Readers/Writers as Dynamic Readers/Writers (DRW), in the spirit of the Dynamic Din-

ing Philosophers [7]. The DRW application splits its readers and writers into two regions,

one on each Rabbit. It uses a centralized database manager controller process (i.e., the

RW allocator process from Figure 2), located on a third Rabbit. Figure 11 illustrates

DRW for two regions.

We ran two sets of experiments with the DRW programs. The experiments used the pa-

rameters defined in Table 3. Figure 12 illustrates the use of LOCAL WORK, DB WORK,

and WORK in SR-like pseudo-code. Table 4 shows the specific parameter values used for

each DRW experiment. As noted in Table 3, some parameter values are chosen randomly.

Also, whether a given worker is a reader or a writer is determined randomly. This random-

ness can lead to varying patterns of interaction among the reader processes and the writer

processes. In the experiments, it led to high variances for specific tests and is a key factor

in the overall results, as noted below. The data presented for the experiments represent

26

W

W

R W

R

W

R

 Region Boundaries

Region 1 Region 2

New Writer

Dead Reader

R

Database

Figure 11: The Dynamic Readers/Writers Model

averages of ten executions of each specific test.

Tables 5 and 6 show the execution times of the programs for the two experiments.3

Figures 13 and 14 show these data graphically. Tables 7 and 8 show the ratios of the

executions times for the two experiments.

The performances across the various DesCaRTeS versions are close. The messages be-

tween processes in these programs contain no parameters, except in those messages used to

start up workers (which amount to a relatively small portion of the total messages). Hence,

the performance differences between the ASCII and binary versions are small here, unlike

the performance differences seen for the ping pong programs (Section 4.1). The performance

of the DesCaRTeS programs that use xmem and those that use rootmem are generally quite

close, but there are a few notable differences. At one extreme (Experiment 2, Work = 50,

RTSa,r vs. RTSa,x), the rootmem program executes about 19% faster than the xmem pro-

3Unlike for the ping pong benchmark in Section 4.1, where we presented data for ASCII and binary

versions of Dynamic C, in this section, we present data for only a binary version of Dynamic C. It uses a

single byte in its messages to indicate message type, e.g., start reading, end reading, etc. An ASCII version

would also use just a single byte, so there would be no real difference in these implementations. (However,

their performances could differ slightly as the ASCII and binary versions of DesCaRTeS do, as explained

later in this section.)

27

Parameter Description

N Limit on the number of workers (threads) allowed in a region
at any point of time.

TEST NUM Number of threads created during a test. Test completes
when all of these threads terminate.

ITER Upper bound on the number of iterations a thread executes
during its lifetime. Actual value is randomly selected between
1 and this value.

LOCAL WORK Number of iterations for the loop before accessing the DB.

DB WORK Number of iterations for the loop while accessing the DB. in
the critical section of a thread’s code executes.

WORK Number of iterations of inner loop. This parameter is varied
within each experiment — see data tables.

CREATE TIME The upper bound on the number of milliseconds between
thread creations. Actual time is randomly selected between
1 and this value.

Table 3: Parameter definitions for DRW experiments

Parameter Experiment 1 Experiment 2

N 5 5
TEST NUM 20 20
ITER 10 100
LOCAL WORK 100 10
DB WORK 100 10
CREATE TIME 10000 20000

Table 4: Parameters for DRW experiments

iter is a randomly generated integer between 1 and ITER

do iter > 0 ->

before accessing DB

fa i := 1 to LOCAL_WORK ->

fa j := 1 to WORK ->

nap(0) # i.e., yield

af

af

gain access to DB

start_read()

simulate work during access to DB

fa i := 1 to DB_WORK ->

fa j := 1 to WORK ->

nap(0) # i.e., yield

af

af

release access to DB

end_read()

iter--;

od

Figure 12: Code fragment in SR illustrating test parameters for a reader process in DRW

28

Work DyC RTSa,x RTSa,r RTSb,x RTSb,r

1 98.90 102.10 106.60 108.80 98.00
10 107.30 110.90 114.90 106.90 114.70
50 205.50 252.20 264.80 261.20 246.40

100 481.40 491.10 473.60 497.70 501.90

Table 5: Execution times (secs) for the DRW programs (Experiment 1)

Work DyC RTSa,x RTSa,r RTSb,x RTSb,r

1 191.00 194.10 186.40 195.70 180.20
10 193.40 197.80 196.50 203.20 211.70
50 257.80 339.10 285.40 313.00 310.00

100 448.60 572.30 537.10 523.80 553.50

Table 6: Execution times (secs) for the DRW programs (Experiment 2)

Work RTSa,x/DyC RTSa,r/DyC RTSb,x/DyC RTSb,r/DyC

1 1.03 1.08 1.10 0.99
10 1.03 1.07 1.00 1.07
50 1.23 1.29 1.27 1.20

100 1.02 0.98 1.03 1.04

Table 7: Ratios of execution times for the DRW programs (Experiment 1) (from Table 5)

Work RTSa,x/DyC RTSa,r/DyC RTSb,x/DyC RTSb,r/DyC

1 1.02 0.98 1.02 0.94
10 1.02 1.02 1.05 1.09
50 1.32 1.11 1.21 1.20

100 1.28 1.20 1.17 1.23

Table 8: Ratios of execution times for the DRW programs (Experiment 2) (from Table 6)

29

20 40 60 80 100
Work

100

200

300

400

500

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

DyC
RTSa,x
RTSa,r
RTSb,x
RTSb,r

Figure 13: Execution times (secs) for the DRW programs (Experiment 1)

gram. At the other extreme (Experiment 2, Work = 100, RTSb,x vs. RTSb,r), the xmem

program executes about 5% faster than the rootmem program. These few differences are

attributed to the randomness mentioned above.

The Dynamic C programs generally perform better than their DesCaRTeS counterparts,

although the performance results are mixed. The ratios indicate a range of 94% to 132%.

The DesCaRTeS programs run slightly faster in a few cases, about the same or slightly worse

in most cases, and notably worse in several cases. These differences are again attributed to

the randomness mentioned above. However, one factor contributing to the general closeness

of results is that the particular choice of parameters (e.g., CREATE TIME and ITER) was

observed to lead to some periods of idleness, i.e., when no workers were alive. Thus, what

would be an otherwise longer running program has a chance to “catch up” unlike in the

30

20 40 60 80 100
Work

200

300

400

500

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

DyC
RTSa,x
RTSa,r
RTSb,x
RTSb,r

Figure 14: Execution times (secs) for the DRW programs (Experiment 2)

ping pong programs (Section 4.1).

5 Discussion

This section first discusses limitations of DesCaRTeS. It then presents general experience

and insight gained in developing CM-style programs and in using Dynamic C to implement

DesCaRTeS, and briefly discusses related work.

5.1 DesCaRTeS Limitations

DesCaRTeS has some limitations compared to its SR counterpart. Many of the difficulties in

implementing DesCaRTeS arose because the library does not have the benefit of gathering

information at compile-time. This prevented DesCaRTeS from supporting certain features.

31

Some of the limitations are the result of our limited resources for developing the implemen-

tation and our focusing on a prototype with which we could develop the applications in

Section 4. The key limitations are:

• DesCaRTeS does not support parameter dependent such-that clauses for input state-

ments (see Section 2.1, especially the example in Figure 1). Unlike SR’s st clause,

this expression cannot be dependent on the values received by an invocation of the

operation being serviced (which is very useful).

• DesCaRTeS does not support truly dynamic process creation. As seen in Figure 5,

each process is represented by a separate costate statement in Dynamic C. Because

these statements are specified statically, the number of processes is bounded. (This

bound should match the number of internal DesCaRTeS process data structures in the

rootmem version mentioned in Section 3.2.) Remote procedure calls also suffer from

this limitation. In SR, a capability may refer to an operation serviced by either an

input statement (or receive statement) or a remote procedure call. DesCaRTeS sup-

ports both servicing mechanisms, but restricts remote procedure calls. The inability

of Dynamic C to create processes dynamically disallows an unknown number of si-

multaneous calls to a procedure to be made. Thus, operations serviced by procedures

must not contain any explicit or implicit yields. Doing so could eventually leave the

system in deadlock.

• DesCaRTeS allows only one virtual machine per physical machine. As in SR, a virtual

machine in DesCaRTeS can be destroyed. After the VM on a Rabbit is destroyed, a

new VM can be created on that Rabbit.

5.2 General Observations

Developing programs using Dynamic C, a CM-style language, has some advantages and

some disadvantages when compared to CP-style languages. Although CM sometimes needs

32

less overhead than CP to ensure mutual exclusion [8], a programmer must be careful to

guarantee correct program execution under CM.

When developing large programs or libraries with multiple threads under CP, program-

mers often must use some method to guarantee exclusive access to variables stored in shared

memory, e.g., semaphores, locks, or monitors. Programs written under CM, however, do not

need such protection. Code segments that require exclusive access simply execute, without

context switches, until they leave a critical section. As a result, libraries like DesCaRTeS

(Section 3) do not require additional code to provide exclusive access to shared memory.

For example, the invocation queues, blocking queues, operation table, and global variables

within DesCaRTeS can all be accessed without protection. All operations on these resources,

however, do not yield until after completion of critical sections and are essentially atomic

in nature. This advantage helped to simplify the development of the library.

Programming under CM, however, does have its disadvantages. It may be difficult, for

example, to know exactly when and where to include a yield. Failure to place yields in

certain areas may result in starvation. More specifically, a process may enter a particular

state and loop indefinitely while waiting for a certain condition, set by another thread, to

become true. If a yield is not present inside the loop, then no other process will execute

and the program will fail to make progress. Yields may also be poorly placed, causing

the program to enter a faulty state. Introducing a yield inside a critical section that relies

on CM for mutual exclusion instead of condition testing would eliminate any guarantee of

mutual exclusion. Thus, a programmer using CM has the responsibility of placing yields in

appropriate locations that prevent starvation or deadlock, but guarantee mutual exclusion

for critical sections. Developing libraries such as DesCaRTeS requires a programmer to

exercise this responsibility.

The distinction on the Rabbit processor between whether a data object is stored in

xmem or rootmem raises performance and ease-of-use issues. Programs that use xmem

incur considerable overhead to their counterparts that use only rootmem, as illustrated by

33

the performances of the DesCaRTeS implementations in Section 4. Programs that are able

to fit all their data objects into rootmem are desirable. However, if such a program’s data

space requirements grow to exceed rootmem, then the program needs substantial rewriting to

take advantage of xmem, e.g., to access structures indirectly as in the example in Section 2.3.

Other CP-style languages have been developed and used for embedded systems. For

example, Ada has been used for programming applications such as data communication

switches [9]. The MaRTE OS is a real-time kernel for embedded systems with interfaces for

Ada [10]. As another example, Java has been used for such purposes too [11]. However,

it is difficult to compare our results with those for other systems or languages because of

the significant differences in the hardware and software platforms used. For example, the

Rabbit is an 8-bit processor with its particular memory organization and DesCaRTeS was

built on top of a CM-style programming language, Dynamic C.

6 Conclusion

This work successfully implemented a run-time system, DesCaRTeS, for use with distributed

programs on an embedded system. This run-time system was also created using a CM-

style design. While this style of programming introduces some complexity in program

design, DesCaRTeS demonstrates that CM-style programs can be successfully developed

while maintaining the desired functionality. Moreover, the development of DesCaRTeS

for use in an embedded system reflects that a high-level communication scheme can be

implemented in a system with limited resources.

Section 4 described some applications developed using DesCaRTeS and gave performance

comparisons between the DesCaRTeS applications and their native Dynamic C counterparts.

As seen there, although the overhead for the micro-benchmark program is quite high (gener-

ally 100–200% additional execution time), the overhead for the macro-benchmark program

is more reasonable (generally 0–20% additional execution time). Also, programs run using

34

DesCaRTeS provide type checking, while those run with native Dynamic C do not. Overall,

these results for the macro-benchmarks are encouraging.

DesCaRTeS was designed to simulate some of the features of the SR language. As dis-

cussed in Section 5.1, this library has some limitations and could be improved. Further de-

velopment to DesCaRTeS could include implementing more of the SR language mechanisms,

such as parameter dependent such-that clauses. In addition to improving DesCaRTeS, it

would be interesting and useful to develop an SR compiler that would generate Dynamic

C code (whose form is outlined by the templates in Figures 5 and 7) that uses DesCaRTeS

and runs on the network of Rabbit processors.

Acknowledgments

Gene Fodor, Takashi Ishihara, and Aaron Keen provided helpful comments on the design

and implementation of DesCaRTeS. Matt Farrens provided helpful comments on drafts

of the thesis [5] on which this paper is partially based. The anonymous reviewers gave

constructive comments that led to improvements in this paper.

35

A DesCaRTeS Library Details

This appendix discusses DesCaRTeS in detail. Appendix A.1 discusses its new datatypes

and their uses. Appendix A.2 lists relevant constants that should be used in a program using

DesCaRTeS. Appendix A.3 describes both external and internal functions of DesCaRTeS.

A.1 Datatypes

DesCaRTeS offers five new datatypes that provide functionality similar to their SR equiva-

lents [3].

• VM

Used to store the index into the virtual machine table after a call to RTSCreateVM.

This type is equivalent to an integer and is provided to maintain symmetry with SR’s

vm type.

• OP

Variables of type OP are structures that contain four fields. The first field records

the virtual machine index into the virtual machine table. This value indicates where

an OP was declared. The second field records the physical address where the OP is

stored on its respective machine. The third field records the sequence number. This

number is used to determine whether or not a reference to this operation is valid.

The fourth field records the operation signature, represented by a string. It is used to

ensure the correct building and parsing of parameter lists.

• CAP

Variables of type CAP are structurally equivalent to OP variables. This type is

provided to maintain symmetry with SR’s cap type.

• SEM

36

Variables of type SEM are structurally equivalent to OP variables. This type is

provided to maintain symmetry with SR’s sem type. In SR, semaphores are handled

as abbreviated versions of operations (see Section 2.1). DesCaRTeS, however, does no

special handling of these kind of variables.

• RCAP

Variables of type RCAP are structures that contain three fields. The first field is a

pointer to a process’s CoData structure. The second field is the virtual machine index

into the virtual machine table. This value indicates where the associated process was

created. The third field records the physical address of the process’s entry into the

process table.

In addition, DesCaRTeS offers two new datatypes that provide abstractions of other SR

entities.

• PROCESS

Provides an abstraction of a process. It is a structure that contains various information

regarding a process, e.g., that it is blocked waiting for an invocation.

• ParamBuffer

Provides an abstraction of an operation’s message. It is a structure that contains a

character buffer to store a message and some integer fields that are used internally by

DesCaRTeS to speed up message construction and parsing.

A.2 Constants

Type Constants DesCaRTeS provides the following constants that are used to build

up signatures of operations, i.e., to specify parameter types in messages. Below lists the

constants for the ASCII and binary versions of DesCaRTeS. In the ASCII version, these

37

constants are strings (e.g., "_INT" and "_CHAR") and signatures are a concatenation of such

strings (e.g., "_INT_INT") In the binary version, these constants are bytes and signatures

are a list of such bytes.

• INTEGER (ASCII) or TYPE INT (binary)

Used to define an integer as part of the signature of an operation when declared using

RTSOpDeclare.

• REAL (ASCII) or TYPE REAL (binary)

Used to define a real as part of the signature of an operation when declared using

RTSOpDeclare.

• CHARACTER (ASCII) or TYPE CHAR (binary)

Used to define a character as part of the signature of an operation when declared

using RTSOpDeclare.

• STRING (ASCII) or TYPE STRING (binary)

Used to define a string as part of the signature of an operation when declared using

RTSOpDeclare.

• LONG INTEGER (ASCII) or TYPE LONG (binary)

Used to define a long integer as part of the signature of an operation when declared

using RTSOpDeclare.

• CAPABILITY (ASCII) or TYPE CAP (binary)

Used to define a capability as part of the signature of an operation when declared

using RTSOpDeclare.

• RESOURCE CAPABILITY (ASCII) or TYPE RCAP (binary)

Used to define a resource capability as part of the signature of an operation when

declared using RTSOpDeclare.

38

Other Constants

• SEND

Used to restrict an operation to invocations using send only. This restriction is made

when the operation is declared using RTSOpDeclare.

• CALL

Used to restrict an operation to invocations using call only. This restriction is made

when the operation is declared using RTSOpDeclare.

• SENDCALL

Used to allow unrestricted invocations of an operation. This unrestricted property is

assigned when the operation is declared using RTSOpDeclare

• RTS MAX STRING LENGTH

Strings used with DesCaRTeS must be less than or equal to this value. Currently set

to 300, this value could be changed if enough memory is present (see Section 5).

• MAX SOCKETS

A macro defined within in the TCP library, this value limits the number of ethernet

connections that can be made. Currently, this value is set to 4.

A.3 Functions

DesCaRTeS provides a number of functions that provide semantics similar to their SR

equivalents.

General DesCaRTeS itself relies on the continuous execution of a cofunction that handles

communication with other machines. As illustrated in Figure 5, this cofunction must be

explicitly called within a costatement. Furthermore, it should run parallel with all other

processes on that machine.

39

• void RTSInit()

Initialize global variables within DesCaRTeS.

• cofunc void RTS()

Cofunction that is the core of DesCaRTeS. It performs a number of tasks including

listening for incoming connections and processing messages from existing connections.

Virtual Machine Creation and Destruction These functions create and destroy vir-

tual machines.

• VM RTSCreateVM(char * ip)

Establishes an ethernet connection with another machine at an address designated by

ip. Returns an index into the array of existing connections. If no connection already

exists, a new one is established. If the maximum number of connections has been

reached, this function returns -1.

• void RTSDestroyVM(VM v)

Terminates the virtual machine v and closes the ethernet connection. The machine

being destroyed subsequently destroys all of the virtual machines created by local

processes.

Process Handling These functions are involved in the handling of processes, including

creation and structure maintenance.

• void RTSRegCoData(CoData * p, char * name)

Stores (registers) a process named name that is controlled by a costatement using

the CoData variable referenced by p in a table. This information is used to simulate

dynamic process creation.

40

• void RTSCreate(char * name, ParamBuffer * params, ParamBuffer * rtn,

VM v)

Creates a process registered as name with the parameters params on virtual machine

v. Return parameters are copied to rtn. The first parameter in rtn is always the

resource capability for the process created.

• void RTSDestroy(RCAP rcap)

Destroys a process using resource capability rcap.

• void RTSSTART PROCESS(CoData * p)

Initializes the process controlled by the costatement using the CoData variable refer-

enced by p.

• void RTSEND PROCESS()

Terminates the current process. Calling this function allows the process to be created

again later.

Operations and Process Communication The functions used to implement this com-

munication are described below.

• void RTSOpDeclare(OP o, char * sig, int call)

Declares the operation designated by o by storing it in an operation table maintained

by DesCaRTeS. sig is a string constructed using a sequence of constants described in

section A.2. The invocations of o are restricted according to the value given by call.

call should be given one of the constants SEND, CALL, or SENDCALL.

• void RTSSend(CAP c, ParamBuffer * params)

Sends to an operation designated by the capability c the parameters in the string

params.

41

• void RTSCall(CAP c, ParamBuffer * params, ParamBuffer * rtn)

Performs a call to an operation designated by the capability c using the string params

as its parameters. Any return parameters will be stored in the string rtn. Limitations

to the function are the same as those described for RTSSend.

• void RTSReceive(CAP c, ParamBuffer * params)

Receives an invocation made on an operation referenced by capability c. All param-

eters for that invocation are copied to the string params.

• void RTSInBegin(CAP * caparray, int numcaps)

Designates the beginning of an input statement. caparray is an array of capabilities

that are serviced by this input statement. numcaps is the number of capabilities in

the array.

• void RTSInArmBegin(CAP c, int clause, ParamBuffer * params, CAP *

caparray, int numcaps)

Designates the beginning of an arm in an input statement. c is the capability serviced

by this arm. clause is a boolean valued expression. This arm is only serviced if

clause evaluates to true. All parameters for the invocation received are copied to the

string params. caparray and numcaps are the same as described above.

• void RTSInArmEnd(CAP c, ParamBuffer * rtn)

Designates the end of an arm in an input statement. This function terminates the

service to a capability c and replies to the invoker with the parameters in the string

rtn.

• void RTSInElseBegin()

Designates the beginning of an optional else arm in an input statement. If all arms

of the input statement cannot be serviced, then this arm executes.

42

• void RTSInElseEnd()

Designates the end of an optional else arm in an input statement.

• void RTSInEnd(CAP * caparray, int numcaps)

Designates the end of an input statement. caparray and numcaps are the same as

described above.

• void RTSReply(ParamBuffer * rtn)

Replies to the process on top of the reply stack. This routine can be used to reply

to parent processes or to the invoker of an operation being serviced by an input

statement. rtn holds any parameters being passed back with the reply.

Message Processing Setup

• void RTSStartParams(ParamBuffer params)

Initializes the structure designated by params. It sets the string field by setting it to

the empty string. (Actually, this is a macro.)

• void RTSGetParams(ParamBuffer * params)

Retrieves the parameters passed to a process after it was created. These parameters

are stored in the structure designated by params.

Message Processing Marshaling and Unmarshaling The “add” functions provide

for parameter marshaling and the “parse” functions provide for parameter unmarshaling.

In the ASCII version of DesCaRTeS, the “add” function append the type of the parame-

ter as a string and a string representing the parameter’s value, e.g., RTSAddInt will append

"_INT(43)" for the integer 43. The “parse” functions ensure that the front of the begins

with the appropriate string (e.g., "_INT(") and then parses up to the first ’)’. The value

between the parentheses is converted and stored in the second parameter. (To keep the

43

initial implementation of the ASCII version simple, a string value is not allowed to contain

‘)’.)

In the binary version of DesCaRTeS, the “add” and “parse” functions behave similarly,

but they use a single type-byte (Section A.2) and store values in binary.

• void RTSAddInt(ParamBuffer * params, int i)

• void RTSAddReal(ParamBuffer * params, float f)

• void RTSAddChar(ParamBuffer * params, char c)

• void RTSAddString(ParamBuffer * params, char * s)

• void RTSAddLongInt(ParamBuffer * params, long int l)

• void RTSAddCap(ParamBuffer * params, CAP c)

• void RTSAddRcap(ParamBuffer * params, RCAP r)

• void RTSParseInt(ParamBuffer * params, int * i)

• void RTSParseReal(ParamBuffer * params, float * f)

• void RTSParseChar(ParamBuffer * params, char * c)

• void RTSParseString(ParamBuffer * params, char * s)

• void RTSParseLongInt(ParamBuffer * params, long int * l)

• void RTSParseCap(ParamBuffer * params, CAP * c)

• void RTSParseRcap(ParamBuffer * params, RCAP * r)

Semaphore Operations Semaphores and their related operations are also provided by

DesCaRTeS.

44

• RTSSemInit(SEM s, int val)

Initializes a semaphore s to the value designated by val. This function must be called

for each semaphore.

• RTSP(SEM s)

Performs a P operation on a semaphore s.

• RTSV(SEM s)

Performs a V operation on a semaphore s.

Internal Functions These functions are used by DesCaRTeS internally. They provide

a wide range of processing including invocation queue handling, blocking queue handling,

and process id look-up.

• void RTSClearParams(PROC ADDR paddr)

Clears the parameter field of the process designated by paddr. Sets the value of that

field to the empty string.

• PROC ADDR RTSGetpid(CoData * p)

Searches the process table for the process designated by p. Once found, returns the

physical address of that entry in the table. This address represents the process id of

p.

• void RTSOrderInv(CAP * caparray, int numcaps, PROC ADDR paddr)

Sorts caparray by timestamps of invocations of all the operations referenced by

the capabilities in caparray. numcaps designates the number of capabilities in

caparray. paddr is the process id of the process waiting for an invocation. If only

one operation is referenced, then the operation may be remote. Remote operations

are sent a request by this function for the oldest invocation available. The process

designated by paddr is then blocked until a reply has been received.

45

• void RTSRemoveInv(CAP * caparray, ParamBuffer * rtn, PROC ADDR

paddr, int numcaps)

Removes the invocation designated by RTSGetInv. This is called once DesCaRTeS

confirms that the invocation will be serviced. caparray designates the operations

serviced by the input statement. rtn points to the string to which the parameters of

an invocation should be copied. paddr is the process id of the process servicing the

invocation. numcaps is the number of operations serviced by the input statement.

• void RTSAddBlocking(CAP * caparray, int numcaps, PROC ADDR paddr)

Adds the process designated by paddr to the blocking queues of all operations referred

to by caparray. numcaps designates the number of operations in caparray.

• void RTSRemoveBlocking(CAP * caparray, int numcaps, PROC ADDR

paddr)

Removes the process designated by paddr from the blocking queues of all operations

referred to by caparray. numcaps designates the number of operations in caparray.

If more invocations for a particular operation exist, any blocking processes for those

operations are restarted.

• void RTSStartNextBlocking(CAP * c, PROC ADDR paddr)

For a particular operation designated by c, restarts the next blocked process on the

blocking queue after the process designed by paddr. This is called when an invocation

of c goes unserviced due to a false such-that clause in the arm of an input statement.

Used internally by RTSInArmEnd, this procedure ensures that at least one process

blocking on c is active when one or more invocations exists for c.

• void RTSCheckSocket(VM v)

Checks, parses, and processes any available messages from a virtual machine v.

46

Memory and Memory Management (Internal Functions) To easily support both

xmem and rootmem versions, DesCaRTeS internally defines the macro PROC ADDR. In

the xmem version, it expands to XMEM ADDR, which in turn expands to unsigned long.

In the rootmem version, it expands to PROCESS *.

Dynamic C does not provide a method to dynamically allocate and deallocate memory.

Thus, we implemented versions of malloc and free for use by DesCaRTeS.

• XMEM ADDR RTSmalloc(unsigned nbytes)

Allocates the number of bytes of memory designated by nbytes. Returns the physical

address of the chunk of memory that was allocated. Since this function is used only

internally by DesCaRTeS, there are only four possible values of nbytes: chunks for

process descriptors, invocations (i.e., messages), wait list nodes for processes blocked

on an operation, and replies. This routine first checks one of four memory chunk stacks

to see if there are any previously allocated free chunks of memory of the appropriate

size. If not, a new chunk of memory is allocated using the DynamicC memory allocator

xalloc (xalloc is not used directly since it behaves more like the UNIX system call

sbreak and thus leaves no method for deallocating memory). This routine runs in

O(1), even when it invokes xalloc (since that too is O(1)).

• void RTSfree(XMEM ADDR ptr)

Deallocates the memory pointed to by ptr. As noted under RTSmalloc, there are

only four memory chunk sizes used by DesCaRTeS and free chunks of each size are

stored on a separate stack. This function determines the amount of memory pointed

to by ptr and adds the chunk to the appropriate stack. This routine runs in O(1).

47

B Ping Pong Programs

This appendix presents the code for the ping pong programs discussed in Section 4.1. Each

experiment (DesCaRTeS and Dynamic C) consists of two programs: ping on one machine

and pong on the second machine. The DesCaRTeS programs use conditional compilation

(macros) to select the version (ASCII or binary). The Dynamic C programs use separate

programs for each version. Each program also uses the code given in Section B.4.

B.1 Dynamic C Ping Pong Program, ASCII Version

Dynamic C Ping Program, ASCII Version

/* asciiping.c
*
* A "ping" program for rabbits using regular DynamicC network calls and
* dumping ints to the socket as ASCII string. Sends a ping and waits for a
* pong repeatedly until 30 seconds have elapsed.
*/

#define MY_IP_ADDRESS "192.168.1.10"
#define PEER_IP_ADDRESS "192.168.1.11"
#define MY_NETMASK "255.255.255.0"
#define PORT 22703

/* How many (randomly generated) parameters per op? */
#define NUM_PARAMS 30

#memmap xmem
#use "dcrtcp.lib"

main() {
long endtime; /* Program end time */
char inmsg[600]; /* Incoming message buffer */
char outmsg[600]; /* Outgoing message buffer */
int msgs; /* Round-trip message count */
tcp_Socket sock; /* Connection socket */
char param[20]; /* Parameter buffer */
int pval; /* Incoming parameter value */
int i;

msgs = 0;

ranSeed = (int)SEC_TIMER;

/* Initialize the network system */
sock_init();

/* Open the network connection */
if (!tcp_open(&sock, 0, resolve(PEER_IP_ADDRESS), PORT, NULL)) {

printf("Unable to make network connection.\n");
exit(1);

}

/* Wait for the connection to actually be established */
while (!sock_established(&sock) && sock_bytesready(&sock) == -1)

tcp_tick(NULL);
sock_mode(&sock, TCP_MODE_ASCII);

/* Loop for 30 seconds */
endtime = MS_TIMER + 30000;
printf("Starting...\n");
while (MS_TIMER < endtime) {

strcpy(outmsg, "msg");
#if NUM_PARAMS > 0

/* Send parameters, one per line */

48

for (i = 0; i < NUM_PARAMS; ++i) {
sprintf(param, ",%d", irand());
strcat(outmsg, param);

}
#endif

sock_puts(&sock, outmsg);
sock_flush(&sock);

/* Receive ack */
do tcp_tick(&sock); while (sock_bytesready(&sock) <= 0);
sock_gets(&sock, inmsg, sizeof(inmsg));

#if NUM_PARAMS > 0
/* Read parameters from incoming message */
strtok(inmsg, ",");
for (i = 0; i < NUM_PARAMS; ++i)

pval = atoi(strtok(NULL, ","));
#endif

++msgs;
}

/* Print out the number of round trip messages. */
printf("Total messages: %d\n", msgs);

/* Cleanup */
sock_close(&sock);
exit(0);

}

Dynamic C Pong Program, ASCII Version

/*
* asciipong.c
*
* A "pong" program for rabbits using regular DynamicC network calls. Receives
* a ’ping’ message and sends an acknowledgement.
*/
#define MY_IP_ADDRESS "192.168.1.11"
#define MY_NETMASK "255.255.255.0"
#define PORT 22703

#define NUM_PARAMS 30

#memmap xmem
#use "dcrtcp.lib"

main() {
char outmsg[600]; /* Outgoing message buffer */
char inmsg[600]; /* Incoming message buffer */
tcp_Socket sock; /* Connection socket */
char param[20]; /* Outgoing parameter buffer */
int pval; /* Incoming param val */
int i; /* Loop var */

/* Seed random number generator with the clock */
ranSeed = (int)SEC_TIMER;

/* Initialize the network system */
sock_init();

/* Open the network connection */
tcp_listen(&sock, PORT, 0, 0, NULL, 0);

/* Wait for the connection to actually be established */
while (!sock_established(&sock))

tcp_tick(NULL);
sock_mode(&sock, TCP_MODE_ASCII);

/* Loop until connection closes */
do {

if (sock_bytesready(&sock) >= 0) {
/* Receive a message */
sock_gets(&sock, inmsg, sizeof(inmsg));

#if NUM_PARAMS > 0
/*
* Read parameters from incoming message (we don’t actually
* ever use them though.

49

*/
strtok(inmsg, ",");
for (i = 0; i < NUM_PARAMS; ++i)

pval = atoi(strtok(NULL, ","));
#endif

/* Send the acknowledgement */
strcpy(outmsg, "ack");

#if NUM_PARAMS > 0
/* Send response parameters, one per line */
for (i = 0; i < NUM_PARAMS; ++i) {

sprintf(param, ",%d", irand());
strcat(outmsg, param);

}
#endif

sock_puts(&sock, outmsg);
sock_flush(&sock);

}
} while (tcp_tick(&sock));

/* Cleanup */
sock_close(&sock);
forceSoftReset();

}

B.2 Dynamic C Ping Pong Program, Binary Version

Dynamic C Ping Program, Binary Version

/*
* normalping.c
*
* A "ping" program for rabbits using regular DynamicC network calls.
* Sends a ping and waits for a pong repeatedly until 30 seconds have
* elapsed.
*/

#define MY_IP_ADDRESS "192.168.1.10"
#define PEER_IP_ADDRESS "192.168.1.11"
#define MY_NETMASK "255.255.255.0"
#define PORT 22703

/* How many (randomly generated) parameters per op? */
#define NUM_PARAMS 30

#memmap xmem
#use "dcrtcp.lib"

main() {
long endtime; /* Program end time */
char inmsg[3 + NUM_PARAMS*sizeof(int) + 1]; /* Incoming message buffer */
char outmsg[3 + NUM_PARAMS*sizeof(int) + 1]; /* Outgoing message buffer */
int msgs; /* Round-trip message count */
tcp_Socket sock; /* Connection socket */
char param[20]; /* Parameter buffer */

#if NUM_PARAMS > 0
int pval[NUM_PARAMS]; /* Incoming parameter value */

#endif
int i;

msgs = 0;

ranSeed = (int)SEC_TIMER;

/* Initialize the network system */
sock_init();

/* Open the network connection */
if (!tcp_open(&sock, 0, resolve(PEER_IP_ADDRESS), PORT, NULL)) {

printf("Unable to make network connection.\n");
exit(1);

}

/* Wait for the connection to actually be established */
while (!sock_established(&sock) && sock_bytesready(&sock) == -1)

50

tcp_tick(NULL);
sock_mode(&sock, TCP_MODE_ASCII);

/* Loop for 30 seconds */
endtime = MS_TIMER + 30000;
printf("Starting...\n");
while (MS_TIMER < endtime) {

strcpy(outmsg, "msg");

/* Add parameters to message */
for (i = 0; i < NUM_PARAMS; ++i)

((int*)(outmsg+3))[i] = irand();

sock_write(&sock, outmsg, 3 + NUM_PARAMS*sizeof(int));
sock_flush(&sock);

/* Receive ack */
if (sock_read(&sock, inmsg, 3 + NUM_PARAMS*sizeof(int)) >= 0)

/*
* Read parameters from incoming messages (even though we don’t
* actually use them in this simple program.
*/

#if NUM_PARAMS > 0
for (i = 0; i < NUM_PARAMS; ++i)

pval[i] = ((int*)(inmsg+3))[i];
#endif

++msgs;
}

/* Print out the number of round trip messages. */
printf("Total messages: %d\n", msgs);

/* Cleanup */
sock_close(&sock);
exit(0);

}

Dynamic C Pong Program, Binary Version

/*
* normalpong.c
*
* A "pong" program for rabbits using regular DynamicC network calls. Receives
* a ’ping’ message and sends an acknowledgement.
*/

#define MY_IP_ADDRESS "192.168.1.11"
#define MY_NETMASK "255.255.255.0"
#define PORT 22703

#define NUM_PARAMS 30

#memmap xmem
#use "dcrtcp.lib"

main() {
/* Message format: "MSG"/"ACK" + raw integer values + ’\0’ */
char outmsg[3 + NUM_PARAMS*sizeof(int) + 1]; /* Outgoing message buffer */
char inmsg[3 + NUM_PARAMS*sizeof(int) + 1]; /* Incoming message buffer */
tcp_Socket sock; /* Connection socket */

#if NUM_PARAMS > 0
int pval[NUM_PARAMS]; /* Incoming param val */

#endif
int i; /* Loop var */

/* Seed random number generator with the clock */
ranSeed = (int)SEC_TIMER;

/* Initialize the network system */
sock_init();

/* Open the network connection */
tcp_listen(&sock, PORT, 0, 0, NULL, 0);

/* Wait for the connection to actually be established */
while (!sock_established(&sock))

51

tcp_tick(NULL);
sock_mode(&sock, TCP_MODE_ASCII);

/* Loop until connection closes */
do {

if (sock_read(&sock, inmsg, 3 + NUM_PARAMS*sizeof(int)) >= 0) {
/*
* Read parameters from incoming messages (even though we don’t
* actually use them in this simple program.
*/

#if NUM_PARAMS > 0
for (i = 0; i < NUM_PARAMS; ++i)

pval[i] = ((int*)(inmsg+3))[i];
#endif

/* Send the acknowledgement */
strcpy(outmsg, "ack");

/* Add parameters to message */
for (i = 0; i < NUM_PARAMS; ++i)

((int*)(outmsg+3))[i] = irand();

sock_write(&sock, outmsg, 3 + NUM_PARAMS*sizeof(int));
sock_flush(&sock);

}
} while (tcp_tick(&sock));

/* Cleanup */
sock_close(&sock);
forceSoftReset();

}

B.3 DesCaRTeS Ping Pong Program

DesCaRTeS Ping Program

/*
* ping.c
*
* A "ping" program for rabbits using the DesCaRTeS runtime system.
* Sends a ping and waits for a pong repeatedly until 30 seconds have
* elapsed.
*/

#memmap xmem

#define MY_IP_ADDRESS "192.168.1.10"
#define PEER_IP_ADDRESS "192.168.1.11"
#define MY_NETMASK "255.255.255.0"

#define MAX_SOCKETS 4

/* How many (randomly generated) parameters per op? */
#define NUM_PARAMS 25

#define ROOTPROCS
#define RTS_MAX_PROCS 1
#define ROOTBLOCKS
#define RTS_MAX_BLOCKS 1
#define ROOTINV
#define RTS_MAX_INV 1

#define RTS_BINARY

#define RTS_MAX_OPS 20
#ifdef RTS_BINARY
#define RTS_MAX_SIG_LENGTH (NUM_PARAMS+1)

#if (300 > (NUM_PARAMS*3 + 20))
#define RTS_MAX_STRING_LENGTH 300
#else
#define RTS_MAX_STRING_LENGTH (NUM_PARAMS*3+40)
#endif

#else
#define RTS_MAX_SIG_LENGTH (4*NUM_PARAMS+1)

#if (300 > (NUM_PARAMS*12 + 20))

52

#define RTS_MAX_STRING_LENGTH 300
#else
#define RTS_MAX_STRING_LENGTH (NUM_PARAMS*12+40)
#endif

#endif

#use "rts.lib"

/* The op’s signature. There should be NUM_PARAMS INTEGERs
* listed here or NULL if NUM_PARAMS is 0.
*/
#ifdef RTS_BINARY
//#define SIG NULL
const char SIG[NUM_PARAMS + 1] = {

TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, 0

};
#else
//#define SIG NULL
#define SIG INTEGER INTEGER INTEGER INTEGER INTEGER \

INTEGER INTEGER INTEGER INTEGER INTEGER \
INTEGER INTEGER INTEGER INTEGER INTEGER \
INTEGER INTEGER INTEGER INTEGER INTEGER \
INTEGER INTEGER INTEGER INTEGER INTEGER

#endif

/* Process declarations */
CoData main_proc;

VM peervm; /* VM on other rabbit */

cofunc void maincofunc(CoData* p) {
/* Needed by RTS */
ParamBuffer params, rtn;

/* Local operation */
OP pongop;

/* Remote capability */
CAP pingop;

/* Normal vars */
int i;
int inval;
long endtime;
long count;

RTSSTART_PROCESS(p);

/* Declare ops */
RTSOpDeclare(pongop, SIG, SEND);

/* Create the ping handler process on the remote machine */
peervm = RTSCreateVM(PEER_IP_ADDRESS);
RTSStartParams(params);
RTSAddCap(params, pongop);
RTSCreate("ping_handler", ¶ms, &rtn, peervm);
RTSParseRcap(&rtn, NULL);
RTSParseCap(&rtn, &pingop);

RTSStartParams(params);
endtime = MS_TIMER + 30000;
count = 0;
printf("Starting...\n");
while (MS_TIMER < endtime) {

#if NUM_PARAMS > 0
RTSStartParams(params);
for (i = 0; i < NUM_PARAMS; ++i)

RTSAddInt(params, irand());
#endif

RTSSend(pingop, ¶ms);
RTSReceive(pongop, ¶ms);

#if NUM_PARAMS > 0
for (i = 0; i < NUM_PARAMS; ++i)

53

RTSParseInt(¶ms, &inval);
#endif

count++;
}

printf("Total messages: %d\n", count);

RTSEND_PROCESS();
RTSDestroyVM(peervm);

exit(0);
}

main() {
/* Seed random number generator */
ranSeed = (int)SEC_TIMER;

/* Initialize the RTS */
RTSInit();

/* Register processes */
RTSRegCoData(&main_proc, "mainproc");

/* Main loop */
for (;;) {

costate RTSprocess init_on {
wfd RTS();

}

costate main_proc init_on {
wfd maincofunc(&main_proc);

}
}

}

DesCaRTeS Pong Program

/*
* pong.c
*
* A "pong" program for rabbits using the DesCaRTeS runtime system.
* Receives ping messages (op invocations) and sends pong responses.
* Used with ping.c to compare the performance of DesCaRTeS with
* normal DynamicC code.
*/

#memmap xmem

#define MY_IP_ADDRESS "192.168.1.11"
#define MY_NETMASK "255.255.255.0"

#define MAX_SOCKETS 4

/* How many (randomly generated) parameters per op? */
#define NUM_PARAMS 25

#define ROOTPROCS
#define RTS_MAX_PROCS 1
#define ROOTBLOCKS
#define RTS_MAX_BLOCKS 1
#define ROOTINV
#define RTS_MAX_INV 1

#define RTS_BINARY

#define RTS_MAX_OPS 20
#ifdef RTS_BINARY
#define RTS_MAX_SIG_LENGTH (NUM_PARAMS+1)

#if (300 > (NUM_PARAMS*3 + 40))
#define RTS_MAX_STRING_LENGTH 300
#else
#define RTS_MAX_STRING_LENGTH (NUM_PARAMS*3+40)
#endif

#else
#define RTS_MAX_SIG_LENGTH (4*NUM_PARAMS+1)

#if (300 > (NUM_PARAMS*12 + 40))
#define RTS_MAX_STRING_LENGTH 300

54

#else
#define RTS_MAX_STRING_LENGTH (NUM_PARAMS*12+40)
#endif

#endif
#use "rts.lib"

/* The op signatures. There should be NUM_PARAMS INTEGERs
* listed here or NULL if NUM_PARAMS is 0.
*/
#ifdef RTS_BINARY
const char SIG[NUM_PARAMS + 1] = {

TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT,
TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, TYPE_INT, 0

};
#else
#define SIG INTEGER INTEGER INTEGER INTEGER INTEGER \

INTEGER INTEGER INTEGER INTEGER INTEGER \
INTEGER INTEGER INTEGER INTEGER INTEGER \
INTEGER INTEGER INTEGER INTEGER INTEGER \
INTEGER INTEGER INTEGER INTEGER INTEGER

#endif

/* Process declarations */
CoData ping_handler;

int i;
int inval;

cofunc void ping_handler_cf(CoData* p) {
/* Needed by RTS */
ParamBuffer params, rtn;

/* Local operation */
OP pingop;

/* Remote capability */
CAP pongop;

RTSSTART_PROCESS(p);

/* Get process creation parameters */
RTSGetParams(params);
RTSParseCap(¶ms, &pongop);

/* Declare ops */
RTSOpDeclare(pingop, SIG, SEND);

/* Send the ping handler op back to the main process */
RTSReply(NULL);

while (1) {
/* Receive a ping and send a pong */
RTSReceive(pingop, ¶ms);

#if NUM_PARAMS > 0
/* Parse out incoming parameters */
for (i = 0; i < NUM_PARAMS; ++i)

RTSParseInt(¶ms, &inval);

/* Generate outgoing parameters */
RTSStartParams(params);
for (i = 0; i < NUM_PARAMS; ++i)

RTSAddInt(params, irand());
#endif

RTSSend(pongop, ¶ms);
}

RTSEND_PROCESS();
}

main() {
/* Seed random number generator */
ranSeed = (int)SEC_TIMER;

/* Initialize the RTS */
RTSInit();

55

/* Register processes */
RTSRegCoData(&ping_handler, "ping_handler");

/* Main loop */
for (;;) {

costate RTSprocess init_on {
wfd RTS();

}

costate ping_handler {
wfd ping_handler_cf(&ping_handler);

}
}

}

B.4 Common Code

Each of the above programs use the following code to generate random numbers used as

parameters in messages (operations).

/*************** From Z-World’s rabbit/samples/random.c *********************/
unsigned int ranSeed; // Current Random Seed

unsigned int irand () {
if (ranSeed == 0x5555) ranSeed--;
ranSeed = (ranSeed << 1) + (((ranSeed>>15)^(ranSeed>>1)^ranSeed^1) & 1);
return ranSeed;

}

unsigned int random (unsigned int range, unsigned int minimum) {
return irand() % range + minimum;

}

56

References

[1] Tak Auyeung. Cooperative multithreading. Embedded Systems Programming, pages
72–77, December 1995.

[2] Z World: Product Documentation Dynamic C for the Rabbit 2000, 2002. http://www.
zworld.com/products/dc/docs_dcpremier.html.

[3] G. R. Andrews and R. A. Olsson. The SR Programming Language: Concurrency in

Practice. Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1993.

[4] Justin T. Maris, Aaron W. Keen, Takashi Ishihara, and Ronald A. Olsson. A Compar-
ison of Concurrent Programming and Cooperative Multithreading under Load Balanc-
ing Applications. Concurrency and Computation: Practice and Experience. to appear.

[5] Justin T. Maris. A Comparison of Concurrent Programming and Cooperative Multi-
threading under Load Balancing Applications. Master’s thesis, University of California,
Davis, Department of Computer Science, June 2002.

[6] S. Kang and H. Lee. Analysis and solution of non-preemptive policies for scheduling
readers and writers. Operating Systems Review, 32(3):30–50, July 1998.

[7] G. Findlow and J. Billington. High-level nets for dynamic dining philosophers systems.
In Semantics for Concurrency. Proceedings of the International BCS-FACS Workshop,
pages 185–203, 1990.

[8] Aaron W. Keen, Takashi Ishihara, Justin T. Maris, Tiejun Li, Eugene F. Fodor, and
Ronald A. Olsson. A comparison of concurrent programming and cooperative mul-
tithreading. Concurrency and Computation: Practice and Experience, 15(1):27–53,
January 2003.

[9] J. Michael Kamrad II. Ada experience report for BlazeNet, Inc. In Proceedings of the

ACM SIGAda Annual International Conference on Ada Technology, pages 215–216,
Washington, DC, November 1998.

[10] Mario Aldea Rivas and Michael González Harbour. MaRTE OS: An Ada Kernel for

Real-Time Embedded Applications, volume 2043 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[11] Gregory Bollella (Editor). The Real-Time Specification for Java. Addison-Wesley
Publishing Company, Inc., Reading, MA, 2000.

57

