Fair Resource Allocation in Active Networks

Vijay Ramachandran

Raju Pandey

S-H. Gary Chan

Computer Science Department
University of California, Davis, CA 95616
vramacha@cisco.com, {pandey, chan}ecs.ucdavis.edu

Abstract— Packet scheduling scheme is an impor-
tant component of a network node. The choice of a
scheme dictates the allocation of network resources a-
mong contending flows of the network. In this paper
we study packet scheduling in the context of active net-
works. Traditionally, packet scheduling schemes are
used to fairly allocate a single resource. This cannot be
directly applied to active nodes beacause active nodes
contain multiple resources, such as CPU and band-
width. Moreover, these resources are inter-dependent.
Hence, fairly allocating one resource does not entail
allocating the other resources fairly. We describe a
simple packet scheduling algorithm to fairly allocate
multiple resources in an active node. Using simula-
tions, we show that the algorithm effectively allocates
both CPU and bandwidth resources fairly among the
contending flows.

I. INTRODUCTION

Traditional network nodes have mainly been data
forwarding engines. Such nodes have very little in-
telligence and processing power that has led to a net-
working infrastructure in which network protocols
cannot be easily modified or customized to suit ap-
plications. This has led to the introduction of an ac-
tive network architecture [8] in which intermediate
nodes, called active nodes, can perform customized
computations on every packet. Programmability in
active networks is achieved by having active pack-
ets carry programs that are executed at an active n-
ode [11] or having the packets carry references to
programs that are injected into the active nodes off-
line [12]. As each packet arrives at an active node,
the node first executes the program associated with
the packet. It then routes the packet to the next node.
In this network, each active node serves two kinds
of resources to network packets: CPU and network
bandwidth.

The ability to perform packet-specific computa-
tions within the network leads to an extensible net-

0-7803-6494-5/00/$10.00 © 2000 IEEE

work infrastructure that can be extended, modified,
upgraded, and customized to suite application re-
quirements. Networks services that were deployed
primarily at the end points can now be implement-
ed in interior nodes dynamically, offering richer net-
work functionality to the application. Flexibility in
protocol design is especially useful in a distributed
system where there is massive interactions among
collaborating parties. Distributed applications (such
as online stock quote, online auction, web caching,
and fusion applications [3], [10], [9]) can exploit the
services offered by the network to improve its per-
formance as well.

While active networks offer flexibility in tailoring
network services to applications, one of the pitfall-
s in using active networks is the potential degrada-
tion in overall application performance when multi-
ple applications use the active node services simulta-
neously. Since active packets from multiple sources
contend for both CPU and networking resources at
an active node, the node is specially susceptible to
ill-behaved packet sources that can generate pack-
ets at high rates and and seize an unfair share of
the bandwidth. Further, packets from ill-behaved
sources can completely dominate other active pack-
ets by consuming too much of CPU, thereby denying
them both CPU and networking resources.

While there has been significant research in devel-
oping suitable active node architectures, program-
ming models for active software and developing effi-
cient security architectures, the problem of efficient
resource allocation in active nodes has not been suf-
ficiently addressed. Support for efficient resource al-
location models in active nodes is a fundamental step
toward large scale deployment of active networks.

In this paper we explore the various issues in de-
veloping a resource allocation model that allocates
resources fairly to all active flows. In traditional net-

468

works, several packet scheduling algorithms [1], [7],
[5] exist that aim to isolate different network flows
from ill-behaved flows. The basis for the isolation is
derived through fair allocation of network resources
among the contending flows. Network resources in
traditional networks mainly refer to but are not lim-
ited to bandwidth in the core network nodes. Service
discipline such as Fair Queueing (FQ) [5] provide
perfect fairness among contending network flows. In
this paper, we show that the traditional notion of fair-
ness, which specifies a resource allocation constraint
for a single resource, does not directly extend to ac-
tive nodes. This is because allocation of resources
in active networks involves two resources, CPU and
network. Further, the allocation of the two is inter-
dependent. Thus, fair allocation of one does not
guarantee fair allocation of the other. We present a
notion of fairness for active networks in which we
use the total resource consumption of a flow as a ba-
sis for measuring fairness.

We have developed an active packet scheduling al-
gorithm to achieve fairness as specified in our defini-
tion. The scheduling algorithm satisfies the resource
allocation constraint by adjusting the share of CPU
resource given to each flow based on the share of
bandwidth given to the flow. We note that the CPU
requirement of an active packet is not known a pri-
ori. That is, the number of CPU cycles required to
execute the code carried in an active packet cannot
be determined by examining the fields of the packet.
Hence, the scheduling algorithm we propose is not
dependent on the CPU requirements of active pack-
ets. Furthermore, the algorithm has the additional
property of 100% CPU and bandwidth utilization at
all times. We have measured the effectiveness of
the algorithm through simulation and found that it
achieves almost perfect fairness for all flows.

The rest of the paper is organized as follows: In
Section II we describe in detail the issues involved
in allocating resources in active networks. In Sec-
tion III we outline a reference active node architec-
ture, and describe the different components of the
architecture. We then discuss our algorithm which
uses these components to achieve fair resource al-
location. In Section IV, we present the simulations
results. In the final section, we conclude and present
directions for future research in this area.

II. PROBLEM DEFINITION

In this section, we develop the notion of fairness
for active nodes. We begin by first presenting the
notion of fairness in traditional network nodes. We
then show that this notion of fairness does not extend
to active nodes.

A. Fairness in traditional networks

We begin by first formalizing the notion of a flow
using the definition in [7].

Definition 1: A flow denotes a stream of packets

that traverses the same route from a source to a des-
tination and that requires the same level of service at
each network node in the path.
Each packet can be uniquely assigned to a flow us-
ing pre-specified fields in the packet header. A flow
is backlogged during the time interval (#,t;) if the
queue for the flow is never empty during the interval.
We next formalize a measure of fairness, also taken
from [7].

Definition 2: Let sent;(t,t;) be the number of

bytes sent by flow i in the interval (#;,8,). Let f;
express the ideal share to be received by flow i.
Let FairnessMeasure(t,t;) be the maximum, over
all pairs (i, j) of backlogged flows in the inter-
val (t1,t2), of (sent;(t1,12)/ f; — sentj(t1,12)/ f}). De-
fine FairnessMeasure to be the maximum value of
FairnessMeasure(t| ,t;) over all possible executions
of the fair queueing scheme and all possible inter-
vals (t1,2) in an execution.
In other words, FairnessMeasure expresses the
amount of deviation from the ideal case. In the ideal
case, when there are N flows backlogged in the inter-
val (t1,t,), FairnessMeasure will be equal to 0, and
the share of allocated resource for each flow will be
equal to .

B. Fairness in active nodes

We now develop the notion of fairness for active
nodes. Active packets first get processed by the CPU
before being deposited in the output queue for trans-
mission. The scheduling of active packets at the
network end is, thus, dependent on CPU schedul-
ing. This means that guaranteeing fairness during
CPU scheduling does not entail fairness in the out-
put queue, regardless of the scheduling algorithm ap-
plied at the network end. We highlight this with a

469

simple example:

Assume that there are two flows: Flow 1 contains
packets, each requiring 10 CPU cycles and 2 units
network bandwidth. Flow 2 contains packets, each
requiring 2 CPU cycles and 10 units network band-
width. A fair allocation of CPU would mean that for
every packet from flow 1, CPU processes five pack-
ets from flow 2. Such an allocation of CPU means
that in any given time interval (¢1,2), there are five
times as many packets in the output queue from flow
2 than there are from flow 1. Hence, if the network
bandwidth is to be conserved and if all packets are
processed from the output queue, the active node al-
locates 250% more bandwidth to flow 2 than flow
1 in any given time interval. Bandwidth allocation
in this case is not fair, even though the CPU alloca-
tion is fair to both flows. The primary reason for this
anomaly is that the traditional notion of fair schedul-
ing does not take inter-dependencies between the re-
sources into account.

We, thus, develop a fairness measure that ac-
commodates inter-dependencies between resources.
Qualitatively, in the example above, we can make the
system more fair by doing the following: Since flow
2 requires less CPU than flow 1, flow 2 can over-
whelm the active node if it receives the same share
of CPU as flow 1. We can hence punish flow 2 at the
processing end by giving a larger share of the CPU to
flow 1, thereby increasing the number of packets ar-
riving at the output queue from flow 1. The question
then is: How do we quantify the notion of punish-
ment? We would like to formalize a fairness mea-
sure that allows a flow with a higher requirement for
a resource to receive a higher share of the resource,
but maintain the balance in resource consumption by
allocating a lower share of the second resource. This
is the basic premise of our definition of fairness.

Composite Fairness Measure (CFM)

We define a fairness measure for active networks
that uses the total resource consumption by a flow in
the active node as the basis for a measure of fairness.

Definition 3: Let N be the number of active flows
in time interval (r1,72). Let Fairness;™(t1,1;) be
defined as the fraction of time CPU spends servic-
ing flow i in time interval (f;,f;). Similarly, let
Fairness?™ (t1,t,) be defined as the fraction of time

given to transmit flow i at the output in time interval
(t1,12).

We define the Ideal Operating Situation (10S) as the
best case scenario for an active node. In an IOS, for
every 1 <i<N,

Fairness;?“(t,5;) =

il

2=z~

Fairness®™ (t,,1,)

Hence, in the ideal case, the total amount of re-
1,1 _ 2

sources used by a flow is (5 + 5 = %)-

Definition 4: An active node achieves perfect fair-
ness if it satisfies the total resource usage measure,
%, for all flows. We define FairnessMeasure; to be
((Fairness{™ + Fairness?) — 2)2.

FairnessMeasure; measures the amount the devi-
ation from the IOS. Note that the fairness measure
given here does not require that both Fairness:™ and
Fairness?™ be individually satisfied; it only requires
that the total resource usage measure be achieved.
This is because, we would like to allocate resources
proportional to the requirement of resources. Con-
sider the previous example, where there are two
flows with extreme requirements. As mentioned ear-
lier, the flow with a higher demand for CPU should
receive a greater share of CPU resource, but we
maintain the balance by allocating a lower share of
the bandwidth. Similarly, the flow with a lower de-
mand for CPU should receive a lower share of CPU
resource, and a higher share of the bandwidth.

III. ACHIEVING FAIRNESS USING CFM

In this section we describe an algorithm for
achieving fairness in active nodes.

A. Reference active node architecture

We begin by first proposing a reference architec-
ture for active nodes. In this model, an active node is
composed of three main parts: CPU scheduler, Out-
put scheduler and a feedback element (see Figure 1).

We assume that all active packets that traverse the
node require both CPU and bandwidth requirements.
On reception of a packet, the node performs several
steps [2]: It first retrieves the packet from the net-
work card. It enqueues the packet in the processing

470

Outpur quene flow ¥

Fig. 1. Reference architecture for an active node

queue corresponding to its flow. The CPU sched-
uler then chooses a packet to process from the in-
put queues. After processing the packet, it inserts
the packet in the output queue corresponding to the
flow. The output scheduler chooses a packet from
the output queues for transmission. A novel aspect
of the proposed architecture is the feedback element
that the active node uses to periodically inform the
CPU scheduler about output scheduling. The CPU
scheduler uses the information to schedule packets
for processing.

We note that the reference architecture contains
multiple queues/flows scheme at both input and out-
put ends. Another possible choice is to have a single
queue at the input as well as the output. We did not
chose this queuing scheme because it does not allow
the node operating system to discriminate between
different flows. This may invite an ill-behaved flow
to trash the system by consuming more than its fair
share of resource. Moreover, since the CPU require-
ment of an active packet cannot be determined from
the fields in the packet, the exact arrival rate can-
not be measured. Hence, we may not be able to use
traffic shaping algorithms such as Leaky Bucket to
guard against such an attack at the CPU end.

The three main components of the architecture
are: CPU scheduling, packet scheduling for output,
and feedback component from output to the CPU
scheduler. They work in conjunction to meet our
fairness criteria. We describe each in detail below.

B. Packet Scheduling

There are two scheduling algorithms used within
an active node: one for CPU scheduling, and another
for scheduling packet for transmission. The node op-
erating system may execute these algorithms concur-
rently. Since the CPU requirements of active packets
are not known a priori, the CPU scheduling algorith-
m should not only be fair, but also not depend on

471

the knowledge of processing requirements of pack-
ets for scheduling. We have modified DRR [7] such
that it can be used to schedule active packets fairly at
the CPU end without any knowledge of the CPU re-
quirements. We also use DRR for network schedul-
ing. We chose DRR because it implements FQ effi-
ciently.

CPU Scheduling

The algorithm is as follows: Each network node
stores packets coming from different flows in differ-
ent queues. The scheduling algorithm at the node
selects a packet from the input queue, assigns it to
CPU, runs the program associated with it until com-
pletion and then deposits it in the output queue. The
CPU scheduling algorithm is shown in Figure 2.

while (true) {
for each backlogged.flow (i) {
Quantum(i) = get_quantum(i);
DC(i) = Quantum(i) + DC(i)
while (cpu.consumed(i) < DC(i)) {
process.packet (p) ;
CPUREQ, = cpu.requirement (p);
cpu-consumed (i) = CPUREQ, +
cpu.consumed (i) ;

DC(i) = DC(i) - cpu.consumed(i);

}

round =

}

round + 1;

Fig. 2. CPU scheduling algorithm

As shown in the figure, the algorithm associates
Quantum CPU cycles with with each flow i in each
round. Each flow also maintains a state variable
DeficitCounter, denoted by DC which is initial-
ized to Quantum before the start of the each round
of processing. Let the number of CPU cycles re-
quired for a packet p in a flow during a round be
CPUREQ,. The total number of CPU cycles con-
sumed by a flow in a round is maintained in the vari-
able cpu_consumed. CPUREQp is not known be-
fore processing the packet. During each round, af-
ter a packet is processed from a flow, CPUREQp is
added to cpu_consumed. The number of packets pro-
cessed from each flow in a round is subject to the re-
striction that De ficitCounter > pu_consumed. Af-
ter all the packets are processed from a flow during a
round, DeficitCounter for that flow is reduced by
cpu_consumed. At the start of every new round,

DeficitCounter is re-initialized to De ficitCounter
of the previous round added to Quantum. Note that
DeficitCounter can be negative during the start of a
round. We note the following: The ratio of Quantum
given to any two flows i, j is equal to the ratio of re-
source allocations for flows i, j. That is, resource is
allocated proportional to the size of Quantum giv-
en to each flow. Also, the algorithm only examines
non-empty and backlogged flows.

The algorithm is fair since the difference in total
number of CPU cycles consumed between any two
backlogged flows is bounded by a small constant.
We omit the proof here due to lack of space. The
proof can be found in [6].

C. Feedback function

An important component of the architecture is the
feedback function that is used to control allocation of
CPU resources so that overall fairness is maintained.
The feedback function integrates the two resource al-
location algorithm into a composite algorithm. We
now describe how we apply the feedback.

In the active node, we cannot determine the arrival
rate of a flow at the output queues because we do not
know the CPU requirements of each packet. After
packets are processed at the input, there are two pos-
sibilities at the output queue:

« All flows congested at the input queues are also
congested at the output queues.

o Some flows which are congested at the input
queues are not congested at the output queues.

In the first case, the CPU requirements for all flows
were low enough such that the arrival rates at the
output queues exceed the bandwidth of the outgo-
ing link. In this case, the CPU scheduling algorithm
in conjunction with the networking scheduling algo-
rithm (DRR) allocate both CPU and Bandwidth fair-
ly. In the second case, there are some flows at the in-
put that have low CPU requirement such that the ar-
rival rate at the output queue exceeds the link capac-
ity and there are some flows with CPU requirements
that are high enough such that the arrival rate at the
output queue is less than the link capacity. Since DR-
R only services non-empty queues, bandwidth allo-
cation depends on the arrival rate of packets at the
output queues. Thus, bandwidth allocation per flow
is fed back periodically to the CPU scheduler. The

CPU scheduler adjusts Quantum Figure 2 for each
flow based on the allocated bandwidth. This entails
increasing or reducing the amount of CPU given to
each flow. Below we describe how Quantum Fig-
ure 2 is adjusted to achieve fair resource allocation.

D. Algorithm

We would like a scheduling algorithm that allo-
cates CPU and bandwidth resources proportionally,
adaptively and fairly. The solution to meeting the re-
source allocation constraint of Definition 3 is to ad-
just the Quantum Figure 2 given to each flow at both
the input and output queues in proportion to the re-
quirement of the respective resources such that the
fairness measure is met. This is the basis for our al-
gorithm. The algorithm to assign the value of Quan-
tum to each flow during the start of a new round is
shown in Figure 3.

get_quantum(flow i)

{
cpu_alloc = get_cpu_allocation (i)
bw_alloc = get_bw allocation (i)
total_alloc = cpu alloc + bw_alloc
Quantum = 2/Nc - total_alloc
return Quantum

Fig. 3. Algorithm to assign value of Quantum

In this paper, we look at the case where all the
input queues are congested, and some or all of the
output queues are congested. As mentioned earlier,
the bandwidth allocation depends on the arrival rate
at the output queues, and this depends on the amount
of processing required by the CPU at the input. Let
Nc be the number of queues that are congested at the
input. At start, we use our CPU scheduling scheme
with equal Quantum for each flow, for allocating the
CPU resource. At start, CPU allocation for each flow
will be fair. That is, the fraction of CPU allocated to
each flow will be i DRR is used for bandwidth
allocation. After the first feedback period, the band-
width allocation for each flow is fed back to the CPU
scheduler. There are two possibilities:

« Bandwidth is fairly allocated among the flows. In
this case, bandwidth_alloc is X}‘ for all flows.

472

« Bandwidth allocation is not fair. That is, the
bw_alloc for some flows will be greater than ﬁlc— and
for some flows will be less than g-.

Note that the sum of the fraction of resource received
by each flow is equal to 1 in both cases. In the for-
mer case, the value of Quantum for the flows will not
change (i.e, Quantum = 2/Nc —1/Nc = 1/Nc). In
the latter case, let bw_alloc > x-. Let I be the ab-
solute value of (% —total_alloc), where total _alloc
is the sum of bw_alloc and cpu_alloc. I expresses
the amount of deviation from our fairness require-
ment. For these flows, to meet the resource alloca-
tion requirement, the CPU allocation is decreased by
I. That is, if the CPU allocation decreases by I, we
guarantee that the total resource consumption for the
flow is % as required by our definition of fairness.
Similarly, if bw_alloc < g, the CPU allocation is in-
creased by /. Note that since a variant of DRR is used
for CPU scheduling and DRR is used for bandwidth
scheduling, both CPU and bandwidth resources are

conserved.

IV. SIMULATION RESULTS

We have analyzed the effectiveness of the algo-
rithm through simulations. The primary goals of the
experiments are to analyze the effectiveness of the
algorithm in achieving overall fairness. We used a
modified version of the ns network simulator [4] to
simulate an active node-based network.

A. Default simulation settings

Unless otherwise noted, we present the default
simulation setting for all the experiments. The net-
work topology used in our study is as shown in Fig-
ure 1. We simulated 10 hosts each of which gen-
erated traffic corresponding to a flow. Hence, Host
#1 generated flow 1 traffic, Host #2 generated flow 2
traffic and so on. Each host generated packets from
the exponential on/off distribution with a burst time
of 1000ms and an idle time of 1000ms. Each active
packet contains two fields: code length and packet
size, represented by the tuple < CPU,BW >. The
number of cycles required to process a packet was
randomly selected, with a uniform distribution, be-
tween Mincp, and Max.p,. Mincp, and Max,p, vary
from 1 cycles to 35 cycles depending on the flow.
Packet sizes were randomly selected, with a unifor-

m distribution, between Minyy, and Maxpy. Minpy
and Maxp, vary from 400 bits to 4000 bits depend-
ing on the flow. To simulate extremities in the traffic
pattern, flows O thru 3 had very high CPU require-
ment (in the range of 20 to 35 cycles), with varying
packet sizes, while flows 4 thru 9 had lower CPU re-
quirement (in the range of 1 to 5 cycles), with vary-
ing packet sizes. The output link capacity was set
at 500Kbps, and the CPU processing power was set
at 500 cycles per second. We simulated our topolo-
gy for 200 seconds. We varied the packet generation
for each flow experimentally such that the topology
exhibited congestion at the node for the entire simu-
lation time of 200 seconds.

B. Fairness Measures

In this section, we present the experiments related
with the fairness measures.
B.1 Fairness measures comparison

First, we show that our algorithm achieves the
FairnessMeasure as described in Definition 4. The
parameters for this experiment are as outlined above.
Figure 4 shows the result from the experiment.

Wt Fovciack ——
oom Wit Fouchack - —

20 o
Tone (socondh)

Fig. 4. FaimessMeasure with and without implementing
algorithm with respect to time

It plots the error (i.e., deviation from Ideal Oper-
ating Situation) against time for a period of 200 sec-
onds. We start the feedback at 60 seconds to let the
traffic pattern reach steady state. We set the feedback
period at 1.0 second. The graph shows that without
feedback, i.e., without implementing the algorithm,
the overall error is about 0.008. This means that on
an average, since there are 10 flows, each flow de-
viates from the resource allocations constraint (0.2)
by about 16%. When we use the fairness algorithm,
the overall error reaches almost 0. Also, note from

473

the graph that the time to reach an error of 0 is ap-
proximately 5.0 seconds. Hence the convergence is
fast.

Fig. 5. CPU and Bandwidth allocation vs flow index

As mentioned earlier, our intention is to allocate
CPU and bandwidth resources proportional to the re-
quirement of Definition 4 for these resources. In the
next experiment, we show that the algorithm indeed
accomplishes this. As mentioned in Section IV-A,
we chose our parameters such that flows O thru 3
have higher CPU requirement than the other flows,
and have varying bandwidth requirement. In Fig-
ure 5, we show the percentages of CPU and band-
width allocated for each flow. It can be seen from the
graph that flows O thru 3 have higher percentage of
CPU allocated. Flow 1 has the highest CPU require-
ment, and is allocated approximately 14% of CPU.
Flows 1 thru 3 also have high CPU requirements and
are allocated approximately 12 to 13 % of CPU. The
rest of the flows have equal CPU requirement and
are allocated approximately 8% of CPU. Bandwidth
is allocated accordingly such that total resource us-
age constraint is satisfied.

B.2 Adaptivity

We next show that the algorithm can adapt to
changes in network traffic patterns. In this experi-
ment, there are extremities in traffic the pattern (i.e.,
in CPU and bandwidth requirements) as outlined in
Section IV-A, for the first 100 seconds of the simu-
lation. After 100 seconds, the traffic pattern changes
such that the CPU and bandwidth requirements for
all flows are statistically the same. The CPU require-
ment for all flows are randomly selected, with a uni-
form distribution, between 1 and 5 cycles. The pack-
et sizes are randomly selected, with a uniform dis-
tribution, between 100 and 500 bits. Figure 6 shows

the results of this experiment. The graph shows that
at 100 seconds, the error increases to over 0.05. This
is because the Quantum sizes prior to 100 seconds
were adjusted for the traffic pattern before 100 sec-
onds. The algorithm, however, adapts to the new
traffic pattern quickly and the error term eventual-
ly reaches 0. The time to adapt is approximately 10
seconds. The time depends on the feedback period.
Later we show convergence time for different feed-
back periods. We also discuss a good rule of thumb
for choosing feedback periods.

Faimers Mvaours weh Adspuion ——

120 o 90) 0
Trve (veconde)

Fig. 6. FairnessMeasure versus time with new traffic pat-
tern at t = 100s

B.3 Feedback

The feedback period forms an important parame-
ter of the scheduling algorithm. In this experiment,
we investigate the effect of the feedback period on
the convergence of the algorithm. We conducted our
experiment with the parameters as specified in Sec-
tion IV-A, with feedback periods ranging the 0.5 sec-
onds to 20 seconds.

0 5 10 15 20 25
Feedback pariod (sec)

Fig. 7. Time to reach an error of 0.0004 for varying feed-
back periods

We illustrate the effect of feedback period using
the graph in Figure 7. Figure 7 plots the time to reach

474

an error of 0.0004 for varying feedback periods. At
one extreme feedback periods of 0.5 seconds and 1.0
seconds have the lowest convergence time (approxi-
mately 5 seconds). At the other extreme, for a feed-
back period of 20.0 seconds, the convergence time is
80 seconds. Since feedback is an expensive opera-
tion, a very low feedback period is not a good imple-
mentation choice. On the other hand, if the feedback
period is very high, the convergence time is high and
for bursty traffic patterns, timely convergence may
not be achieved. We, therefore, need to find a' mid-
dle ground for the feedback period. A good rule of
thumb is the following: For any traffic pattern, we
need to feed back the bandwidth allocation in order
to change the Quantum size given to each flow. In
order to have complete information about bandwidth
allocation, all active flows (i.e., flows that have non-
empty queues) must be serviced in a round. Sim-
ilarly, for the CPU scheduler of have complete in-
formation about CPU allocation during every feed-
back period, all active flows must be serviced in a
round. Hence,we use a feedback period equal to
the time to finish one round of service at the CPU
queues or Bandwidth queues whichever is bigger, i.e
FeedbackPeriod = Max{(Maxp,/CPU Speed) x
N, (Maxpjsize [LinkCapacity) x N}.

C. Delay

We note that the underlying principles of DRR al-
gorithm is unchanged. Hence, the delay bounds of
DRR holds true for our algorithm as well.

V. CONCLUSION AND FUTURE WORK

In this paper we have shown that the simple notion
of Fairness used for traditional networks does not di-
rectly extend to active networks. We have formalized
a definition of fairness for active networks and out-
lined an algorithm which achieves fairness as defined
for active networks. The results from simulations
confirm that the algorithm effectively allocates both
CPU and bandwidth resources. The work presented
here can be extended in a number of ways. A di-
rect extension of this work is to incorporate multiple
resources in the algorithm. Active packets may al-
so require memory resources in addition to CPU and
network resources. The algorithm presented here is
the first step in this direction.

475

[1]

{2

(3]

(4]
[5]

(6]

(7

(8]

9

[10]

(1]

[12]

REFERENCES

Jon C.R. Bennet and Hui Zhang. W F2Q: Worst-case fair
weighted fair queueing. In INFOCOM 96, 1996.

Dan E. Decasper, Bernhard Plattner, Guru M. Purulkar,
Sumi Choi, John D. DeHart, and Tilman Wolf. A Scal-
able High-Performance Active Network Node. Network,
pages 8-19, January 1999.

Ulana Legedza, David Wetherall, and John Guttag. Im-
proving Performance of Distributed Applications Using
Active Networks. In JEEE INFOCOM ’98, 1998.

S. McCanne and S. Floyd. The LBNL network simulator.
Lawrence Berekely Laboratory.

A.K. Parekh and R.G. Gallagher. A generalized proces-
sor sharing approach in intergrated services networks. In
INFOCOM ’93, 1993.

Vijay Ramachandran, Raju Pandey, and S-H. Gary Chan.
Resource Allocation in Active Networks. Technical Re-
port CSE-99-10, University of Califonia, Davis. Computer
Science Department, 1999.

M. Shreedhar and George Varghese. Efficient Fair Queue-
ing using Deficit Round Robin. In SIGCOMM °95, aug
1995.

David L. Tennenhouse, Jonathan M. Smith, W. David S-
incoskie, David J. Wetherall, and Gary J. Minden. A Sur-
vey of Active Network Research. IEEE Communications,
35(1):80-86, January 1997.

David L. Tennenhouse and David J. Wetherall. Towards an
Active Network Architecture. Computer Communication
Review, 26(2), April 1996.

David Wetherall, Ulana Legedza, and John Guttag. In-
troducing New Internet Setvices: Why and How. IEEE
NETWORK Magazine Special Issue in Axtive and Pro-
grammable Networks, July 1998.

David J. Wetherall et al. ANTS: A Toolkit for Building
and Dynamically Deploying Network Protocols. In /EEE
OPENARCH’98, 1998.

Yechiam Yemini and Sushil da Silva. Towards Pro-
grammable Networks. In FIP/IEEE International Work-
shop on Distributed and Systems Operations and Man-
agement, 1996.

