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Internet users routinely and often unknowingly download and run pro-
grams, such as Java applets; and some Web servers let users upload exter-
nal programs and run them on the server. Although the practice of exe-

cuting these external programs has the sanction of widespread use, its
security implications haven’t yet been systematically addressed. In the brief,
dynamic history of the Internet, such a situation is not unusual. New com-
munication mechanisms and computing paradigms are often implement-
ed before the security issues they engender have been rigorously analyzed.

Our goal here is to address this problem in the subdomain of external
programs by systematically outlining security issues and classifying cur-
rent solutions. Our focus is solely on protecting a host from external pro-
grams. We do not address the problem of protecting the communication
medium or protecting an external program from runtime systems. Fur-
thermore, we do not address the problem of correctly identifying the
source of an external program (authentication).

We start our inquiry by reviewing the relevant models of computation,
followed by an overview of the security problems associated with them.
We then classify both the problems and the existing solutions using a
resource-centric model that distinguishes problems associated with
resource access from those associated with resource consumption. Finally,
we classify solutions to each problem according to how and when they are
applied.

EXTENSIBLE COMPUTING MODELS 
In computing models that support program migration, a host provides a
set of services to an external program by loading it and executing it with-
in a local execution environment such as an operating system or a run-

.
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time system. We call such computing models exten-
sible computing models. Two examples of execution
environments that support program migration are
extensible operating systems and mobile program-
ming systems. 

Extensible operating systems allow the collocation
of external programs by loading them directly into
the kernel’s address space. Thus, the external pro-
gram shares its address space with the kernel and all
other loaded external programs. SPIN1 is an exam-
ple of an extensible operating system that lets users
download user-level extensions into the kernel.

Mobile programming systems also support migra-
tion by letting users upload programs to a remote
host. Further, external programs can stop in mid-
execution and then migrate to another host while
retaining their state and data. 

In addition, Web browsers such as Netscape sup-
port extensibility by letting applets be downloaded
and executed within the browser. All of these sys-
tems provide an execution environment that loads
externally defined user programs and executes them
within its local name space. We refer to these exe-
cution environments as runtime systems.

Extensible Computing Benefits 
The extensible computing model is appealing, first,
because it lets operating system kernels implement
only basic, core functionality, which can then be
extended through external programs. This facili-
tates customization and efficient implementation
of specific services and policies, such as application-
specific memory management or caching policies. 

Second, external programs are sometimes far
more efficient at utilizing network bandwidth than
traditional programming paradigms, such as
remote procedure call (RPC). For example, if the
external program encodes an application that must
filter huge amounts of data, it can migrate to the
host with the data, execute there, and then return

with its results to the originating host. In this case,
the network load incurred by migrating the external
program is insignificant compared with the cost of
migrating data and processing it locally.

Security Risks
Although appealing from both system design and
extensibility viewpoints, runtime systems are
extremely vulnerable to misbehaving external pro-
grams. Since external programs run within the
same name space as the runtime system, many of
the traditional protection mechanisms, such as
address-space containment, no longer apply. As a
result, an external program can maliciously disrupt
an extensible system by interfering with the run-
time system’s execution or with the execution of
other programs within the name space. It might
also access unauthorized resources, use more than
its fair share of resources, and even deny resources
to other programs.

CLASSIFYING RUNTIME
SERVICES 
To help classify security issues, we distinguish two
types of resources that a runtime system provides
to external programs: 

■ System resources are those implicitly allocated to
external programs, such as memory and CPU. 

■ Conceptual resources are those explicitly defined
and managed by a host. They have well-defined
interfaces that external programs use to access
resources and request services. For example, a
host might provide an interface to a database
repository. 

This distinction highlights fundamental differences
in the mechanisms used to control resource access: 

■ Because system resources are implicitly allo-
cated and managed by runtime systems, the
mechanisms for access control are usually
implemented within the runtime system. They
also depend on the resource model that run-
time systems create. For example, CPU
resource access control is traditionally imple-
mented in runtime systems through CPU
scheduling algorithms.

■ Because conceptual resources are accessed by
explicit calls from external programs, access
control is generally based on trapping these calls
in software. For example, in the Java runtime
system (JRTS),2 calls to protected resources are

Since external programs run
within the same name space as the

runtime system, many of the
traditional protection mechanisms

no longer apply.
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trapped when these resources call a reference
monitor, which the host uses to track and con-
trol accesses. 

We use this distinction in our classification of secu-
rity approaches. As we describe below, there are
three phases during which security can be imple-
mented: program-development, migration, and exe-
cution. Each security approach varies both by phase
and by resource type.

RESOURCE-CENTRIC SECURITY
PROBLEMS
Security problems occur when an external program
tries to access and consume unauthorized resources
at the host site.

■ Access control refers to restricting a program’s access
to system and conceptual resources. For system
resources we focus on limiting a program’s ability
to access other programs’ memory resources; for
conceptual resources, we focus on limiting access
to resources with explicit interfaces. 

■ Consumption control refers to restricting how
much of a given resource a program can
consume.

Our primary focus here is on those aspects of
resource-access and consumption control that are
specific to the extensible computing model.

Controlling Resource Access
Access control prevents an external program from
using unauthorized resources. Because external pro-
grams execute within the runtime system’s name
space, they can directly access any resource by nam-
ing it. Naming involves getting a resource handle
and using it to invoke operations on the resource.
An external program can use the handle to read sen-
sitive files and send the information to remote hosts
by accessing network resources. It can also disrupt
the operations of a computer system by accessing
local resources in an unintended manner. For exam-
ple, the “Ghost of Zealand” Java applet misuses the
ability to write to the screen: It turns areas of the
desktop white, making the machine practically use-
less until it is rebooted (for full details, see
http://www.finjan.com/applet_alert.cfm).

Limiting an external program’s ability to read
and modify the memory resources of other pro-
grams, including the runtime system, is an impor-
tant part of access control. There are two aspects of
memory access control: 

■ Safety limits an external program’s ability to
write into another program’s name space, and
thus limits opportunities to corrupt system-
dependent data, crash a program by forcing it
into an inconsistent state, or rewrite other pro-
grams to behave in an unintended manner. 

■ Privacy prevents an external program from
reading another program’s address space and
thus limits opportunities to learn passwords
and other sensitive information.

Access to conceptual resources poses problems sim-
ilar to those posed by access to system resources.
For example, once downloaded on a machine,
external programs can read private files from local
disks or copy proprietary information by accessing
databases. Indeed, Hamburg’s Chaos Computer
Club demonstrated on German television how to
use ActiveX, Microsoft’s external programming sys-
tem, to steal funds. In this exploit, the victim uses
Internet Explorer to visit a Web page that down-
loads an ActiveX control. The control checks to see
if Quicken, a financial management software, is
installed. If it is, the control adds a monetary trans-
fer order to Quicken’s batch of transfer orders.
When the victim next pays the bills, the addition-
al transfer order is performed. All of this goes unno-
ticed by the victim (for more on this, see http://
www.iks-jena.de/mitarb/lutz/security/activex.hip97.
html or http://www.iksjena.de/mitarb/lutz/
security/activex.en.html).

Although the system and conceptual resource
access control problems have been studied within
the context of traditional systems, the problems are
different for extensible systems in several ways.

First, in extensible systems, authorization is
more complex. In traditional operating systems,
programs run on behalf of principals who are given
certain rights. Once a program attains these rights,
they usually remain valid during the program’s exe-
cution. In extensible systems, however, an external
program contains individual components that
might have different rights and permissions.
Hence, the level of granularity at which access
rights must be checked and enforced is much
finer— sometimes at the level of individual objects
and functions.

Second, security mechanisms should be inde-
pendent of the site’s resources. Most traditional
operating systems manage a fixed set of resources
such as memory, CPU, files, and the network.
Extensible systems, however, must manage
resources that can vary from site to site. 

.



M O B I L E  C O D E  S E C U R I T Y

38 NOVEMBER • DECEMBER 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET

Finally, most traditional operating systems
implement an access control model that either
allows or denies access. Extensible systems can allow
conditional resource access based on runtime or
program state. For example, a database vendor can
specify that if there are more than 20 external pro-
grams in the system, each external program can
only access its database up to 10 times.

Controlling Resource Consumption 
When external programs use more than their share
of resources, they leave the system vulnerable to
attack. For example, external programs can stage
denial-of-service attacks by intentionally over-using
CPU, thereby denying CPU to other programs and
the runtime system. Consumption control is
required not only for system resources, but also for
conceptual resources. For example, by opening
multiple socket connections and flooding the net-
work with data, an external program can deny net-
work resources to other programs.

The resource-consumption problem is similar
to the CPU-scheduling problem in that both
require the runtime system to control the resources
allocated to requesting programs. The two prob-
lems differ in the type of control that runtime sys-
tems need to exercise. The primary goal in CPU
scheduling algorithms is to allocate CPU so it pro-
vides some quality of service (QoS) to executing
programs. The QoS requirements can be specified
as constraints, such as optimal resource utilization,
response time, lower bounds on resource allocation,
and deadline. Runtime systems, in addition to pro-
viding CPU scheduling, must control resource allo-
cation in a way that satisfies the host-defined con-
sumption constraints. Thus, the resource-allocation
problem for extensible systems includes additional
variables:

■ Combination of QoS constraints. External pro-
grams can originate from different sites and so
might have different kinds of QoS requirements.

■ Upper bounds. To prevent denial-of-service
attacks, runtime systems specify and enforce
upper bounds on external programs’ resource
consumption.

■ Lifetime constraints. External programs can cir-
cumvent a host’s resource-consumption con-
straints by using resources, migrating to a dif-
ferent host, and then returning to the target
host to use more resources. This engenders the
need for what we call lifetime constraints on all
executions of the external program.

■ Trust and preference. The host’s trust will vary for
different external programs and might depend,
for example, on the program’s site of origin. The
host has preferences on resource allocation based
on trust or other factors, such as the kinds of
activities the external programs are performing.

■ Dynamic nature of trust and preference. Trust level
and preferences can be dynamic, and can change
with the host’s system state. For example, if a par-
ticular site sends numerous external programs to
the host, it could be attempting to stall the sys-
tem and thus its trust level might be reduced. 

COMPONENTS OF RESOURCE-
CENTRIC SECURITY
There are two components to security solutions:
policy specification and policy enforcement. An
organization must be able to specify the behavior
allowed on its systems. The mechanism for precise-
ly enforcing the policy must also be available. A pol-
icy enforcement mechanism without a well-thought
out policy might end up enforcing constraints that
are too restrictive or too lenient. Likewise, a securi-
ty policy without the ability to enforce it is useless.

Policy Specification: 
Implicit or Explicit
A security policy is a set of access constraints that
specifies who can access resources, which resources
they can access, and how much of a given resource
they can use. 

We can divide security policies into two kinds:
host-independent and host-specific. Host-inde-
pendent policies are the fundamental and primitive
security policies that all extensible systems must
enforce. Foremost among them are safety and pri-
vacy. A runtime system must provide mechanisms
for isolating different external programs to prevent
them from reading and writing other programs.
Host-specific policies, on the other hand, can vary
from site to site.

Security policies can be specified implicitly or
explicitly. Implicit mechanisms are typically part of
the system implementation. For example, CPU
scheduling algorithms implicitly implement CPU
consumption control. Another example is the sand-
box policy implemented in Web browsers using
early versions of JRTS.3 In this policy, remote
applets were not allowed to access local files or to
open network connections to hosts other than their
originating site.

The problem with implicit policy specification
is that it creates specific, inflexible, and uncus-
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tomizable systems. However,
implicit policies can express host-
independent security policies
(such as safety and privacy) more
naturally since they do not
require any additional effort.
They also capture certain security
guarantees that all systems must
provide. For example, the JRTS
version 1.2 implements the poli-
cy of least privileges, which
ensures that programs with less
privilege do not acquire more
access rights by making calls to
privileged components.

Systems that let users specify
their policies explicitly use a pol-
icy language for specification
purposes. For example, explicit
access control policies in SPIN
are specified using the domain-
type-enforcement language. Sim-
ilarly, JRTS version 1.2 uses a
simple language for associating
various principals and permis-
sion rights with different applets. 

Policy Enforcement: 
Static or Dynamic
Policy enforcement consists of
identifying and responding to actions that might vio-
late the security policy. Violations can be caught
either statically or dynamically. Static enforcement
mechanisms examine a program’s code to ensure that
the program does not enter a state where a security
violation can occur. This verification occurs before
the program executes. Runtime systems can also sta-
tically schedule or allocate resources so that resource-
consumption constraints are met. Static checking is
incomplete in that it cannot be used to identify all
security violations, especially those that are based on
dynamic properties. For such cases, dynamic check-
ing is needed. 

In dynamic checking, a wrapper is placed
between a program’s request code and the resource
access code to determine if the request should be
satisfied at runtime. A wrapper is interposition code
that can be inserted by the programmer, generated
by the compiler, or defined by the runtime system
via special system calls. Also, a separate tool (such as
software to isolate faults4) can examine a program
statically and insert dynamic checks where needed.
Because static checking reduces runtime checks,

thereby improving execution time, it should be
used whenever possible. Static checking also catch-
es problems prior to execution, which prevents the
runtime system from having to deal with policy
violations in mid-execution.

SECURITY SOLUTIONS
FRAMEWORK
As Figure 1 shows, we classify solutions according
to when they are applied to an external program—
during the program development, migration, and
execution phases. 

Program-Development Phase 
In the program-development phase, developers at
the originating site create different program com-
ponents, such as classes and methods. The external
program is then compiled to create a transportable
representation. Security policies are enforced in this
phase using a tool, such as a compiler. As Figure 1a
shows, an external program (ep) is compiled along
with a security policy (sp). The compiler not only
generates an intermediate form of the program, but

ep

Compiler

sp

code:ep

Runtime system

code:ep

migrate

Originating site

Host site

(b)

ep sp

Compiler

sp

code:ep

Code transformation

code:ep

Runtime system

migrate

Originating site

Host site

(c)

ep sp

Compiler

sp

ep+sp

Verifier

ep+sp

Runtime system

migrate

Originating site

Host site

(a)

Figure 1: Security enforcement during different phases: (a) program development
phase, (b) program execution phase, and (c) program migration phase. (ep) denotes
an external program and (sp) denotes the host site’s security policies.
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it also checks for security policy violations. Further,
it generates code for checking and enforcing the
policy during an execution.

The program (ep+sp) is migrated to the host site
and executed there. Because a level of distrust exists
between the originating and host sites, the program
(ep+sp) cannot be trusted to enforce the security
policy. Thus, the runtime system must include a
verifier to ensure that the migrated code enforces
the policy. A partial solution is to cryptographical-
ly sign the code at compile time and include a
checksum. The runtime system can then authenti-
cate the code by checking its signature and verify
its integrity via the checksum before executing it. 

The problem with this solution is that it only
asserts that the code is from a trusted site. It does not
guarantee that the external program will not cause
security problems by inadvertently reading or writ-
ing other programs’ memory locations or going into
an infinite loop and consuming all CPU resources. 

Another solution is to rigorously verify that the
external program does not violate the security pol-
icy. For example, the JRTS uses a bytecode verifier
to ensure that the migrated code satisfies all safety
policies as specified in the Java programming lan-
guage. However, this solution also has limitations.
Since the bytecode verifier is extremely complex, it
is unclear how to ascertain if a particular imple-
mentation is correct; implementations of the Java
bytecode verifier could be tricked into executing
unsafe code.3

Language-based solutions are appealing for
many reasons. Because the compiler can examine
the source code, it can statically check for many
kinds of security violations prior to execution. Fur-
ther, the compiler can use the program semantics
to generate efficient code for dynamic checks. 

The main problem with language-based
approaches is that they assume the availability of
security policies. However, policies are often
unavailable for several reasons. First, external pro-
gram destinations are sometimes unknown and thus
it is not always possible to compile them with the

right security checks. Second, even if the destina-
tion sites are known, external programs can visit
many different hosts with different security policies.
Although multiple sites could send their policies to
the originating site, this solution is too cumbersome
as it encounters problems that rival those seen with
cryptographic key distribution. However, for host-
independent policies, language-based approaches
work well—provided that the host site can verify
that the code follows a security policy.

Program-Migration Phase
Figure 1b shows how security policies are enforced
after an external program arrives at a site and before
it executes. In this approach, a security-enforcement
tool examines the external program’s intermediate
form to determine if there are any possible security
policy violations. It then inserts additional security
check-code in the migrated program such that its
execution doesn’t violate the host’s security policies. 

Security enforcement mechanisms applied dur-
ing this phase are appealing in that they can enforce
many security policies independent of existing tools
such as compilers or runtime systems. The approach
can therefore be used to add a security layer to lega-
cy systems. The separation of policy specification
from policy enforcement also allows different com-
ponents (programs, policies, and resources) to be
easily modified without affecting each other.

The problem with these mechanisms is that they
have additional processing and code-modification
costs. In addition, if you use them in a mobile pro-
gramming system to enforce host-specific policies,
you incur additional post-processing costs to undo
the modifications so that the external program can
migrate to another host. This performance cost is
unexplored and is a topic of ongoing research.

Program-Execution Phase
Solutions in this phase enforce security policies as
the program is executing. As Figure 1c shows, the
runtime system checks for policy violations by
monitoring the external program’s behavior. Mon-
itoring may involve intercepting different function
or system calls, or tracking the external programs’
resource usage.

Monitoring can be done in two ways. In the first
method, the runtime system can monitor a fixed
number of system calls. Here, each call performs the
check. This method, primarily used in traditional
operating systems, is not extensible because to change
policy you must change the system call itself. Also,
adding new system calls or resources is difficult.

The runtime system must include a
verifier to ensure that the migrated
code enforces the security policy.
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The second method forces each protected resource
to call a reference monitor. In this approach, you can
change policy by changing the reference monitor. You
can also easily add new protected resources. JRTS
uses this approach for supporting customizable secu-
rity policy specification and enforcement.

The main advantage of this phase is that
enforcement mechanisms have access to the run-
time state of the system and the program. This
allows the enforcement of policies based on state
information. For example, the JRTS uses protec-
tion domain information stored in the execution
stack to enforce the policy of “least privilege.”

The disadvantage of this phase, in the case of
access control, is that enforcement is by necessity a
runtime mechanism. Since it generally doesn’t use
the program’s semantics, it might perform unnec-
essary access checks.

EXISTING SOLUTIONS 
We now present some solutions for the security
problem. Many of these techniques have been
widely studied in relation to general security; here
we focus on techniques as applied to external-pro-
gram security.

Memory Access Control
A memory access control mechanism has two com-
ponents: the memory model and the safety check.
The memory model specifies how an extensible sys-
tem’s name space is partitioned into safe and unsafe
regions. The safety checks ensure that every read or
write refers to a memory location in a safe region.
Given that every memory access must be verified,
access control mechanisms must implement the
safety checks efficiently. There are several different
approaches to defining memory models and exe-
cuting safety checks.

Development-phase solutions. Solutions employed
in this phase rely on the features of safe program-
ming languages such as Java and Modula-3. The
features include strong typing, restricted memory-
reference manipulations, language runtime-sup-
ported memory allocation and deallocation, and
dynamic checking.

In the language-based approach, the memory
model is derived from the language-type system. All
memory locations created using rules for instantiating
variables denote safe regions. All other memory loca-
tions are unsafe. Safety checks in these approaches
take place in two steps. First, a compiler statically ana-
lyzes a program to ensure that most accesses are safe.

It does this by applying the language semantic rules;
these ensure that a program cannot create a reference
to a memory address in an unsafe region. Second, in
cases where the compiler cannot statically guarantee
the safety of a memory access (such as array access-
es), the compiler generates runtime checks.

Many extensible operating systems and mobile-
code runtime systems use the language-based
approach for memory protection. For example, the
SPIN extensible operating system relies on Modu-
la-3’s safety mechanisms to load application-spe-
cific kernel extensions into the kernel’s address
space.1 Similarly, the JRTS relies on the Java pro-
gramming language’s safety mechanisms when
downloading Java applets. 

Language-based solutions support a fine-grained
safety model in that they can implement memory
access control for individual data structures. Also,
because many safety and privacy policies can be
enforced at compile time, safety checks can be
employed efficiently. A limitation in language-
based solutions is that external programs can be
written only in a specific language. Further, the
approach requires a verifier to ensure that external
programs follow type safety rules.

Migration-phase solutions. Software fault isolation
(SFI)4 supports memory access control among
trusted and untrusted extensible system compo-
nents during the migration phase. SFI provides
protection against untrusted programs by restrict-
ing the memory locations they can access.

SFI creates a memory model by partitioning the
address space of the extensible system into logical-
ly separate address spaces, called fault domains.
Each untrusted component, including its code and
data segments, belongs to a unique fault domain.
This fault domain is the untrusted component’s
safe region; all addresses outside it are its unsafe
region. The safety checks ensure that component
instructions can jump or write only to addresses
inside the fault domain. They do this by statically
verifying the targets of most store and jump

SFI provides protection against
untrusted programs by restricting the
memory locations they can access.
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instructions. For instructions whose targets cannot
be verified statically, SFI modifies the program code
by either inserting wrapper code around the
instructions or by sandboxing them with modified
target addresses.

SFI includes a very efficient mechanism for sup-
porting memory protection and RPC among trust-
ed and untrusted modules. Further, it does not
depend on the language used to specify external
programs. SFI is used in VINO5 for supporting
memory access control. Vino is an extensible oper-
ating system that uses SFI to ensure that user-level
kernel extensions do not interfere with the kernel’s
operation. While SFI does support mechanisms for
sharing and communication among trusted and
untrusted components, complex sharing and mem-
ory access relationships among fine-grained com-
ponents are difficult and expensive to implement.

Execution-phase solutions. For memory access con-
trol in the execution phase, solutions rely mainly
on the underlying hardware and are implemented
within operating systems.

Traditional operating systems enforce memory
access control by encapsulating each program with-
in an address space and ensuring that the program’s
access is limited to that space. In these solutions,
the memory model partitions the logical address
space of a program into a set of pages. Safety checks
come via hardware mechanisms that check every
read and write instruction for validity. Any access
to an unsafe region causes a trap in the kernel and
raises an exception. 

Hardware-based solutions are appealing for their
simplicity and the safety net they provide. Also,
unlike the language-based approaches, hardware-
based approaches have a small trusted computing
base (TCB) that can be verified for correctness with
relative ease and they are independent of the exter-
nal program’s specification language. 

Although hardware-based approaches provide
adequate and efficient support for safety at a coarse-
grain level, it is not yet clear if they can support effi-
cient fine-grained memory access control. 

Access Control for Conceptual
Resources
Solutions for controlling access to conceptual
resources involve identifying resource use, deter-
mining if access is allowed, and possibly denying it.
Solutions differ in how these checks are performed
and the flexibility with which checks can be added
or changed.

Development-phase solutions. Proof-Carrying
Code6 is one of the most promising techniques for
controlling conceptual resource access. In PCC, the
host site publishes its security policy and the origi-
nating site combines proof of the external program’s
compliance with the executable to create a PCC
binary. When the program arrives, the host site val-
idates the proof. 

Two properties of PCC make it a very appealing
approach. First, the PCC binary is tamper proof.
Changes in the binary often result in a validation
error. In cases when there is no validation error, the
code is guaranteed to be safe. Second, proof check-
ers are essentially type checkers, which are efficient
and easy to implement. 

Although PCC has been used mainly to prove
memory safety policies, it can be used for concep-
tual resource access constraints as well. However, it
is not practical for host-dependent policies, where
a different proof is required for each site’s security
policy. Also, it is not clear if the approach is scal-
able with respect to the size of external programs
and security policies. Finally, most safety proofs
must be generated manually at this point, which
limits the method’s practicality.

Migration-phase solutions. The Ariel Project7 uses
program transformation to control access to con-
ceptual resources in this phase. The Ariel approach
has two components. The first is a policy language
that lets a host site specify the conditions under
which requests for resources can be accepted or
denied. The second is a program transformation tool
that generates code to ensure that access constraints
are satisfied. This code is then patched into the exter-
nal program and the resource that is accessed.

The advantage of this approach is that it can be
used to complement security components imple-
mented by compilers and runtime systems.

Execution-phase solutions. There are several
approaches to enforcing access control security dur-
ing the execution phase, including Safe-Tcl8 and
JRTS.

Safe-Tcl supports a flexible and extensible access
control mechanism. It requires at least two inter-
preters: a regular (or master) interpreter for trusted
code and a limited (or safe) interpreter for untrust-
ed code. When untrusted code requires access to a
system resource, it traps into the regular interpreter,
which then decides whether to allow the access.
The Safe-Tcl designers classified a set of instruc-
tions as unsafe and then disabled those instructions
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in the safe interpreter. A security policy is specified
by aliasing the safe interpreter’s disabled instruc-
tions to the master interpreter’s procedures. These
procedures can then check arguments and, if the
security policy allows, call the masked instruction
in the master interpreter. 

In the JRTS version 1.1, the site manager defines
resource access constraints by implementing a
SecurityManager that enforces local access control
policies. In addition, each protectable resource
includes explicit calls to the security manager. In this
security model, you must implement the Security-
Manager correctly. Furthermore, JRTS does not
include the notion of protection domains. If you
want to allow different constraints for different exter-
nal programs, you must build an addition security
infrastructure. As a result, early Web browsers did not
use protection domains and instead implemented a
sandbox policy that prevented all Java applets from
accessing certain local resources, like files.

The new Java security model2 addresses many of
these concerns by providing runtime support for
fine-grained access control and configurable secu-
rity policies. The new model augments the
SecurityManager with an AccessController, which
is primarily responsible for deciding if a program
can access a resource. Each site specifies its access
control policy by creating protection domains and
a set of permitted actions for programs belonging
to each domain. Each resource includes a call to the
AccessController to check if a specific action is
allowed. An important component of the new Java
security model is the policy of least privileges, which
prevents external programs from gaining privileges
by crossing protection domains. To accomplish
this, the new JRTS checks the activation-record
privileges of the current thread’s stack. This ensures
that protection domains do not acquire additional
access rights by invoking calls to privileged protec-
tion domains. The new JRTS also supports least-
privilege overrides in that you can let a domain
assume responsibility for whatever it calls and
ignore its callers’ privileges. There are several other
extensions to the JRTS security model, described
in the box, “Extending JRTS.”

Resource Consumption
With system resources, consumption control focus-
es on memory and CPU usage. For conceptual
resources, the consumption control model depends
on the resources involved. For example, mechanisms
for controlling network bandwidth will differ from
those for controlling disk space. Much of the work

in resource consumption has focused on CPU
resource scheduling. We briefly describe this work
and discuss what changes need to be made to CPU
scheduling algorithms so they can be applied to
enforce consumption control for various resources.

EXTENDING JRTS

Versions of the Java runtime system (JRTS) prior to 1.2 did not contain
the mechanisms necessary to easily implement complex access con-
trol policies. As a result a number of projects have expanded the JRTS’s
security infrastructure.

The J-Kernel project1 extends the JRTS security model by implement-
ing multiple protection domains within a single Java virtual machine.
Resource capabilities are stored in a system-wide repository; domains
access it to look up capabilities. These capabilities are implemented as
wrappers that provide the bookkeeping associated with changing pro-
tection domains. The J-Kernel is implemented entirely as a Java library.
J-Kernel also provides additional security functionality through the abil-
ity to revoke capabilities. In it, resources can be deleted without leaving
dangling references and thus, when a domain terminates, all of its capa-
bilities can be revoked and its memory freed.

Another capability system, used by Netscape Communicator ver-
sion 4, is stack introspection.2 In this approach, capabilities are
shared not by passing them as parameters, but by passing them
through the call-stack. Here an external program calls a method
enablePrivilege(resource), which consults a policy engine and, if
access to the resource is allowed, makes an annotation on the call-
stack. The resource then calls the method checkPrivilege(resource),
which searches the call-stack for the enable privilege annotation. Pro-
grams can disable and revoke privileges, which lets an application
dynamically change access control policies.

Another way to extend JRTS’s flexibility is to change how it views
classes. Type hiding2 prevents an external program from knowing that
protected resources exist by modifying the dynamic linking process to
hide classes, such as the file class. Type hiding also allows a class to be
replaced with a proxy class that can check the arguments of the
invoked method and conditionally throw an exception. It can also
modify the arguments to fit the necessary condition. For example, if
the policy says that all file writes must occur in the “tmp” directory, the
proxy class could prefix the appropriate path to the file name. 

REFERENCES
1. C. Hawblitzel et al., “Implementing Multiple Protection Domains in Java,” 1998

USENIX Tech. Conference, Usenix Assoc., Berkeley, Calif., 1998; available to

Usenix members at http://www.usenix.org/publications/library/proceedings/

usenix98/hawblitzel.html.

2. D. Wallach et al., “Extensible Security Architectures for Java,” Proc. 16th ACM

Symp. Operating Systems Principles, ACM Press, New York, 1997; available

at http://www.cs.princeton.edu/sip/pub/sosp97.html.

.



M O B I L E  C O D E  S E C U R I T Y

44 NOVEMBER • DECEMBER 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET

CPU algorithms and schemes. CPU scheduling
consists of two parts: an algorithm and a scheme.
A scheduling algorithm is a specific solution to a
scheduling problem. A scheduling problem consists
of a set of applications with similar constraints,
such as deadlines for real-time applications. The
scheduling algorithm’s aim is to schedule a set of
applications in a way that meets their constraints.
An example here is the earliest-deadline-first algo-
rithm (EDF).9 To schedule applications with dif-
ferent constraints—and thus different scheduling
algorithms—you need a scheduling scheme to

combine the different algorithms. For example, to
schedule real-time and interactive applications, the
scheme10 combines two algorithms: EDF for real-
time applications and multi-priority based round
robin for interactive applications. 

Extending CPU algorithms. Because external pro-
grams originate from different locations, their
resource requirements differ. Further, host sites
export different kinds of resources with different
resource-usage constraints. Thus, you need a sched-
uling scheme to control resource allocation in
extensible systems. The CPU scheduling algorithms
and schemes can be used to control resource con-
sumption for external programs. However, they do
not provide mechanisms for limiting resource
usage, and must be extended to take care of addi-
tional variables such as upper bounds, lifetime con-
straints, trust, and preference.

Controlling resource consumption. Market-based
resource control and Vino both provide mecha-
nisms for controlling allocation of resources to
external programs. 

Market-based resource control11 is modeled on the
market-based economy: External programs carry cur-
rency with them, and resource owners set prices on
resource use. To buy resources, external programs
interact with the resource owners and a network of

banks. While such a scheme takes care of lifetime
constraints, an external program can cause denial-of-
service attacks if it has a lot of cash. Also, because the
cost for resources is uniform for all external programs,
the host cannot control the allocation based on its
preference or trust of a particular external program. 

VINO5 supports resource-consumption control
by preventing external programs from hoarding
resources. It encapsulates each external program’s
invocation in a transaction. By recording all
changes to the system state, an external program
can be aborted at any time by undoing the trans-
actions. Vino aborts external programs when they
use too much of a resource or hold it too long.

Future work in resource-consumption control
might involve developing ways to extend the exist-
ing scheduling schemes and the algorithms to con-
trol external programs’ resource consumption.

CONCLUSION
Our framework classifies solutions based on when
a security policy is enforced. Language-based
approaches are applied during the program’s devel-
opment phase. They represent the best method for
implementing host-independent security policies
such as memory access control. Migration-phase
approaches enforce security by inserting interposi-
tion code in the migrated program before it is
downloaded into a runtime system. These
approaches separate policy specification from poli-
cy enforcement and thus are useful for adding secu-
rity to legacy systems. 

Approaches applied during the execution phase
enforce security by trapping resource accesses through
hardware or software mechanisms, and by checking
if these accesses are allowed. Approaches based in the
execution phase appear to be best suited for imple-
menting dynamic policies, especially those that
depend on the execution state of extensible systems.

We have reviewed the various techniques cur-
rently used to ameliorate the security issues inher-
ent in extensible systems. They demonstrate a
growing understanding of the issues involved and
effectively address specific security problems, but
they do not encompass the general problem, except
in a piecemeal, ad hoc fashion. In particular, it is
not clear how different techniques can be com-
posed to create a robust, efficient, and secure exten-
sible system. Unraveling this composition problem
yields another research challenge: to develop a rig-
orous understanding of the role each phase plays in
constructing a general solution to the problem of
mobile programming security. ■

CPU scheduling algorithms and
schemes can be used to control

resource consumption for 
external programs.

.
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