
Parsing
I Parsing involves:

I determining if a string belongs to a language, and
I constructing structure of string if it belongs to language.

I Two approaches to constructing parsers:

1. Top down parsing: Our focus is on table-driven predictive
parsing.
Perform a left most derivation of string.

2. Bottom up: SLR(1), Canonical LR(1), and LALR(1).
Perform a right-most derivation in reverse.

I Common theme: Finite state controller for stack automaton.
In top down parsing, the states were implicit. In LR parsing
the states are all explicit.

1 / 18

Top Down Parsing
Introduction

I Top-down parser starts at the top of the tree, and tries to
construct the tree that led to the given token string.
Can be viewed as an attempt to find left-most derivation for an
input string.

I Constrains on a top-down parser:

1. Start from the root, and construct tree solely from tokens and
rules.

2. It must scan tokens left to right.

I Recursive descent as well as non-recursive predictive parsers.
I Approach for a table driven parser:

I Construct a CFG. CFG must be in a certain specific form. If not,
apply transformations. (We will do these last).

I Construct a table that uniquely determines what productions to
apply given a nonterminal and an input symbol.

I Use a parser driver to recognize strings.

2 / 18

Grammar Transformations

I Left recursion:

E → E + T | T
T → T ∗ F | F
F → id | (E)

T

F

id

T

F

id

T

F

id

E

E

E +

+

I Top down parser will start by expanding E to E + T , then
expand E to E + T again. It may therefore keep expanding on
it infinitely often. It could have expanded using rule E → T ,
but given the input string. Also, since it has not consumed any
input, it must keep expanding using some rule, in this case the
same rule.
No top down parsers can handle left-recursive grammars.

I Solution: rewrite the grammar so that left recursion can be
eliminated. Note: two kinds of left recursion: Immediate and
indirect.
A → Bα | · · ·
B → Aβ | · · ·

3 / 18

Behavior of Parser

I Parser may create the parse tree by applying all possible rules until a parse tree
is constructed.

I Consider grammar G1 (shown below) and string bcde.
S → ee | bAc | bAe
A → d | cA

I Behavior of parser as it tries to build the parse tree:
S ⇒ bAc ⇒ bcAc ⇒ bcdc

***Show the parse tree.**
I Parser must backtrack now. Here it must backtrack all the way up to the root

and try rule S → bAe
What kind of search?

I Problems: As the parser creates the parse tree, it uses up the tokens. When it
backtracks, it must be able to go back to tokens it has already consumed. If
scanner is under control of parser, scanner also must backtrack to produce the
tokens again or parser must have a separate buffer.

I Backtracking slows down parsing and hence not an attractive approach.
I Chage the grammar:

S → ee | bAQ
Q → c | e
A → d | cA

Factor out the common prefix. Now parser can grow the tree without
backtracking.

4 / 18

Predictive Parsers

I Compute the terminal symbols that a terminal can produce. Use this
information to select a rule during derivation.

I Consider grammar:
S → Ab | Bc
A → Df | CA
B → gA | e
C → dC | c
D → h | i

I For an input string gchfc , a simple parser may have to do great deal of
backtracking before it finds the derivation. Backtracking can be avoided if
parser can look ahead in grammar to anticipate what symbols are derivable.
Consider possible leftmost derivation starting from S:

Ab

Bc

S

Dfb

CAb

gAc

eC

hfb

ifb

dCAb

cAb

Choose S → Ab if string begins with c , d , h, or i .
Choose S → Bc if string begins with g , e.

I First: terminals that can begin strings derivable from a nonterminal.

First(Ab)= {c, d , h, i}
First(Bc)= {e, g}

I Parsers that use First are known as predictive parsers.

5 / 18

Non-recursive Predictive Parsers for LL(1) grammars

I Skip recursive descent predictive parsers (hopefully you wrote one in ECS
140A).

I Consists of a simple control procedure that runs off a table:

1. Input buffer
2. Stack
3. Parsing table, M[A, a].
4. Output stream

I Constructing parse =⇒ constructing table. We will look at it later.
I Table: for each nonterminal, specify the rule that should be used to expand the

nonterminal for a given input symbol.
I Example table for Grammar:

1. E → TQ
2. T → FR
3. Q → +TQ | − TQ | ε
4. R → ∗FR | /FT | ε
5. F → (E) | id

id + − ∗ / () $

E TQ TQ
Q +TQ −TQ ε ε
T FR FR
R ε ε ∗FR /FR ε ε
F id (E)

Blanks: error conditions.

6 / 18

Behavior of Parser

I Initially stack contains S$ with S at top, and input contains
w$.

I Behavior of parser at each step: let X be at the top of stack,
and a be a symbol:

1. X = a 6= $: pop X off stack and advance to next symbol.
2. X is NT, consult table M[X , a]. If M[X , a] = Y1Y2 · · ·Yn:

2.1 pop X off
2.2 Push Y1Y2 · · ·Yn on stack with Y1 on top.

If no entry, issue error. At this step, parser has determined the
rule that can be applied and uses that for derivation.

3. X = a = $: Parser halts. That is, we have matched all
symbols.

7 / 18

Stack Input Production
$E (id + id) ∗ id $

$QT (id + id) ∗ id $ E → TQ

$QRF (id + id) ∗ id $ T → FR

$QR)E ((id + id) ∗ id $ F → (E)

$QR)E id + id) ∗ id $ Pop token

$QR)QT id + id) ∗ id $ E → TQ

$QR)QRF id + id) ∗ id $ T → FR

$QR)QR id id + id) ∗ id $ F → id
$QR)QR +id) ∗ id $ Pop token

$QR)Q +id) ∗ id $ R → ε

$QR)QT + +id) ∗ id $ Q → +TQ

$QR)QT id) ∗ id $ pop token

$QR)QRF id) ∗ id $ T → FR

$QR)QR id id) ∗ id $ F → id
$QR)QR) ∗ id $ Pop token

$QR)Q) ∗ id $ R → ε

$QR)) ∗ id $ Q → ε

$QR ∗id $ Pop token

$QRF∗ ∗id $ R → ∗FR

$QRF id $ Pop token

$QR id id $ F → id
$QR $ Pop token

$Q $ R → ε

$ $ Q → ε

Accept
8 / 18

LL(1) Parser

I Example:

Stack Input Production

$E (id ∗)$

$QT (id ∗)$ E → TQ

$QRF (id ∗)$ T → FR

$QR)E ((id ∗)$ F → (E)

$QR)E id ∗)$ Pop token

$QR)QT id ∗)$ E → TQ

$QR)QRF id ∗)$ T → FR

$QR)QR id) id ∗)$ F → cfgId

$QR)QR ∗)$ Pop token

$QRF∗ ∗)$ T → +FR

$QRF)$ Error
I A correct, leftmost parse is guarateed.
I All grammars in the LL(1) class are unambiguous: ambiguity implies

two or more distinct leftmost parse. This means more than one correct
predictions possible.

I LL(1) parsers operate in linear time, and at most, linear space (relative
to the length of the input being parsed).

9 / 18

First

I First: terminals that can begin strings derivable from a nonterminal.
I Algorithm for evaluating First(α):

1) α is a single character or ε:
I terminal or ε =⇒ First(α) = α
I Nonterminal and α → β1 | β2 | · · · | βn =⇒

First(α) = ∪kFirst(βk)

2) α = X1X2 · · ·Xn:
First(α) = {};
j := 0;

repeat

j := j + 1;

include First(Xj) in First(α)
until Xj does not derive ε or j = n;
if Xn derives ε, add {ε} to First(α).

I Example:
S → ABCd
A → e | f | ε
B → g | h | ε
C → p | q

First(ABCd) = {e, f } ∪
{g , h} ∪
{p, q} = {e, f , g , h, p, q}

10 / 18

Follow

I Sometimes First does not contain enough information for the parser to
choose the right rule for derivation, especially when grammar contains
ε−productions:

S → XY
X → a | ε
Y → c

What does X do when it sees on input c?
I Follow tells us when to use ε productions: check whether the forthcoming

token is in the First set. If it is not and there is a ε production, check if
the token is in Follow. If it is, then use the ε production. Else there is a
parsing error.

I Follow(A): set of all terminals that can come right after A in any
sentential form.

I Assume that end of string denoted by $.
I Algorithm for evaluating Follow(A):

1. If A is starting symbol, put $ in Follow(A).
2. For all productions of form Q → αAβ:

a) if β begins with a terminal a, add a to Follow(A) otherwise Follow(A)
includes First(β)−{ε}.

b) if β = ε or if β derives ε, add Follow(Q) in Follow(A).

11 / 18

Example: First and Follow
I Grammar:

1. E → TQ
2. T → FR
3. Q → +TQ | − TQ | ε
4. R → ∗FR | /FT | ε
5. F → (E) | id

I First:
First(E) = First(T)

= First(F)
= {(, id }

First(Q) = {+,−, ε}
First(R) = {∗, /, ε}

I Follow:
Follow(E) = {$,)}
Follow(Q) = Follow(E)
Follow(T) = {+,−,), $}
Follow(R) = {+,−,), $}
Follow(F) = {+,−,), ∗, /, $}

12 / 18

Constructing Parser Table

I Motivation: For a symbol X on stack, and a as input symbol, select a right
hand i) which begins with a or ii) can lead to a sentential form beginning with
a:

I Algorithm:
forall productions of the form X → β

1. for all terminal a in First(β) except ε
M[X , a] = β

2. if ε ∈ First(β),
for all terminal b ∈ Follow(X),

M[X , b] = β
if $∈ Follow(X),

M[X , $] = β

I Example:

First(E) = First(T) = First(F) = {(, id }.
First(Q) = {+,−, ε} First(R) = {∗, /, ε}
First(+TQ) = {+}, First(−TQ) = {−}
First(∗RF) = {∗}, First(/RF) = {/}
Follow(E) = {$,)}, Follow(T) = {+,−,), $}
Follow(Q) = Follow(E) = {$,)}
Follow(R) = Follow(T) = {+,−,), $}
Follow(F) = {+,−, ∗, /,), $}

Paritally filled table:
id + − ∗ / () $

E TQ TQ
Q +TQ −TQ ε ε

13 / 18

LL(1) Grammars

I Grammars for which First and Follow can be used to uniquely
determine which production to apply are called LL(1) grammars. Also, if
all entries in M contain a unique prediction.
1 denotes 1 character look-ahead: One character lookahead tells us that
every incoming token uniquely determines which production to choose

I Not always easy to write LL(1) grammars because LL(1) requires a unique
derivation for each combination of nonterminal and lookahead symbol.

I Most conflicts arise due to existence of the following two in grammars:
common prefixes and left recursion. Simple grammar transformations can
be used to eliminate them.

Transforming common prefixes
I Common prefix:

S → if E then S else S | if E then S

On seeing if, we cannot decide which rule to use.
I Algorithm:

Replace each production of form A → αβ1|αβ2| · · · |αβn|γ by

A → αA′|γ
A′ → β1|β2| · · · |βn

14 / 18

Algorithm for removing left recursion
I Two kinds of left recursion: Immediate and indirect:

E → E + T
A → Bα | · · ·
B → Aβ | · · ·

I Removal of immediate left recursion:
for each nonterminal

1. Separate left-recursive productions from others
A → Aα1 | Aα2 | · · ·
A → δ1 | δ2 | · · ·

2. Introduce a new NT A′, and change non-left-recursive rules:
A → δ1A′ | δ2A′ | · · ·

3. Remove left recursive productions and Add: A′ → ε | α1A′ | α2A′ | · · ·
I Example:

Original grammar:

A → Ac | Ad | e | f
Modified grammar:

A → eA′ | fA′

A′ → ε | cA′ | dA′

I Skip removal of indirect left recursion. (Algorithm for this one works by
removing all indirect recursion and applying the previous algorithm)

15 / 18

LL(1) Grammars

I Factoring and left recursion removal are primary transforms used to make
grammars LL(1). However, in certain cases more transformations needed:
Example: following grammar used in a language that allows idetifiers as
labels.

Stmt → Label UnlabeledStmt

Label → id : | ε
UnlabeledStmt → id := Expr

Problem: Symbol id predicts both Label productions.
Solution: Factor id from productions:

Stmt → id IdSuffix

IdSuffx → : UnlabeledStmt | := Expr

UnlabeledStmt → id := Expr
I Another example: Array declaration in ADA:

ArrayBound → Expr .. Expr | id

Problem: id can be generated from Expr as well. Factoring id from
Expr can be tedious as it may define many other expressions.
Solution:
ArrayBound → Expr BoundTrail

BoundTrail → .. Expr | ε

If a single Expr, it must generate id . Checked during semantic analysis
phase.

16 / 18

LL(1) Grammars

I Dangling else problem: Most constructs specified by LL(1) grammars, except
for if-then-else construct of Algol 60 and Pascal: there may be more then

parts than smtt else parts.
I Can model as a matching problem: treat if Expr then Stmt as open

bracket, and else Stmt as optional closing bracket. The following represents
the language:

L = {[i]j | i ≥ j ≥ 0}

I L is not LL(1), in fact, is not LL(k) for any k .
I Technique used to handle dangling else problem: Use an ambiguous grammar

along with special case rules to resolve any non-unique predictions that arise.

G → S ;
S → if S E | Other
E → else S | ε

if else Other ;

S if S E Other
E else S ε

ε
G S; S;

Multiple entries due to ambiguity in grammar.
I Use Auxiliary rule: else associates with with the nearest if. That is, in

predicting E , if we see else as a lookahead, we will match it immediately .
Thus M[E , else] = else S .

I A language design issue. Can be easily resolved by specifying that all if
statements are terminated with endif :

S → if S E | Other
E → else S endif |endif

17 / 18

LL(k) Grammars
I Grammar G is LL(k) iff the three conditions:

1. S ∗⇒wAα⇒ wβα ∗⇒wx
2. S ∗⇒wAα⇒ wγα ∗⇒wy
3. Firstk(x) = Firstk(y)

imply that β = γ.
LL(k) grammar: Lookahead of k symbols, that is G is LL(k) iff, knowing w
symbols to be expanded, A, and the next k input symbols,
Firstk(x) = Firstk(y) is always sufficient to uniquely determine the next
prediction.
Are there LL(k) grammars that are not LL(1)?
Example:

G → S
S → aAa | bAba
A → b | ε

Grammar is not LL(1) because input symbol b predicts both productions of A:
consider context aAa. A look ahead of ba predicts A → b, and a$ predicts
A → ε.

I The following containment results hold: LL(k) ⊂ LL(k+1)
I LL(k), k > 1 grammars are primarily of academic interest, as only LL(1)

parsers are used in practice.

18 / 18

