
ECS 142 Spring 2011Java−− language specification
Contents

1 Overview 2

2 Notation, terminology, and vocabulary 2
2.1 Identifiers and names . 2

3 Program 4

4 Data types 5
4.1 Primitive types . 5
4.2 Reference type (class type) . 5

5 Declarations 6
5.1 Class declarations . 6

5.1.1 Field declarations . 7
5.1.2 Method declarations . 7
5.1.3 Scope . 9
5.1.4 Inheritance . 10

6 SimpleBlock 11
6.1 Statements . 11

6.1.1 If statements . 11
6.1.2 WhileStatement . 12
6.1.3 Empty statement . 12
6.1.4 Continue statement . 12
6.1.5 Return statement . 12
6.1.6 Expression statements . 13
6.1.7 Input/Output Statements . 13

7 Expressions 13
7.1 Types of expressions . 13

7.1.1 Type conversions . 13
7.1.2 Type equivalence . 14

7.2 Primitive expressions . 14
7.3 Primary expressions . 15

7.3.1 Literal . 15
7.3.2 this . 15
7.3.3 Class instance creation expressions . 16
7.3.4 Field access expressions . 17
7.3.5 Method invocation expressions . 17

7.4 Binary and unary expressions . 18
7.5 Assignment expression . 18

8 Notes 18

-1-

ECS 142 Spring 2011
1 Overview

Java−− is an object-oriented language: programs in this language are defined solely in terms of

classes. A class definition forms the basis for declaration and creation of objects. A class contains

two kinds of members: fields and methods. Fields are data variables used to associate states with

objects, whereas methods are collections of statements that operate on fields and other objects to

manipulate the state and perform other computations.

This document will describe the essential elements of Java−− and specify semantics of various

constructs. It also describes the various semantic constraints that your semantic analyzer must

enforce on a Java−− program.

2 Notation, terminology, and vocabulary

The syntax is described in extended Backus-Naur form (EBNF).

2.1 Identifiers and names

Identifier and names refer to entities such as classes, instance variables, methods, parameters,

local variables, and constants declared in a Java−− program. There are two forms of names:

simple names and qualified names. A simple name is a single identifier, whereas a qualified name

consists of a name, a “.” token, and an identifier.

Name ::= SimpleName | QualifiedName

SimpleName ::= id

QualifiedName ::= Name ’.’ id

Names are used in the following situations:

• In declarations (see Section 5), where an identifier may specify the name by which the de-

clared entity will be known,

• in field access expressions (see Section 7.3.4), after the “.” token, and

• in some method invocation expressions(see Section 7.3.5), after the “.” token and before the

“(“ token.

Below we show different ways in which names can be used:

Examples:

-2-

ECS 142 Spring 2011
class ClassName {

int classInstance;

void func (int parameter) {

classInstance = parameter;

}

}

class UseClassName {

ClassName cNameInstance;

void locfunc (ClassName instParam) {

cNameInstance = instParam;

}

}

...

ClassName anInstance = new ClassName(); // create an instance of ClassName

UseClassName uInstance = new UseClassName(); // create an instance of UseClassName

uInstance.cNameInstance = anInstance; // object assignment

uInstance.cNameInstance.func(2); // Method invocation

uInstance.cNameInstance.classInstance = 4; // nested field access

...

In this example, the names are used for the following purposes:

Identifier Usage of Identifier

ClassName, UseClassName Definitions of classes

classInstance, cNameInstance Definitions of instance variables

parameter, InstParam Definitions of formal parameters

func, locfunc Definition of instance methods

anInstance, uInstance Definitions of instances

uInstance.cNameInstance Field access

uInstance.cNameInstance.func Method access

uInstance.cNameInstance.classInstance Field access

Note that uInstance.cNameInstance.func is a field access expression. It has two compo-

nents: uInstance.cNameInstance and func. Expression uInstance.cNameInstance de-

notes a primary expression (see Section 7.3) identifying a reference type, whereas func denotes a

member method associated with the reference type.

-3-

ECS 142 Spring 2011
3 Program

A user defines a Java−− program by enumerating a set of class declarations(Section 5.1) in a file.

Program ::= ClassDeclaration*

Each file contains a main class and a set of auxiliary classes. The main class is similar to other

classes, except that it contains a special method, called main. We show an example Java−− pro-

gram below:
Examples:

// example program

class Fib { // main class

void main (int lo) {

int hi;

hi = 1;

while (hi < 50) {

hi = lo + hi;

lo = hi - lo;

}

}

}

class Foo { // auxiliary class

int val;

Foo() { val = 0;}

}

In this program, Fib is the main class, whereas Foo is an auxiliary class. In order to run this

program, you will need to do the following:

% j-- -o fib Fib.jm

% fib 4

In this step, we assume that j-- is a compiler for Java−− and it produces an executable fib. In

reality, creation of an executable may involve assembling the code generated by your compiler,

and linking it with other object files and libraries. Execution of fib will result in invoking the

main method associated with Fib.

Compile Time Error: Flag an error if there are more than one main classes or if there is no

main class in a file.

-4-

ECS 142 Spring 2011
4 Data types

A data type is defined by a set of values and operations over that set. Thus, the data type of a

variable determines both the values that a variable may assume and the valid operations that can

be performed on that variable.

Java−− specifies two kinds of types: primitive type and reference type.

Type ::= PrimitiveType | ReferenceType

4.1 Primitive types

There are four kinds of primitive types defined: int, boolean, char, and string.

PrimitiveType ::= int | boolean | char | string

The values of type int are a subset of the integers whose exact range is implementation depen-

dent. The values of type boolean are true and false denoted by the reserved identifiers true

and false. The values of char are defined by the ASCII character set.

The string data type is used to represent string objects. It provides the following methods

for manipulating string objects:

string();

// constructs a new string with value ""

string (string val);

// constructs a new string that is a copy of val.

int index(char c, int start);

// returns index of character ’c’ in string with first position of c >= start

// if c is not found, returns -1

// if start > length(this) or if start < 0, returns -2

string +(string in1, string in2);

// returns a string that contains characters in string in1 followed

// by characters in string in2.

4.2 Reference type (class type)

Complex data structures in Java−− are defined through reference types. Unlike Java, Java−− has

only one kind of reference types — classes. Class types are used to denote a set of objects. A class

contains methods (collection of executable code) and data structures that capture the state of an

instance of the class.

-5-

ECS 142 Spring 2011
ReferenceType ::= ClassType

ClassType ::= SimpleName

Unlike most programming languages (such as C++, Pascal, etc.) where complex data structures

are usually allocated on the stack, the default mechanism in Java−− is to create a reference to an

instance of a class. For instance, the following declaration

RefType x;

is used to define a reference, called x, to an instance of RefType. x is initialized to null. An

instance of RefType is explicitly created through a new expression (see Sections 7.3.3).

x = new RefType();

An execution of the above statement results in creating an object of type RefType on the heap.

Variable x refers to the newly created object.

5 Declarations

A declaration introduces an identifier for a class, variable, or method, and associates a set of se-

mantic attributes (such as type, value and signature) with the identifier. Your compiler will an-

alyze the declarations and enter them, along with their attributes and scopes, in corresponding

symbol tables. The symbol table package that you designed and implemented in part 1 of the

compiler project will be useful for capturing declarations in a program.

5.1 Class declarations

A class declaration introduces a new reference type and describes how the reference type is im-

plemented:

ClassDeclaration ::= class id [Extends] ClassBody

Extends ::= extends ClassType

Note that definitions such as the following are not valid:

class A extends B.C.D.E.F

Compile Time Error: Flag an error if you come across such definitions.
A class body may contain declarations of fields and methods.

ClassBody ::= ’{’ ClassBodyDeclaration* ’}’

ClassBodyDeclaration ::= ClassMemberDeclaration

ClassMemberDeclaration ::= FieldDeclaration | MethodDeclaration

-6-

ECS 142 Spring 2011
Note that, unlike C++, there is no ’;’ character following class declarations.

5.1.1 Field declarations

A field declaration consists of an identifier denoting the new variable and its type:

FieldDeclaration ::= Type VariableDeclarators ’;’

VariableDeclarators ::= VariableDeclarator (’,’ VariableDeclarator)*

VariableDeclarator ::= id

A variable is denoted by its identifier.

5.1.2 Method declarations

Method declarations serve to define parts of programs and to associate identifiers with them so
that they can be activated by method invocation expressions (see Section 7.3.5).

MethodDeclaration ::= MethodHeader MethodBody

MethodHeader ::= Type MethodDeclarator | void MethodDeclarator

MethodDeclarator ::= id ’(’ [FormalParameterList] ’)’

FormalParameterList ::= FormalParameter (’,’ FormalParameter)*

FormalParameter ::= Type id

MethodBody ::= ’{’ LocalVariableDeclarationStatement* Statement* ’}’

| ’;’

The MethodHeader specifies the identifier naming the method, the types and names of the any

formal parameter identifiers, and the type of the value that the method returns, if any. If there is

no return value, the keyword void must be used in place of the return type. The signature of a

method is defined by the types of its formal parameters.
Examples:

// example class

class Point {

int x, y; // field definitions

Point(int x, int y) { // constructor

this.x = x; // initialize instance variable

this.y = y; // use this to access instance variables

}

Point Add(int x,int y){ // Add method with two parameters

Point retVal; // local variable

retVal = new Point(x, y); // create new Point Object

retVal.x = reVal.x+this.x;

retVal.y = retVal.y+this.y;

-7-

ECS 142 Spring 2011
return retVal;

}

... // other functions

}

A class may not define multiple methods with the same name. In other words, Java−− does

not support method name overloading. It is a compile-time error to define methods with identical

names in a class. In addition, both variables and methods cannot have identical names. For

instance, the following is not a legal definition:

class Foo {

int ABC;

int ABC() { return 0; }

};

It is a compile-time error to have more than one formal parameter with the same name. The

parameters are passed by value. The scope of a formal parameter is the entire body of the method.

It must not, therefore, be redeclared within the body of the method.

The statement sequence of the method body specifies the actions to be executed upon invoca-

tion of the method via a method invocation expression (see Section 7.3.5). The use of the method

identifier within its declaration implies recursion.

Examples:

class PassByValue {

void main(char flag) {

int one = 1;

DoubleIt(one);

}

void DoubleIt(int arg) {

arg = arg * 2;

}

}

Note that all declarations within a method must occur before any executable statements. Declara-

tion statements declare a variable. Local variables exist only as long as the method containing the

variable is executing. A local variable must be declared and initialized (See section 5.1.1) before it

is referenced in either a statement or an expression. Otherwise, a compile-time error occurs.

Examples:

void f(int a)

-8-

ECS 142 Spring 2011
{

int x;

int z;

x = x + 5; // valid use of x

x = z; // error: use of z before initialization

y = x + 2; // error: use of y before declaration

}

Note: If a method does not return a value, this must be indicated by returning void.

5.1.3 Scope

Whenever an identifier is created, it lives in a particular namespace. Identifiers in the same names-

pace must have unique names. All identifiers introduced in the formal parameter list of a method

heading and in the declaration part of the associated scope are local to the method declaration. The

scope of these identifiers encompasses the formal parameter list, declaration list, and statement

list within the method. Variables are not known outside their scopes. In the case of local variables,

their values are undefined at the beginning of the statement list. All identifiers used in a scope

must be declared. An identifier may be declared in the declaration part and formal parameter list

of a procedure declaration only once.

When an identifier is used to denote a class, method, or variable, the meaning of the name is

determined by recursively searching in the following order:

1. Local variables declared in the current scope.

2. A member of the enclosing class.

3. A field member of other classes.

Unlike Java, identifiers in Java−− must be unique within a scope, i.e., within a symbol table in

the current scope. For instance, your program should not allow redefinition of a variable within a

nested block:

int i;

i = 0;

while (i < 10) {

{

int i; // redefinition of i: mark error

-9-

ECS 142 Spring 2011
i = i+1;

}

It is important to note that the scope of an instance or data member of a class includes all member

methods. It is, therefore, possible that a method may access a member that has not yet been

defined. This means that the semantic analyzer must first gather all members of a class before it

can semantically analyze of the bodies of methods.

Examples:

class aClass {

void func() {

classVar = classVar + 1; // valid access to an instance variable.

}

int classVar;

}

5.1.4 Inheritance

Java−− supports single inheritance that is used to support extensibility of classes. The optional

extends clause (see Section 5.1) specifies the direct superclass of the current class. The direct

superclass is the class from whose implementation the implementation of the current class is de-

rived. A derived class inherits all instance variables and methods from its superclass.

You should use the following rules for variable and method declarations that are overridden

in a subclass:

• Fields can not be overridden; they can only be hidden. If a class declares a field that has

the same name as the field defined in its superclass, then the field in the superclass exists.

However, it can be accessed only through the keyword super or another reference to the

superclass’s type, i.e., AnInstance.Fieldname.

• Definition of a method with a signature that is identical to the one defined in the superclass

overrides the later method. The superclass method can be accessed through the keyword

super or by explicitly referencing the superclass’s type.

When a method is invoked on an object, the actual type of the object determines which implemen-

tation is used. Examples:

class Point {

int x, y

int getX();

-10-

ECS 142 Spring 2011
int getY();

}

class ColoredPoint extends Point {

int color;

}

class Colored3DPoint extends ColoredPoint {int z;}

In this example, Color3DPoint extends ColoredPoint, which extends Point. An

instance of Color3DPoint contains four instance variables: x, y, color, and z.

6 SimpleBlock

A block denotes a unit of execution. A set of statements are associated with each block:

SimpleBlock ::= ’{’ Statement* ’}’

Note that all references to variables within a block must have been defined in the current scope.

Otherwise, a compile-time error occurs.

6.1 Statements

Statements denote executable instructions.

Statement ::= IfThenStatement

| IfThenElseStatement

| WhileStatement

| SimpleBlock

| EmptyStatement

| ExpressionStatement

| ContinueStatement

| ReturnStatement

| IOStatement

6.1.1 If statements

The IfThenStatement and IfThenElseStatement specify that a statement be executed only

if a certain condition (Boolean expression) is true.

IfThenStatement ::= if ’(’ Expression ’)’ Statement

IfThenElseStatement ::= if ’(’ Expression ’)’ Statement else Statement

Examples:

-11-

ECS 142 Spring 2011
if (i < 0) i = 1 else i = 2

if (i < 0) i = -i

The expression between the delimiters if and then must be of type boolean. Note that an else

clause is bound to the most recent if clause that does not have one.

6.1.2 WhileStatement

The WhileStatement is used to represent a conditional loop. The expression after the delimiters
while must be of type boolean.

WhileStatement ::= while ’(’ Expression ’)’ Statement

The semantic of while loop specifies that the (boolean) expression is evaluated first, and if it is
true, the statement is executed repeatedly until the expression evaluates to false. A typical while
loop looks like the following:

while (i < 10) {

j = j + i;

i = i + 1;

}

6.1.3 Empty statement

The empty statement executes no action.

EmptyStatement ::= ’;’

6.1.4 Continue statement

A continue statement skips to the end of a loop’s body and evaluates the expression that controls
the loop. A continue is often used to skip over an element of a loop range that can be ignored or
treated with trivial code.

ContinueStatement ::= continue ’;’

A continue statement must occur within a loop; otherwise a compile-time error occurs.

6.1.5 Return statement

A return statement is used to return the control of execution.

ReturnStatement ::= return [Expression] ’;’

The Expression is returned as a value. A return statement must occur within a method body;

otherwise a compile-time error occurs. Further, the type of the expression must match the return

type of the method containing the return statement.

-12-

ECS 142 Spring 2011
6.1.6 Expression statements

Expression statements enumerate a set of expressions.

ExpressionStatement ::= StatementExpression ’;’

StatementExpression ::= Assignment

| MethodInvocation

| ClassInstanceCreationExpression

The expressions are defined in Section 7.

6.1.7 Input/Output Statements

Input and output of values of primitive types are achieved by the input and output statements.

IOStatement ::= (input | output) Expression ’;’

The input statement takes an expression of primitive type, denoting a location. It reads a value

of the corresponding type from the standard input and stores the value in the location. Similarly,

the output statement takes an expression of primitive type, denoting a value. It writes the value

of that expression onto the standard output.

The external representation of the boolean values are: true for true and false for false.

7 Expressions

Expressions denote rules of computation that obtain the values of variables and generate new

values by applying operators.

7.1 Types of expressions

All expressions have a type. The type of an expression is determined by the types of its compo-

nents and the semantics of its operators. The type characteristics of the operators of Java−− are

shown in table 1. Assume that T in the table denotes a type.

7.1.1 Type conversions

Java−− does not support explicit type conversion. However, two kinds of type conversions hap-

pen automatically. The first kind of implicit conversion applies to primitive types:

• A char can be used wherever an int is valid.

-13-

ECS 142 Spring 2011
Operator Left Operand Right Operand Result
+,−,∗, / int int int
Unary − int int

<, <=, >,>= int int boolean
&&, || boolean boolean boolean

! boolean boolean
==, ! = T T boolean

= T T T

Table 1: Table of Operators

The second kind of implicit conversion involves reference conversion. A reference to an instance

of a class can be used wherever a reference to an instance of a superclass of the class is used.

Examples:

class C { ... }

class S extends C { ...}

C c1;

S s1;

c1 = s1; // valid assignment

s1 = c1; // invalid assignment

Also, null object reference can be assigned to any reference type.

7.1.2 Type equivalence

Java−− enforces name equivalence: two types, T1 and T2, are equivalent if and only if they have

identical names.

7.2 Primitive expressions

In Java−−, complex expressions are built from primitive expressions denoting variables and class

members, literal constants and object references (through this or creation of new objects). A prim-

itive expression is, thus, defined:

PrimitiveExpression ::= Primary | Name

-14-

ECS 142 Spring 2011
7.3 Primary expressions

Primary expressions include most of the simplest kinds of expressions, from which all others are

constructed: literals, field accesses and method invocations. A parenthesized expression is also

treated syntactically as a primary expression.

Primary ::= Literal

| this

| ’(’ Expression ’)’

| ClassInstanceCreationExpression

| FieldAccess

| MethodInvocation

7.3.1 Literal

A literal denotes integer, string, character, boolean and null constants:

Literal ::= integer_constant | string_constant | char_constant

| null | true | false

The only literal object reference is null. It can be used anywhere a reference is expected. null

conventionally represents an invalid or uncreated object. Character constants appear with single

quotes: ’Q’. Integer constants are strings of decimal digits. String literals appear with double

quotes: ”a string”. true and false are boolean constants with their usual meaning.

Examples:

int a; char b; bool c;

Obj o; // Obj is a class

a = 385; // 385 is integer constant

b = ’a’; // ’a’ is char constant

c = true; // true is bool constant

o = null; // null constant

output "String constant";// string constant

7.3.2 this

The keyword this either denotes a reference to the object whose method is being invoked, or to

the object being constructed. It may be used only in the body of a method. Otherwise a compile-

time error occurs.
An implicit this is added to the beginning of any field or method reference inside a method

if it is not provided by the programmer. For instance, the assignment to variable var in

-15-

ECS 142 Spring 2011
class Example {

int var;

Example1() { var = 0;}

}

is equivalent to the following:

this.var = 0;

this can be used to access an instance variable if it is hidden by a local variable or a parameter

variable with the same name.

Examples:

class Example {

int var;

Example1(int var) { this.var = var; }

}

7.3.3 Class instance creation expressions

A class instance creation expression is used to create new objects that are instances of a class.

ClassInstanceCreationExpression ::= new ClassType ’(’[ArgumentList] ’)’

ArgumentList ::= Expression (’,’ Expression)*

The arguments in the argument list are used to select a constructor for the named class.

Examples:

Class aClass {

int x, y

aClass() { x = 0; y = 0;}

aClass(int a, int b) { x = a; y = b;}

...

}

...

aClass var1, var2;

var1 = new aClass(0, 2);

var2 = new aClass();

...

Invocation of a new expression results in creation of an instance of the class on the heap. A refer-

ence for the object is returned.

-16-

ECS 142 Spring 2011
7.3.4 Field access expressions

A field access expression is used to access a field of an object:

FieldAccess ::= Primary ’.’ id | super ’.’ id

The type of Primarymust be a reference type. The special form using the keyword super is valid

only in an instance method. Also id must be a valid member (field or method) of the reference

class denoted by Primary or the superclass if denoted by super. The following are examples of

field access expressions:

Examples:

this.field1 // access field1 of current object

super.fld.fld2

(new X()).i // field i of object (new X())

(method(a, b)).i // field i of object returned by method(a, b)

7.3.5 Method invocation expressions

A method invocation expression is used to invoke a class or instance method:

MethodInvocation ::= Name ’(’ [ArgumentList] ’)’

| Primary ’.’ id ’(’ [ArgumentList] ’)’

| super ’.’ id ’(’ [ArgumentList]’)’

The expression may contain a list of actual parameters which are substituted in place of their corre-

sponding formal parameters defined in the method declaration. The correspondence is established

by matching the positions of the parameters in actual and formal parameter lists.

Java−− supports value parameters, where the actual parameter must be an expression (of

which a variable is a simple case). The corresponding formal parameter represents a local variable

of the called procedure, and the current value of the expression is initially assigned to this variable.

Examples:

Class ExampleClass {

ExampleClass() {...}

int method(ExampleClass e, int j) { ... }

...

}

...

int i;

ExampleClass e;

...

-17-

ECS 142 Spring 2011
e = new ExampleClass(); // create an instance of Example class

i = e.method(new ExampleClass(), 4); // invoke a method on e.

7.4 Binary and unary expressions

Java−− supports several binary and unary arithmetic and logical operators. Expression containing
them are defined in the following manner:

Expression ::= Expression ’*’ Expression | Expression ’/’ Expression

| Expression ’+’ Expression | Expression ’-’ Expression

| Expression ’&&’ Expression | Expression ’||’ Expression

| Expression ’==’ Expression | Expression ’!=’ Expression

| Expression ’<’ Expression | Expression ’>’ Expression

| Expression ’<=’ Expression | Expression ’>=’ Expression

| Assignment | ’-’ Expression | ’+’ Expression | ’!’ Expression

| PrimitiveExpression

The operators have usual meaning. The precedences for the operators are described in the hand-

out for project 2.

7.5 Assignment expression

Assignments are defined in the following manner:

Assignment ::= LeftHandSide ’=’ Expression

LeftHandSide ::= Name | FieldAccess

The result of the first operand of an assignment operator must be a variable, or a compile-time

error occurs. This operand may be a named variable, such as a local variable or a field of the

current object or class, or it may be a computed variable, as can result from a field access. The type

of the assignment expression is the type of the variable.

At run time, the result of the assignment expression is the value of the variable after the as-

signment has occurred. A compile-time error occurs if the type of the right-hand operand cannot

be converted to the type of the variable.

8 Notes

Much of the material in this document is taken from the following two books:

• The Java programming language, Ken Arnold and J. Gosling. Addison Wesley, 1995.

-18-

ECS 142 Spring 2011
• The Java language specification, J. Gosling, K. Joy and G. Steele. Addison Wesley, 1996.

-19-

