Machine and Operating System Organization

Raju Pandey
pandey@cs.ucdavis.edu
Department of Computer Sciences
University of California, Davis

Overview

e Organization of Computing Systems

e Organization of operating systems

= Software Engineering view:
o How is operating system software organized?
o What are implications of specific organization
o Case studies

= Abstraction view:
o How does end user see operating system?

o How does control transfer between applications and operating systems
o Design issues

e Thanks: This lecture notes is based on several OS books and other OS classes
= Silbersatz. Et. al

= Stallings
= Bic and Shaw
= @G. Nutt

= Free BSD book
= Professor Felix Wu’s notes for ECS 150
= U. Washington (451: Professors Gribble, Lazowska, Levy and Zahorjan)

ECS 150 OS Organization, 2

Part I: Computing System Organization
Background material

Basic Elements

e Processor
e Main Memory
= yolatile

= referred to as real memory or
primary memory

e |/O modules
= secondary memory devices
= communications equipment
= terminals

e System bus

= communication among
processors, memory, and |I/0O
modules

I/O Module

System
Bus

Main Memory

%)
¥
¥

Instruction
Instruction
Instruction
¥
¥
¥
Data
Data
Data
Data

LI S

¥ nb2
nb1

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

ECS 150

OS Organization, 4

Processor Registers

e User-visible registers: enable programmer to minimize main-memory
references by optimizing register use

= Data
= Address: Index, Segment pointer, Stack pointer

e Control and status register: Used by processor to control operating of the
processor

= Used by privileged operating-system routines to control the execution of
programs

= Program Counter (PC)

o Contains the address of an instruction to be fetched
= |nstruction Register (IR)

o Contains the instruction most recently fetched
= Program Status Word (PSW)

o Condition codes: Bits set by the processor hardware as a result of operations. For
instance, Positive result, Negative result, Zero, Overflow

o Interrupt enable/disable
o Supervisor/user mode

ECS 150 OS Organization, 5

Instruction Execution

e Fetch: CPU fetches the instruction from memory
= Program counter (PC) holds address of the instruction to be fetched next
= Program counter is incremented after each fetch
= Fetched instruction is placed in the instruction register

e Decode

= (Categories of IR
(0] Processor—memory
A Transfer data between processor and memory
o Processor-1/0
A Data transferred to or from a peripheral device
o Data processing
A Arithmetic or logic operation on data
o Control
A Alter sequence of execution

e Execute: Processor executes each instruction

ECS 150 OS Organization, 6

Interrupts

e Interrupt the normal sequencing of the processor
e Most I/O devices are slower than the processor

" Processor must pause to wait for device

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
memory space.

Timer Generated by a timer within the processor. This allows the operating system
to perform certain functions on a regular basis.

10 Generated by an I/O controller, to signal normal completion of an operation
or to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

ECS 150 OS Organization, 7

Program Flow of Control

et ne User vo User o
Program p Program Program Program Program ¢ Program
E .‘. o ae .é

© 1|9 o i A e ® AT e
ol / o it e L {4 TO
WRITE :o.‘- COI_TIEDd WRITE : ': ..:,". Command WRITE :' }"::,- Command
— 'c..‘ i @ :.. . —_— .
® o ® | /i ® |

* :':.;::.:;.:n :

'.- . . ln [
4 3 ——— St
—f S — #
Wit mm? A1 |0 werrs 5771 (O
T = i L i
< END 7 ,.:. “ END

G :
— 0 o i/

@ 4 .
v v I
SR WRITE WRITE »

(Without Interrupts) (Interrupts; Short I/0 Wait) Interrupts; Long 1/0 Wait)

ECS 150 OS Organization, 8

Interrupts and processing of interrupts

e Interrupts: Suspends the normal sequence of execution
e Interrupt handler: respond to specific interrupts

= Program to service a particular I/O device
= Generally part of the operating system

User Program Interrupt Handler
1
2
¥ ¥
¥ ¥
¥ ¥
i
Interrupt — |
occurs here i+1 “
¥
¥
¥
M

ECS 150 OS Organization, 9

Interrupt Cycle

e Processor checks for interrupts
e If nointerrupts fetch the next instruction for the current program

e Ifan interrupt is pending, suspend execution of the current program, and execute
the interrupt-handler routine

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disabled

Check for
interrupt:
initiate interrupt
handler

Execute
instruction

Fetch next
instruction

START

Interrupts
Enabled

ECS 150 OS Organization, 10

Simple Interrupt Processing

Hardware

—A——

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Software

~—A—

A4

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

ECS 150

OS Organization, 11

Changes in Memory and Registers for an Interrupt

T-M T-M VT
Control Y Control
Stack | Stack —
T T
!EJ LB EYA
Program Program
Counter Counter
Y [Slart Y | Start
— | Interrupt Genera Interrupt General
Service Regisers Service Registers
Y + L [Retura| Routine ¥+ L [Remm] Routine
Stack Stack
Pointer Pointer
Processor Processor
TOM T
N .
User's N
N+1 Users
N+1
Program Program
Main]
Memory Main
Memory

Interrupt occurs after instruction

at location N Return from Interrupt

ECS 150 OS Organization, 12

Multiple Interrupts

e What if interrupt occurs

while another interrupt
is being serviced?

e One at a time:

Disable others -> keep
them pending

Finish
Go back to service other
pending

Problem: Priority, Time-
critical processing?

Interrupt
User Program Handler X

)

/

\

{IIIIIIIIIII

(a) Sequential interrupt processing

Interrupt
Handler Y
[~

I/IIIIIIIIlIII

ECS 150

OS Organization, 13

Multiple Interrupts

Interrupt

e Enable higher priority User Progeam i X
interrupts to go before | :

{IIIIII (N
7k

= Interrupt
= landler Y
= S
User Pro Printer Communication E =
e interrupt service routine interrupt service routine = -
= = 5 - = =
= | 2 - P -
= =~ = (b) Nested interrupt processing
= S |
=l :‘\ ==
- ¢ - Disk
- 90 = WN service routine

7

Figure 1.13 Example Time Sequence of Multiple Interrupts

ECS 150 OS Organization, 14

Memory Hierarchy

e Three characteristics of memory
= Capacity
= Access Time
= Cost
e Relationships:
= Faster access time, greater cost per
bit
= Greater capacity, smaller cost/bit
= Greater capacity, slower access speed

e Memory hierarchy:
= Decreasing cost/bit
= |ncreasing capacity
= |ncreasing access time

= Decreasing frequency of access of the
memory by the processor
o Locality of reference

ECS 150 OS Organization, 15

Cache Memory

e Invisible to operating system
e Increase the speed of memory
e Processor speed is faster than memory speed

e Exploit the principle of locality:
= Processor first checks cache
= |f not found in cache, the block of memory containing the needed information is moved

Block Transfer

Word Transfer M/\
(\A/\

CPU Cache Main Memory

ECS 150 OS Organization, 16

Cache/Main-Memory Structure

Block
___________________ -
___________________ -—

-
[3
-
_____ BlockLength
hd (K Words) »
(a) Cache

Memory
address
O |EEN——]
e 4
o 1
3 |
] R
: |
l ________ I
! i
I
! |
I
i [
! |
I
| a :
I B |
I
| o :
' |
I
! |
I
i |
B ;
: [
I
! |
: |
' [
' [
' [
n 1t [
2" -1
_ Word _ _
« Length .
(b) Main memory

Figure 1.17 Cache/Main-Memory Structure

Block
(K words)

Block

ECS 150

OS Organization, 17

Cache Read Operation

Receive address
RA from CPU
containing RA

RA -read address

Is block No Access main
ini memory for block

containing RA

in cache?
Yes

Fetch RA word
and deliver
to CPU

l l

Load main .
memory block gegporRAword
into cache slot

@

Figure 1.18 Cache Read Operation

ECS 150 OS Organization, 18

Cache Design Issues

Cache size
= Small caches have significant impact on performance
Block size
®= The unit of data exchanged between cache and main memory
= Larger block size means more hits
= But too large reduces chance of reuse.
Mapping function: Determines which cache location the block will occupy
= Two constraints:
o When one block read in, another may need replaced
o Complexity of mapping function increases circuitry costs for searching
Replacement algorithm

= Chooses which block to replace when a new block is to be loaded into the cache.

= |deally replacing a block that isn’t likely to be needed again
Impossible to guarantee
Effective strategy is to replace a block that has been used less than others
= Least Recently Used (LRU)
Write policy: Dictates when the memory write operation takes place
Can occur every time the block is updated
Can occur when the block is replaced
= Minimize write operations
= Leave main memory in an obsolete state

ECS 150

OS Organization, 19

/0O Techniques

e When the processor encounters an instruction relating to |/0O,

= it executes that instruction by issuing a command to the appropriate /0
module.

e Three techniques are possible for I/O operations:
= Programmed I/O
= Interrupt-driven 1/O
= Direct memory access (DMA)

ECS 150 OS Organization, 20

Programmed |/0O

Issue Read

e |/0O module performs the action, not the | ——y

1/0 module
processor i
e Sets appropriate bits in the I/O status /O — CPU
register
Error

condition

e No interrupts occur

e Processor checks status until operation is

complete

e (Cons:

= Performance as CPU must keep checking

Next instruction
(a) |

ECS 150 OS Organization, 21

Interrupt-Driven |/O

e Processor is interrupted when I/O module ready to

exchange data Jesue Read _RCPU - 1O
e Processor saves context of program executing and begins e ;‘g““‘““dlf - 3;’:0"“’"““3
executing interrupt-handler
e No needless waiting Read status fg _ _ _ [nterrupt
. of /O
e Consumes a lot of processor time because every word —— /O — CPU
read or written passes through the processor
Error
condition
Read word
from /O 1/0 — CPU
Module
Write word
into memory CPU — memory

Next instruction

ECS 150 OS Organization, 22

Direct Memory Access (DMA)

|/O exchanges occur directly with
memory

Processor grants /O module
authority to read from or write to
memory

Relieves the processor responsibility
for the exchange

Transfers a block of data directly to or
from memory

An interrupt is sent when the transfer
is complete

Processor continues with other work

PU — DMA

Issue Read
block command Do something
oOmodule §~ " 7 else
Read Status R]nlen'llpl
of DMA
DMA — CPU

Next instruction

ECS 150

OS Organization, 23

Architectural Support for OS

e Architectural support can vastly simplify (or complicate!) OS tasks
= e.g.: early PC operating systems (DOS, MacOS) lacked support for virtual
memory, in part because at that time PCs lacked necessary hardware support
o Apollo workstation used two CPUs as a band-aid for non-restartable instructions!
= Until very recently, Intel-based PCs still lacked support for 64-bit addressing

(which has been available for a decade on other platforms: MIPS, Alpha, IBM,

etc...)

o changing rapidly due to AMD’s 64-bit architecture

3/31/2011 Source: Gribble, Lazowska, Levy, Zahorjan OS Organization, 24

Architectural features affecting OS’s

e These features were built primarily to support OS’s:

timer (clock) operation

synchronization instructions (e.g., atomic test-and-set)
memory protection

|/O control operations

interrupts and exceptions

protected modes of execution (kernel vs. user)
privileged instructions

system calls (and software interrupts)

virtualization architectures

o Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/7-architecture-

usage.htm

o AMD: http://sites.amd.com/us/business/it-solutions/usage-
models/virtualization/Pages/amd-v.aspx

3/31/2011

Source: Gribble, Lazowska, Levy, Zahorjan

OS Organization, 25

Privileged/Protected instructions

e some instructions are restricted to the OS

= known as protected or privileged instructions
e e.g., onlythe OS can:

= directly access I/O devices (disks, network cards)
o why?

= manipulate memory state management
o page table pointers, TLB loads, etc.
o why?

= manipulate special ‘mode bits’

o interrupt priority level
o why?

3/31/2011 Source: Gribble, Lazowska, Levy, Zahorjan OS Organization, 26

OS protection

e So how does the processor know if a privileged instruction should be
executed?
= the architecture must support at least two modes of operation: kernel mode
and user mode

o VAX, x86 support 4 protection modes

= mode is set by status bit in a protected processor register
0 user programs execute in user mode
o OS executes in kernel (privileged) mode (OS == kernel)

e Privileged instructions can only be executed in kernel (privileged) mode

= what happens if code running in user mode attempts to execute a privileged
instruction?

3/31/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan OS Organization, 27

Crossing protection boundaries

e So how do user programs do something privileged?
= e.g., how can you write to a disk if you can’t execute an I/O instructions?

e User programs must call an OS procedure — that is, get the OS to do it for
them

= (OS defines a set of system calls
= User-mode program executes system call instruction
e Syscall instruction

= Like a protected procedure call

3/31/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan OS Organization, 28

Organization of OSs

. User
e Programming Interface ¥
Applications
(svstem and user)
Library calls —» ¥
System
libraries
. . Kernel calls > Y ¥
® Invoklng system services _
Opcerating
= Library call (nonprivileged) systcm
o kernel
= Kernel call (privileged) Machine
instructions A + Y
Hardware

ECS 150 OS Organization, 29

APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
L > open ()
< Implementation
i » of open ()
. system call
return

ECS 150

OS Organization, 30

Standard C Library Example

#include <stdio.h>
int main ()

{

printf ("Greetings");

return o;
}
user
mode Y
standard C library
lkernel

mode
erite ()

write ()
system call

C program invoking printf() library call, which calls write() system call

ECS 150

OS Organization, 31

System Calls

e Programming interface to the services provided by the OS
e Typically written in a high-level language (C or C++)
e Mostly accessed via a high-level Application Program Interface (API)

e Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux, and

Mac OS X), and Java API for the Java virtual machine (JVM)

e Why use APIs rather than system calls?

ECS 150 OS Organization, 32

Types of System Calls

e Process control
e Device management

e Communications

e File management

e [Information maintenance

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

S = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

ECS 150

OS Organization, 33

Some System Calls

Directory and file system management

Call

Description

s = mkdir(hname, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to name1

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Miscellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

ECS 150

OS Organization, 34

Example of Standard API

e Consider the ReadFile() function in the Win32 APl—a function for reading from a
file

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name !

e A description of the parameters passed to ReadFile()
= HANDLE file—the file to be read
= LPVOID buffer—a buffer where the data will be read into and written from
= DWORD bytesToRead—the number of bytes to be read into the buffer
= LPDWORD bytesRead—the number of bytes read during the last read
= |LPOVERLAPPED ovl—indicates if overlapped I/O is being used

ECS 150 OS Organization, 35

System Call Implementation

e Typically, a number associated with each system call
= System-call interface maintains a table indexed according to these numbers
e The system call interface invokes intended system call in OS kernel and
returns status of the system call and any return values
e The caller need know nothing about how the system call is implemented

= Just needs to obey APl and understand what OS will do as a result call

= Most details of OS interface hidden from programmer by API

o Managed by run-time support library (set of functions built into libraries included

with compiler)

ECS 150 OS Organization, 36

Invoking System Services

apphicanon issues call body of
to lib_tunc(params) Lib_func(}
push params on stack

branch to hib_func() hody —

perform service
retursn from function

pop stack pointer -

(a)
application issues call hody of kernel code
ta kern_func(params) kern_func()

push params on stack
branch to kern_func() body —
sel up regs lor SVC
SVC —
perform service
sct nonprivileged mode
return from SVYC
return from function -<—
pop stack pointer —-—

(M
Figure 1-10

ECS 150 OS Organization, 37

Steps in Making a System Call

Address
OxFFFFFFFF _
Return to caller 1 .
T ho k I Library
rap to the kerne procedure
5| Put code for read in register read
10
4
U #
=el SpEEE < Increment SP 11
~ Call read
3| Pushfd User program
2| Push &buffer calling read
1| Push nbytes
6 9
-
r * 7
Kernel space ’ 7 8 | Sys call
(Operating system) < DEEs ER - “| handler
0

Steps in making the system call:
read (fd, buffer, nbytes)

ECS 150

OS Organization, 38

System Call

e The syscall instruction atomically:
= Saves the current PC
= Sets the execution mode to privileged
= Sets the PC to a handler address

e With that, it’s a lot like a local procedure call
= Caller puts arguments in a place callee expects (registers or stack)
o One of the args is a syscall number, indicating which OS function to invoke

= Callee (OS) saves caller’s state (registers, other control state) so it can use the
CPU

= OS function code runs
o OS must verify caller’s arguments (e.g., pointers)

= OS returns using a special instruction
o Automatically sets PC to return address and sets execution mode to user

3/31/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan OS Organization, 39

A ke

rnel crossing illustrated

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

user mode

Save user PC

PC = trap handler addrgss
Enter kernel mode \

v

kernel mode
trap

\

sys_read() kernel routine

handler

Save app state
PC = saved PC

Verify syscall number
Find sys_read() handler in vectqgr Eab#E user mode

y

Verify args
Initiate read
Choose next process to ru

Setup return values

ERET instruction

v Restore app state

———
OS Organization, 40

3/31/2011

Source: Gribble, Lazowska, Levy, Zahorjan

System Call Parameter Passing

e Three general methods used to pass parameters to the OS
e 1.Simplest: pass the parameters in registers
= |n some cases, may be more parameters than registers

e 2. Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

ECS 150 OS Organization, 41

System Call Parameter Passing

e 3. Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

= This approach taken by Linux and Solaris

— x|

register

X: parameters
for call

—™| use parameters code for
load address X / from table X system
system call 13 — > call 13

user program

operating system

ECS 150 OS Organization, 42

System call issues

e What would be wrong if a syscall worked like a regular subroutine call,
with the caller specifying the next PC?

e What would happen if kernel didn’t save state?
e Why must the kernel verify arguments?

e How can you reference kernel objects as arguments to or results from
system calls?

3/31/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan OS Organization, 43

Principles of Interupts and Traps

Fxternal
hardware
device

Application

s1gnal
Y
(a)
Applicabion

Lrap

Y
(b)

Opcratimg system

v Ia“si,cl' (interr upi'han dler)

con‘lfo\
Icrrupt ¥
- R_\q

Operating svstem
(trap handler)

’i{aﬂ‘sie‘
cﬁﬁﬁjcﬁ
Cause !

%

ECS 150

OS Organization, 44

Exception Handling and Protection

All entries to the OS occur via the mechanism just shown

— Acquiring privileged mode and branching to the trap handler are
inseparable

Terminology:
— Interrupt: asynchronous; caused by an external device
— Exception: synchronous; unexpected problem with instruction
— Trap: synchronous; intended transition to OS due to an instruction

Privileged instructions and resources are the basis for most

everything: memory protection, protected 1/O, limiting user resource
consumption, ...

3/31/2011

Source: Gribble, Lazowska, Levy, Zahorjan OS Organization, 45

Memory protection

e OS must protect user programs from each other
= maliciousness, ineptitude

e OS must also protect itself from user programs
= integrity and security
= what about protecting user programs from OS?

e Simplest scheme: base and limit registers
= are these protected?

Prog A
"~ base reg base and limit
Prog B [__{limit reg registers are loaded
by OS before starting
Prog C program

3/31/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan OS Organization, 46

More sophisticated memory protection

e coming later in the course

e paging, segmentation, virtual memory
= page tables, page table pointers
= translation lookaside buffers (TLBs)
= page fault handling

3/31/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan OS Organization, 47

Part Il: OS Structure

Structure of Operating Systems

What are components of traditional OSs?

What are design issues that affect structures of OSs?
How are components implemented?

How are they stitched together?

Major software engineering and design problem

= Design a large complex system that
Is efficient

Is reliable

Is extensible

O O O O

Is backwards compatible
o Provides lots of services

Typical structures
1. Monolithic

2. lLayered

3. Micro-Kernel

ECS 150

OS Organization, OS Organization, 49

OS Structure

§ <l Firefox Photoshop Acrobat Java
A
D
c File Memory — Process Network
2 = Systems B8 Manager E Manager B Support & > 5
S i Device B |[nterrupt BN Boot & |nit FS ®
C Drivers B Handlers -
) /
i

Hardware (CPU, devices)

Source: Gribble, Lazowska, Levy, Zahorjan

ECS 150 0OS Organization, OS Organization, 50

Complex Runtime Interaction among
0OS components

[Cgvmmandlnterpreter J

]
nformation Servjeés
(L formation Seryeés \\

/ \(Accounting System)
File System
4 \

Error Handling

77 7\

%otection Syste

(Process Management

Memory
Management

Sec?)ndary Storage
Management
v

I/O System

Source: Gribble, Lazowska, Levy, Zahorjan

ECS 150 OS Organization, OS Organization, 51

Components of Operating Systems

e Process Management

e Main Memory Management

e Secondary-Storage Management
e |/O System Management

e File Management

e Protection System

e Networking

e Command-Interpreter System

e Accounting

ECS 150 OS Organization, 52

Process Management

e A process =
= program in execution +
= Resources: CPU time, memory, files, and |/O devices
= Privileges
e Supported operations:
" Process creation and deletion.
" process suspension and resumption.

= Provision of mechanisms for:
0 process synchronization

0 process communication

ECS 150 OS Organization, 53

Main-Memory Management

e Memory =
= Array of bytes
= Sharing between CPU and I/O devices
= Volatile
e Supported operations:
= Keep track of which parts of memory are currently being used and by whom.

= Decide which processes to load when memory space becomes available.

= Allocate and deallocate memory space as needed

ECS 150 OS Organization, 54

Secondary-Storage Management

e Secondary storage to back up main memory + long term storage
= Disks
= Store program and data
e Disk management operations:
= Free space management
= Storage allocation

= Disk scheduling
o Read

o Write

ECS 150 OS Organization, 55

/0 System Management

e |/O
" |nput/Output
= Networking Interface
= Display
= QOthers
e The |I/O system consists of:
= A buffer-caching system
= A general device-driver interface

= Drivers for specific hardware devices

ECS 150 OS Organization, 56

File Management

Information representation:

Files
o Program
o Data
Directory:

o Organize information Operations for file management:

Operations supported;

File creation and deletion

Directory creation and deletion

Support of primitives for manipulating files and directories
Mapping files onto secondary storage

File backup on stable (nonvolatile) storage media

ECS 150

OS Organization, 57

Protection System

e Protection refers to a mechanism for controlling access by programes,

processes, or users to both system and user resources.
e The protection mechanism must:
= distinguish between authorized and unauthorized usage.

= specify the controls to be imposed.

= provide a means of enforcement.

ECS 150 OS Organization, 58

Organization of Operating Systems

1. Monolithic
2. Layered
3. Micro-Kernel

4. Extensible operating systems

ECS 150 OS Organization, 59

OS structuring: Monolithic kernels

Application

Monolithic kernel

File Address space Semaphore Socket Process Monitor ACL
Page Task Schedule Event Segment Mutex

HW

Bit Byte Word Register Instruct ruction Interrupts

ECS 150 OS Organization, 60

Simple Structure: Monolithic OS

Traditional OS’s: Built as monolithic entity

Advantage:

= Efficient: I/O routines can directly write to

display and disk drives => more efficient

Disadvantages:
= Hard to understand
= Hard to modify

= Unreliable: OS vulnerable to malicious or buggy

programs
"= Hard to maintain

MS-DOS —provide the most functionality in the

least space: Not divided into modules

= Although MS-DOS has some structure, its

interfaces and levels of functionality are not well
d

user programs

OS everything
hardware
AN

application program

—_— ¢

resident system program

MS-DOS device drivers .

A

ROM BIOS device drivers h

ECS 150

OS Organization, 61

Monolithic OS

Linux Kernel Size (.tar.gz)

35
30
25
20
15

Size (Mb)

10
5

0
31-Jan-93 9-Apr-01 14-Jan-04

i THE UNIVERSIT
NEW SOUTH WALES

ECS 150 OS Organization, 62

Layered Operating Systems

e OS divided into layers (levels),

The first description of this approach was

Dijkstra’s THE system
= Layer 5: Job Managers
o Execute users’ programs
= lLayer 4: Device Managers

o Handle devices and provide buffering

= Layer 3: Console Manager
o Implements virtual consoles
= layer 2: Page Manager

o Implements virtual memories for each process

= Layer 1: Kernel

o Implements a virtual processor for each proces

Layer O: Hardware

Each layer can be tested and verified
independently

layer N
user interface

layer O
hardware

.

ECS 150

OS Organization, 63

Example: UNIX System Structure

e Limited structuring.
e The UNIX OS two parts:

= Systems programs

= The kernel: Consists of everything below the system-call interface and above the
physical hardware

A Provides the file system, CPU scheduling, memory management, and other
operating-system functions; a large number of functions for one level

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

— signals terminal file system CPU scheduling

g) handling swapping block I/O page replacement

2 character /O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers

ECS 150

terminals disks and tapes physical memory

OS Organization, 64

Example of layering: Hardware Abstraction Layer

e An example of layering in modern
operating systems
e Goal: separates hardware-specific routines
from the “core” OS
= Provides portability
= |Improves readabilit

Hardware Abstraction Layer
(device drivers, assembly routines)

3/31/2011 Source: Gribble, Lazowska, Levy, Zahorjan OS Organization, 65

Problems with layered approach

e |Imposes hierarchical structure: one-one, unidirectional relationship...

= but real systems are more complex:
o file system requires VM services (buffers)
o VM would like to use files for its backing store

= strict layering isn’t flexible enough
e Poor performance

= Qverhead of crossing each layer

e Widening range of services and application
=> OS bigger, more complex, slower and more error prone

e Portability problems

= Does one layering structure translate to similar one on a different
architecture?

e Harder to support different OS environments

e Distribution
=> impossible to provide all services from same kernel

ECS 150 OS Organization, 66

Microkernels

e Popularin the late 80’s, early 90’s

= recent resurgence of popularity

e Goal:
" minimize what goes in kernel

= organize rest of OS as user-level processes

e This results in:
= better reliability (isolation between components)
= ease of extension and customization

= poor performance (user/kernel boundary crossings)

e First microkernel system was Hydra (CMU, 1970)

= Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X (Apple),
in some ways NT (Microsoft)

3/31/2011 Source: Gribble, Lazowska, Levy, Zahorjan OS Organization, 67

Microkernel Structure lllustrated

user
processes

system
processes

microkernel

firefox powerpoint

apache photoshop c

itunes word 0

3

@
communication 3 §

low-level VM processor 8_ =
protection control ® @

hardware

ECS 150

OS Organization, 68

Microkernels: break up OS

Syscall/Downcall

upcall

Applications

L 7 Applications UNIX | NT File
VES ... PP Server|ServerjServer

User mode

IPC, File System ...

Scheduler, Virtual memory ... ~_ !
Kernel mode _
Device Derivers, Dispatcher, ... IPC, Virtual Memory ...
Hardware Hardware
e Kernel: Implement mechanisms e User-level servers:
= Code that must run in supervisory = Hardware independent/portable
mode = Provide “OS environment/OS
= |solate hardware dependencies from personality”
higher levels = May be invoked from:

= Small and fast o Application (IPC)
o Kernel (upcalls)

ECS 150 OS Organization, 69

Promise of Microkernels

e Co-existence of different
= APIs
= File systems

= OS Personalities
e Flexibility
e Extensibility
e Simplicity
e Maintainability
e Security

e Safety

ECS 150 OS Organization, 70

Example: Mac OS X Structure

kernel
environment

application environments
and common services

I

BSD

Mach

ECS 150

OS Organization, 71

Example: Minix OS Structure

Init User User User
Process Process Process | 77T User
Memory File Network S
erver
Manager System server
disk tty clock system | Ethernet 1/0

Process Management

Kernel

ECS 150 OS Organization, 72

Windows

System support caishind misasases Applications
processes
Service control
Environment
I'w. Task manager subsystems
Inm‘““ .LXe WEmo“,s
| Spooler explorer POSIX
. . l:gr -
r::xo: L Services.exe application
" .
' Subsytem DLLs Win32
"""" : A \ Y Y
: NdllLdll
System | | .
dweads (1 L 1S _____ 1N [— por oo OO] RSN . -
Yy Yy Kernel mode Yy Y Y
y System service dispatcher
(Kernel-mode callable interfaces) e
i J .
VO manager = v GDI
= - 3 - E e
= = <] < -~
%%ﬁ?;iéggéaé
Y - L) - - = ¢ = o
Device B g |B E_ g § 2| z £ g EE %E
and file - £ k| =| 2 |8 g s |22] Graphics
system z = "E 3 3 X 3 o g‘ drivers
drivers ¥ i [=
| Kernel |
Hardware abstraction layer (HAL) I

Lsass = local security authentication server Colored area indicates Executive

POSIX = portable operating system interface
QDI = graphics device interface
DLL = dynamic link libraries

Figure 2,13 Windows and Windows Vista Architecture [RUSS03] Source: Stallings

ECS 150 OS Organization, 73

Linux Kernel Structure

System support
rocesses

N)

Processes

Service processes

Tl

O

Applications

Figure 2,18 Linux Kernel Components

Signals < System calls
A
Processes
Sapchec By File Network
systems protocols
Virtual
memory Y Y
Char Device Block device Network
drivers drivers device drivers
Y \ / o
Traps & Physical R
faults memory P
A
Y Y w_\ Y
CPU System Terminal Disk Network interface
memory controller

v
User level

Kernel

Hardware

»: Stallings

ECS 150

OS Organization, 74

Modules

e Most modern operating systems implement kernel modules
= Uses object-oriented approach
= Each core component is separate
= Each talks to the others over known interfaces
= Each is loadable as needed within the kernel

e Overall, similar to layers but with more flexible

ECS 150 OS Organization, 75

Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable
system calls

miscellaneous
modules

STREAMS
modules

executable

formats

ECS 150

OS Organization, 76

Operating System Services

e One set of operating-system services provides functions that are helpful to the

user:
= User interface - Almost all operating systems have a user interface (Ul)
o Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch
= Program execution - The system must be able to load a program into memory and to run that
program, end execution, either normally or abnormally (indicating error)
= |/O operations - A running program may require 1/0, which may involve a file or an I/O device.
= File-system manipulation - The file system is of particular interest. Obviously, programs need to read
and write files and directories, create and delete them, search them, list file Information, permission
management
= Communications — Processes may exchange information, on the same computer or between
computers over a network
o Communications may be via shared memory or through message passing (packets moved by the OS)
= Error detection — OS needs to be constantly aware of possible errors
o May occur in the CPU and memory hardware, in I/O devices, in user program
o For each type of error, OS should take the appropriate action to ensure correct and consistent computing
o Debugging facilities can greatly enhance the user’s and programmer’s abilities to efficiently use the system

ECS 150 OS Organization, 77

Operating System Services (Cont.)

Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

= Resource allocation - When multiple users or multiple jobs running concurrently,
resources must be allocated to each of them

o Many types of resources - Some (such as CPU cycles,mainmemory, and file storage) may have
special allocation code, others (such as I/O devices) may have general request and release code.

= Accounting - To keep track of which users use how much and what kinds of computer
resources

= Protection and security - The owners of information stored in a multiuser or networked
computer system may want to control use of that information, concurrent processes
should not interfere with each other
o Protection involves ensuring that all access to system resources is controlled

o Security of the system from outsiders requires user authentication, extends to defending
external I/O devices from invalid access attempts

o Ifasystemisto be protected and secure, precautions must be instituted throughout it. A chain
is only as strong as its weakest link.

ECS 150

OS Organization, 78

Interaction between Application and OS

CLI allows direct command entry

Sometimes implemented in kernel, sometimes by systems program
Sometimes multiple flavors implemented — shells

Primarily fetches a command from user and executes: Sometimes commands built-in,
sometimes just names of program (adding new features doesn’t require shell
modification)

User-friendly desktop metaphor interface

Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause various actions (provide
information, options, execute function, open directory (known as a folder)

Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces

Microsoft Windows is GUI with CLI “command” shell

Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and shells
available

Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

ECS 150

OS Organization, 79

Accessing an OS Service

e Runtime organization
= Service is a Subroutine
= Service is an Autonomous Process (“client-server”)

Tiser process .
Uscr process Systeal process
(chent) (server)

\

| ibrary or kernel call y '
> Send request "

> {

~ o . |

SFE:.'C{: Serviee

Rcmm TOULNC routine :

- ' A J Return results |
€ 1

1

1

(a) (b}

Figure 1-12

ECS 150 OS Organization, 80

Summary

e QOrganization of computing systems

e Components of OS
= Process, Memory, |I/O, File, Security, etc.
= Safety
e QOrganization of components
= Monolithic, Layered, Microkernel
e Interaction between programs and operating systems

= System calls

ECS 150 OS Organization, 81

