Machine and Operating System Organization

Raju Pandey
pandey@cs.ucdavis.edu
Department of Computer Sciences
University of California, Davis

Overview

- Organization of Computing Systems
- Organization of operating systems
 - Software Engineering view:
 - o How is operating system software organized?
 - o What are implications of specific organization
 - o Case studies
 - Abstraction view:
 - o How does end user see operating system?
 - o How does control transfer between applications and operating systems
 - o Design issues
- Thanks: This lecture notes is based on several OS books and other OS classes
 - Silbersatz, Et. al.
 - Stallings
 - Bic and Shaw
 - G. Nutt
 - Free BSD book
 - Professor Felix Wu's notes for ECS 150.
 - U. Washington (451: Professors Gribble, Lazowska, Levy and Zahorjan)

Part I: Computing System Organization Background material

Basic Elements

- Processor
- Main Memory
 - volatile
 - referred to as real memory or primary memory
- I/O modules
 - secondary memory devices
 - communications equipment
 - terminals
- System bus
 - communication among processors, memory, and I/O modules

Processor Registers

- User-visible registers: enable programmer to minimize main-memory references by optimizing register use
 - Data
 - Address: Index, Segment pointer, Stack pointer
- Control and status register: Used by processor to control operating of the processor
 - Used by privileged operating-system routines to control the execution of programs
 - Program Counter (PC)
 - o Contains the address of an instruction to be fetched
 - Instruction Register (IR)
 - o Contains the instruction most recently fetched
 - Program Status Word (PSW)
 - o Condition codes: Bits set by the processor hardware as a result of operations. For instance, Positive result, Negative result, Zero, Overflow
 - o Interrupt enable/disable
 - o Supervisor/user mode

Instruction Execution

- Fetch: CPU fetches the instruction from memory
 - Program counter (PC) holds address of the instruction to be fetched next
 - Program counter is incremented after each fetch
 - Fetched instruction is placed in the instruction register
- Decode
 - Categories of IR
 - o Processor-memory
 - ▲ Transfer data between processor and memory
 - o Processor-I/O
 - ▲ Data transferred to or from a peripheral device
 - o Data processing
 - Arithmetic or logic operation on data
 - o Control
 - ▲ Alter sequence of execution
- Execute: Processor executes each instruction

Interrupts

- Interrupt the normal sequencing of the processor
- Most I/O devices are slower than the processor
 - Processor must pause to wait for device

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation or to signal a variety of error conditions.
Hardware failure	Generated by a failure, such as power failure or memory parity error.

Program Flow of Control

(Without Interrupts)

(Interrupts; Short I/O Wait)

Interrupts; Long I/O Wait)

Interrupts and processing of interrupts

- Interrupts: Suspends the normal sequence of execution
- Interrupt handler: respond to specific interrupts
 - Program to service a particular I/O device
 - Generally part of the operating system

Interrupt Cycle

- Processor checks for interrupts
- If no interrupts fetch the next instruction for the current program
- If an interrupt is pending, suspend execution of the current program, and execute the interrupt-handler routine

Simple Interrupt Processing

Changes in Memory and Registers for an Interrupt

Interrupt occurs after instruction at location N

Return from Interrupt

Multiple Interrupts

- What if interrupt occurs while another interrupt is being serviced?
- One at a time:
 - Disable others -> keep them pending
 - Finish
 - Go back to service other pending
 - Problem: Priority, Timecritical processing?

(a) Sequential interrupt processing

Multiple Interrupts

 Enable higher priority interrupts to go before others

(b) Nested interrupt processing

Figure 1.13 Example Time Sequence of Multiple Interrupts

Memory Hierarchy

- Three characteristics of memory
 - Capacity
 - Access Time
 - Cost
- Relationships:
 - Faster access time, greater cost per bit
 - Greater capacity, smaller cost/bit
 - Greater capacity, slower access speed
- Memory hierarchy:
 - Decreasing cost/bit
 - Increasing capacity
 - Increasing access time
 - Decreasing frequency of access of the memory by the processor
 - o Locality of reference

Cache Memory

- Invisible to operating system
- Increase the speed of memory
- Processor speed is faster than memory speed
- Exploit the principle of locality:
 - Processor first checks cache
 - If not found in cache, the block of memory containing the needed information is moved

Cache/Main-Memory Structure

Figure 1.17 Cache/Main-Memory Structure

Cache Read Operation

Figure 1.18 Cache Read Operation

Cache Design Issues

- Cache size
 - Small caches have significant impact on performance
- Block size
 - The unit of data exchanged between cache and main memory
 - Larger block size means more hits
 - But too large reduces chance of reuse.
- Mapping function: Determines which cache location the block will occupy
 - Two constraints:
 - o When one block read in, another may need replaced
 - o Complexity of mapping function increases circuitry costs for searching
- Replacement algorithm
 - Chooses which block to replace when a new block is to be loaded into the cache.
 - Ideally replacing a block that isn't likely to be needed again
- Impossible to guarantee
- Effective strategy is to replace a block that has been used less than others
 - Least Recently Used (LRU)
- Write policy: Dictates when the memory write operation takes place
- Can occur every time the block is updated
- Can occur when the block is replaced
 - Minimize write operations
 - Leave main memory in an obsolete state

I/O Techniques

- When the processor encounters an instruction relating to I/O,
 - it executes that instruction by issuing a command to the appropriate I/O module.
- Three techniques are possible for I/O operations:
 - Programmed I/O
 - Interrupt-driven I/O
 - Direct memory access (DMA)

Programmed I/O

- I/O module performs the action, not the processor
- Sets appropriate bits in the I/O status register
- No interrupts occur
- Processor checks status until operation is complete
- Cons:
 - Performance as CPU must keep checking

Interrupt-Driven I/O

- Processor is interrupted when I/O module ready to exchange data
- Processor saves context of program executing and begins executing interrupt-handler
- No needless waiting
- Consumes a lot of processor time because every word read or written passes through the processor

Direct Memory Access (DMA)

- I/O exchanges occur directly with memory
- Processor grants I/O module authority to read from or write to memory
- Relieves the processor responsibility for the exchange
- Transfers a block of data directly to or from memory
- An interrupt is sent when the transfer is complete
- Processor continues with other work

Architectural Support for OS

- Architectural support can vastly simplify (or complicate!) OS tasks
 - e.g.: early PC operating systems (DOS, MacOS) lacked support for virtual memory, in part because at that time PCs lacked necessary hardware support
 - o Apollo workstation used two CPUs as a band-aid for non-restartable instructions!
 - Until very recently, Intel-based PCs still lacked support for 64-bit addressing (which has been available for a decade on other platforms: MIPS, Alpha, IBM, etc...)
 - o changing rapidly due to AMD's 64-bit architecture

Architectural features affecting OS's

- These features were built primarily to support OS's:
 - timer (clock) operation
 - synchronization instructions (e.g., atomic test-and-set)
 - memory protection
 - I/O control operations
 - interrupts and exceptions
 - protected modes of execution (kernel vs. user)
 - privileged instructions
 - system calls (and software interrupts)
 - virtualization architectures
 - o Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/7-architecture-usage.htm
 - o AMD: http://sites.amd.com/us/business/it-solutions/usage-models/virtualization/Pages/amd-v.aspx

Privileged/Protected instructions

- some instructions are restricted to the OS
 - known as protected or privileged instructions
- e.g., only the OS can:
 - directly access I/O devices (disks, network cards)
 - o why?
 - manipulate memory state management
 - o page table pointers, TLB loads, etc.
 - o why?
 - manipulate special 'mode bits'
 - o interrupt priority level
 - o why?

OS protection

- So how does the processor know if a privileged instruction should be executed?
 - the architecture must support at least two modes of operation: kernel mode and user mode
 - o VAX, x86 support 4 protection modes
 - mode is set by status bit in a protected processor register
 - o user programs execute in user mode
 - o OS executes in kernel (privileged) mode (OS == kernel)
- Privileged instructions can only be executed in kernel (privileged) mode
 - what happens if code running in user mode attempts to execute a privileged instruction?

Crossing protection boundaries

- So how do user programs do something privileged?
 - e.g., how can you write to a disk if you can't execute an I/O instructions?
- User programs must call an OS procedure that is, get the OS to do it for them
 - OS defines a set of system calls
 - User-mode program executes system call instruction
- Syscall instruction
 - Like a <u>protected</u> procedure call

Organization of OSs

Programming Interface

- Invoking system services
 - Library call (nonprivileged)
 - Kernel call (privileged)

API – System Call – OS Relationship

Standard C Library Example

C program invoking printf() library call, which calls write() system call

System Calls

- Programming interface to the services provided by the OS
- Typically written in a high-level language (C or C++)
- Mostly accessed via a high-level Application Program Interface (API)
- Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)
- Why use APIs rather than system calls?

Types of System Calls

- Process control
- Device management
- Communications

- File management
- Information maintenance

Process management

Call	Description
pid = fork()	Create a child process identical to the parent
pid = waitpid(pid, &statloc, options)	Wait for a child to terminate
s = execve(name, argv, environp)	Replace a process' core image
exit(status)	Terminate process execution and return status

File management

Call	Description		
fd = open(file, how,)	Open a file for reading, writing or both		
s = close(fd)	Close an open file		
n = read(fd, buffer, nbytes)	Read data from a file into a buffer		
n = write(fd, buffer, nbytes)	Write data from a buffer into a file		
position = lseek(fd, offset, whence)	Move the file pointer		
s = stat(name, &buf)	Get a file's status information		

Some System Calls

Directory and file system management

Call	Description
s = mkdir(name, mode)	Create a new directory
s = rmdir(name)	Remove an empty directory
s = link(name1, name2)	Create a new entry, name2, pointing to name1
s = unlink(name)	Remove a directory entry
s = mount(special, name, flag)	Mount a file system
s = umount(special)	Unmount a file system

Miscellaneous

Call	Description
s = chdir(dirname)	Change the working directory
s = chmod(name, mode)	Change a file's protection bits
s = kill(pid, signal)	Send a signal to a process
seconds = time(&seconds)	Get the elapsed time since Jan. 1, 1970

Example of Standard API

 Consider the ReadFile() function in the Win32 API—a function for reading from a file

- A description of the parameters passed to ReadFile()
 - HANDLE file—the file to be read
 - LPVOID buffer—a buffer where the data will be read into and written from
 - DWORD bytesToRead—the number of bytes to be read into the buffer
 - LPDWORD bytesRead—the number of bytes read during the last read
 - LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

- Typically, a number associated with each system call
 - System-call interface maintains a table indexed according to these numbers
- The system call interface invokes intended system call in OS kernel and returns status of the system call and any return values
- The caller need know nothing about how the system call is implemented
 - Just needs to obey API and understand what OS will do as a result call
 - Most details of OS interface hidden from programmer by API
 - o Managed by run-time support library (set of functions built into libraries included with compiler)

Invoking System Services

(b)

Figure 1-10

Steps in Making a System Call

Steps in making the system call:

read (fd, buffer, nbytes)

System Call

- The syscall instruction atomically:
 - Saves the current PC
 - Sets the execution mode to privileged
 - Sets the PC to a handler address
- With that, it's a lot like a local procedure call
 - Caller puts arguments in a place callee expects (registers or stack)
 - o One of the args is a syscall number, indicating which OS function to invoke
 - Callee (OS) saves caller's state (registers, other control state) so it can use the
 CPU
 - OS function code runs
 - o OS must verify caller's arguments (e.g., pointers)
 - OS returns using a special instruction
 - o Automatically sets PC to return address and sets execution mode to user

A kernel crossing illustrated

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

System Call Parameter Passing

- Three general methods used to pass parameters to the OS
- 1. Simplest: pass the parameters in *registers*
 - In some cases, may be more parameters than registers
- 2. Parameters placed, or *pushed*, onto the *stack* by the program and *popped* off the stack by the operating system

System Call Parameter Passing

- 3. Parameters stored in a *block*, or table, in memory, and address of block passed as a parameter in a register
 - This approach taken by Linux and Solaris

System call issues

- What would be wrong if a syscall worked like a regular subroutine call, with the caller specifying the next PC?
- What would happen if kernel didn't save state?
- Why must the kernel verify arguments?
- How can you reference kernel objects as arguments to or results from system calls?

Principles of Interupts and Traps

Exception Handling and Protection

- All entries to the OS occur via the mechanism just shown
 - Acquiring privileged mode and branching to the trap handler are inseparable
- Terminology:
 - Interrupt: asynchronous; caused by an external device
 - Exception: synchronous; unexpected problem with instruction
 - Trap: synchronous; intended transition to OS due to an instruction
- Privileged instructions and resources are the basis for most everything: memory protection, protected I/O, limiting user resource consumption, ...

Memory protection

- OS must protect user programs from each other
 - maliciousness, ineptitude
- OS must also protect itself from user programs
 - integrity and security
 - what about protecting user programs from OS?
- Simplest scheme: base and limit registers
 - are these protected?

More sophisticated memory protection

- coming later in the course
- paging, segmentation, virtual memory
 - page tables, page table pointers
 - translation lookaside buffers (TLBs)
 - page fault handling

Structure of Operating Systems

- What are components of traditional OSs?
- What are design issues that affect structures of OSs?
- How are components implemented?
- How are they stitched together?
- Major software engineering and design problem
 - Design a large complex system that
 - o Is efficient
 - o Is reliable
 - Is extensible
 - o Is backwards compatible
 - o Provides lots of services
- Typical structures
 - 1. Monolithic
 - 2. Layered
 - 3. Micro-Kernel

OS Structure

Source: Gribble, Lazowska, Levy, Zahorjan

Complex Runtime Interaction among OS components

Source: Gribble, Lazowska, Levy, Zahorjan

Components of Operating Systems

- Process Management
- Main Memory Management
- Secondary-Storage Management
- I/O System Management
- File Management
- Protection System
- Networking
- Command-Interpreter System
- Accounting

Process Management

- A process =
 - program in execution +
 - Resources: CPU time, memory, files, and I/O devices
 - Privileges
- Supported operations:
 - Process creation and deletion.
 - process suspension and resumption.
 - Provision of mechanisms for:
 - o process synchronization
 - o process communication

Main-Memory Management

- Memory =
 - Array of bytes
 - Sharing between CPU and I/O devices
 - Volatile
- Supported operations:
 - Keep track of which parts of memory are currently being used and by whom.
 - Decide which processes to load when memory space becomes available.
 - Allocate and deallocate memory space as needed

Secondary-Storage Management

- Secondary storage to back up main memory + long term storage
 - Disks
 - Store program and data
- Disk management operations:
 - Free space management
 - Storage allocation
 - Disk scheduling
 - o Read
 - o Write

I/O System Management

- I/O
 - Input/Output
 - Networking Interface
 - Display
 - Others
- The I/O system consists of:
 - A buffer-caching system
 - A general device-driver interface
 - Drivers for specific hardware devices

File Management

- Information representation:
 - Files
 - o Program
 - o Data
 - Directory:
 - o Organize information Operations for file management:
- Operations supported;
 - File creation and deletion
 - Directory creation and deletion
 - Support of primitives for manipulating files and directories
 - Mapping files onto secondary storage
 - File backup on stable (nonvolatile) storage media

Protection System

- Protection refers to a mechanism for controlling access by programs,
 processes, or users to both system and user resources.
- The protection mechanism must:
 - distinguish between authorized and unauthorized usage.
 - specify the controls to be imposed.
 - provide a means of enforcement.

Organization of Operating Systems

- 1. Monolithic
- 2. Layered
- 3. Micro-Kernel
- 4. Extensible operating systems

OS structuring: Monolithic kernels

Application

Monolithic kernel

File Address space Semaphore Socket Process Monitor ACL Page Task Schedule Event Segment Mutex

HW

Bit Byte Word Register Instruct ruction Interrupts

Simple Structure: Monolithic OS

- Traditional OS's: Built as monolithic entity
- Advantage:
 - Efficient: I/O routines can directly write to display and disk drives => more efficient
- Disadvantages:
 - Hard to understand
 - Hard to modify
 - Unreliable: OS vulnerable to malicious or buggy programs
 - Hard to maintain
- MS-DOS –provide the most functionality in the least space: Not divided into modules
 - Although MS-DOS has some structure, its interfaces and levels of functionality are not well

os everything hardware

separated

Monolithic OS

Layered Operating Systems

- OS divided into layers (levels),
- The first description of this approach was Dijkstra's THE system
 - Layer 5: Job Managers
 - o Execute users' programs
 - Layer 4: Device Managers
 - o Handle devices and provide buffering
 - Layer 3: Console Manager
 - o Implements virtual consoles
 - Layer 2: Page Manager
 - o Implements virtual memories for each process
 - Layer 1: Kernel
 - o Implements a virtual processor for each process
 - Layer 0: Hardware
- Each layer can be tested and verified independently

Example: UNIX System Structure

- Limited structuring.
- The UNIX OS two parts:
 - Systems programs
 - The kernel: Consists of everything below the system-call interface and above the physical hardware
 - ▲ Provides the file system, CPU scheduling, memory management, and other operating-system functions; a large number of functions for one level

Example of layering: Hardware Abstraction Layer

- An example of layering in modern operating systems
- Goal: separates hardware-specific routines from the "core" OS
 - Provides portability

Improves readability

Core OS (file system, scheduler, system calls)

Hardware Abstraction Layer (device drivers, assembly routines)

Problems with layered approach

- Imposes hierarchical structure: one-one, unidirectional relationship...
 - but real systems are more complex:
 - o file system requires VM services (buffers)
 - o VM would like to use files for its backing store
 - strict layering isn't flexible enough
- Poor performance
 - Overhead of crossing each layer
- Widening range of services and application
 - => OS bigger, more complex, slower and more error prone
- Portability problems
 - Does one layering structure translate to similar one on a different architecture?
- Harder to support different OS environments
- Distribution
 - => impossible to provide all services from same kernel

Microkernels

- Popular in the late 80's, early 90's
 - recent resurgence of popularity
- Goal:
 - minimize what goes in kernel
 - organize rest of OS as user-level processes
- This results in:
 - better reliability (isolation between components)
 - ease of extension and customization
 - poor performance (user/kernel boundary crossings)
- First microkernel system was Hydra (CMU, 1970)
 - Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X (Apple),
 in some ways NT (Microsoft)

Microkernel Structure Illustrated

Microkernels: break up OS

- Kernel: Implement mechanisms
 - Code that must run in supervisory mode
 - Isolate hardware dependencies from higher levels
 - Small and fast

- User-level servers:
 - Hardware independent/portable
 - Provide "OS environment/OS personality"
 - May be invoked from:
 - o Application (IPC)
 - o Kernel (upcalls)

Promise of Microkernels

- Co-existence of different
 - APIs
 - File systems
 - OS Personalities
- Flexibility
- Extensibility
- Simplicity
- Maintainability
- Security
- Safety

Example: Mac OS X Structure

Example: Minix OS Structure

Init	User Process		User Process	User Process	•••••		User	
Memory Manager		File System		Network server				Server
disk	tty	,	clock	system	Ethernet			I/O
Process Management								

Kernel

Windows

Lsass = local security authentication server POSIX = portable operating system interface QDI = graphics device interface DLL = dynamic link libraries Colored area indicates Executive

Source: Stallings

Figure 2.13 Windows and Windows Vista Architecture [RUSS05]

Linux Kernel Structure

Figure 2.18 Linux Kernel Components

:: Stallings

Modules

- Most modern operating systems implement kernel modules
 - Uses object-oriented approach
 - Each core component is separate
 - Each talks to the others over known interfaces
 - Each is loadable as needed within the kernel
- Overall, similar to layers but with more flexible

Solaris Modular Approach

Operating System Services

- One set of operating-system services provides functions that are helpful to the user:
 - User interface Almost all operating systems have a user interface (UI)
 - o Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch
 - Program execution The system must be able to load a program into memory and to run that program, end execution, either normally or abnormally (indicating error)
 - I/O operations A running program may require I/O, which may involve a file or an I/O device.
 - File-system manipulation The file system is of particular interest. Obviously, programs need to read and write files and directories, create and delete them, search them, list file Information, permission management
 - Communications Processes may exchange information, on the same computer or between computers over a network
 - o Communications may be via shared memory or through message passing (packets moved by the OS)
 - Error detection OS needs to be constantly aware of possible errors
 - o May occur in the CPU and memory hardware, in I/O devices, in user program
 - o For each type of error, OS should take the appropriate action to ensure correct and consistent computing
 - o Debugging facilities can greatly enhance the user's and programmer's abilities to efficiently use the system

Operating System Services (Cont.)

- Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing
 - Resource allocation When multiple users or multiple jobs running concurrently, resources must be allocated to each of them
 - o Many types of resources Some (such as CPU cycles, mainmemory, and file storage) may have special allocation code, others (such as I/O devices) may have general request and release code.
 - Accounting To keep track of which users use how much and what kinds of computer resources
 - Protection and security The owners of information stored in a multiuser or networked computer system may want to control use of that information, concurrent processes should not interfere with each other
 - o **Protection** involves ensuring that all access to system resources is controlled
 - o **Security** of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid access attempts
 - o If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as strong as its weakest link.

Interaction between Application and OS

- CLI allows direct command entry
 - Sometimes implemented in kernel, sometimes by systems program
 - Sometimes multiple flavors implemented shells
 - Primarily fetches a command from user and executes: Sometimes commands built-in, sometimes just names of program (adding new features doesn't require shell modification)
- User-friendly desktop metaphor interface
 - Usually mouse, keyboard, and monitor
 - **Icons** represent files, programs, actions, etc
 - Various mouse buttons over objects in the interface cause various actions (provide information, options, execute function, open directory (known as a **folder**)
 - Invented at Xerox PARC
- Many systems now include both CLI and GUI interfaces
 - Microsoft Windows is GUI with CLI "command" shell
 - Apple Mac OS X as "Aqua" GUI interface with UNIX kernel underneath and shells available
 - Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Accessing an OS Service

- Runtime organization
 - Service is a Subroutine
 - Service is an Autonomous Process ("client-server")

Figure 1-12

Summary

- Organization of computing systems
- Components of OS
 - Process, Memory, I/O, File, Security, etc.
 - Safety
- Organization of components
 - Monolithic, Layered, Microkernel
- Interaction between programs and operating systems
 - System calls