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Abstract

Much recent work has focused on the process of
auditing the results of elections. Little work has
focused on auditing the e-voting systems currently
in use. The facilities for doing the former include
the voter-verified paper audit trail; unfortunately,
that VVPAT is not particularly helpful in tracking
down the source of errors within e-voting systems.
This paper discusses the need for a detailed foren-
sic audit trail (FAT) to enable auditors to analyze
the actions of e-voting systems, in order to demon-
strate either the absence of problems or to find
the causes of problems. We also discuss methods
to prevent the use of the FAT as a covert channel
for violating the necessary properties of secrecy of
the ballot, so voters cannot sell their votes, and
anonymity of the ballot, so a third party cannot
associate a particular ballot with the voter who
cast it.

1 Introduction

Highly public examples of electronic voting ma-
chine meltdowns in the United States continue
to occur, and independent, post mortem anal-
yses of the machines, including those used in
the U.S. states of California, Florida, and Ohio
[6, 7, 11, 16, 29], unearth flaw after flaw that
demonstrate the lack of high assurance techniques
in the development processes used by voting sys-
tem vendors, and the poor quality of the stan-
dards they must meet. The intent of valid reg-
istered voters, recorded anonymously on a ballot
and counted by election officials must be invio-
late. There is no reason why this cannot be so.
However, there is also no one solution. The U.S.
National Institute of Standards and Technology’s

(NIST) 2007 Voluntary Voting System Guidelines
(VVSG) [18]—substantial requirements for design
and testing—will undoubtedly help somewhat if
enacted, and appear to be headed in the right di-
rection. In this paper, we focus on one key ele-
ment of electronic voting machines—forensic log-
ging and auditing—that, in concert with other el-
ements of the VVSG2007, would significantly help
determine and ensure the correct operation of elec-
tronic voting machines and thus ultimately, more
fair and accurate elections.

Forensic logging has long been deemed as an
essential element of maintaining and validating
security [2, 8, 19]. More recently, Yasinsac and
Bishop discussed why and how forensic audit trails
are essential to validating the correct operation of
electronic voting machines [27, 28], in addition to
red teaming [6] and code analysis [29]. Further,
they discussed how voter receipts are not sufficient
as audit trails. Forensic logging of the voting ma-
chine system needs to be performed.

At face value, “auditing” seems to be a simple,
well-defined term. Unfortunately, as the complex-
ity of the system increases, so does the complex-
ity of auditing. Given the often conflicting laws
and requirements of elections, auditing elections
is very difficult. Further, there are no widely ac-
cepted, fundamental, election-auditing standards.
Therefore, election officials break new ground with
each audit that they conduct.

However, there is a key complication in log-
ging on electronic voting machines: if enough data
is logged in order to analyze when and how a vot-
ing machine is operating incorrectly, how can vote
selling and voter anonymity (related to voter coer-
cion) be prevented? By law in most states in the
United States, even an election official or forensic
analyst performing a post mortem audit or recount
should not be able to determine how a particular
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voter voted. The analyst should only be able to
analyze the correctness of the machine, and the
election official should only be able to conduct a
recount, but not associate those votes with partic-
ular voters.

For example, in Florida, the initial results
for an election for the Congressional District 13
(CD13) showed an anomaly: the number of un-
dervotes1 was an order of magnitude higher than
expected for such a high-profile, contentious race.
Further, the same anomaly occurred in only one
other race out of 25. As there were no voter-
verified paper audit trails (VVPATs) associated
with the machines, the dispute was whether the
voting machines correctly recorded the votes that
the voters intended to cast. Some believed that
the voters did indeed cast their votes for the race
and so the source of the undervotes was malfunc-
tioning voting machines. Others thought that the
contentiousness of the race had caused voters to
skip that particular race. A widely accepted ex-
planation is that poor ballot design caused voters
to miss the CD13 race on the ballot. Still, there is
little physical evidence to support any hypothesis.

The State of Florida audited the election.
Part of that audit involved dynamic testing of the
voting machines to see if any problems not re-
vealed before the election arose in this post- elec-
tion testing. A second part involved a source code
audit of the voting system to determine if any
software vulnerabilities or flaws could have caused
or contributed to the undervotes. The audit con-
cluded that the examined software did not cause
or contribute to that problem [29].

During the analysis, the investigators com-
mented that if the machines had a VVPAT, that
the VVPAT “audit trail” would have been of lit-
tle help in the analysis. If the VVPAT showed
the undervote, it would be echoing the current re-
sults, and again the question would arise whether
the undervote was due to the voter not casting a
vote for the particular race, or was due to a pro-
gramming error: exactly the situation without a
VVPAT. However, if the VVPAT showed the voter
having cast a vote for the race and the electronic
count showed an undervote, then the investigators
would know that an inconsistency occurred either
before the vote was printed (in the case where a
voter did not vote, and the VVPAT said she had)
or after he vote was printed (in the case where a

1An undervote is when a ballot is cast with no valid
selection for a particular race.

voter voted, and the electronic record of the ballot
said she had not). Thus, the VVPAT could have
confirmed that a problem existed without provid-
ing any guidance on the cause of the problem.

What auditing mechanisms would be useful to
provide the information necessary to audit the sys-
tem in a way that would uncover problems such as
this? Specifically, what are the precise points in
the system at which audit mechanisms should be
placed and what data should those audit mecha-
nisms record? For example, which system and/or
function calls [20] should be saved? At this point,
these are all open research questions.

The proper use of appropriate data gathering
mechanisms would enhance both security and in-
tegrity, because they could be used to track events
on the system to detect malicious activity (secu-
rity) as well as tampering, alterations, and errors
involving the recording and counting of votes (in-
tegrity). We call the log generated by these mech-
anisms a forensic audit trail (FAT), to distinguish
it from the voter-verified audit trail (VVPAT).

But collecting a FAT also leads to a problem.
Consider George, who wants to sell his vote. John
says that he will pay George if George votes for
a certain Presidential candidate named Thomas.
John tells George to vote for Thomas by first vot-
ing for James, then changing his vote to Andrew,
then back to James, then to Thomas. This se-
quence of votes (James/Andrew/James/Thomas)
is highly unlikely to be accidental. If John sees
this sequence in a FAT, he can guess that George
probably cast that vote. This type of communi-
cation uses a covert channel, or a path through
which people can communicate but that was not
designed for such communication. This type of
messaging is anathema to the U.S. election system
in general because it enables the selling of votes.
Any FAT must guard against this problem.

In this paper we focus on the two key issues
of forensic logging of an electronic voting machine:
recording enough data to evaluate the operation
of a voting machine, but doing so in a way that
disallows any manner of reverse-engineering the
vote to a voter by using the audit trail.

2 Background

2.1 Forensics

Logging the appropriate data and analyzing it is
hard even without anonymity requirements. Op-
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timizing and correlating the data that is being
logged reliably are difficult, but both are essen-
tial to a successful analysis. And, as we discussed,
in some cases, the needs of a forensic analyst may
even directly contradict laws, such as the ability to
reverse engineer a malfunctioning voting machine
vs. the anonymity of the voter.

A systematic approach, that includes both the
laws and some sort of security policy is needed
[21]. However, the outcomes of cases in U.S. courts
have not yet defined acceptable standards for the
composition and admissibility of digital evidence.
Therefore, we cannot apply existing legal forensic
standards directly to election audits.

We have previously described a model of
forensic logging, Laocoön [22], that uses attack
graphs based on intruder goals to guide an op-
timal set of data to be logged and to assist in
correlating that data during a post mortem anal-
ysis. We demonstrated how a mechanism using
the model effectively reduces the possibility of fail-
ing to record necessary data, while minimizing the
amount of unnecessary data being recorded. Thus,
this approach is more effective than current ones
and also more efficient for both the computer sys-
tem recording the forensic data and for the human
forensic analyst analyzing the data.

Constructing the attack graphs can be time
consuming and difficult for a general-purpose com-
puting system. However, electronic voting ma-
chines are not general purpose computers. They
have highly restricted modes of operation and
well-defined security policies. For example, many
violations of security policy on an electronic voting
machine (e.g., changing or discarding cast votes)
are easy to define precisely. The benefit of the
model is that deriving or knowing the methods
for violating the policies—which is known to be
difficult—need not be pre-defined. The result is
that only the information that is necessary to an-
alyze to understand the violations or suspected vi-
olations is recorded. Without the model, system
designers would either have to guess about what
is important (creating the risk of missing some-
thing) or record everything (thus simultaneously
violating anonymity/confidentiality rules and also
overwhelming both the auditing system and the
human analyst).

Thus electronic voting machines and the re-
lated election management systems make ideal en-
vironments for the use of the model. Most im-
portantly, Laocoön provides a technological frame-

work for balancing secrecy and anonymity needs
with auditing. By using Laocoön to systematically
characterize both attacker and defender goals, one
can then more easily characterize the threats and
targets. By understanding the context of attacks
and failures better, an analyst can weigh foren-
sic metrics against privacy metrics to evaluate
what information can be revealed to the auditors
and therefore what, of the requirements given by
Laocoön, can and cannot be safely recorded. In
this manner, if a particular state does not want
auditors to be able to see how voters cast their
ballots, the model leads to one set of constraints.
Alternatively, if a state has no such laws, and de-
termines that the auditors are trusted, or estab-
lishes procedural mechanisms to provide protec-
tion to preserve anonymity, the model leads to a
different set of privacy constraints.

2.2 Practical Matters

It is also clear that Laocoön alone is insufficient,
and needs to be combined with a procedural model
[21]. For example, the system should be built in
such a way that the logging mechanism cannot be
bypassed and the logs are tamperproof, or measur-
ably tamper-resistant [26]. This requires the use
of a reference monitor-like component and write-
once storage devices. However, even such low-level
mechanisms are not 100% reliable, and so they also
must be designed to fail in a safe way.

For example, one way to store the logs is to
use a transaction-based system that records each
transaction [30] to a separate system with a sepa-
rate (and perhaps even more rigorous) security do-
main. This would work in a way that a transaction
on the primary system would not proceed without
acknowledgment of receipt by the logging system.
However, if the link between the two is broken, the
primary system should stop functioning. This is
vulnerable to a denial-of-service attack, of course,
but certain jurisdictions may find this more desir-
able than over-votes or other actions proceeding
without being logged. (For example, they could
revert to paper ballots at that point.)

The model must also account for procedural
elements outside of any technical context. Doing
so can help to verify where to focus effort on addi-
tional training for or redundancy in the duties of
poll workers. Indeed it is at least as important to
know the most critical points to train humans so
that effort is not wasted on technological solutions
when such a solution is not appropriate. There-
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fore, the design of an audit system should begin
with voting machine requirements, which we have
previous discussed. The research questions that
we previously posed also drive the construction of
the forensic model by giving a starting point for
understanding what the system looks like when
it’s running as it is intended, when it is running
in violation of its original intention, and what el-
ements of the system could cause a transition be-
tween those two state spaces.

But even system requirements—the policies—
for an electronic voting system vary among specific
types of machines; a precinct-count optical scan-
ner has very different requirements than a touch-
screen DRE,2 for example. Yet certain require-
ments apply to all election systems. Thus, the
design of an auditing system should begin by re-
fining voting requirements into policies that voting
systems must meet. These policies serve as input
to the model that guide which data is to be logged.
For the remainder of this paper, we focus only on
the technological elements, and assume the com-
mon elements that all such systems share and face
for auditing.

3 Methods for Forensic Log-
ging

The basic requirements for all elections held in the
United States are (in no particular order) accu-
racy, convenience, efficiency, and security. We fo-
cus on the first and last items. For our purposes,
“accuracy” means that the vote totals reflect the
votes cast, and “security” means that no one has
tampered with the system in a way that could af-
fect the recording or counting of votes, or compro-
mise the anonymity of the voter or the secrecy of
the ballot. How can we detect violations of these
requirements, and reconstruct what happened?

The context in which events occur is critical
to their correct interpretation. Logging sequences
of touches are not enough: the context—the con-
tents of the screen—provides the information that
enables the analysts to interpret the log in order
to reconstruct the series of events. This allows
the analysts to decide whether the touches are

2A Direct Recording Electronic Voting Machine (DRE)
records votes digitally on electronic components (e.g., hard
disks or flash memory), as opposed to an Electronic Bal-
lot Marker (EBM), which contains touch-screens and other
similar components to a DRE, but the vote is ultimately
recorded on a paper ballot, not an electronic object.

meaningful, and if so what they mean. Combined
with the other data, such as source code, the au-
ditors will have available, the analysts can use the
FAT to reconstruct the voting system’s “state” at
any point. The system’s state includes technical
characteristics that are commonly associated with
computer systems, such as how long the system
has been running or which (anonymous) “user”
started it, and characteristics that reflect a voter’s
perception of the system, such as which language
it is displaying information in.

As an example, suppose a voter touches the
screen on an electronic voting machine 103 times
during a voting session. Those touches are all ac-
tions affecting the state of the system, so the posi-
tions of these touches are recorded as forensic in-
formation. But that information alone does not
provide the context for interpreting what those
touches meant. So, assume the analyst knows
which page of the ballot was being displayed. If
20% of the touches did not connect precisely to
a “hot spot,” but were near a hot spot, and if
immediately after those touches the nearest hot
spot was touched precisely, then a forensic analyst
could reasonably conclude that the portion of the
screen that is supposed to detect a voter’s touches
was mis-aligned. The additional context of the
screen positioning helps the analyst to understand
how to interpret the touches, and whether the non-
connecting touches were the voter idly tapping the
screen, or indicate some other problem.

Fundamentally, the electronic voting machine
is also a computer. It might be connected to other
electronic voting machines and/or a “supervisor”
machine. It may even be able to receive inputs
from other hardware sources, such as removable
storage devices that can upload new firmware or
in some way alter the behavior of the machine.
Thus, many of the characteristics of an electronic
voting machine can be captured in the same way
as for a general-purpose computer system on a net-
work, using logging appropriate for such a situa-
tion. This could include capturing “network” traf-
fic, insertion of new software, and replacement of
existing software. It could even include recording
system and dynamic library calls [20] to an op-
erating system, as is often necessary for forensic
analysis of general-purpose computers, unless the
system is an embedded system with extremely nar-
row functionality dictated by the hardware design
itself.

This raises the question of limits. How much
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information needs to be recorded? How much can
be recorded without causing problems, either me-
chanical (such as running out of memory) or in
the ability of the election to meet its requirements
(violating ballot secrecy, for example)?

The design of an audit system should begin
with voting machine requirements. The require-
ments are translated into policies and the poli-
cies are used to define attack graphs. The attack
graphs are formed by starting with an ultimate
goal of the attackers—the policy violations—and
working backward to—the point of “entry” into
the system. As mentioned earlier, we cannot de-
fine, let alone enumerate, all methods of violation.
The model tolerates this by using data about steps
toward the policy violation that we do know some-
thing about to place bounds on the steps that we
do not know anything about. These attack graphs
are then translated into specifications and imple-
mentations that Laocoön uses to guide logging—
what data to log and where to place the instru-
mentation to log the data. Finally, that data is
used by a human analyst to conduct forensic anal-
ysis in a rigorous and systematic way.

For example, consider how Laocoön would
handle over-voting. Over-voting occurs when
more candidates are selected than are allowed in
a given race, and electronic voting machines gen-
erally disallow over-votes. There are a limited
number of ways in which such an event could ul-
timately be recorded, either on a VVPAT or on
electronic media. At some point, the value of a
variable or a (set of) bit(s) changes somewhere.
There are a limited number of data points that
can be manipulated to do this. Describing in ad-
vance how the data is manipulated is not neces-
sary (and in fact may be impossible). It is suf-
ficient to understanding the possible paths that
lead to this manipulation. The paths begin at en-
try into the system (e.g., touchscreen, supervisor
machine, hardware manipulation) and end at the
data. These paths must be monitored. This auto-
matically places bounds on the intermediate steps
that happen along the path. This allows a system
to collect enough information for a forensic analyst
to analyze the violation—the traversal of that at-
tack graph by an attacker—and either understand
what happened, or determine how to analyze the
system further to obtain any necessary informa-
tion not recorded in the FAT.

One goal of forensics is to reconstruct the state
of a machine in sufficient detail that an analyst

can understand the sequence of events leading up
to the attack, and the attack itself.3 Suppose
such a reconstruction requires the FAT to record
enough information to allow a voter to “mark”
her ballot so others can determine how she voted.
Two obvious techniques are to vote by touching
the screen in a predetermined and unusual way
(which is recorded in the FAT), or writing in an
unusual candidate name such as “Frisbey Q. Per-
hassenpfeffer.” This marks the ballot so election
officials or members of an audit team can identify
the ballot. This is a classic insider attack [4], un-
less the state allows the contents of the FAT to
become public or untrusted observers are allowed
to examine the FAT during its review. Indeed,
it has recently been shown with certain datasets
that with very little information about a particular
record, it is possible to reverse-engineer the iden-
tity of the voter [17]. Given the information that
could be collected by a voting machine, there is
substantial cause for concern about how easy it is
to defeat anonymization techniques which simply
simply strip the names from that data and hope
it is anonymous.

As a more detailed example, consider a pres-
idential election with candidates James, Andrew,
and Thomas. George wishes to reveal to John how
George voted, in a way that John will believe. For
example, if John is going to pay George $1,000 to
vote for Thomas in the election, John needs to be
sure that George actually cast his vote for Thomas
before paying him. So they agree to a signaling
mechanism by which George will uniquely mark
the record of his vote, so that John can verify it is
indeed George’s vote.

The key idea is that George need not mark
his ballot uniquely. As the FAT allows complete
reconstruction of all events on the system that
George votes on, George need only take a series
of options that populates the portion of the FAT
(thus, marking it) that corresponds with his vot-
ing. John then locates the part of the FAT that
corresponds to George’s voting. He then recon-
structs the sequence of votes, and from that can
determine how George voted.

Continuing with our example, George and
John mutually agree that before touching the
screen to vote for Thomas, few voters will initially
vote for James, then change their vote to Andrew,

3The other goal is to enable the analyst to present the in-
formation to others, such as judges, lawyers, and the body
politic.
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change it back to James, and finally to Thomas.
So George agrees that he will touch the voting ma-
chine’s screen to vote for candidates in that order.
As the system allows the user to change his se-
lections up until the ballot is actually cast, that
sequence of touches will cause the final vote for
president to be cast for Thomas, as John wants.

Specifically, George enters the polling station
and is assigned a voting machine. He walks over
and begins to vote. When he reaches the presi-
dential race, he taps the icon next to James. The
system marks a vote for James. George then taps
the icon next to Andrew; the screen changes the
mark to reflect a vote for Andrew, and cancels
the mark for James. George touches the icon by
James again, changing the vote back to James;
then he touches the icon for Thomas. The final
vote marked is “Thomas.”

After the election is over, an audit is called for
because there are indications that a system mal-
functioned and votes may have been lost. So the
forensic auditors begin auditing the system that
George used to vote. John is one of the observers
of the audit. He sees the FAT generated for the
machine, and looks for the sequence he and George
agreed to. When he finds it, he knows that George
has voted as he promised, and pays the $1,000.
This type of attack exploits a covert channel—a
path whose primary purpose is not communica-
tion, but one that can be used to communicate. In
this case, the goal of the FAT is to record events
for analysis; it is not designed to be a communi-
cation channel in the sense of electronic mail or
a telephone line. But that is exactly how George
and John are using it.

4 Methods for Enforcing
Anonymity

The area of covert channels arises with any shared
medium, and it has been studied extensively
in computer security, particularly in conjunction
with systems that handle different levels of classi-
fied materials (e.g., classified, secret, and top se-
cret) [13, 15, 23, 25]. Two general categories of
approaches for reducing the amount of communi-
cation that can be communicated via covert chan-
nels have been identified: enforcing regularity and
adding noise.

In this context, the first approach suggests
modifying the FAT log entries in some way to

make them more regular, so an analyst cannot
glean information from the differences. Communi-
cation requires changes to information. For exam-
ple a steady “hum” conveys nothing. If the “hum”
starts and stops, the points of starting and stop-
ping can communicate something (much as Morse
code is used to communicate something). If the
hum varies in intensity, the changes and different
intensities can communicate something. Similarly,
one analyzes the FAT entries to determine how
information can be transmitted using them. In
our above example, reordering the screen touches
would close the channel that depends on the order
of the touches.

This raises two problems. First, the specific
nature of the covert channel through the resource
controls the countermeasure. The above assumes
information is encoded in ordering of touches.
But if the information were encoded as number
of touches for a set of candidates—such as three
touches for James and five for Andrew—then re-
arranging the FAT entries does not obscure the
“signal” in the channel.

Even if the countermeasure were appropriate,
we have to consider its effects on the use of the
FAT. Reordering events within the log changes
the analysts’ view of the sequence in which those
events occurred. This inhibits accurate analy-
sis. As an example, suppose a bug in the code
will delete one of James’s votes and add one to
Thomas’s votes whenever someone votes for An-
drew. If the sequence of the changes are jumbled
so that all votes subtracted from James’s votes
come first, then the votes for Thomas, and then
the votes for Andrew, the connection between the
vote changes will be lost—and the FAT will be of
minimal use to the auditors.

An alternate approach preserves the existing
log entries; it simply obscures them. Instead of re-
arranging the entries, the system adds spurious log
entries to the FAT as the FAT is generated. This
follows the second category of approaches for han-
dling covert channels: adding noise. It obscures
the “signal” because now the auditors cannot de-
termine which entries are real and which entries
are not. Returning to our example, this mecha-
nism might cause two more entries to be added. So
rather than the sequence James, Andrew, James,
Thomas, the log may show James, Thomas, An-
drew, James, Thomas. This complicates the anal-
ysis because the spurious entries introduce poten-
tial dependencies that the analysts must eliminate.
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Indeed, obfuscation has been used to defeat
security analysis. Garfinkel discussed its use in
“anti-forensics” [12], and Conti specifically ad-
dressed attacking visualization systems for secu-
rity [9]. Other areas include code obfuscation
[3], steganography [14], methods for defeating at-
tempts to mine statistical databases [1, 10]. But
the goal of the obfuscation proposed is not to de-
feat the derivation of accurate forensic informa-
tion; it is designed to close a covert channel, and
so the focus differs from these approaches.

A key question is how the addition of FAT
entries will affect the analysis of the log. If the
new entries reflect problems, then they may cause
the analysts to spend time looking at problems
not relevant to the goal of the audit. In practice,
this is undesirable, so the entries should be added
only when they can be inserted without obscuring
the sequence of actions within the system or the
final contents of the ballot. The question is how
to guarantee this.

One obvious approach is to generate log en-
tries from sections of code that have a very high
assurance of being correct. For example, if two
successive screen touches overwrite the same lo-
cation register, as many screen touches as desired
may be added before the final one without affect-
ing the results of the vote (as the last candidate
touched is the one being voted for). A second ap-
proach is to insert bogus log entries that advance
the voter to the next screen, enter some random
data corresponding to log entries, and then return
to the previous screen. With care, log entries for
selections that the voter does not make on the fu-
ture screen can be eliminated simply by adding
new FAT entries that undo those selections.

Analysts who have access to the FAT only will
be unable to distinguish between randomly gener-
ated entries and entries corresponding to actions.
But if analysts have access to both the FAT and
the source code, then the analysts may be able to
compare the FAT to the code for creating log en-
tries and distinguish the two types of entries. To
prevent this, the random entries can be generated
using an asynchronous timer, causing an interrupt
that invokes a routine to add a random FAT entry.

As an example, suppose the screen of candi-
dates defines “hot spots” to be areas A1, ..., An

and variables v1, ..., vn capture the state corre-
sponding to those areas. So, if the voter has
touched area Ai once, then vi contains the value
of “1.” Then when the asynchronous routine is

invoked, it can either generate a completely ran-
dom press (to indicate the voter has touched the
screen outside the hot spots) or generate a press
for any of the given areas. In the latter case, the
routine would need to retain the state of the vari-
able corresponding to that area. The system must
ensure that on exit (a ballot is cast), the state
of that variable is what it would be without the
asynchronous routine’s interference.

This approach appears to offer significant ben-
efits over rearranging log entries. It does not
obscure the sequence of events; that sequence is
a (proper) subsequence of the FAT entries. It
does obscure both the number of FAT entries and
the distance (number of entries) between any pair
of FAT entries. Thus, problems existing in the
unaugmented FAT would also exist in the aug-
mented FAT.

Although deleting log entries would enhance
this technique, in the context of auditing, deleting
real entries will hinder the analysis and so are not
appropriated.

5 Future Work

The exact algorithms to be used will vary based
upon the construction of the software used in the
e-voting system. In some cases, the asynchronous
approach discussed above would work. In others,
for example should the e-voting system not sup-
port that approach, perhaps adding code to the
FAT logging routines to generate between 0 and n
entries before generating the correct entry would
provide the appropriate measure of noise to make
the bandwidth of the covert channel acceptable.
This leads us to a number of interesting theoreti-
cal questions.

The first is how to analyze the covert channel
to determine the various method that can be used
to pass information. We have discussed using se-
quence information and counts, both of which the
random FAT entry technique hinders. Are there
others, and if so in what ways can we hinder their
use? In answering this question, we must take
into account the inability to close covert channels
generally, and be content with sufficient “noise”
to render the analysts being able to discern the
communication as unlikely as desired.

The second is how to integrate the defensive
mechanism into the e-voting system’s code base
in such a way that it will not introduce new prob-
lems. Many studies have demonstrated the poor
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quality of e-voting system code (see for exam-
ple [6, 5, 16, 29]). The integration of additional
routines, particularly asynchronous ones, must be
done carefully. Perhaps this type of mechanism
will encourage the development of more robust e-
voting systems with greater assurance than the
current generation of e-voting systems.

6 Conclusions

Much effort and study has gone into the auditing
of elections. Virtually no effort and study has gone
into the auditing of e-voting systems. The two are
fundamentally different.

Auditing an election requires that the votes be
verified to have been tallied correctly. The concept
of “software independence,” introduced by Rivest
[24], requires that the election results be demon-
strably correct even in the face of software er-
rors. The use of a VVPAT is one mechanism that
helps satisfy software independence; even if the e-
voting system misrecords votes electronically, the
VVPAT can be used as the authoritative record of
votes4 regardless of the electronic count of votes.

Auditing an e-voting system requires that the
system be shown to have worked correctly. If the
system did not, the audit must show how the sys-
tem failed. The VVPAT will help minimally here,
and only if the VVPAT records can be matched
against the electronically recorded ballots. If there
is no discrepancy, then either the vote was cor-
rectly recorded or both the VVPAT and the elec-
tronic record misrecorded it. If the two differ, one
is wrong. Beyond that, the analysts must guess at
where the problem is likely to be, or try to analyze
the software directly—a complex task [29].

But detailed audit records, of the sort that
this paper calls a FAT, can be used to leak infor-
mation. They must be obscured if the audit is to
be public. Thus, they must be protected in some
way, yet in such a way that does not change the
results of any audit. Hence the proposed scheme.

One obvious question is, why not simply use
trusted auditors and disallow anyone else from see-
ing the FAT? The answer lies in the realm of the
non-technical. If elections are to be transparent,
so must the post-election processes. And if a prob-
lem arises, the resolution of that problem must

4Assuming the VVPAT is implemented correctly, works
during Election Day, and voters check that the VVPAT
correctly records their vote.

also be transparent. This means that the audi-
tors must be able to demonstrate what happened,
and why, and how, to others. This would require
untrusted people having access to the FAT.
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