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Abstract

When data is shared and/or published, the need for revealing data must be balanced

with the need for sanitizing it. This is because some information considered “sensitive”,

if revealed may cause damaging consequences, for example, privacy violations, legal and

financial liabilities, embarrassment, national security risks, and loss of reputation. Although

many techniques for sanitizing data have been developed and used over the years, attackers

have still managed to de-sanitize data. One of the reasons for this problem is the tremendous

growth of publicly available information. Data like telephone numbers, date of birth, movie

ratings, personal preferences like favorite movies and favorite food recipes, property records,

real-time geolocation information through social media content and photo metadata can now

be easily found on the Internet. This has enabled attackers to gather an immense amount of

information about a user or a group of users and correlate it with sanitized datasets. Such

correlations can lead to many methods of inferring sensitive information. In this dissertation,

we show a method by which data can be evaluated to see if it can be sanitized effectively,

while maintaining needed utility from the data, and if so, how can it be done optimally.

We do this by analyzing how the data entities are related to each other, and which of these

relationships are essential in preserving privacy. Furthermore, we argue that data sanitization

is not a “yes” or a “no” problem, but a continuum, for every sanitized dataset must have

some risk of de-sanitized associated with it. We present an iterative model, using which data

can be sanitized and analyzed for risk.
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Chapter 1

Introduction

1.1 The Data Sanitization Problem

Data sanitization is the process of adding, modifying, and/or removing information from

a set of data that contains sensitive information, which enables that data to be used for

analysis while attempting to maintain user privacy. The typical goal of data sanitization is

to conceal some aspect of the dataset, for example, personally identifiable information, while

still enabling the data to be useful in some way. In the rest of this dissertation, we will refer

to these two interconnected goals as “data privacy” and “data utility.” However, these goals

can often turn out to have fundamental conflicts. This is because while data privacy aims at

concealing information, data utility requires revealing it. The degree of privacy and utility

is governed by policies that are defined by stakeholders, who have both privacy and utility

requirements that must be fulfilled. However, sometimes it may be impossible to satisfy

these requirements.

Another problem that remains with data sanitization is the presence of information ex-

ternal to the dataset. This may provide opportunities for inferring something about the

sanitized data because of some connections or patterns in the external data that can also be

found within the sanitized data. Therefore, while evaluating whether particular data should
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be released or not, one must consider data within the dataset as well as the information

which may exist outside this dataset. Although many techniques can be used to attempt to

solve these key problems in data sanitization (see Section 2.1), most of these techniques share

some common drawbacks. First, many sanitization techniques are highly focused in specific

domains and are generally not applicable to other types of data. Hence, extrapolation to

a general model of data sanitization is cumbersome and in some cases not possible, due to

domain-specific assumptions. For example, consider a dataset that contains names of movies,

their corresponding ratings and the times when these ratings were made by a set of users.

Since this dataset has no user names or pseudonyms, there are no personally identifying

attributes that can identify a user. A dataset like this may still be vulnerable to inference

attacks that could expose information that was intended to remain hidden, if similar data is

found in publicly available movie rating websites and correlated with the given dataset. So

a sanitizer might add noise (in the form of fake ratings) to make these correlations nebulous.

However, the same technique of adding noise to sanitize medical records will not work, as it

will fail to comply with HIPAA, which requires deleting personally identifying information.

Second, many techniques restrict their analysis only to data within a dataset in order to

sanitize it. This is referred to as a closed world assumption. The problem lies in the fact

that there exists information outside this dataset, which can help an adversary to infer data

that was supposedly hidden within the dataset. It may be impossible to determine who

an attacker may be, let alone estimate how much of this outside information is available

to him/her. Therefore, while sanitizing data, we must assume an “open world” scenario,

wherein any information can be used by any attacker to de-sanitize a dataset with some

hidden data.

And finally, almost all techniques consider data sanitization as a “yes” or a “no” problem.

But if this was the case, then sanitized datasets like the Netflix Prize dataset and the AOL

Query dataset (both described in Section 2.2) would never have been breached for privacy

violations. In fact, it is rare for analysts to estimate risks and vulnerabilities that may arise
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in sanitized datasets. One of the reasons behind this is the lack of a comprehensive process

to sanitize data. For example, if a privacy policy fails to capture the privacy requirements

of stakeholders, then a vulnerability in the sanitized dataset may arise. But such compre-

hensive assessments are seldom performed. Moreover, one cannot make assumptions as to

what information may or may not be present external to the dataset, as this may lead to

vulnerabilities that can be exploited by an adversary.

So in this dissertation, we present a different view of looking at the problem of data

sanitization. We analyze how different parts of a dataset are related to each other and how

each of these relationships affect the privacy and utility requirements. Specifically, we use

an iterative process of analyzing relationships to determine what data needs to be hidden,

modified or concealed in order to maintain privacy, while also enabling maximum utility.

Before moving ahead, we would like to define two terms that are closely related to data

sanitization: de-identification and anonymization. When data is sanitized, specifically to

remove identifying information about individuals, it is known as de-identification. However,

when no part of a dataset can be linked to any identifying information, it is known as

anonymization. So data sanitization is an umbrella term, which encompasses techniques

that can help de-identify or anonymize datasets, to remove sensitive information.

1.2 Privacy and its challenges?

We define privacy as the ability of an entity to control information about itself. Most com-

monly, this entity is a person, business organization or government. Each entity may have

a different set of requirements regarding the disclosure of their information. For example,

people may choose to give their information to a social network, if it can guarantee con-

trol over the disclosure of this information in a way that is acceptable by its users. Such

requirements guide privacy policies that need to be precise, comprehensive, and universal.

However, cultural and legal differences can make this a challenging problem, as policies can
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be interpreted differently in different regions. For example in Europe, the EU Data Protec-

tion Directive has given the citizens a “right to be forgotten”. Under this right, the citizens

can request removal of any information from their past that is “no longer needed for any

legitimate purpose” [21]. However, implementing such a directive on a search engine based

in United States might result in a clash of policies. Also, there may be insufficient technical

tools to implement the policies. For example, in the above example, it can be very challeng-

ing to implement the “right to be forgotten” directive on search engines, whose underlying

idea is to remember and search through all past history on the internet.

This example also reflects on how the same information over a period of time can change

the current and future notion of privacy. So, does “privacy in retrospect” exist? [19] That

is, can we hide public information, on the Internet from our prospective schools or future

employers? And if we can, on what grounds could such requirements be justified? One

rationale behind this is that information regarding a particular issue can change over time.

For example, news accounts about court cases may be initially suggestive of one set of “facts”,

but alternative “facts” may be revealed during trial. The existence of such information from

the past could cause unnecessary bias or damage in current decisions. Therefore, similar to

the EU directive regarding the right to be forgotten, in September 2013 California passed

a law which said that beginning on January 1, 2015 minors can permanently delete their

information online [8]. The law also requires that provisions to do this must be provided

by the operator of a web site, online service, online application, or mobile application. This

example shows that not only can the meaning of privacy change across borders, but it can

also be applied differently to people of different ages.

However, the most fundamental challenge in achieving privacy is to discern what (data)

attributes of an entity encapsulate information that can be deemed identifying, either directly

or through some inferences. Hence, the privacy requirements and goals must dictate which

data elements must be concealed. This is what the privacy policies and procedures try

to capture. Also, the amount of publicly available information is growing, which requires
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privacy policies to be dynamic. For example, intuitively one can argue that if there is more

than one person living in a particular ZIP code, then merely knowing a person’s ZIP code

will not reveal his or her identity. However, in most cases our names and addresses are

unique and can identify an individual. So consider the two following policies which define

what information can be personally identifying:

California Civil Code Section 1747.08 (b) [2] defines personally identifying information

for credit card transactions as:

For purposes of this section "personal identification information," means

information concerning the cardholder, other than information set forth on the

credit card, and including, but not limited to, the cardholder’s address

and telephone number.

Massachusetts General Law Chapter 93 Section 105a [3] defines personally identifying

information for credit card transactions as:

Personal identification information shall include, but shall not be limited

to, a credit card holder’s address or telephone number.

In both these states, as far as credit card transactions go, a cardholder’s address is

considered personally identifying information. But this policy definition does not specify

what constitutes an address, and if only a part of an address can be considered personally

identifying information or not. This ambiguity was exploited by businesses when they asked

customers for just ZIP codes, and upon cross referencing data on various public web sites,

they were able learn the complete addresses. So a credit card holder who innocuously revealed

his or her ZIP code was now getting a lot of spam mail addressed to them. Examples of

this are in the lawsuits, Tyler v. Michaels Stores, Inc. [58] in Massachusetts and Pineda

v. Williams-Sonoma [46] in California. As a result of these lawsuits, both the states now

recognize ZIP code as personally identifying information, as they pertain to credit card

transactions.

In different legal and cultural domains, we can see how privacy has varying meanings
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to it. But what these lawsuits showed was a common end goal. However, interestingly

enough, the motivation behind the verdict was completely different. The applicable laws of

Massachusetts were intended to protect its citizens from identity theft and fraud. In Tyler v.

Michaels Stores, Inc., the plaintiff was not able to show any injury or damage. In contrast,

California laws intend to protect the privacy of its citizens more generally, which was the

basis of the decision in Pineda v. Williams-Sonoma.

1.3 Data Sanitization

The process of data sanitization involves removing or modifying parts of a dataset which

could reveal sensitive information or if disclosed together, a subset of parts which could reveal

sensitive information. It should be mentioned that the term privacy can be given different

meanings within a single policy. For example, consider the following datasets: D1 which

consists of usernames with their corresponding salaries, and D2 which consists of usernames

with their corresponding diseases. The privacy policy for D1 could say that it is sufficient

sanitization to change salaries to broad ranges rather than exact numbers. Alternatively,

the requirement for sanitizing D2 may be to replace usernames with pseudorandom, unique

numbers while keeping the disease names listed. Therefore “removing sensitive data to

protect privacy” does not always mean the same thing and can vary highly depending on

context.

We can formalize the above discussion in the following way. Consider a dataset D and

let D′ be a subset of D, such that D′ contains sensitive information. The policy: P , is a

function of Pp and Pu, where Pp is the privacy policy and Pu is the utility policy, such that:

D × P → D \ D′

6



1.4 The Complexity in Data Sanitization

There are many aspects to the problem of data sanitization; the data and how it can be

interpreted, the various policies and how they can be interpreted, and the information that

can be derived from the data with or without using the external information. The way

data and policies are interpreted is important, because different interpretations can lead to

different solutions to the problem. But these interpretations depend upon the assumptions

that are made while analyzing the problem. The fundamental problem here lies in how to

determine whether each of those assumptions is correct or not.

Incorrect and/or incomplete assumptions add complexity, but data sanitization problems

are typically made more complex by the quality and quantity of data. One example of this

is the increasing number of relationships between data, as the number of data elements grow

(see Section 4.1). If every 2 data elements have a relationship between them, then n−1 data

entities have
(
n−1
2

)
relationships between them. Adding the nth data element would increase

the number of relationships in this case by n−1. Increasing the number of relationships will

add to the complexity of analyzing the data for data sanitization. This is because, there is

a quantitative increase in the amount of information contained in the dataset, which must

now be analyzed for effectively sanitizing data, while providing the required utility. For

this reason, the inferencing capability of an attacker may become easier, as there are more

relationships that can be used to correlate with the externally available information.

When considering assumptions relating to the data itself, adding data fields will cause

an increase in the number of values, which adds more complexity when analyzing the rela-

tionships among them. This again presents the attacker with more information that can be

correlated with externally available information, thereby, making inferencing easier. If the

goal is to hide some sensitive information, it will generally involve some loss of the usefulness

of data, as sensitive values must be hidden. But consequently, if there is a goal of having

data to analyze it, then some values (which may or may not be sensitive) may need to be

revealed. This requires a tradeoff, and resolving the conflict can be highly complex.
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Another aspect of the data sanitization problem is how to estimate risk for the sanitized

datasets that may be shared or published. When datasets are shared, more control can

be asserted and risk can be better estimated. This is because access and use of shared

datasets can be controlled by contract. However, when datasets are published, the extent

of external information, tools for attacking and types of attacks are unknown. In many

situations, sanitized data becomes vulnerable to attacks over time. The amount of publicly

available information is increasing, along with the tools and techniques in statistics and

computer science. Ideally, a sanitized dataset must be resistant to not just current attacks,

but attacks which might appear in the future. This estimation further complicates data

sanitization. This is why completeness of the analysis is crucial. But achieving completeness

is difficult in data sanitization because of the dynamic nature of information, policies and

requirements.

In fact, the amount of information available to us (this could refer to information available

publicly and/or privately) is always expanding. This theoretically means that a complete

analysis of external information and risk might not be possible. However, if the bounds of

this problem can be established, then completeness within these limits may be attainable.

So the complexity in data sanitization arises in establishing these bounds. To put this into

perspective, consider some data with military information. In this data, certain names of

personnel and equipment are suppressed to comply with privacy guidelines of users and

technology. If this dataset was made public, it is possible that these sanitized values are

kept secret. However, assume that in the future this technology becomes outdated and the

government de-classifies documents that contain names of personnel and equipment which

were initially kept secret. Now there is a stronger possibility that the previously sanitized

military data can be re-identified. Of course, although the sanitized data may be de-sanitized,

the information may also be no longer deemed sensitive and the privacy policy would then

no longer be relevant. It should be noted that a similar problem arises with encrypted data

where future computational power can enable deciphering of past data previously considered
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safe due to current computing capabilities. A complete analysis of information and policy

is possible if an accurate timeline and scope of declassification is known. But in most cases,

such information can not be predicted. So theoretically the sanitized values of personnel and

equipment will always remain susceptible to this attack.

1.4.1 Weaknesses of Data Sanitization

From a security perspective, data de-sanitization can be viewed as a successful attack result-

ing from the exploitation of a vulnerability. One way to tackle the de-sanitization problem

is by finding these points of failure and collectively assess them and their dependencies with

each other. The entire data sanitization method can be viewed as a hierarchy of many layers

of abstraction, starting from the policy definition to the sanitized data sets. Between each of

these layers, there are bound to be gaps where an adversary can attack. These gaps are where

the potential vulnerabilities can arise. How to find these gaps is an important question that

needs to be answered, before one can proceed with analyzing the strengths and weaknesses

of an sanitized dataset. There can be many reasons for a successful de-sanitization, but they

can be broadly classified into the following categories:

1. De-sanitization due to requirement limitations - Before one can sanitize a dataset,

the goals of sanitization, knowledge of existing public data, privacy requirements and

availability constraints must be clear. A policy can be successfully formulated if and

only if the requirements are well known. However, in case a requirement is not captured,

it may translate into a vulnerability which can lead to de-sanitization. For example,

voter confidentiality is one of the biggest requirements in voting. In order to protect

it, assume every voter name is replaced by a unique 16-bit integer. Now if a dataset

containing the votes in the order they were cast is released with voter names made

anonymous, and the candidate he/she voted for, it may seem that all the requirements

for a successful sanitization are covered. But for an observer who stands outside a

polling booth all day and notes the sequence of voters going in and out of the polling the
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booth, correlating the votes to actual voters becomes really easy. Hence, an additional

requirement of “altering the sequence of voters in the released dataset” is crucial and

ignoring it could lead to de-sanitization. It is possible that all requirements are covered,

but requirements can be dynamic and change in future. If these are not properly

accounted for, they can lead to vulnerabilities. For example, suppose there is a dataset

containing the name, social security number, salary, age, marital status, ZIP code

of residence, gender of all the people living in United States. In order to sanitize this

dataset, the requirements would state to remove all personally identifiable information.

Hence the name and the social security number would have to be removed. However,

it was discovered that if the ZIP code, gender and date of birth are known, then 87%

[53] or 63% [27] of the people in United States can be identified. So once this new

threat is known, the old requirements must be revised and changed accordingly.

2. De-sanitization due to policy limitations - Even if the requirements are perfectly known,

the policy can impose its own limitations which can translate into vulnerabilities. As

mentioned earlier, a policy may have different contexts and all of these must be freed

from mutual conflicts. For example, consider a medical dataset, which has to be

released for research purposes. This dataset is subject to the HIPAA privacy policy.

According to this, there is a list of 18 identifiers which must be removed before the

dataset is considered anonymized and publishable. Any attribute present in the dataset

that lies outside this list of 18 identifiers and can potentially de-sanitized the dataset

will result in a vulnerability caused due the limitation imposed by the policy.

3. De-sanitization due to limited policy implementation - It is possible that despite the

requirements being fully known and the policy being properly formulated, the policy

implementation can be flawed. If the policy implementation is not done properly, it

can lead to vulnerabilities that can be exploited to attack the sanitized data. For

example, consider a dataset with one or more records, each of which contain a person’s
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name, their residential ZIP code, their social security number and their phone number.

Assume the privacy policy requires that names and social security numbers have to be

hidden. Then simply deleting all the names and social security numbers will not be

enough, as an adversary can find names using phone numbers and ZIP codes, which

can be publicly found.

4. De-sanitization due to problems caused by sanitization technique - The exact method-

ology on how to sanitize a dataset is specified by what sanitization technique one

chooses to adopt. Each technique may have its own advantage over the others. Some

are more suited to a particular type of data, while others may benefit by better pre-

serving the relationships within crucial data entities. Such problems can cause areas

where the adversary can attack and de-sanitize a dataset. For example, consider the

same example as in the above point. Instead of using generalization, masking the social

security numbers will work much better. The masking could be partial or complete,

depending upon the analysis requirements.

1.5 Dissertation Goals

The primary goal of this dissertation is to propose and demonstrate an iterative model for

attempting to refine the process of balancing privacy and utility. To do this, we first study

pre-existing techniques for sanitizing data, and the assumptions which they make. Then we

look at some attacks and the reasons for their success, and how they could have been failed.

For implementing the iterative process, we describe different methods of representing data

and the advantages of using each of them. After representing data, we present a method

of analyzing the data sanitization problem by looking at relationships between data. By

analyzing relationships between the various data fields, we can determine how vulnerable

a sanitized dataset can be to potential de-sanitization. To implement this, we formulate

a model which runs iteratively though many phases to achieve the goals mentioned above.
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Finally we present case studies to show how to analyze relationships and use the model to

sanitize data.
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Chapter 2

Background

2.1 An Overview of Existing Techniques

A collection of data can be represented in many forms. Additionally, there are many ways to

hide sensitive information. But while the sensitive data is concealed, analysis requirements

might necessitate for some information to be revealed. Therefore, different techniques have

been developed, which can be applied to data under different assumptions. For example, in

order to store votes, it might seem sufficient to substitute the voter name with a random and

unique integer. However, as noted previously, shuffling the order of votes is equally important

as an adversary can simply stand outside a particular polling station and note the order of

voters entering. So since there may be multiple requirements in a data sanitization problem

which can not be all fulfilled by a technique, a sanitizer might need different methods to

solve them.

The easiest way to sanitize data is by simply deleting it. For those parts of a dataset which

offer no utility value and can directly reveal user identity, deletion is an option. However,

deletion does not work if the data has statistical value and can reveal sensitive information.

One alternative is to partially mask the data by using a masking character (like x) is used

to replace part of it. This is commonly used for credit card numbers where a 16 digit credit
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card number like 1234 5678 8765 4321 is masked to xxxx xxxx xxxx 4321. This technique is

fast and works well if the data has a uniform structure and revealing parts of it does not leave

enough information to cause a privacy risk. For more sensitive data, it might be feasible

to de-anonymize data, for which advanced masking techniques have been proposed. Some

of these include adding [56] [34] or multiplying [35] noise to preserve confidentiality. These

are statistical methods that work by perturbing the data. The success of these techniques

depend upon the amount of additive noise and multiplicative bias [57] but most statistical

methods fail as they are unable to quantify the background information.

More generally substitution can be used, in which data is completely replaced by a random

sequence of characters. This has low computational complexity and preserves the look and

feel of data, but developing the framework to generate random sequences can be problematic.

If the substitution method is not properly implemented it can lead to vulnerabilities, espe-

cially when all the substitutions are not completely random. Then the attacker’s problem is

reduced to finding the algorithm and a seed variable behind the pseudorandom sequences.

The fact that masking methods might reveal some unaltered information could lead to data

compromise, but substitution methods can result in extremely high loss of analytical value

of the data.

Another way of anonymizing data is by generalization in which the raw data values are

replaced by data ranges which include the real value. For example, to publish salaries,

ranges which include the real salaries can be revealed, such as, less than $100000, between

$100001 and $200000, between $200001 and $300000, and so on. Generalization is also

computationally less complex, is easy to implement, and most importantly retains some

statistical properties of the data being anonymized. However, generalizing data does reveal

some information, which has to be balanced with the privacy and utility requirements.

The set of elements that may potentially reveal sanitized data are called identifiers. The

set of entities that may potentially reveal sanitized data, if disclosed together, are called

quasi-identifiers. It could be possible that these quasi-identifiers are present across different

14



records or tables and if linked together directly or by statistical inference, they can help in

de-anonymizing data. In the late 1990’s Latanya Sweeney proposed k-anonymity [55], which

generalizes quasi-identifiers. The idea is that in case there is a quasi-identifier with a value x

then we must have k−1 more values of x so that cross table and cross record linkage becomes

hard. Therefore k-anonymity effectively represents the de-anonymization as a table linkage

problem. A number of improvements to k-anonymity have also been made, building on the

original idea. For example, k-anonymity assumes all records represent different individuals

or else the k different quasi-identifiers with the same value of x would actually represent less

than k users. To bypass this assumption, Wang and Fung proposed (X, Y )-anonymity [60],

where X and Y are disjoint sets of attributes, such that each value in X is linked to at least

k distinct values in Y . This makes (X, Y )-anonymity a generalization of k-anonymity, as

there is grouping of records across 2 sets of disjoint attributes rather than just across 1 set.

Both these techniques are restricted by the capability to only anonymize 1 table. However,

for a more practical scenario, Nergiz et. al [45] proposed MultiR k-anonymity. Here they

assume that one of the tables PT contains person-identifying information whereas the other

Ti, 0 ≤ i ≤ n tables contain foreign keys and other attributes. The notion of privacy is

defined by creating k− 1 records over the join of all the tables, which share the same quasi-

identifiers. These three techniques prevent record linkage but all the sensitive attributes

are grouped together and an attacker can infer attributes based on the data published. For

example, if a person with a particular disease has information like age, location and gender

in separate tables, then critical information can be inferred, if these tables can be linked.

Again it may not be necessary to derive the exact information, but knowing that there is

the possibility of a correlation within attributes could be fatal enough. Attacks based on

background knowledge often lead to linking records and attributes and k-anonymity cannot

prevent these attacks [32]. In general, these methods anonymize by obfuscating information

rather than actually hiding it. This can be attributed to the fact that within these groups of

anonymized data, there still exist relationships which can be made apparent using external
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knowledge. This is why the concept of diversity [32] in these groups, called l-diversity, was

proposed, whereby the sensitive attributes should have at least a certain number of different

values. Higher diversity causes noise, which prevents an attacker for making inferences on a

group of sensitive values. Even if an attacker can use strong background knowledge to figure

out or eliminate some sensitive attributes, there still exist many more to keep the inference

difficult. There are different instantiations of l-diversity. For example, the recursive (c, l)-

diversity [32] makes sure that the most frequent value does not appear too frequently, while

the least frequent values does not appear too rarely. This causes a more uniform distribution

of values. The aim of generalization is to create groups of sensitive attributes which decrease

the randomness, thereby making it harder for an attacker to figure out the real values.

However, if this was done recursively, there would be immense data loss. Also, at some point

the whole data set would look like one big group, and that will lead to a problem of lack

of diversity. An improvement on l-diversity is t-closeness [37]. In contrast with l-diversity,

which assumes all attributes to have a similar distribution, t-closeness makes sure that the

distribution of sensitive attributes with a group of anonymized attributes is similar to their

global distribution. Most of these generalization techniques lack a measure of the right

amount of reduction of randomness as compared to the increased diversity, such that the

analysis policy can be satisfied.

One method that does allow for a provable measure of privacy is called differential privacy

[25]. According to this method, a statistical disclosure is said to have taken place if an

adversary, on accessing a database, can learn anything more about an individual that could

not have been learned had he/she not accessed the database [23]. However, achieving such a

goal is not possible and therefore differential privacy is defined, such that the truthfulness of

queries returned from two different databases which differ on a single input is approximated

by a factor of ε, termed as ε-differential privacy, irrespective of whether the user data exists

in the databases or not. A popular differential privacy implementation is by adding noise [51]

[40]. Differential privacy has many advantages over traditional privacy preserving methods,
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for example, its good behavior under composition and its weak assumptions about the prior

knowledge of adversaries [16]. Although a queryable database with added noise does help

avoid attacks using attribute linkage, table linkage and auxiliary information, it does pose

its own problems. [43] and [52] show examples of how utility can be greatly impacted with a

high amounts of added noise. Other experiments have shown that in order to be useful, there

are low privacy guarantees. And finally there are almost no practical guidelines that help

decide the values for ε. The privacy parameter is a theoretical concept and altering its value

will have an effect on both the utility and privacy of data. The differential privacy model

is however different. Rather than sanitize datasets, it serves as a guard between queryable

database queries.

Many modern day technologies such as the online social networks and the smart grid are

based on graphs. This has lead to research in data anonymization using the graph structure.

The notion of privacy in a graph can be defined as k-degree anonymous, if for every node

v, there exist k − 1 other nodes with the same degree as v[39]. If each tuple from a tabular

dataset can be represented as a node in the graph, then the same analysis can be used

in both cases. However, determining the resulting utility of these k-anonymous graphs is

very difficult and needs much future research. Another social network specific technique for

graph anonymization classifies various entities into classes, which are analyzed to ensure the

additional information that an attacker can infer is minimal[17].

An intuitive way of looking at sanitized data is to view the association of entities as a

bipartite graph e.g. name and address, name and gender and so on. Hence a family of

anonymizations for bipartite graph data called (k, l)-groupings [22] has been proposed. The

grouping of entities helps preserve the underlying structure of the graph, while privacy is

attained through masking the mappings between the entities. The k-grouping partitions the

set of vertices V into a ”safe” group of k nodes using Greedy Algorithm. After grouping

the vertices V into groups of size at least k and the vertices L into groups of size at least l,

the edges are relabeled which satisfies privacy. Therefore, utility-wise (1, 1)-grouping would
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mean that each group only has 1 node in it and therefore the privacy would be minimum

and the utility would be maximum. On the contrary, assuming there are v vertices in set

V and l vertices in set L, (v, l)-grouping has the least utility but maximum privacy. Hence,

tradeoffs are possible within these bounds. They map each entity in the dataset to a node

in the bipartite graph, which they claim would make it impossible for an attacker to figure

out the association between nodes and entities. The big restrictions however are that not all

datasets can be represented using bipartite graphs and additional work needs to be done to

sanitize both the entities and the associations between them.

Basic cryptographic ideas can also be used for privacy-preserving computation using

data mining algorithms [50]. Also, a secure computation protocol has been constructed by

oblivious transfer [33], However, the biggest problem with secure two-party or multi-party

computations using oblivious transfer is the huge overhead. Cryptography can be useful in

data sanitization, if applied properly in certain situations e.g. consider 2 parties P1 and P2

releasing 2 large sanitized datasets D1 and D2. Assuming there is no trusted third party,

the individual parties need to apply data mining algorithms on the join of D1 and D2,

D1 ∪ D2 such that P1 learns nothing more about D2 than that output of the data mining

algorithm. In other words, given 2 datasets, is it possible to share them without revealing

sensitive information by combining them. This problem can be solved by using a decision

tree learning algorithm with the ID3 algorithm [38]. This solution is more efficient than

the generic two-party computation protocol as mentioned earlier. Similarly, a solution for

secure mining of association rules over horizontally partitioned data has been developed

[31], whereby each site has some data, and no one can learn the data, while the transactions

that go on between different sites and the rules that each site support. The success of

cryptographic protocols depends on computation cost, communication cost, and the number

of rounds in the protocols. There are comparative studies on secret-sharing and encryption-

based techniques for privacy preserving data mining on distributed data sources [49].
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2.2 An Overview of Attack Analysis

In this section we will describe some successful attacks that researchers have used to examine

the limits of data sanitization.

2.2.1 Netflix Attack

The Netflix Prize [6] was a competition run by Netflix Inc. It was started on October

2, 2006, and welcomed entries for an improved recommendation algorithm. For this, the

company released an anonymized dataset containing movie titles, movie ratings, date and

time of ratings and anonymous user IDs. There were a total of 100,480,507 ratings for 17,770

movies rated by 480,189 subscribers between December 1999 and December 2005. The user

names were replaced by an 8-digit number and according to Netflix the other values were

sufficiently anonymized in order to preserve the user privacy. In 2008, researchers at the

University of Texas, Austin were successfully able to de-anonymize parts of this dataset [44].

In the Netflix dataset, all four data fields, i.e. user ID, movie rating, time and date of

rating and movie title are associated with each other. This means that for every user ID,

there is a corresponding movie title, movie rating and the date and time of when the movie

was rated. Although the actual user names were anonymized, all other data values could

not be changed too much as the dataset would lose its analytical value. This is what allowed

the researchers to attack the dataset for de-anonymizing the user ID.

The idea behind this was to find a different source of movie ratings and compare them

to the values in the Netflix dataset. For this, the researchers from UT Austin used Internet

Movie Database or IMDb [4], one of the world’s most popular online movie databases. Since

the IMDb website publicly showed movie ratings, time and date of rating and user ID

corresponding to different movie titles, this information could have been used by anyone.

And this is exactly what they did.

They began their analysis by assuming that users who rated movies on Netflix would
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give similar ratings to the same movies on IMDb. This is a reasonable assumption because a

user’s rating for a particular movie should remain the same, irrespective of where it is done.

So they compared the ratings, time and date of ratings and movie titles for various users on

Netflix to the data present on IMDb.

If there was an exact match between these values, then it could mean that an anonymized

user who rated movies on Netflix also rated movies on IMDb. The only thing that was not

present in the Netflix dataset was a user’s name, which could now be inferred from his / her

IMDb profile.

It is also possible that there is no exact match between the values. This can be seen

as perturbations in the Netflix data, or imprecisions in the information on IMDb. In either

scenario the analysts must choose viable margins to account for them. In the case of Netflix

dataset, these differences cannot be too drastic as it would result in loss of utility. Therefore,

when the “anonymized” records from Netflix dataset were matched with the IMDb data, they

used margins like ±3 or ±14 days for date/time of the ratings. Similarly, they used some

tolerance while comparing movie ratings.

To find out how similar two sets of values were, they made a similarity metric, which

compared values using the given error margin. With this they were able to suggest whether

two sets of records belonged to the same user, which would ultimately allow them to identify

that user from his / her IMDb profile.

The authors of the paper had to work with a small sample space of approximately 50

users, as they could not crawl IMDb due to restrictions imposed by the terms of service.

Therefore their result can only be seen as a proof of concept with no large scale de-

anonymization. When the Netflix dataset was attacked in 2008, social networking data and

its analysis were still in their early stages. Since then, we have seen a lot more data and many

powerful tools being developed. This will only add to the amount of information present

outside anonymous datasets similar to the Netflix dataset, and potentially allow for easier

de-anonymizations.
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Also we should consider the increase in popularity of social networking websites like

Facebook and Twitter over the recent years.

2.2.2 Governor Weld’s Medical Record De-anonymization

Massachusetts Group Insurance Commission (GIC) released anonymized data for the purpose

of improving healthcare and controlling costs. It was claimed that this dataset was stripped

of identifiers to protect patient privacy. But Latanya Sweeney, then a graduate student at

MIT, was able to identify Governor Weld’s record from this anonymized dataset.

William Weld was a Governor of Massachusetts from 1991 to 1997. During a commence-

ment at Bentley College [5] in 1996, he collapsed and was taken to Deaconess-Waltham

Hospital. As the GIC data covered patients in this period of time, Sweeney knew that if she

could get information about the residents of Cambridge, and compare it with the anonymized

GIC dataset, she could potentially find a match for Governor Weld’s record. And this is

exactly what she did.

Governor Weld resided in Cambridge, MA, which had 7 ZIP codes and a population of

approximately 100,000, out of which 54,805 were listed in the voter rolls. These voter rolls

contained name, address, ZIP code, birth date and gender of every voter. After comparison

only 6 people shared his birthday. 3 of them were men and only 1 lived in his ZIP code. This

allowed her to conclude that Governor Weld’s medical record was present in the anonymized

GIC dataset.

Although Governor Weld’s re-identification lacked some challenges that would typically

exist for most re-identification attempts, it still shows vulnerabilities which exist in anonymized

information. For example, the external knowledge of him being taken to the hospital, name

of the hospital, his ZIP code of residence and his date of birth, made it easier for Sweeney

to deduce the presence of his information in the anonymized dataset. Such information may

not be easily available for people who are not publicly known. But once an attacker can

gather information like this, de-identification certainly becomes easier.
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Another challenge in this re-identification is that the population register was not com-

plete. The voter rolls only had about 55% [15] of the population of Cambridge listed. This

means that a guarantee could not be made if Weld was actually the only male with his

birthday living in his ZIP code. In this attack, only the voter rolls were used to create the

population register and Governor Weld was expected to be in the voter rolls with a very

high probability.

The re-identification of Governor Weld’s information was an important attack as it

showed how externally available information can cause vulnerabilities to privacy, even in

1996. Now, with the advent of social networking, it might be easier for attackers to gather

even more information. The type and content of externally available information is not pre-

dictable, but under specific conditions successful de-anonymization attacks can occur, even

if the probability is very low. Whether Governor Weld’s re-identification was the result of

a successful voter linkage attack [54] or just a probabilistic attack [15], there are gaps in

privacy preserving techniques that do result in successful de-identification attacks.

2.2.3 Genomic Data Re-identification

The Personal Genome Project (PGP) was founded in 2005 at Harvard University in which

volunteers can donate their DNA information, behavioral traits, medical conditions, physi-

cal characteristics, environmental exposures, demographic information and much more. The

benefit of all this information given is in its utility, whereby researchers can conduct re-

search to establish correlations between traits. This research can be particularly useful in

discovering diseases through genetic data and uncovering ancestral information [26].

PGP allows users to submit as much information as they want by “open consent”. There-

fore, every individual can choose how much information they want to disclose. This includes

demographic information like gender, date of birth and ZIP codes. Every user profile is

given an identification number and is seemingly anonymous. Participants in PGP may also

upload their DNA information from external DNA sequencing services which often come
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with personal information like participant name. Latanya Sweeney noticed that out of the

1130 public profiles seen on the PGP website as of September 1, 2011, 579 of them (or 51

percent) had the full date of birth, gender and 5-digit ZIP code. Not only does this violate

the standard HIPAA privacy requirement, but Sweeney had previously already shown that

87% of the people in United States have unique values of these 3 attributes.

Sweeney used publicly available information from voter registration and online access to

public records website. Purely based on demographics, numerous tests on the dataset were

able to yield 130 (out of 579) unique matches with voter data information. They were also

able to find 103 embedded names. Furthermore, matches with public records yielded 156

(out of 579) unique matches. Combining these gave them a total of 241 (out of 579) or 42

percent unique names matching profiles. When these results were shown to the PGP staff,

they found that 84 percent of these were correctly matched and this number went as high

as 97 percent when considerations for possible nicknames were allowed.

2.2.4 AOL Attack

AOL Inc. released a dataset on August 4, 2006 which contained user queries from March 1,

2006 to May 31, 2006. To protect the privacy of their users, AOL represented each user by a

unique number. The New York Times analyzed queries made by all the users and identified

a resident of Lilburn, GA by the name of Thelma Around as the user with ID 4417749 in

the anonymized AOL dataset. Her searches like “landscapers in Lilburn, Ga” and queries

with last name Arnold were 2 of the many queries that the New York Times pieced together

to discover her real identity [14].

Journalists at the New York Times analyzed the queries made by all the users and

narrowed their search to Lilburn, GA.

The AOL dataset had 36,389,567 lines of data. Each line represented either a click-

through event, in which case the user clicked on an item in the list returned from a query; or

a query that was not followed by the user clicking on a result item. The click-though events
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constituted 19,442,629 lines while the queries without click-through events were 16,946,938

lines. The dataset had 21,011,340 instances of new queries, including queries with or without

the click-through events. These queries were case shifted and most punctuation was removed.

Moreover, 10,154,743 queries were unique and 7,887,022 requests were made for a “new page”

of results. For each user who made the corresponding query, the username was replaced by

a unique number. The dataset consisted of 657,426 unique user IDs. AOL also claimed that

these queries were not filtered to remove any content, including any sexually explicit data

as they wanted the data to represent “real world users, unedited and randomly sampled”.

There are 5 different data fields found in this dataset:

• Anon ID - represents an anonymous user ID number

• Query - represents the query issued by the user

• QueryTime - represents the time at which the query was submitted

• ItemRank - represents the rank of the search item, if it was clicked by the user

• ClickURL - represents the domain portion of the URL, if it was clicked by the user

For queries that did not result in the user clicking any result, only the first three data

fields appear i.e. Anon ID, Query and QueryTime. If however, the user clicked on a result,

then both the preceding query and the subsequently clicked result appeared in the dataset.

If more than one result was clicked by the user, each event would appear on a separate line.

Also, a user requesting the next page is shown as an identical query with a later time stamp.

The problem in this dataset was that search queries were not completely stripped of

identifying information. When search engines are used, the queries supplied by users can

reveal information about themselves. This includes information regarding their location,

health conditions, names etc. When all this information is pieced together, inferences can be

made about who the user is and can potentially lead to privacy violations. This is exactly
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what happened in the re-identification of User 4417749, which resulted in AOL taking this

dataset down only 3 days after its release.

2.2.5 User X

We now give another example of how external information can be used to infer various

attributes about a person?s identity. To do this, we discovered a user, who we will refer

to as User X (to maintain the user’s anonymity) in the AOL dataset.. This user made a

substantial number of queries, which enabled us to gather more information.

Among many searches that revealed various characteristics about User X, there were ad-

dresses, a name, TV shows and queries that suggested potential hobbies. When we searched

that name on publicly available websites like mylife.com, zillow.com and spokeo.com, we

found an address that matched one of the queries. However, another address found in a

different query was in very close proximity to the address which appeared in the external

websites (verified by searching on Google maps).

Also, on one of the websites, we found an anonymized email of the form X—–X@—

.com. On a different website we found an email associated with the same name ending in

yahoo.com. Another source revealed the complete email address with matching values of X

and later we were able to find some posts by the same user on Yahoo groups. Moreover,

some of the addresses pointed to searches for doctors and hospitals in the vicinity of User

X’s presumed neighborhood. We were also able to find first 6 digits of a phone number, an

age range and the gender of this person, just by using free accounts on these websites.

This attack was done in 2013 and shows the extent of publicly available information

that exists and can be exploited. Addresses, phone numbers, property records and medical

information derived from different sources can be tied to users, which could potentially

violate their privacy.
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2.3 Comparing the Attacks

All the attacks mentioned above represent examples of ways in which relationship analysis

can be used to better understand how data can be anonymized and/or attacks on anonymized

data can be performed. Although these attacks show different domains in which external

information was exploited, there are similarities in how desanitized data was pieced together

from the anonymized data.

• In the Netflix, Genomic Data Re-identification, and Governor Weld’s attack, the at-

tackers knew precisely which relationships to look for in the external world. This

pre-knowledge was not possible in the AOL attacks due to the structure of database.

For example, an adversary would not try to attack this database by trying to figure

out the relationship between Query and QueryTime for a particular user, because the

chances of finding out query times in the external world are almost impossible. So the

AOL attackers had to look beyond the relationships between the various data fields

given in the dataset, which is why the contents of the queries had to analyzed. For

User X, the relationships that have been used to re-identify are dependent upon the

characteristics of the queries. We look for certain characteristics in the content like

user attributes which include names, geographic associations, unique features etc.

• The attacks on AOL and User X required a lot more semantic analysis in comparison

to the Netflix, Genomic Data and Governor Weld’s attack, as it was performed on data

which gave little information structurally, unless the queries were manually explored.

Therefore, once the queries were analyzed, relevant pieces of information were picked

up and combined together.

• The domain of data in the Netflix dataset, the Personal Genome Project and Governor

Weld’s medical record was restricted. But due to the variations possible in queries

present in the AOL dataset, the Query field was unrestricted. This means that doing

a similarity metric analysis on the AOL dataset and User X is more difficult. However,
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for the Netflix dataset, once the researchers found similar data on IMDb, using a

similarity metric and matching algorithm was a very straightforward choice. Similarly

for Governor Weld’s medical record de-identification, the possibilities are eliminated

using statistical analysis.

2.4 Gaps in Existing Research

One of the most important questions that we examine is what gaps exist in the current data

anonymization research, as it lays the foundation for the goals and scope of our research. It

is important to not only study the existing techniques but also the successful attacks that

were done on sanitized datasets to understand the deficiencies that need to be filled. The

externally available information is nebulous, which makes it hard to quantify its size and

impact. This makes the complexity of sanitizing data obscure, which is why we have no

problem-specific complexity estimation. Understanding the possibility of data sanitization,

coupled with the complexity of doing it, serves as a starting point in tackling this problem.

In the previous sections, which describe past techniques and attacks, it is evident that

there is much disparity within the realm of this problem. This is caused by the dynamic

nature of data, policies, and assumptions. For example, earlier work in data sanitization

assumed a closed world. This means that the scope of data which was considered harmful

in assisting an attacker in de-sanitizing data was restricted to the given dataset. But this

assumption can cause problems when data is released publicly. As we have seen in previous

attacks, the attackers used public data in de-sanitizing datasets. Some more recent research

techniques have used an open world assumption based on what data is currently publicly

available, but it is not possible to know the existence of each and every data entity that may

be available publicly. Moreover, it is even harder to predict what data entities, currently

unknown/concealed, may be available to an attacker in the future. Therefore, we need a

more fundamental approach to analyze data entities and how and what kind of information
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can be harmful to data sanitization.

We argue that an analysis of relationships between various data entities, present within

and outside the dataset, can help in better understanding the problem of data sanitization.

The benefit of this analysis is in a better understanding of the requirements and assumptions

made in the process of sanitizing data. This results in a better choice and usage of sanitization

techniques.
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Chapter 3

General Approach

The attacks described in Section 2.2 show a selection of ways in which vulnerabilities in

existing sanitization techniques have been exploited. These vulnerabilities may occur due to

incorrect application of privacy preserving techniques or by making incorrect assumptions

about the problem. For example, in the sanitized AOL dataset, one incorrect assumption

was that the substitutions would be sufficient to sanitize the data. This eventually led to an

attack violating user privacy.

Although data may belong to various domains and be structurally and semantically

different, there are some commonalities between the techniques and the assumptions made

while anonymizing data. There exists no checklist that can guide a sanitizer through some of

these basic assumptions. In fact, there is no literature that can concretely define guidelines

that can be followed in order to prevent data re-identification.

3.1 Guidelines for Good Sanitization

We argue that there are some assumptions which must be made in order to reduce common

risks. These do not guarantee absence of risk to all attacks, but suggests how to avoid errors

that frequently cause of vulnerabilities in sanitized datasets.
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1. Assume an open world - Datasets with real world information are susceptible to attacks

using data which is present in the external world. There is a lot of publicly available

information that might lead to correlations with the sanitized data. This has become

a serious problem with the advent and popularity of social networks, where people are

voluntarily or involuntarily posting information about themselves and each other.

2. Avoid unique values - Uniqueness in data increases susceptibility to attacks against

user privacy. One way to counter uniqueness is by ensuring a uniform distribution of

values, thereby obscuring the presence of individual values.

3. Understand nuances of the domain - Every domain has its differences that must be

understood while sanitizing data. For example, in the medical domain there is a strong

correlation between certain diseases and gender of a patient. Therefore, in order to

hide a patient’s gender, it may not be sufficient to merely suppress it. One has to make

sure that conditions like pregnancy and prostate cancer are also suppressed as they

identify the patient gender as female and male respectively.

4. Avoid making strong assumptions about what data an attacker might have - A sanitizer

cannot make any assumption about what information may or may not be present with

the adversary. It should always be assumed that an attacker can get hold of any data

that is publicly available.

5. Classify sanitization as shared or published - Sanitized data can be shared or published,

for analytical use. There is more control over shared data in comparison to published

data. When data is shared, there is often a legal aspect which can prevent the user

from attempting privacy violations. However, published data is susceptible to attacks

from anyone and under uncontrolled conditions. This is why published data has to be

analyzed much more conservatively.
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3.2 An example

Consider a set of all employees who work in Yolo County, California. Assume that informa-

tion about a subset of these employees is needed for some analytical research on ages and

salaries. Let the data in Table 3.1 include records of those employees whose information is

included in this research. This data must be sanitized according to two policies. Firstly,

there is a privacy policy which states that:

The identity of any and every employee whose name is contained in this

database can not be revealed

According to this policy, an adversary should not be able to link an employee to one or

more records in this database, once it has been sanitized. A privacy violation will occur if

any of the following conditions are met:

1. An adversary can correctly identify an employee’s record in the sanitized database.

2. An adversary can correctly deduce if an employee’s record is present in the sanitized

dataset.

Secondly, there exists an analysis policy stated as:

Show how the salaries are related to the age of employees

Table 3.1: De-Sanitized Hypothetical Employee Data

Name Age Job Title Annual Maximum Salary
Don Vito 33 Administrative Assistant $48,624
Michael 33 Animal Care Technician $39,396
Peter 48 Senior Accounting Technician $50,508
Virgil 55 Chief Deputy - Elections $98,172
Sal 52 DA Lieutenant - 17.5% $108,336
Fredo 22 Administrative Clerk II $36,672
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3.3 Our Approach

In our approach of sanitizing this dataset, we will analyze relationships between the various

data entities present in this dataset, over a number of iterations, in which we factor in

policies, rules for revealing/modifying or deleting data, and assessing risks to the sanitized

dataset.

Our approach starts by analyzing the privacy and analysis requirements, and how they

can be derived from their respective policies. In the above example, the analysis policy

requires determining the correlation between salaries of employees and their ages. This

means that we can generalize one or both of these data fields to preserve statistical correlation

between them. However, in doing so no employee identity can be revealed or the presence

or absence of an employee name be deducible.

Having established these requirements, we must figure out what information would the

external world have to contain in order to allow an adversary to de-sanitize this dataset.

Then we have to assess how much of that information can be easily available. The dataset

provides us with an idea, as to what information we can look at. For example, the dataset

consists of 4 fields, all of which describe attributes of an employee. If we were to hide the

employee name, then we must look for information regarding Name-Age, Name-Job Title

and Name-Salary relationships. Similarly, if any other data field is concealed, then we must

look for similar relationships between that field and other fields. It is not possible to have

access and knowledge of all the information that may be available to an attacker. This

is why, a sanitizer must analyze what information can help an attacker to de-sanitize the

sanitized dataset, rather than rely on the completeness of this information. For our example,

we note that it is likely that job titles and salary correspondence is public [10]. This means

that we have discovered the existence of a Salary-Job Title relationship.

Now that we know the policy requirements and the kind of information that may help

an attacker to de-sanitize this dataset, we can design rules which will be applied on the raw

dataset to produce a sanitized dataset. In order to do this, we must understand two things
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Figure 3.3.1: Diagrammatic representation of relationships between the entities of the hypo-
thetical state employee table

about the dataset:

1. Structure of the dataset - This is a basic understanding of how all the data fields

are associated with each other. The structure helps a sanitizer understand which

relationships exist explicitly and which ones could possibly be inferred. Also, the

structure is important to understand which relationships must be concealed and which

relationships can help an adversary to infer the information that the sanitizer is trying

to hide.

2. Importance of each relationship - Each relationships affects the sanitization of the

entire dataset differently. Some relationships are more vulnerable than the others.

For example, hiding the Date of Birth-Name relationships is much more critical than

hiding the Gender-ZIP Code relationship (assuming there is more than one person of

each gender in that ZIP code).

To accomplish the above requirements, we must first represent the relationships between
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data entities present in these tables. Since visual representation can best aid human analysts

in understanding the structure of these relationships, we use graphical methods for this as

depicted in Figure 3.3.1. The diagram is interpreted as follows: Each Name is related to one

Job Title (represented by 1-to-1 relationship). This is because every unique value of Name

has a corresponding unique value of Job Title. Similarly Name-Salary also has a 1-to-1

relationship. However, the Age and Job Title have many-to-1 relationships as well as 1-to-1

relationships. This means that the dataset contains some Age values (those corresponding

to many-to-1 relationships), where simply knowing the age will not allow the adversary to

determine the corresponding Job Title. The dataset also contains some Age values (those

corresponding to 1-to-1 relationships), where simply knowing the age will allow the adversary

to determine the corresponding Job Title. This is also true for Age-Name and Age-Salary

relationships.

Characterizing a relationship as 1-to-1, 1-to-many or many-to-many is important because

it tells us about how unique the values are. One of the most fundamental prerequisites of

hiding correlations of different data fields is by making sure there are no unique values.

For example, if exactly one person, say John Doe, lived in a ZIP code, say 12345, then by

learning either one of those two values, we would know that the person we are referring to is

John Doe. Furthermore, if there is a database of ZIP codes, which does not contain 12345,

then we know that John Doe is not that in database. This can be equally problematic from

a privacy standpoint. For example, if the database consisted of all ZIP codes which have no

cancer patients, then the absence of ZIP code 12345 would imply that John Doe has cancer.

Therefore, from this analysis the following rules can be derived:

1. Delete all values in the Name field - Name of an employee directly reveals his/her

identity and therefore it must be removed.

2. Delete all the values in the Job Title field - The analysis policy does not require

revealing the Job Title. Also, the existence of a Salary-Job Title relationship has been

discovered in the external world. Revealing Salary (partially or completely) is required
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by the analysis policy, and so far deemed feasible by our analysis. Therefore, Job

Title must be removed in order to conceal the Salary-Job Title relationship within the

sanitized dataset.

3. Generalize the Salary field - Since a publicly available Job Title-Salary relationship

is available, revealing salary could reveal the corresponding Job Title, which could

potentially reveal the employee name. Since the analysis policy requires a correlation

regarding Salary, this field cannot be completely deleted. Hence, the employee salaries

must be generalized.

4. The Age field can be revealed - There has been no publicly available Name-Age, Name-

Salary or Name-Job Title relationship discovered. Therefore, age itself cannot identify

a user and can be revealed.

The next step in our process is actually sanitizing the dataset. So far we have the privacy

and analysis requirements, a collection of some external information and rules to sanitize the

dataset. Based on this information, we choose the best technique which allows us to meet the

above criteria. In this case, we use deletion for the Name and Job Title, and k-anonymity to

generalize the Salary field. We can argue that since this is a fairly straightforward example,

a simple group generalization method can suffice. However, instantiation of these techniques

may require choosing one or more parameters, which often lead to balance privacy and utility.

In this case, k can have values ranging from 1, as shown in Table 3.2 to 6, as shown in Table

3.3.

Table 3.2: Sanitized Hypothetical Employee Data with k = 1

Name Age Job Title Annual Maximum Salary
xxxx 33 xxxx $42,000 - $49,999
xxxx 33 xxxx $36,999 - $41,999
xxxx 48 xxxx $50,000 - $89,999
xxxx 52 xxxx $90,000 - $104,999
xxxx 52 xxxx $105,000 - 120,000
xxxx 22 xxxx $30,000 - $36,999
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Table 3.3: Sanitized Hypothetical Employee Data with k = 6

Name Age Job Title Annual Maximum Salary
xxxx 33 xxxx $30,000 - $120,000
xxxx 33 xxxx $30,000 - $120,000
xxxx 48 xxxx $30,000 - $120,000
xxxx 55 xxxx $30,000 - $120,000
xxxx 52 xxxx $30,000 - $120,000
xxxx 22 xxxx $30,000 - $120,000

The difference between both these tables is that Table 3.2 offers maximum utility as we

can see an exact correlation of age with a particular range of salary values, while Table 3.3

offers minimum utility as all the ages correspond to one big salary range. However, from a

privacy standpoint, Table 3.3 would offer most privacy. This is because if an adversary was

able to find is a 33 year old employee with a salary of $67,000, there is no way of conclusively

claiming (with the given information) whether he or she is in the database or not. On the

other hand, if the adversary discovered the same information with Table 3.2 as the given

sanitized dataset, it would be trivial that such an employee is definitely not in this dataset.

Hence, Table 3.2 would offer the less privacy than Table 3.3.

Also, it should be noted that Age-Salary has 1-1 relationships, and so if external infor-

mation about Age-Name relationship becomes available, it might lead to desensitization.

At this point in our process, we have no concrete information to choose an optimal value

for k and therefore, the sanitization technique can not be instantiated. This is because

the sanitizer made no assumptions regarding how much utility was required. Therefore, the

process must iterate back to the first step and go through every phase with a new requirement

added to the information we previously had. This new requirement can be explicitly stated

as follows:

If the Salary data field is generalized, what is an optimal group size?

In general, whenever it is not possible to proceed to the next step, the process must iterate

back to the first step and start by reanalyzing the policies under the new requirements.

The exact reason for the above will depend upon the relationship analysis, discussed in
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details in Chapters 4 and 6.

In this reassessment of policies, the sanitizer must figure out a value for k, to use when

k-anonymity is applied to the dataset. There are 2 options as to how this can be done:

1. The stakeholders or the policy writers can refine the existing policies to make them

more precise.

2. The sanitizer can make his or her own assumptions on how to balance privacy and

utility.

In practice, the first option is more common. Let us assume in this example, the policies

are revised by the policy writers and they allow groups of sizes 2 and 3, but with a stronger

privacy requirement. The sanitizer must go through the same steps and apply the sanitization

technique to the dataset.

Our second step in the process required an analysis of externally available information.

With the revised policy requirements there is no change in this aspect.

Our third step required designing rules. We had instantiated k-anonymity with values of

k as 1 and 6, both of which were feasible solutions to the problem. But now with a changed

policy, the sanitizer must revisit and reassess different values for k.

In the fourth step, we could apply k as 2 or 3, each of which would put 2 and 3 records,

respectively within a group of salary values. The sanitized tables for values of k as 2 and 3,

would look like Tables 3.4 and 3.5.

Table 3.4: Sanitized Hypothetical Employee Data with k = 2

Name Age Job Title Annual Maximum Salary
xxxx 33 xxxx $40,000 - $79,999
xxxx 33 xxxx $0 - $39,999
xxxx 48 xxxx $40,000 - $79,999
xxxx 55 xxxx $80,000 - $120,000
xxxx 52 xxxx $80,000 - $120,000
xxxx 22 xxxx $0 - $39,999
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Table 3.5: Sanitized Hypothetical Employee Data with k = 3

Name Age Job Title Annual Maximum Salary
xxxx 33 xxxx $0 - $49,999
xxxx 33 xxxx $0 - $49,999
xxxx 48 xxxx $50,000 - $110,000
xxxx 55 xxxx $50,000 - $110,000
xxxx 52 xxxx $50,000 - $110,000
xxxx 22 xxxx $0 - $49,999

Now we must analyze both these results. From an analysis standpoint, Table 3.5 tells us

that everyone over the age of 47 is making $50,000 - $110,000, while everyone below the age

of 47 is making $0 - $49,999. Similarly, Table 3.4 gives more precise information regarding

how the ages and salaries are correlated.

If either one of these sanitized tables were released, the only relationship being (partially)

revealed is Age-Salary. Based on the above analysis, we can clearly see that the sanitized

dataset does not reveal any names directly but leaves an association between a salary range

of an employee and the age salary. This leads to the following question:

Is it safe to leave this relationship in the sanitized dataset, or can it be exploited by an

adversary to violate the privacy?

To answer this question, we must look at the characteristics of this relationship. Out

of the 6 ages, there are 5 unique values. Uniqueness in a sanitized dataset often leaves a

vulnerability that can be exploited by an attacker. This is because every unique value in a

sanitized dataset allows the attacker to directly associate records with similar values from

the external world with 100% probability. That is why generalization counters uniqueness.

For example, an adversary could attack the sanitized dataset in the following way:

• Generate a list of the age of all employees working for the state.

• Check for ages which only correspond to one employee.

• If these unique ages are found, then check if they exist in Table 3.4 or Table 3.5.
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• If a match is found above, ad adversary can conclusively deduce the presence of an

employees data in the sanitized dataset.

Furthermore, what if the adversary found two employees of age 55, but only one of

these made over $100,000. This identifies the presence of Sal’s information in the sanitized

dataset. If such an extensive analysis of externally available information was practical, and

no unique values of Age existed, then both Table 3.4 and Table 3.5 would be acceptable

sanitized datasets, with Table 3.4 offering more utility. If such an analysis of the externally

available information was not present, then we iterate back to the first step and re-analyze

the requirements.

We note that our privacy policy was broken down into two requirements, one of which

was that an adversary should not be able to deduce if an employee’s record is present in

the dataset or not. This is typically called the membership problem. Another aspect of

the membership problem is making sure an adversary is unable to deduce if a particular

employee’s record is not present in the dataset. This a much harder goal to achieve and

prove.

This example presents an overview of how a typical data sanitization problem can be

analyzed. But there are many more intricacies involved like defining privacy in a way the

sanitizer can quantify its attainability, conflict resolution among policies and so on. These

require a more formal approach whereby, we must define relationships, how to represent

them, and what properties they have. In the next chapter we give formal definitions and

describe how they can be used in relationship analysis.
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Chapter 4

Data and Relationships

In this chapter we describe a way to represent data and the relationships among that data

for the purposes of analyzing that data in the context of data sanitization. For this, we will

provide both informal and formal definitions of relationships and various methods of data

and relationship representations.

4.1 What is a Relationship?

A dataset is a collection of data. Within a dataset, there exist data fields and records which,

in a table, are typically represented by columns and rows, respectively. Each data field

represents an attribute and includes syntactically equal and semantically equal or unequal

values. A record consists of a tuple of values corresponding to each data field.

Let n ∈ N be the number of data fields in a dataset. Then each data field i is represented

as Ci, where 1 ≤ i ≤ n.

Let m ∈ N be the number of records in a dataset. Then each record j is represented as

Rj, where 1 ≤ j ≤ m.

Since every record is a tuple containing values corresponding to each data field, let vji

be a value in record j corresponding to the ith data field.

Hence, record Rj = {vj1, vj2, vj3 . . . vjn}
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Figure 4.1.1: Diagram showing relationships between fields

Therefore, dataset D = {R1, R2, R3 . . . Rm}

Depending upon the requirements of data stakeholders, vji may or may not be allowed

to have an empty value.

We will use The Netflix Prize dataset [6] to show how the aforementioned definitions

can be applied. The Netflix Prize dataset contained movie ratings (called Rating), the

corresponding movie title (called MovieID), a pseudonym representing the user who rated

that movie (called CustomerID) and date when the movie was rated (termed as Date).

Hence, the Netflix Dataset D has 4 data fields i.e. C1 = CustomerID, C2 = MovieID, C3

= Rating and C4 = Date1.

The dataset contains ratings made by 480,189 customers with their CustomerIDs replaced

by a number between 1 and 2,649,429 (with gaps), while MovieIDs ranged sequentially from

1 to 17,770.

A Record Rj in the Netflix Prize dataset may look like:

(123456, 1234, 2.5, 2006-06-01);

where vj1 = 123456, vj2 = 1234, vj3 = 2.5 and vj4 = 2006-06-01.

Therefore, the Netflix dataset D = {R1, R2, R3 . . . R480189}

We define a relationship within a dataset as a correlation between data fields. In a dataset

1It should be noted that the actual dataset was not released as a table but a collection of multiple files.
Each file represented a MovieID, and contained records of CustomerID, Rating and Date. However, for the
purpose of analysis, we can visualize the data as a single table
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with n data fields, if any 2 data fields are considered, we can list at most

(
n

2

)
correlations.

Similarly, if any 3 data fields are considered, we can list at most

(
n

3

)
correlations. In general,

given p ∈ N data fields, if any q ∈ N, q ≤ p, data fields are considered, we can list at most(
p

q

)
correlations.

To represent a relationship between any two data entities X and Y , we will use the

following notation: (X, Y ).

Figure 4.1.1 shows how we can represent

(
3

2

)
relationships between 3 data elements. But

it is not necessary that all the

(
n

2

)
associations need to be explicitly defined. For example,

in Figure 4.1.1, the blue edge shows a relationship between C1 and C2. Similarly, the green

edge shows a relationship between C2 and C3. Now consider that there exists no correlation

between C1 and C3.

Therefore, in Figure 4.1.1, the following relationships are shown:

• (C1, C2) represents the relationship between C1 and C2, and is shown in the figure by

a blue line

• (C2, C3) represents the relationship between C2 and C3, and is shown in the figure by

a green line

This definition can be extended to represent relationships between different sets of data

entities. Given 3 data entities X, Y and Z, ((X, Y ), Z) will represent how X and Y , if

considered together as a tuple of values, are related to Z. To better understand the meaning

of this “nested representation”, refer to Section 4.1.1.

Let us see another example of how we can use this notation to represent possible rela-

tionships. Recall the Netflix Prize dataset example mentioned above. There are 4 data fields

which implies that we can list

(
4

2

)
associations as relationships. It should be noted that we

are merely listing the relationships, which in actuality may or may not exist. So if we look

at Figure 4.1.2, we can see that there exist 4 data nodes (which represent the 4 data fields
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Figure 4.1.2: Relationships between data fields of the Netflix Prize dataset

in the Netflix Prize dataset). All these data fields are related to each other. We will now

list all possible relationships that can exist in this dataset:

• Binary relationships - (CustomerID, Rating), (CustomerID, Date), (CustomerID, MovieID),

(Rating, Date), (Rating, MovieID), (MovieID, Date)

• Ternary relationships - (CustomerID, MovieID, Rating), (MovieID, Rating, Date),

(Rating, Date, CustomerID), (Date, CustomerID, MovieID)

• Quaternary relationships - (CustomerID, MovieID, Rating, Date)

So the total number of relationships we will consider for the analysis of this dataset can

be calculated as:(
4

2

)
+

(
4

3

)
+

(
4

4

)
= 11

The ability to represent relationships helps in analyzing data sanitization problems. This

is because relationships are defined based on properties which hold for an association between

the related data entities. These properties enable us to assess the extent of influence that

a particular relationship may have in privacy or analysis. For example, as we shown above,

transitivity may result in 2 data entities to be related to each other, even if they don’t have
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a direct and explicit relationship between them. Now we will describe how properties and

relationships can be defined from one another.

4.1.1 Properties of Relationships

The way in which relationships are defined and represented help capture properties. But the

opposite is also true; the properties of datasets can help define and represent relationships.

Analysts can define different properties that may allow for a better analysis of the data

sanitization problem. We will describe two such properties that will be used throughout this

thesis.

Consider a scenario in which there is a dataset containing information about spies. The

data fields included in this dataset are name, age and the region of deployment, as shown in

4.1.

Table 4.1: Dataset Showing Name, Age and Location of Spies

Name Age Region
Adrian Mole 32 Sector 6
Scout Cunningham 31 Sector 28
Cristine Watch 32 Sector 28
Snoopy Dillard 32 Sector 496
Robert Plant 32 Sector 28
Draymond Seed 31 Sector 6
Felicia Drone 31 Sector 496

Directionality

The directionality property exists when given a value, it is possible to deduce a related value,

but not vice versa. To put this into perspective, assume that the dataset shown in Table

4.1 becomes public as a consequence of a security breach. Now imagine a case in which you

find out that your friend Adrian Mole is a spy. Since names map onto ages as a 1-many

relationship, we can clearly deduce that Adrian Mole must be 32 years old. Now imagine

a different case in which you find out that a certain 31 year old is a spy. Since ages map
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onto names as a many-1 relationship, it would not be possible to know if this spy is Scout

Cunningham or Draymond Seed or Felicia Drone. So we can summarize the (Name, Age)

relationship in the following way: If this dataset was available, then given a name value, the

corresponding age value can always be deduced. But given an age value, its corresponding

name value cannot be deduced. This makes the (Name, Age) relationship directional from

Name to Age.

Uniqueness or (Bi-directionality)

The property of uniqueness exists when there is only 1 instance of a particular value or

a group of values. Since a relationship is defined as a correlation between data fields, so

uniqueness in a relationship occurs when two or more data entities related to each other

have a unique tuple of values. Typically, uniqueness is bad for privacy if the unique values

are related to a sensitive attribute. That is, if any attribute is hidden, but one or more

uniquely related value(s) are known, then it may be possible to deduce the hidden values.

For example, in the Table 4.1, all values in the Name data field are unique. Therefore, if the

Name values are not deleted, they can uniquely identify each record.

In Section 4.1 we defined a nested representation of relationships. To better understand

that definition, let us analyze (Name, (Age, Region)). There are 4 records with the Age

value of 32 and 3 with the Age value of 31. Hence, within the Age data field, there exists

no uniqueness i.e. given the Age values by themselves, none of the values in the other data

fields can be deduced. But if the Age and Region values were considered together, then we

would have unique tuples that could identify the Name. For example, if we knew the age

value to be 31 and the region value to be Sector 496, then the corresponding name value has

to be Felicia Drone. Hence, the relationship (Name, (Age, Region)) exhibits the uniqueness

property. It should be noted that if the age value was 32 and the region value was Sector

28, then it would not be possible to deduce the exact name value. Yet we do classify the

(Name, (Age, Region)) relationship as unique because even if there was just 1 tuple of unique
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correlation, it can still violate the privacy requirement.

Probability

The property of probability exists when a value p in data field P corresponds to a value q

in data field Q, and q appears in r records. Therefore, if the value p was known, it could

correspond to any one of those r records, thereby leading to a probabilistic estimation of a

sanitized value by an attacker. For example, consider a dataset consisting of names, dates of

birth of all the people in an organization, along with some other attributes. Let this dataset

consists of n records, of which m, such that m ≤ n, have the Name value as John Doe. So

in this scenario, we have multiple records with the same name of John Doe and different

dates of birth (assumed to be unique for this example). Now assume you know of a person

named John Doe, and this is the only part of the dataset that is visible, then without the

presence of external information, the relationship (John Doe, John Doe’s date of birth) can

be guessed with a probability of 1/r. Hence, such a relationship can be represented as:

(John Doe, John Doe’s actual date of birth)1/r;

where r is the probability of correctly guessing the correct record, of which one value is

known.

This is essentially what k-anonymity tries to do. Records corresponding to a sensitive

attribute will be grouped by having k similar values within each data field. In close world

scenarios, this adds enough uncertainty for an attacker to predict a value with a reasonably

low probability. However, when we factor in the presence of external information, these

probabilities can significantly reduce and cause re-identification of anonymized sensitive at-

tributes.

4.1.2 Property Based Relationship Classification

In this section, we will show how properties can be used to define relationships. The prop-

erties are often domain-dependent and problem-dependent. However, most importantly, the
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policies need to be analyzed, to understand what the privacy and analysis requirements are.

The properties should be able to capture these requirements, which can enable a complete

analysis of the data sanitization problem and the anonymization solution. For example,

if the privacy requirement states that there can be no uniqueness in the data, even if the

attributes are sensitive or not, then uniqueness must be one of the properties is a part of the

relationship definition.

Consider a scenario in which we are required to classify relationships based on how

precisely they can be discovered within a given dataset. This will require defining some

properties in order to capture this notion. From an analysis standpoint, this is very important

because a sanitizer must know exactly which relationships exist before they can be concealed

or revealed. Furthermore, changing conditions may affect the existence of relationships. This

is essentially how context of a relationship is defined. For example, if a dataset consists

of Name and IP Address of users who accessed their social media profiles and another

dataset consists of IP Address and Login Time, then the Name, IP Address and Login time

are related to each other. If the dataset containing IP Address and Login Time did not

exist, then the relationship of User Name and Login Time would also not exist. If the

Login Time values were perturbed, then the User Name and Login Time relationship would

either have to be inferred (using some external information) or classified as unknown, if its

characteristics cannot be correctly deduced. Now we define some specific properties that

can help characterize relationships based on how precisely they are known. Note, we use the

term data entity to collectively refer data fields and the associated values within them.

1. A Direct Relationship exists between two data entities if they have a first degree

relationship between them. For example, a database containing a person’s name and

his/her social security number will give us a direct relationship.2

2. An Indirect Relationship exists between two data entities, if they are not associated

2For the sake of this example, let us assume that there exists no other publicly available external in-
formation that could have connected these two data entities. As we go further, we will factor in external
information and how that can affect relationships.
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with each other directly, but with another data entity(s) that creates a relationship

through transitivity. However, if a relationship is intransitive or non-transitive, then

it cannot be indirect. For example, assume there exist two datasets, one with a list of

names of Patient Names and their corresponding Primary Doctors and another dataset

with a list of Doctor Names and their corresponding Room Numbers. Then, we can

establish an indirect relationship between a Patient Name and the Room Number that

a patient can be expected to be in during their appointments3.

3. A Zero Relationship exists between two data entities, if there cannot be established

any correlation between them. For example, consider a customer database at an auto

repair shop, with fields: Name, Car Make and Model, Miles and the Last Service Date;

and another database with Car Makes and Models and their corresponding Company

Claimed Miles per Gallon. Then the Last Service Date and Company Claimed MPG

relationship can be classified as a zero relationship4.

An adversary can try to find these relationships within the private dataset and similar

relationships in the external world to find correlations that can help infer the anonymized

values. This is why we are going to define relationships in such a way that these definitions

hold up in the context of the problem and the model that will attempt to solve it. The

definitions mentioned above do help in classifying data entities based on a structural view

of data. This can be shown in Figure 4.1.3, wherein, (C1, C2) and (C2, C3) are first degree

relationships, defined as direct relationships; (C1, C3) is a second-degree relationship defined

as an indirect relationship, and (C1, C4), (C2, C4) and (C3, C4) are zero relationships.

Using data to analyze how the various data fields in a dataset relate to each other does

provide a structural representation of the relationships. But what if the data values them-

3Here, we assume that room numbers will not change and an appointment will be in the room number
mentioned in the database.

4For the sake of completeness, we will add that the customer database will have thousands of values
whereas the MPG database will typically have a few hundred values. Also, even if the customer service
records have an estimated MPG value, it may or may not be the same as the ones given in the table creating
too much discrepancy to cause any relationship.
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Figure 4.1.3: Diagrammatic representation of different property-based relationship classifica-
tions.

selves are not known, but left to the analyst or an attacker to infer. In such a case, although

a structural representation of the dataset is known, it might be based upon relationships

which have been inferred due to assumptions made about the data itself. Therefore, we

define 2 more properties of relationships which will help capture the “integrity” of the values

from which they have been derived.

1. An Explicit Relationship is a correlation between two data entities which is deriv-

able from the data that is in a dataset or an external source. For example, consider a

dataset containing names and ages of residents of a particular ZIP code. A scenario

like this which enables statistical analysis to figure out patterns or uniqueness because

all the values are known, should be classified as an Explicit Relationship.

2. An Inferred Relationship exists due to associations made between two data fields,

if either of the fields has data which has been inferred or guessed. For example, as-

sume there is a database with an anonymized User Profile Name and its corresponding

number of friends on other social networking websites. Also, assume that the numbers

have been altered randomly within a small range like ±5. The range is small, which

provides for better utility. Now, there may be a way to infer the real names of users,

to whom these anonymized profiles might belong to by crawling on social networking

websites and collecting profile names and their number of friends. By running a simi-
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larity metric between the real data and the anonymized data, one can infer the names

of users with a certain probability5. So in this case, we can classify the (Anonymized

User Profile Name, Real User Name) relationship as an inferred relationship, as we

were not provided the explicit values of real user names.

Furthermore, for the completeness of our definitions, we will define one more category

of relationships. This is applicable, if there is no appropriate knowledge of classifying

a given relationship.

3. An Unknown Relationship exists between two data entities if there exists no direct,

indirect, inferred or zero relation between them. For example, assume there are logs

of computer usage in a research lab. Each time a user logs on to a computer, logs

with user profile name, time of connection, ports accessed and other network related

data are saved. If the logs are being used as evidence, in a case involving an insider

breach, we are more likely to classify the (User Profile, User Name) relationship as

an unknown, unless we have evidence like video logs that a user actually used his/her

profile to log on.

Classification Example

Our goal in creating relationship definitions in the way that we have done above, is to classify

relationships structurally, based on given or inferred information. We can also combine dif-

ferent properties to strengthen the relationship definition. For example, if a dataset consists

of names and social security numbers, then it may be classified as “Direct Explicit”, as all

the values are explicitly given and present in the same dataset.

To put this into perspective, consider the following example of a dataset:

There is a fictitious dataset created in Table 4.2 with employee names, their ages, their

job titles and their maximum annual salaries. Figure 4.1.4 shows how these data entities are

5For completeness of this example, we assume these websites can be crawled and certain values are unique
that can help us associate the anonymized user profile names with their real names.
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Table 4.2: De-Sanitized Hypothetical Esmployee Data

Name Age Job Title Annual Maximum Salary
Don Vito 43 Administrative Assistant $50,088
Michael 33 Animal Care Technician $40,860
Peter 48 Senior Accounting Technician $50,508
Virgil 55 Chief Deputy - Elections $94,392
Sal 52 DA Lieutenant - 17.5% $112,716
Fredo 22 Administrative Clerk II $36,672

associated directly with each other. This means that given the value of any of these data

entities, it is possible to find the value of the corresponding data entity simply by looking at

the dataset. If we were to look at the structure of this dataset from a graph theory point of

view, all these data entities are 1 degree apart. Hence the following relationships: (Name,

Age), (Age, Title), (Title, Salary), (Salary, Name), (Name, Title) and (Age, Salary) will all

be defined as Direct Explicit.

Figure 4.1.4: Diagrammatic representation of relationships between the entities of the hypo-
thetical state employee table

It is observed that if two data entities are given, say A and B, which have a Direct

Explicit relationship between them; if A is known, then B is known and vice versa. These

relationships are critical in preserving the privacy, if either A or B can directly reveal a

51



Table 4.3: Sanitized Hypothetical Employee Data

Name Age Job Title Annual Maximum Salary
xxxx 43 Administrative Assistant $50,088
xxxx 33 Animal Care Technician $40,860
xxxx 48 Senior Accounting Technician $50,508
xxxx 55 Chief Deputy - Elections $94,392
xxxx 52 DA Lieutenant - 17.5% $112,716
xxxx 22 Administrative Clerk II $36,672

person’s identity. For example, name and social security number can do this.

Now let us assume that we start anonymizing this dataset. Since names are personally

identifying information, a sanitizer should start by suppressing all the Name values. There-

fore, our new dataset would look like Table 4.3. Now in this case, assume that no external

information exists and the privacy policy requires that no name can be tied to age, job title

and maximum salary. The relationship of Name with all other data entities now does not

exist. So this relationship will be defined as Zero Explicit, and is depicted in Figure 4.1.5

with red lines.

Figure 4.1.5: Diagrammatic representation of relationships between the entities of the hypo-
thetical state employee table

Since all the values in the given example are unique, the relationships are easier to label.
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Table 4.4: Hypothetical Employee Data with repeated values

Name Age Job Title Annual Maximum Salary
Don Vito 43 Administrative Assistant $50,088
Virgil 33 Animal Care Technician $40,860
Virgil 48 Senior Accounting Technician $50,508
Virgil 55 Chief Deputy - Elections $94,392
Sal 52 DA Lieutenant - 17.5% $112,716
Fredo 22 Administrative Clerk II $36,672

If however, the values were not unique, as shown in Table 4.4, then merely knowing the name

as Virgil would not allow us to tie the other attributes to a specific person. Therefore, if we

know a person whose information is present in this dataset to be Virgil, we can attribute one

of the three different tuples of (Age, Job Title, Annual Maximum Salary) with a probability

of 1/3. It should be noted that although this inference may not violate the privacy policy,

it does allow the attacker to infer some information about Virgil, like his age cannot be 43,

52 or 22 and so on. This is a characteristic of many-one relationships, as they usually have

some inherent notion of privacy while providing the ability to infer some information with a

certain probability.

Now, if the presence of external information is factored in, we realize that preserving

the Employee privacy just by suppressing the Name data field can have vulnerabilities.

For example, if every individual in the company had a unique salary and there existed a

database with names of employees and their corresponding salaries, then we know that the

(Name, Salary) exists in the external world as a Direct Explicit relationship. Therefore, to

fully eradicate the possibility of this inference, one would have to conceal the Name-Salary

relationship accordingly. Since we are assuming that our external information has a 1-1

mapping of Name and Salary values, then in the sanitized dataset, we cannot have any

unique values. Therefore, if the names have been deleted, then either the Salary values need

to be appropriately altered or completely removed.

We note that while it is useful to use whatever knowledge of external information that we

might have, whatever sanitization that is applied does not depend on any assumptions about
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the completeness of our knowledge of externally available information. That is, relationship

analysis can allow us to assess what information, if present externally, would be important to

further characterize and analyze the relationships present within this dataset. At the same

time we cannot assume that such knowledge is complete.

This is an example of how with different assumptions, the classification of a relationship

can change. For a thorough analysis of the vulnerabilities in sanitized data, one must analyze

these relationships while accounting for the assumptions regarding the external information.

For example, in this case, if the presence of a (Name, Salary) Direct Explicit relationship in

the external world is not possible, then it might be safe to leave the Salary values unaltered

in the sanitized dataset.

4.1.3 Relationship Analysis in the Netflix Dataset

According to the Netflix privacy policy, CustomerID is a sensitive attribute. Therefore, a

sanitizer’s goal must be to conceal a CustomerID’s true value. Netflix replaced all real names

with a string of numbers in the CustomerID data field. If there was no external information

available, the extent of this anonymization would have been enough. This is because there

is no way to statistically link a pseudonym with other attributes present in the dataset. For

example, in this case the adversary would not be able correlate a true value of a CustomerID

with a 3-tuple of (MovieID, Rating, Date), from a given instance of a 4-tuple (CustomerID,

MovieID, Rating, Date).

Assume CustomerID Cm rated the following movies ((M1, R1), (M2, R2), (M3, R3) . . .

(Mn, Rn)), where Mi is the name of a movie and Ri is the corresponding rating, while

1 ≤ i ≤ n. We can then look at publicly available websites to find a set of ratings, or a

“close subset” to ((M1, R1), (M2, R2), (M3, R3) . . . (Mn, Rn)).

The term close subset in this case has a very abstract definition. Closeness of two subsets

can be defined in many ways. Intuitively we want a pattern of a set of ratings (as found on

the external source) to be similar to the ones that are being compared to within the Netflix

54



dataset. This similarity can be measured by many parameters like cardinality, arithmetic

difference in values, Euclidean distances and so on. A useful metric would be the use of

Hausdorff distance, which measures how far 2 non-empty subsets are in metric space.

It is trivial from the above example, that if movie names M1, M2, M3 . . . Mn are known,

then ratings for these movies and their corresponding usernames from the public domain can

be linked with the sanitized CustomerID values in the Netflix dataset. Hence, anonymizing

the Movie title is important.

Going back to the example of CustomerID Cm, we also know the Date corresponding to

each movie rating. Hence, for each tuple, we can also add the Date data field. Therefore,

CustomerID Cm’s attributes are ((M1, R1, D1), (M2, R2, D2), (M3, R3, D3) . . . (Mn, Rn,

Dn)). For an adversary, the 3-tuple of (movie name, rating, date) will provide more external

information to help de-anonymize the anonymized 3-tuple of (Mi, Ri, Di) found in the Netflix

dataset. More specifically, the extra field allows the adversary to narrow down the possible

Cm values from the external sources of information.

Data sanitization literature classifies quasi-identifiers as a subset of attributes that can

be used to de-anonymize a sensitive attribute when used together. A subset of attributes

in which each element is a sensitive attribute is referred to as an Identifier or Personally

Identifying Information.

Classifying data entities can be very useful because semantically, each data field can have

a different influence on the strength of anonymization of a sensitive attribute. Therefore,

categorizing data fields based on such differences will help analyze the problem in a more

structured way. By this, we mean that if a hierarchy of data fields can be created based on

some measurement of proportionality to the strength of anonymization, it becomes viable

to decide if a subset of data fields should be revealed or not. However, as shown in sections

above, with changing assumptions and context, the relationship definitions itself change.

This is a paradigm shift from how data was sanitized classically. Therefore, we define quasi-

identifiers based on context. Contexts can be internal and external to the dataset. Internal
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context relates to the structure and semantics of the dataset, while external context comes

from how the data fields relate to external information.

The 4-ary relationship of (CustomerID, MovieID, Rating, Date) becomes an identifier,

if such a relationship is found in the external world as re-identifying the sensitive attribute

becomes easily feasible. In general, if in a sanitized dataset with n data fields D1, D2, D3 . . .

Dn, where Di, such that 1 ≤ i ≤ n, is the only sensitive attribute and has been suppressed

or generalized, any n-ary relationship (D1, D2, D3 . . . Dn), if found in the external world,

greatly increases the risk of re-identifying Di.

For 3-ary relationships, any 3-tuple consisting of a sensitive attribute becomes an identi-

fier by default. For example, (CustomerID, MovieID, Rating), (Rating, Date, CustomerID)

and (Date, CustomerID, MovieID) can not be revealed. This is because revealing a relation-

ship between two data fields with corresponding CustomerID values can allow an adversary

to look up similar relationships and re-identify the real CustomerID values using a similarity

metric. The last 3-ary relationship does however pose an interesting situation. The 3-tuple

(MovieID, Rating, Date) by itself can not help in re-identifying CustomerID values, unless

a ((MovieID, Rating, Date), CustomerID) relationship is present in the external world or a

(CustomerID, MovieID, Rating, Date) relationship. However, the presence of such 4-tuples

of (CustomerID, MovieID, Rating, Date) is a common and practical assumption, and movie

ratings websites like IMDb and rottentomatoes.com will have such relationships. Although,

the internal context makes (MovieID, Rating, Date) a revealable relationship, the external

context makes it a quasi-identifier.

For binary relationships, any 2-tuple consisting of CustomerID can be an identifier. For

example, if the (CustomerID, Date) relationship is revealed, it can allow the adversary to

correlate the customer names and their corresponding dates of rating. However, if the ((Cus-

tomerID, Date), Rating, Time) relationship does not exist in the external world, then the

adversary will have a lower confidence of correlation. We define the confidence of correlation

Ω between an anonymized value Ai and a value Vj guessed by an adversary, as the proba-
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bility that Ai = Vj. We use the relationship analysis to predict what values of Ω are safe

for preserving the privacy and which relationships can be revealed to minimize it. This is

because the adversary will rely on only one attribute, other than the sensitive attribute, in

trying to de-anonymize the CustomerID. So the (CustomerID, Date) relationship could be

revealed, provided (CustomerID, Rating, Time), (Date, Rating, Time), (CustomerID, Date,

Time) or (CustomerID, Date, Rating) relationships do not exist. A similar analysis can be

drawn if the 2-ary relationship of (CustomerID, Rating) or (CustomerID, Time) were under

consideration.

Typically, more relationships revealed will result in more confidence in the correlations

made with external information. For example, assuming the distribution of Date, Rating and

Time values is similar, the confidence of correlation from (CustomerID, Date), (CustomerID,

Rating) and (CustomerID, Time) will be the least. The confidence of correlation from

(CustomerID, Date, Time), (CustomerID, Time, Rating) and (CustomerID, Rating, Date)

will be higher and it will be the highest for (CustomerID, Date, Time, Rating).

It is to be noted that if a relationship can not be revealed, it does not necessarily mean

the values have to be completely deleted. The relationships can be concealed in many other

ways. One popular method is to perturb the values so that patterns between the real values

and sanitized values distort. This should add enough uncertainty for the adversary to be

unable to make any correlation between the values. This is a fundamental approach for the

privacy of data, but it can affect the utility of sanitized data. Data released for purposes

of research usually require the values to not change beyond some limit after which it loses

statistical integrity.

4.2 Models of Graphical Representation

Data sanitization is a relatively manual process as compared to other security practices.

This aspect makes data representation an important factor. An analyst who can classify
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the entities better must take advantage of the modern data representation techniques. Some

of these methods can be useful to build upon the automatic part of the sanitization pro-

cess. Since there is no data representation procedure exclusively for representing datasets

for sanitization purposes, the existing methods have to be adapted to meet the goals and

requirements.

4.2.1 Data Representation using UML

The Unified Modeling Language is one of the most popular and widely used standard of

modeling data. The power of UML has been exploited by many security researchers like

Jan Jürjens in developing UMLsec [30]. The variety of representations of data entities and

the relationships between them can fulfill many of our requirements. Although UML was

not designed for data sanitization, but certain definitions can be adapted to a model for

representation in a very fitting manner. The biggest advantage of using UML is that it can

be extended to incorporate these rules, thereby enabling partial or complete automation of

the problem. We used ArgoUML [1] which is an open source UML modeling tool to make

these diagrams.

The following rules show how we use UML to represent the data entities and the rela-

tionships between them.

1. Class - An object-oriented class in a UML class diagram represents a data entity in

our model.

2. Association - A UML association as depicted in Figure 4.2.1 represents a bidirec-

tional structural relationship between two classes. In our model we use association to

represent a direct relationship between two data entities. The term direct implies that

the relationship is in no way induced, and it actually exists as depicted by the given

dataset. These relationships can be one-one, one-many, many-one or many-many based

on what entity is being represented and how it is related to other entities in the given
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data set. For example, Name and SSN could be a one-one or many-many, based on the

context in which the representation is being made. If the Name-SSN relationship is

one-one, it would indicate that there is one name and for every name there is a unique

SSN. However if the Name-SSN is many-many, it indicates that there are many names

and many SSNs and they are connected, without any knowledge of uniqueness.

Figure 4.2.1: The user profile class and the allocation (of time slots on a super computer) class
have a one-many association which implies that one user profile can have many allocations

3. UniAssociation - A UniAssociation as depicted in Figure 4.2.2 is a one-way associa-

tion. In our model, we use UniAssociation to represent relationships which are critical

to the sanitization only in one direction. For example, if the data set contains the

name and birthdate of all the people in the world, then the this relationship can be

represented as a UniAssociation, with an arrow pointing from the name to the birth-

date. This is because given a list of individuals, there is one and only one birthdate

associated with each name. However, given a list of random dates, there may be any

number of individuals associated with a particular date.

4. Generalization - A Generalization as depicted in Figure 4.2.3 can be used to group

“similar” entities. These cannot be Identifiers or unknown entities. Common exam-

ples of this are network parameter values e.g. (connection ports, network start time,

network connection duration, bytes sent, bytes received, TCP State/Flag)

5. Realization - A Realization as depicted in Figure 4.2.4 is used to represent an entity
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Figure 4.2.2: The user profile class has a uniassociation with the IP class because given a
number of user profiles, we can find out all the unique dynamic IPs from where it was logged
in. However, if we are only given a bunch of dynamic IPs, tracking back which profiles were
logged on from them is a lot harder

(called the “profiling entity”) which is in essence represented by another entity (called

the “profiled entity”). An example of a profiling entity is the ”user profile”, where the

profiled entity is the “user”. The realization relationship could inherently carry some

uncertainty as far as how much integrity the profiling entity and the profiled entity

have. Therefore, given a data set of logs of user profiles being logged on in a server,

to what degree can it be assumed that each user profile (the profiling entity) truly

represents the actual user, and not the user (the profiled entity). This can become a

crucial unknown in our representation of relationships.

6. Class Diagram - A UML class diagram as depicted in 4.2.5 in general represents the

conceptual structure of an object-oriented program. In our model, we use the class

diagrams to represent the entities and how they are related.
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Figure 4.2.3: The network parameter value class is a generalization of the various network
parameters that are present in the dataset and therefore they can be grouped together with
the generalization relationship

4.2.2 Data representation using Ontologies

Ontologies are used to represent entities and the relationships between them. Using ontolo-

gies for data sanitization was first proposed in [18]. Ontologies are a simple model whereby

the entities are represented as vertices, and the relationships are depicted by connecting

them using edges. There are several ontology languages like OWL [7], SADL[41], CASL [13],

DAML+OIL [28]and RDF Schema [9]. Some of these languages have extensions like SWRL

[29] and DL-Safe [42], which support writing rules.

4.2.3 Representation Model

In this dissertation, we use a simple model of representation using nodes and directed /

undirected edges.
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Figure 4.2.4: The user profile class is realized by the user class using the realization function

Figure 4.2.5: All the data entities and the specific relationships between them combine together
to form the class diagram

1. All data elements are represented by nodes.

2. All relationships are represented by edges.

3. If a relationship is directional as described in the previous section, it is represented by

a directed edge.
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Chapter 5

Operations and Algorithms

In Chapter 3 we have shown a general approach on how data can be sanitized. The core

idea driving the analysis of data sanitization is using relationships. These relationships are

between data entities that exist inside or outside the dataset. The analysis of a problem

depends upon the precision and accuracy of determining these relationships. In order to

achieve this, we will be using properties and statistical methods to discover and classify

relationships.

5.1 Uncovering Relationships

1. Using relational properties to uncover relationships - Section 4.1 shows how the rela-

tionships present within a dataset can be found. Once all the potential relationships

have been listed, we can use properties of these relationships to help in characterizing

them. There are many mathematical properties that can be applied in this analysis,

like transitivity and equivalence. In Section 5.1.1, we will show how transitivity can

be used to discover and characterize relationships.

2. Using statistical measures to analyze and classify relationships - Relationships which

are not trivial may also require complex algorithmic or heuristic means to discover

63



Figure 5.1.1: Diagram showing transitivity between relationships

them. For this, the content of datasets must be analyzed and not just its structure. The

usage of algorithmic and heuristic measures also requires domain knowledge about the

data entities. We demonstrate how such methods can be used to uncover relationships

in Section 5.1.2.

5.1.1 Transitive Closure to Uncover Relationships

The transitivity property can be described as follows:

aRb ∧ bRc =⇒ aRc, which means that if a, b and c are data elements, such that

there exists a relationship (a, b) and (b, c), then (a, c) must also exist.

To apply transitivity to a dataset, we must look at relationships which connect the various

data entities. For example, consider a relationship a correlating data elements A and B and

a relationship b correlating data elements B and C. Then if transitivity holds, a relationship

c can be inferred to correlate data elements A and C. This is represented in Figure 5.1.1.

However, transitivity does not always hold within relationships. The relationship proper-

ties and domain specific knowledge factors into whether some relations can be inferred using

transitivity or not. For example, consider the dataset shown in Table 5.1, which represents

how well a task will be completed, if any two of the employees were paired to work on it to-

gether. We assume that the expected values are computed based on past history and survey

results that the company deems to be accurate. The expected results of this analysis can be

weak, neutral or strong.

This table can be graphically represented in Figure 5.1.2. The solid lines represent
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Table 5.1: Expected results when any the following pairs of employees work together on a
given task

Member 1 Member 2 Results
Yolanda Marsellus Weak
Marsellus Ringo Weak
Vincent Jules Strong
Yolanda Vincent Neutral
Ringo Vincent Neutral

Figure 5.1.2: Diagram showing the information mentioned in Figure refMemberTrust

relationships which are given in Table 5.1 whereas the dashed lines are the relationships

which have to be figured out. Note, the relationships are bidirectional which means that if

A is related to B with a strong degree of an expected result, then B is related to A with a

strong degree of expected result. Hence, the relationships are commutative.

We will formally represent these relationships as:

(Yolanda, Marsellus) = ‘Weak’

(Marsellus, Ringo) = ‘Weak’

(Vincent, Jules) = ‘Strong’

(Yolanda, Vincent) = ‘Neutral’

(Ringo, Vincent) = ‘Neutral’

Our problem can be stated as:
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Given 5 employees and 5 out of the 10 possible relationships explicitly

stated, can the remaining 5 relationships be inferred?

To answer this question, we must first mention our assumptions regarding the relation-

ships.

1. Each relation between a pair of employees describe the degree of result, which is ex-

pected if they work together on a given task.

2. If two employees have a path of length 2, and both the edges in the path have a specified

expected value e.g. weak, neutral or strong, then these employees can have a direct

relationship between them. The expected value for this relationship will be bounded

by the values of the other two relationships.

Let us try to uncover the other relationships using this knowledge. The assumptions

specified above tells us 2 important things. Firstly, since transitivity includes 3 nodes in a

graph, we must break down Figure 5.1.2 into triangles. Secondly, since there is a condition

which must be fulfilled for a relationship that can be inferred between two employees who

already have a relationship of edge length 2, we must start by analyzing the (Ringo, Jules)

relationship. From Figure 5.1.3 we can see that the (Ringo, Jules) relationship is composed of

(Ringo, Vincent) and (Vincent, Jules) relationship. Also, since (Ringo, Vincent) = ‘Neutral’

and (Vincent, Jules) = ‘Strong’, (Ringo, Jules) = (Neutral, Strong).

Also, there is a possibility of conflict, in which a relationship whose value is being figured

out is part of two different triangles. In this case, the bounds of the degree can be increased

to encompass both the values. For example, if a relationship is inferred to be (Weak, Neutral)

from one triangle and (Neutral, Strong) from another, then the net result will be (Weak,

Strong). But this makes the problem unclear and uncertain. This is why, we could use

some heuristic, which if present, can help reduce the bound. For example, Jules can always

choose to pick the lowest degree in the bound and hence reduce (Weak, Strong) to ‘Weak’.

These conditions can be more complex and incorporate how others work with someone in
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Figure 5.1.3: Diagram showing the one of the triangles

the network. For example, if A can produce ‘strong’ results with B and C, and both B and

C produce ‘weak’ results D, then A and D will produce ‘weak’ results.

The basic idea behind this example is that there exist certain conditions in accessing

relationships. These conditions guide the analyzer in setting up rules about how weights can

be assigned. These rules will depend upon:

1. Structure of data

2. Characteristics of data

3. Policies of stakeholders

The dataset in the above example had one important assumption about the bidirection-

ally of relationships. In practical scenarios a lot of relationships are unidirectional, like the

trust relationship. For example, A strongly trusts B does not imply that B strongly trusts

A. Now, consider the data shown in 5.2.

Imagine a situation in which two employees who work on a task must be assigned a role

of either leader or team member. Due to their individual skill set like leadership qualities

and personal relationship with one another, some employees are better suited as leaders
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Table 5.2: Expected results when a particular employee is assigned as a leader to work with
another employee on a particular task.

Leader Teammate Result
Marsellus Yolanda Weak
Ringo Marsellus Weak
Jules Vincent Strong
Vincent Jules Strong
Yolanda Vincent Neutral
Vincent Yolanda Strong
Ringo Vincent Neutral
Vincent Ringo Strong

Figure 5.1.4: Diagram showing the expected result when a particular employee leads a team-
mate
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than others. Also, some employees are expected to perform better when leading a particular

person with whom they have a understanding. Hence Figure 5.1.4 shows how these data

entities are related to each other. According to the dataset, the expected value between a

Leader and Teammate is represented as (Leader, Teammate) = ‘Result’, where ‘Result’ rep-

resents the expected value when ‘Leader’ works with a ‘Teammate’. Therefore, the following

relationships hold:

(Marsellus, Yolanda) = ‘Weak’

(Ringo, Marsellus) = ‘Weak’

(Vincent, Jules) = ‘Strong’

(Jules, Vincent) = ‘Strong’

(Yolanda, Vincent) = ‘Strong’

(Vincent, Yolanda) = ‘Neutral’

(Vincent, Ringo) = ‘Strong’

(Ringo, Vincent) = ‘Neutral’

Let us analyze the relationship between Yolanda and Ringo. For the expected result

between Yolanda and Ringo, or (Yolanda, Ringo) relationship, there is only 1 path that

connects them which is: (Yolanda, Vincent) and (Vincent, Ringo). Since both these have

‘Strong’ value as the expected result, by the property of transitivity, we can deduce (Yolanda,

Ringo) = ‘Strong’. This is represented in Figure 5.1.5.

However, for the relationship between Ringo and Yolanda, there are two possible paths,

as shown in Figure 5.1.6:

1. (Ringo, Vincent), (Vincent, Yolanda)

2. (Ringo, Marsellus), (Marsellus, Yolanda)

From the first path, we can deduce the expected value as ‘Neutral’, but from the second

path, it will be ‘Weak’. Therefore, (Ringo, Yolanda) = (Weak, Neutral). As discussed

earlier, we can have more conditions which can help reduce the bound.
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Figure 5.1.5: Diagram showing the expected result between Yolanda and Ringo

5.1.2 Statistical Analysis to Uncover Unsuspected Relationships

While transitivity helps in finding relationships which exist due to the structure and char-

acteristics of data, statistical analysis can help uncover relationships based on how the data

values are distributed. This does not mean that the structure has no role to play, but an-

alyzing the data values can yield non-trivial relationships. For example, consider a dataset

which includes members of a family and the diseases they have. If there are 8 members

who suffered from Coronary Heart Disease, and all these members were over 6 feet and 6

inches in height, then in this dataset there exists a correlation between these 2 attributes. If

this dataset was to be anonymized and the privacy policy required concealing the name and

disease, we would also have to conceal their height as a correlation exists between patients,

diseases and their heights. Such relationships can be very subtle and we can use algorithms

to discover them. Hence analysis of content is very important.

There are many machine learning algorithms which can help in analyzing data. For

example, association rule learning algorithms can help extract correlations between various

data fields in a fast and efficient way. Once the rules have been found, they can be classified
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Figure 5.1.6: Diagram showing the expected result between Ringo and Yolanda

based on the privacy and analysis policy, to say whether the data can be revealed.

Consider a dataset shown in Table 5.3 which shows name, gender, salary and department

of employees working for a local business.

Assume there is a privacy policy to hide the names of all the employees, but allows

revealing the department, some salary range and their gender. This can be achieved by using

k-anonymity, where the result of this anonymization is shown in Table 5.4. Although in this

figure, all the names have been removed and the individual salaries have been converted into

ranges, there is still a lot of information that can be deduced by analyzing the content of

this dataset.

To do this analysis, we will mine correlations that exist in this dataset and interpret them

to understand how data elements might be related to each other and under what conditions.

To do this, we will choose a standard association rule mining algorithm called the Apriori

algorithm [12]. This algorithm mines items which appear frequently in a database. With

this, it determines association rules and how often certain data elements appear with other

data elements present in the dataset. This will essentially lead to correlations between data
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Table 5.3: The raw dataset dataset

Name Gender Salary Department
Abigail F 75000 Retail
Basher M 84000 Retail
Bobby M 100000 Sales
Bruiser M 69000 Retail
Danny M 87000 Sales
Debbie F 60000 Retail
Francis M 100000 Sales
Frank M 98000 PR
Gaspar M 113000 Sales
Isabel F 115000 Operations
Linus M 90000 PR
Livingston M 92000 PR
Mallory F 74000 Retail
Matsui M 143000 Operations
Molly F 80000 Retail
Reuben M 95000 Sales
Roman M 120000 Operations
Rusty M 88000 Sales
Saul M 93000 PR
Terry F 89000 Sales
Tess F 71000 Retail
Willy M 98000 Sales
Yen M 95000 Sales

values, which if not hidden, can be used to re-identify values of the sensitive attribute. The

Apriori algorithm allows setting parameters like the number of rules to mine and the type of

metric to use, with its bounds. For example, in our case we have chosen the metric as degree

of confidence, with no minimum requirement for the amount of confidence. This can also help

in quantifying any privacy or analysis requirements that the users might have. For example,

if a confidence value of less than 0.5 is deemed safe according to how the requirements are

set up, then the settings of this algorithm can help quantify the safety of releasing data.

We used Weka to apply this algorithm on the data shown in Table 5.3. The result shows

all correlations and their strengths that the algorithm could find. To present a simpler

analysis, we will only represent the findings of this algorithm for the (Gender, Department)
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Table 5.4: The anonymized dataset with k = 3

[0.0] [60000:105000) Retail
[1.0] [60000:105000) Retail
[1.0] [60000:105000) Sales
[1.0] [60000:105000) Retail
[1.0] [60000:105000) Sales
[0.0] [60000:105000) Retail
[1.0] [60000:105000) Sales
[1.0] [60000:105000) PR
[1.0] [105000:150000] Sales
[0:1] [60000:150000] Operations
[1.0] [60000:105000) PR
[1.0] [60000:105000) PR
[0.0] [60000:105000) Retail
[1.0] [105000:150000] Operations
[0.0] [60000:105000) Retail
[1.0] [60000:105000) Sales
[1.0] [105000:150000] Operations
[1.0] [60000:105000) Sales
[1.0] [60000:105000) PR
[0.0] [60000:105000) Sales
[0.0] [60000:105000) Retail
[1.0] [60000:105000) Sales
[1.0] [60000:105000) Sales
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Figure 5.1.7: Results of rule mining on the data in Table 5.3

relationship, which is shown in Figure 5.1.7.

Now let us interpret what the information in Figure 5.1.7 means. The algorithm was able

to find 10 correlations between the Department and Gender values present in the dataset.

Each of these correlations has a certain confidence, which is based on how many values each

data field has. For example, if we know that a particular person is in the ‘PR’ Department,

then the chances of that person’s Gender being ‘M’ is 100%, because the PR department

has 4 employees, all of whom are males. But if we know an employee’s Gender to be ‘M’,

then the chances of that person being in the ‘PR’ Department is 0.25 (as depicted by line

8) in the figure. This shows that some correlations within the dataset are very strong, while

others are weaker. A sanitizer must either remove or perturb such correlations. This also

provides another benefit that if a privacy policy can be broken down into quantified values

of the confidence in correlations, then such techniques can help verify if the policy is being

correctly applied or not.

In order to do a comprehensive analysis of the problem at hand, such algorithms should

also be applied to sanitized datasets.This can lead to comparing if, and by how much, have

the correlations in the raw dataset and anonymized dataset changed.

We have already shown in Table 5.4 as to how an anonymized instance of the dataset

will look like. The Gender and Salary values have been generalized and the parameter k has

been set to 3. When we use the Apriori association algorithm on the anonymized dataset,

we get the results shown in Figure 5.1.8. For an easier analysis, we have again shown the
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Figure 5.1.8: Rules mined from the anonymized dataset

results only for the (Gender, Department) relationship.

This figure shows correlations which exists between the anonymized values of Gender

and Department. It is evident that the correlation between the Department value of ‘PR’

and Gender value of [1.0] still has 100% confidence. Also, it is hard to argue the safety of

concealing the generalized value of Gender as any kind of substitution or generalization of

Gender will still result in the attacker correctly guessing the value 50% of the time. Moreover,

if it is known that any 1 of the employees working in the PR department is a male, then we

know that [1.0] refers to Gender = ‘M’. So this example proves that k-anonymity did not

work in concealing this relationship and an attack can easily exploit this correlation, if it is

not discovered and properly concealed by the sanitizer. It should also be noted that from

the 10 correlations shown initially in Figure 5.1.7, the sanitization method was only able

to reduce it to 8 correlations, most of which have unchanged values. This implies that the

relationships were not perturbed.

Besides discovering what correlations exist in a dataset or analyzing the risk of existing

correlations in a sanitized dataset, algorithms tremendously help in scaling the analysis down.

Data sanitization can be a very tedious problem involving massive amounts of analysis

and a lot of manual labor. These algorithms can help the analyst in analyzing content

and pointing out exact relationships which would not have been visible if the analyst only

relied on property-based analysis. Also, once these correlations have been discovered, the

structure of the dataset can be modified, because we might have to add newer relationships

or remove some pre-existing ones. But this does not mean that property-based and structural
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analysis as shown in Section 5.1.1 are not important. In fact, they become a prerequisite for

the statistical measure, because without analyzing the structure we would not know which

relationships to analyze using the algorithms. It should also be noted that Sections 5.1.1 and

5.1.2 show just two broad examples on how relationships can be uncovered. If there are more

methods, they can certainly be used to enhance the analysis. Furthermore, in each case, we

are not just restricted by the transitive property or the association mining algorithms. But

as we expand the tools of analysis, scalability becomes a problem.

5.1.3 Characterizing Relationships, Domains and Techniques

The above result shows a more powerful consequence than just finding non-trivial relation-

ships. Solving the problem of data sanitization has typically replied on characterizing rela-

tionships based on how critical they are in concealing the private user information. This is

why datasets are anonymized by characterizing the data fields as identifiers, quasi-identifiers

and attributes. This helps a sanitizer in identifying those data entities and relationships that

can be concealed or revealed. In fact, the correctness behind this classification can make or

break a technique and this gets most tricky while handling the quasi-identifiers. Generaliza-

tion techniques like k-anonymity and l-diversity rely on figuring out how the relationships

and data fields are correctly classified, before they can be applied. This implies that there

must exist a method or a heuristic, by which such a classification can be done. However, this

is usually left to the discretion of the analyst or based on some past results. For example,

(Gender, ZIP Code, Date of Birth) is a common example of a quasi-identifier. However,

the behavior of each data field is not consistent throughout datasets or even domains. Con-

sider a raw dataset with Name, Gender, ZIP Code and Data of Birth of 1000 employees of

a company working in the same building, in which an employee named Demeter was the

only one born in 1981. This distinction makes her record identifiable just by looking at the

dates of birth. The uniqueness in this case makes the date of birth an identifier rather than a

quasi-identifier, which is what it is usually characterized as. Therefore, differences in content
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can cause non-trivial characterizations of fields as identifiers or quasi-identifiers to change.

The characterization of relationships between data entities is dependent on the assump-

tions made about externally available information. Every domain usually has some data

which other domains do not have. For example, in the medical domain there are medical

conditions which have a strong correlation with gender like pregnancy. The presence of this

condition will always reveal the gender of a patient as female. Such domain-specific external

knowledge can help in a better characterization of data entities and relationships. However,

one cannot rely on the completeness of this external information or the knowledge of its

existence. That is why data sanitization is an iterative process: as a sanitizer’s knowledge

about externally available information changes, the relationship analyses and policies must

evolve accordingly as well.

Typically, if these correlations are present in a domain, then any data corresponding to

them must be anonymized. The de-anonymization of Netflix dataset is an example of how

domain specific knowledge was used to find correlations between the anonymized data values.

The raw data which Netflix supplied consists of:

1. user name - The name of user who rates a movie

2. rating - The actual rating which the user gives to a particular movie

3. rating time - The time at which the user rated the particular movie

4. movie name - Name of the movie, which the user rated

Since the dataset explicitly has values for each of these fields, all these data entities are

related to each other. This means that for the raw dataset, given a user name, one can find

the corresponding values for movie name, rating and rating time. So the privacy of user

information depends on if and how an attacker can correlate any of the rating, rating time

and movie name values to its corresponding user name value.

Therefore, while anonymizing this dataset, the sanitizer must make sure that none of the

relationships which can be correlated with the user name are concealed.

77



These relationships are:

1. Correlated with one data entity: (user name, rating), (user name, rating time) and

(user name, movie name)

2. Correlated with 2 data entities: (user name, (rating, rating time)), (user name, (rat-

ing, movie name)) and (user name, (movie name, rating time))

3. Correlated with 3 data entities: (user name, ((move name, rating, rating time))

So every data entity directly related to the user name becomes an identifier if it can

uniquely identify the user name. Therefore, all the relationships listed in “Correlated with

one data entity” could potentially identify relationships. And every subset of data enti-

ties related to user name can be a quasi identifier, if that subset can uniquely identify the

user name.

When Netflix substituted user names with a pseudonym, it was assumed that the (user name,

rating), (user name, rating time) and (user name, movie name) relationship would also be

suppressed.

Also, it was assumed that the (user name, (rating, rating time)), (user name, (rating,

movie name)), (user name, (movie name, rating time)) and (user name, ((move name, rat-

ing, rating time)) relationships will also be suppressed.

However, the relationships of (rating, rating time), (rating, movie name), (movie name,

rating time) and (rating, rating time, movie name) were not concealed. The problem here is

that although all usernames have been suppressed, these relationships are available externally

on online movie rating websites like IMDb, which can be used to make correlations with the

username.

To put this into perspective, imagine a userX, who rates moviesM1, M2 . . . Mn on IMDb.

Now if p% of all these movies were rated on Netflix by user Y , and if p was sufficiently large,

we could conclude the User X = User Y . The bigger the value of n, more is the confidence
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we can have in our correlation. Note that we do not consider any comparison with the actual

ratings which the user might have made in this example.

Now assume that corresponding to each movie name Mi there are ratings Ri that can be

associated with each user on IMDb. If Ri ± α, where α is a small tolerance, matches the

ratings of User Y in Netflix’s dataset, then we can have more confidence in our inference

that User X = User Y .

Furthermore, assume that corresponding to each movie name Mi and rating Ri, there is a

time of rating Ti which can be associated with its username on IMDb. Then if a correlation

of Ti ± β, where β is a small tolerance, matches the rating times of User Y in Netflix’s

dataset, we can have even more confidence in our inference of User X = User Y .

So any set of data entities can be a quasi-identifier and the selection of these depends

upon the domain and the requirements of privacy and analysis. We do note that bigger the

set of quasi-identifiers, higher is the confidence in the correlations. Relationships similar to

these, if present in the external world, must be found in the dataset and suppressed to avoid

re-identification.

Once the relationships within the dataset and the domain have been characterized, it

is important to assess which technique will be best applicable in anonymizing the given

data. While relationship and domain characterization predominantly depends on the privacy

requirements, the selection of techniques is more influenced by the analysis policy. This

is because if the analysis policy did not require revealing information then all the private

information could have just been deleted. But that is typically not the case and an important

aspect of the sanitization problem is how this private information or parts of it can be

revealed. Data can be anonymized by using suppression, generalization or perturbation.

While suppression provides no utility value, generalization and perturbation allow revealing

some information. The underlying idea here is that whatever technique may be used should

add enough uncertainty in the data so that no correlations of the private information can be

made with the entity to which that information belongs. Typically, most identifiers like name
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and social security numbers are suppressed. However, data entities which may be classified as

quasi-identifiers need to be generalized or perturbed. The exact technique becomes apparent

with the analysis requirements. For example, in the Netflix dataset, (rating, rating time),

(rating, movie name) and (movie name, rating time) relationships could have been concealed

by perturbing the values through sufficient alteration of data to make any correlations with

the data present on IMDb inconclusive. This can be quantified by choosing appropriate

values for α and β as described above. But this still does not guarantee ensuring user

privacy. Practical scenarios are more complicated than this. There might be a unique set

of movie names i.e. (M1, M2, M3 . . .Mn), whose elements were rated by only one user.

The presence of this user’s information can lead to a correlation in the anonymized Netflix

dataset. So either this user’s record has to be deleted, or the set of movie names has to be

generalized too. This analysis is represented by the (user name, movie name) relationship.

Therefore, a combination of techniques can be used to anonymize data.

5.2 Scalability and Visualization

Data sanitization can entail massive amounts of data, which can be structured or unstruc-

tured. Structured data is easier to analyze using statistical methods and running algorithms.

Unstructured data, which may include queries (for example in the AOL dataset), medical

records (which contain doctor’s notes) and so on, is harder to analyze using automated meth-

ods. However, there are techniques like natural language processing, which can help give

structure to the unstructured parts of these datasets, thereby making it easier for automated

methods to help analyze. From the previous section, we can see that applying algorithms to

structured datasets is scalable. However, when the number of fields increase, using properties

like transitive closure can be harder to scale. For example, a dataset with n ≥ 2 data fields

has
(
n
2

)
+

(
n
3

)
+

(
n
4

)
+ . . . +

(
n

(n−1)

)
, relationships to be analyzed. The analysis process

can be optimized by ignoring relationships which do not reveal any personally identifying
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information. Also, many-many relationships, which are not personally identifying, could

be concealed due to the lack of unique values and ignoring them can expedite the analysis

process.

To put some of the above points in a visual perspective, we will describe a method which

can help scale down the relationships in any given dataset.

5.2.1 Data Filtering

Since data sanitization can be a very manual process, visualizing data is helpful in many

ways. Raw data can be graphed as a network to show the degree of each node, where a node

will represent a characteristic. So if there is a dataset with patient information and their

conditions are an attribute, a sanitizer would typically want an even distribution of values

between all the conditions. If a uniform distribution is not possible, then the sanitizer can

impose a minimum threshold on the number of patients per condition for it to be revealed.

The idea behind this is that if there is only 1 pregnant woman in a ZIP code and her data

is present in the dataset, then even if her name is concealed, we can infer the presence

of her record by knowing her condition. This is why uniqueness makes attaining privacy

harder. Visualizing multiple attributes can help us find such characteristics of the values.

We can also use filters to filter out which of the nodes can be revealed, based on the rules

extracted from the privacy and analysis policy. Also, we can graph the raw and sanitized

datasets to figure out if there exist any correlations between them. For example, consider

a dataset which includes members of a family and the diseases they have. If we know 2

members suffered from Coronary Heart Disease, and the anonymized dataset has exactly 2

records of family members showing Coronary Heart Disease, then the records of those family

members can be identified. This is where filtering the raw dataset and visualizing the raw

and anonymized dataset can be very helpful.

Let us refer back at the data shown in Table 5.3. We have already seen application of

an association mining algorithm on this data to discover correlations. Now let us analyze
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Figure 5.2.1: Diagram showing data fields and their corresponding values

how different fields are related to each other by using visualization methods. For example,

to look at the (Name, Gender) relationship, refer to Figure 5.2.1. This diagram shows how

the different values in Name and Gender data fields are distributed. Since a name uniquely

identifies an individual, it is considered as personally identifying information. But revealing

whether an individual is a male would mean that a record belongs to any of those 16 males

in the dataset. Therefore, we can set filters to only reveal those values which satisfy a policy

rule.

Now consider the relationship between the Name and Department as depicted in Figure

5.2.3. Assuming there exists a policy that does not allow revealing department names if

there are less than 5 employees working in the department, then we can apply a filter as

shown in Figure 5.2.2 which yields the selected data fields marked yellow in Figure 5.2.4.
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Figure 5.2.2: Applying a filter using Cytoscape

Figure 5.2.3: Diagram showing data fields and their corresponding values
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Figure 5.2.4: Diagram showing the selected data fields after applying the filter

5.2.2 Limits

The discovery and characterization of all relationships is a complex problem due to the

uncertainties of how various data elements are connected with each other. One reason for

this is the ever changing universe of information. For example, if a dataset consisting of

anonymized names of individuals and addresses of properties owned by them was disclosed 20

years ago, associating names to addresses would be difficult. But due to social media websites

where people post their geolocation information like ZIP codes, and property websites like

zillow.com, inferring these relationships has become relatively easy. So what this means

is that 20 years ago, anonymizing names would have effectively destroyed any relationship

that it had with the addresses. However, now names can easily be inferred, and therefore

anonymizing names does not conceal the (name, address) relationship. Hence predicting how

time may change the current analysis of a dataset is very hard. If sufficient information is

known as to what kind of information will be present in the future, then we could still infer
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some relationships. But knowing the future state of information release is almost impossible

and poses a restriction on our approach.

Furthermore, there are some properties of the data itself, which can make using the

operations and algorithms harder. One example of this is when the dataset is so dense that

all the data fields are related to each other. An example of this type of dataset is a family

tree in which all nodes are connected to each other by some type of a relationship between

them. There are many different paths that can connect any 2 given nodes in a family tree.

Moreover, there exists external information which can help re-identify any family member

whose information might be concealed in a given instance.

Datasets like the above can be very large and this creates two kinds of problems. Firstly,

due to multiple paths between two nodes, judging the right relationship could be a problem.

For example, if Peter is Lily’s cousin on his father’s and mother’s side, then such information

must be captured. But theoretically, anyone related to Peter can be related to Lily and vice

versa. Secondly, this introduces the problem of scalability. Due to the number of different

paths which can exist between two family members, each relationship between them must

be captured. Also, when the number of relationships increase, scaling transitivity becomes

hard. The example in Section 5.1.1 shows how transitivity can be applied using 3 nodes. But

if the number of nodes increase, the number of conditions dictating the rules of transitivity

also increase. This makes it harder to use transitivity and in some cases infeasible.

One motivation to use algorithms is having an automated method to analyze data and

uncover relationships. But this is feasible only when the data is structured. Although there

are techniques which convert unstructured data into structured data, they can cause loss

of information and/or yield imprecise results. So unstructured datasets cannot be directly

analyzed without altering some parts of it.
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Chapter 6

Model

6.1 Model

As shown in Section 2.1, there are many techniques for anonymizing data. When viewed

at a high level, these techniques show certain similarities; especially the way in which the

various steps of these techniques are ordered. Upon generalizing these steps, the result looks

similar to a typical software development cycle. For example, in the “requirements phase”,

a sanitizer could analyze the privacy policy and the analysis policy to look for conflicts. If

conflicts do exist, then this phase must resolve them before moving on to the next step. Next,

in the “analysis phase”, the sanitizer could see how these policies are actually instantiated

and then look for conflicts. In case these conflicts cannot be resolved, then the model should

iterate back to the requirements phase and resolve these policies at a higher level before they

can be instantiated again.

There are many advantages to defining a solution to the sanitization problem in a cal-

ibrated way, rather than just inventing techniques to obfuscate data. It is imperative to

be complete because many attacks on anonymized data result from simple facts being over-

looked. For example, when Netflix released user ratings, it seems like they did not consider

the fact that similar user-rating relationships are publicly available on IMDb and other movie
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Figure 6.1.1: Snapshot of the Model Showing a Phase

rating websites. The presence of such external information should have been incorporated

in the sanitizing process, so that an appropriate risk estimation could have been done.

This model also depends upon a comprehensive feedback process, in which every change

must occur at the top most level and trickle its way down through the phases. We claim

this is an important feature because the policies govern sanitization. If any change in the

sanitization process has to take place, it must start by making sure the policies can accept,

alter or resolve any modifications that might be needed.

However the most important thing that holds together the phases and renders this into

one coherent process is the use of relationship analysis. Every phase must employ some

technique to help make decisions about the completeness of its phase, or finding conflicts

within the ongoing process. Either way, the process can move forward, that is, to the next

phase, or (using the feedback loop and the newly found information) go back to the first

phase and restart from this new checkpoint of events.

Before we proceed, we are must define each component of this framework, as is represented

graphically in 6.1.1.

87



1. Phase: A phase is defined as a set of guidelines which work together to accomplish a

certain goal. Each phase has a well defined job that it must do. For this, every phase

may receive different inputs like data, policies, rules and external information. A phase

must employ a heuristic or a protocol, to decide which one of the following to do:

• Move to the next phase if the heuristic deems the rules, external information and

policy to all conform with each other, based on the requirements.

• Send feedback to phase 1 so that the conflicts / shortcomings can be resolved.

Each phase must also interact with the rule engine and auxiliary information module

to help develop and evolve rules. Not only this, but as the model progresses through its

various stages, the auxiliary information has to be updated, which may include adding

and/or deleting information.

2. Rule Engine: A rule engine is used to generate rules which will act upon the data and

relationships based on how each phase is designed. This rule engine is fueled by the

following:

• The results of relationship analysis

• Policy constraints

• Auxiliary information

Rules are meant for the model to define precisely what is to be done. By way of

contrast, a policy is a more holistic composition of all the goals, of what is deemed

acceptable/unacceptable and other constraints that are implemented by the policy

writers. This differentiation between rules and policy is important, because the policy

cannot be directly implemented on the data; it is implemented by rules. This is due

to the way policies are written as they can have a lot of abstractness and ambiguity in

them.
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3. Auxiliary Information Module: The auxiliary information module is used to understand

what data and relationships, that may exist external to the sanitized dataset could help

an adversary in de-sanitizing it. There are two ways in which this module can be used

in the model.

(a) If a preliminary search of some obvious relationships is done, which could help

an adversary in de-sanitizing the sanitized dataset, then at the time of creating

rules, this module can be used as a reference to formulate some rules.

(b) Once the dataset has been sanitized, the sanitizer can analyze the sanitized data

to figure out which relationships, if present external to the dataset, would help an

adversary in de-sanitizing the dataset. Information regarding such relationships

must be collected in this module, or if possible, the module could utilize a heuristic

that will help it in automatically determining exactly what these relationships are.

The model does not require that the sanitizer precisely finds out what external infor-

mation exists. In fact, as noted earlier, it is very hard to determine the scope of such

information. However, it is feasible for the sanitizer to determine what relationships,

if found in the external world may help an adversary in de-sanitizing the sanitized

dataset. So this module can help formulate rules and also determine the risks associ-

ated with a sanitized dataset.

The importance of rule engine and auxiliary information module as separate entities lies

in the fact that it makes our framework domain-independent. We can envision the phases

as generic guidelines which are always applicable irrespective of what structure or domain

the data is present in. However, the auxiliary information module and the rule engine are

software modules that can be designed specific to the needs of the domain and the policy in

question, and be plugged in when a given problem is instantiated. The motivation for this

comes from how businesses implement Rule Engines, which have several advantages:
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1. Separation of all logic and data - This makes the maintenance of the model easier.

This is especially helpful as we are dealing with a model that is domain-independent,

so it is essential we not combine the data and the rules, but handle them separately,

based on the domain nuances.

2. Scalability - The sizes of data, rules and auxiliary information are not expected to be

constant and this separation of modules allows for the model to accommodate changes.

3. No obvious algorithm - Data sanitization problems are complex because very often

we cannot put bounds on certain variables like the amount of external information,

timelines on how long will some data be private or public and so on. This uncertainty

adds a level of complexity which has to be managed at a very low level using rules and

techniques that are not obvious. These separate modules ensure that we can break

down the policy into rules, which are much easier to understand and implement.

6.1.1 Phase 1: Analysis

In this phase, we analyze the privacy and utility requirements of the given problem. There

are policies which define these requirements and before they can be applied to the data, they

have to be assessed for any mutual conflicts. If any conflicts exists, they must be resolved

before moving ahead in the process. This can be done by creating rules consistent with the

policy which dictate exactly what data and relationships have to be concealed. But there

is an underlying problem with this. The way privacy and utility policies are interpreted

greatly depend upon the kind of information present in the external world. This is because

externally available information can help adversaries in de-sanitizing the sanitized dataset.

However, imagine the first iteration of the model, in which this is the first phase of the

analysis and no such information about the externally available data is present. So how can

the policies be correctly analyzed without knowing what externally available information

could be used by adversaries to attack the sanitized dataset?

90



To solve these problems, we start this phase by analyzing the policies for conflicts in

regard to what the privacy policy wants to conceal and what does the analysis policy want

to reveal. The sanitizer could also use metadata and make certain preliminary assumptions

about external information. Metadata is defined as any information about the dataset and

its data fields. For example, assume a dataset of cancer patients, with one of the data fields

containing a five-digit number for every patient. If it is known that this 5-digit number is

the ZIP code of where the patient lives, then this information becomes the meta-data. This

also guides the external information collection, because the meta-data will tell the sanitizer

where to look for data similar to that present in the dataset.

The assumptions about the external information are trivial at this point, and may include

things like what information is publicly available and what information may be considered

sensitive. For example, in most cases a user name is an identifier and should be concealed

even if there are limited privacy requirements regarding disclosure of names. Once the initial

analysis has been done, the sanitizer must move onto the next phase and go back when any

of the assumptions are rendered incorrect. This is why the model has to be iterative; so the

assumptions about the external information and policy rules can be strengthened as more

and more iterations are made.

In case this is not the first iteration of the model, we assume that the auxiliary information

module has some information which can help this phase in making sure that the policies have

no mutual conflicts and that the presence of certain external information will not impede in

attaining the goals of all the policies.

To analyze policies, certain languages can be used represent data, relationships, properties

of relationships, policies and policy rules. The biggest challenge in this phase is to be able

to precisely represent this and then find and resolve the conflicts between them. There are

many languages which can be used to do this [29, 42, 7, 41, 13, 28, 9]. We have already

shown how SWRL and Prolog can be used to represent policies [20].

Rather than presenting our analysis in a specific language, we describe the expressions
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which will help represent the data and its characteristics to implement the model.

1. (D1←→D2) - This represents a bidirectional relationship between two data entities D1

and D2. A relationship is bidirectional for data sanitization, if knowing either would

precisely tell the value of the other. For example, in Table 6.1, if any one of the data

field values are given, we can precisely get the corresponding value of the other field

from the same record. For example, a social security number of 345-67-8901 will clearly

tell us that the name associated with it is Joseph Doe. Also, given a name, say Jane

Doe, we know that the social security number corresponding to it is 234-56-7890. A

bidirectional relationship represents a 1-1 relationship.

Table 6.1: Name - Social Security Number

Name Social Security Number
John Doe 123-45-6789
Jane Doe 234-56-7890
Joseph Doe 345-67-8901
Josephine Doe 456-78-9012

2. (D1−→D2) - This represents a unidirectional relationship between two data entities

D1 and D2. A relationship between D1 and D2 is unidirectional for data sanitization,

if knowing D1 would precisely give the value of D2, but knowing D2 will not give the

value of D1. For example, in Table 6.2, given a name, say Josephine Doe, we can

clearly infer the gender as female. However, if we knew the gender to be male, with

only this information it would be impossible to know if the record corresponds to John

Doe or Joseph Doe. A unidirectional relationship represents a 1-many relationship.

Table 6.2: Name - Gender

Name Gender
John Doe Male
Jane Doe Female
Joseph Doe Male
Josephine Doe Female
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3. (D1, D2) - If there is insufficient information regarding D1 and D2, and it is not known

whether there exists and 1-1 relationships or a 1-many relationship between them, then

this relationship can be represented as (D1, D2).

4. Imprecise relationships - This is a category of relationships which exist with a certain

degree of probability or ambiguity. Different kinds of relationships will have different

interpretations of this concept. This is because the information inside and outside

the dataset may or may not be structured or quantifiable. Therefore, to capture this

uncertainty, we characterize the unknown relationships as one for the following types:

A relationship is defined as probabilistic, if it exists with a certain probability P > 0.

A relationship is defined as ambiguous if it may or may not exist.

Although, these definitions appear to be similar, they are fundamentally very different.

A probabilistic relationship entails some guarantee about the existence of a relationship.

For example, consider an anonymized dataset of search queries from an online search

engine. In this dataset, it is assumed that all personally identifying information has

been removed and it is statistically improbable to associate any user with his/her

search records. Now assume that one of the users of this search engine was Pierre de

Fermat and this anonymized dataset has information of all its N users. The metadata

that this anonymized dataset has information on all its N users, tells us that since

Pierre de Fermat was a user of this online search engine, his record must be present in

this dataset. A simple analysis in probability theory will tell us that, if n records in

this dataset belong to Pierre de Fermat, then we can randomly guess his record with

a probability of p = n
N

.

Now consider a different scenario in which this search engine released a subset of

records. This could mean that either there were records of a subset of the users or

a subset of records of each user. But if there was no means to verify which of these
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scenarios were actually true, then based on statistical analysis, it would not be possible

to determine if Pierre de Fermat’s record was indeed present in the anonymized dataset

or not.

Both probability and ambiguity have different uses for data sanitization. Probabilistic

relationships provide more utility value than ambiguous relationships because there

are some guarantees over what the information can be. The exact information is prob-

abilistic but it still provides more usefulness than ambiguous information. However,

for the same reason, the guarantees offered about this information make it harder for

attaining privacy. For example, sometimes just knowing that a person’s record exists

in a database can offer a lot of information. A cancer hospital with a database of all

its patients must make sure there is ambiguity in who’s record it might have because

otherwise it will be known that a particular patient has cancer.

• (D1−→D2)ρ - An unknown unidirectional relationship between two data entities

will exist from D1 to D2, with probability ρ. This inference cannot be made with

a 100% guarantee, which is why we associate the likelihood as ρ, that a particular

relationship between D1 and D2 could exist. Such a relationship will be repre-

sented as (D1−→D2)ρ. Since this relationship is unidirectional, the knowledge of

D2 will reveal nothing about D1.

• ρ1(D1←→D2)ρ2 - This notation is a composition of (D2−→D1)ρ1 or ρ1(D1←−D2)

(to be read as: ρ1 is the probability of inferring D1, if D2 is known) and (D1−→D2)ρ2

(to be read as: ρ2 is the probability of inferring D2, if D1 is known). An unknown

bidirectional relationship will exist between two data entities D1 and D2, if know-

ing either D1 will help infer the value of D2 or vice versa. But this inference

cannot be made with a 100% guarantee, which is why we associate the likelihood

of ρ, that a particular relationship between D1 and D2 could exist.

• Example of imprecise relationships - Consider the data shown in Table 6.3, which
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consists of name, gender and medical condition of the Lock and Key family mem-

bers. Any disclosure of this dataset employs a privacy policy which forbids an

association of a family member to the condition he/she is suffering from.

Table 6.3: Data of medical conditions for the Lock and Key families

Name Gender Condition
Jane Lock Female Diabetic only
John Lock Male Diabetic and Hypertension
Joseph Lock Male Hypertension only
Josephine Lock Female Hypertension only
Justin Lock Male Diabetic only
Charles Key Male Diabetic only
Charlotte Key Female Hypertension only
Cindy Key Female Diabetic only
Craig Key Male Diabetic and Hypertension
Culiver Key Male Diabetic and Hypertension

Now consider a study which has to be done on the members of these families

using this data. This study aims at discovering any correlation which may exist

between the gender and medical condition, and how it can vary between the two

families. So the analysis requires the gender, medical condition and an indicator

reflecting which family does the record belong to. One way to generalize this

would be by removing all the first names, in which case the anonymized data is

shown in Table 6.4. Now we must break down each relationship and see how we

can characterize them. For this we ask the following questions:

(a) Which of the data fields can uniquely identify a family member?

A trivial answer to this is the name field. More specifically the full name

of a family member can uniquely identify his/her record. So one way to

generalize this is by suppressing the first name. Table 6.4 shows that there are

5 records with the name Lock and 5 records with the name Key. This makes

it statistically hard to correctly guess which record belongs to a particular

family member, if we are simply looking at the name field.
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(b) The above assumption is obviously not correct, because if the entire anonymized

data is released, as shown in Table 6.3, then an adversary can use the name

field in combination with other fields. This leads to the next question i.e. can

we find a combination of data values, which may uniquely identify a family

member?

To answer this first let us look at the gender field. This field has no unique

values and so by itself it cannot identify a family member. But what if the

gender values are combined with their corresponding suppressed name value?

i.e. what information can we get by knowing that a particular record belongs

to a male member of the Lock family or a female member of the Key family?

For this, we have to analyze the (Name, Gender) relationship. Since this

example consists of only 10 records, one could simply guess the correct record

for a particular member with the probability
1

10
. But if we knew the gender of

the member we are trying to guess is male, then the probability of correctly

guessing the correct last name is
1

2
, since there are 6 males out of the 10

members in the dataset and 3 of each last name. However, if we knew the

correct last name, then the probability of correctly guessing the full name is

1

3
, since each of the Lock and Key families have 3 males each.

We represent the above relationship as (Gender −→ Name )ρ, where ρ is the

probability of correctly guessing the name, given gender.

(c) This example only shows an estimate of the probability, which can be greatly

altered in the presence of external information. With more such relevant

information, the probability of this inference can increase, thereby making it

easier to guess the correct name. For example, if we knew the male member

of the Lock family did not have diabetes, then this record would belong to

Joseph Lock, in which case the probability of inference would be 1, for the

relationship (Gender −→ Condition −→ Name) or (Gender −→ Condition
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−→ Name)1.

The quantification of this probability is cumbersome and due to the uncer-

tainty in external information, not always possible. This is why we recom-

mend the usage of probability as a relative measure, rather than an absolute

value determining the likelihood of inferring the relationships.

Table 6.4: Anonymized data for the Lock and Key families

Name Gender Condition
Lock Female Diabetic only
Lock Male Diabetic and Hypertension
Lock Male Hypertension only
Lock Female Hypertension only
Lock Male Diabetic only
Key Male Diabetic only
Key Female Hypertension only
Key Female Diabetic only
Key Male Diabetic and Hypertension
Key Male Diabetic and Hypertension

6.1.2 Phase 2: Information Collection

In this phase, we look at similar datasets present in the external world, and find relationships

which are either present in the given dataset or are similar to the ones in the dataset. It should

be noted that the completeness of this process cannot be guaranteed, and this information

should only constitute as a means to make guide the sanitizer to avoid trivial correlations

with the externally available information. If any such discrepancies are found, we must

revisit the policies to find conflicts and resolve them before moving to the next phase.

The problem of information collection can be reduced to two subproblems, namely, what

data to look for and where to find this data. As stated above, it is very hard to put any

guarantees on the precision and completeness of information present in the external world,

due to the following reasons:

1. Massive uncertainty of what information is available externally and where.
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2. No guarantees on the scope of external information.

3. Dynamic nature of information and policies mean that new data is being added, which

makes the privacy and analysis requirements change overtime.

But if we do not quantify our requirements on the collection of externally available infor-

mation, then we will never be able to reach a point, whereby we have sufficient information

to continue with our analysis. In fact, chances are that the sanitizer is unable to find any

such information. This is where we refer to the concepts discussed in Section 4.1.3, 5.1.1

and 5.1.2. By uncovering and characterizing relationships within the dataset, a sanitizer

will know what externally available information could help an adversary in de-sanitizing

the dataset. For example, in the Netflix dataset, once we break down the structural rela-

tionships between the data fields, the sanitizer knows that (user name, movie name, rating,

rating time) relationship or any of its subsets must be found in the external world. But the

question as to where exactly can these relationships be found has no concrete answer and

depends on the domain of the problem, as mentioned in Section 5.1.3.

Another example is the Lock and Key family dataset shown in Table 6.3. Since this

dataset has name, gender and medical conditions of the members of two families, the sanitizer

must look at all the data it can find in the external world, which provides relevant information

regarding these attributes. Each attribute might not be explicitly present in the external

world and sometimes information regarding these can be inferred. For example, if it is known

that a Lock family member who suffered from only Diabetes was also pregnant, then the

gender can be inferred as female.

6.1.3 Phase 3: Design and Implementation

After having analyzed the policies and the external information, the privacy and analysis

policy must be broken down into rules which can be applied on the data. The difference

between a policy and a rule is in its level of abstraction. A policy is a statement which
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defines what the result of sanitization should be, and rules specify exactly how that result

should be achieved.

Security and analysis policies can be complex, cumbersome and abstract. That is why

policies have to be analyzed and broken down into rules which can be applied on the data

to achieve the required privacy and utility. Deriving rules from policies is a challenging

task because policies can be in any form. To derive rules, we assume that security and

analysis policies can be converted into requirements which are a more precise representation

of the goals that these policies are trying to achieve. So instead of the policies, we will be

using the requirements in our model, and assume that the requirements are derived from the

policies. If the relationship analysis finds a conflict between requirements, then we change

the requirements accordingly and assume that it is coherent with the policies.

A rule is composed of a conjunction of actions which has to be performed on some data

or a relationship, it must be specified in one of the following ways:

1. reveal(D1) - This rule implies that the value in a data field named D1 should be

revealed without changing it.

2. hide(D1) - This rule implies that the value in a data field named D1 should be hidden.

Data can be hidden in many ways, depending upon the kind of technique chosen by the

sanitizer. For example, the following rules could be implemented in order to conceal

data:

• suppress(D1) - This rules implies that all of data in the data field D1 must be

deleted.

• generalize(D1) - This rules implies that all data in the data field D1 must

be generalized. The degree of generalization will depend on how much utility

is required. For example, when numbers are generalized, the smaller ranges of

number yield more utility and but less privacy.
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• perturb(D1) - This rule implies that all data in the data field D1 must be per-

turbed. Data can be perturbed in many ways like by adding noise to the data

itself or adding additional records. The exact method is again described by the

policies.

3. reveal(D1←→D2) or reveal(D1−→D2); where D1 and D2 are two data fields of a

raw dataset - This implies that revealing D1 and D2, and the relationship between

them, if present in the sanitized dataset will not violate the privacy requirements.

Therefore, all the values for D1 and D2 in the raw dataset can be in the sanitized

dataset, unchanged and without adding any noise.

4. hide(D1←→D2) or hide(D1−→D2); where D1 and D2 are two data fields of a raw

dataset - This implies that the relationship between D1 and D2 cannot be present in

the sanitized dataset. The exact concealing of this relationship can be done in many

ways, which depends on the analysis and privacy requirements. However, the most

common ways are by suppression or generalization, in which case the following rules

must be used:

• suppress(D1←→D2) or suppress(D1−→D2) - A relationship can be suppressed

by deleting or perturbing the data fields between which the relationship exists.

However, there are other data fields, whose presence can affect the effectiveness

of how well the relationship between D1 and D2 can stay hidden. For example,

consider a dataset with name, date of birth, ZIP code and a rare disease to be

anonymized. To suppress (name, disease) relationship, deleting both name and

disease might suffice. But what if this person has a unique date of birth in a

particular ZIP code, the combination of which can uniquely identify the person’s

name and disease? So suppressing (name, disease) relationship will be incomplete

if the ZIP code and data of birth attributes are not concealed. This example

shows the idea behind quasi-identifiers. We emphasize that there is no standard
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list of quasi-identifiers, but an analysis of relationships can help discover which

data entities can become quasi-identifiers and under what conditions.

• generalize(D1←→D2) - Just like the above example, generalization can help con-

ceal user privacy, but has a bigger utility value. To generalize the relationship

between D1 and D2, the sanitizer could either generalize D1 only or D2 only or

both D1 and D2. The exact formulation of this logic depends upon the prob-

lem. For example, if either D1 or D2 are identifiers, then both of them must be

generalized.

To derive rules from the policies, we need to ask the following questions:

1. What information does the privacy policy want to conceal? What parts of the dataset

reveal that information?

2. What information does the analysis policy want to reveal? What parts of the dataset

provide that information?

3. What relationships present in the raw dataset, also exist in the Auxiliary Information

Module?

4. What are the acceptable tolerances in achieving privacy and utility? Can these be

quantified?

5. Can (a) and (b) be achieved without any mutual conflicts? If not, where (as in privacy

or analysis) can the compromises be made?

6. After analyzing the above, what relationships can be revealed or concealed?

For example, if we look at Table 6.3, the analysis policy requires information about the

family members and the diseases they have. However, the privacy policy requires to conceal

the exact identity of the family member. So one basic rule to start our analysis is:

generalize(Name)
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This rule generalizes the name field. Since the analysis policy requires an association of

the family name with a particular record, one way to generalize this will be removing all the

first names and only keeping the last name. From a privacy point of view, this does helps

in removing the association of a record with a particular family member, simply by looking

at the name, as required by (a).

So in this phase, the sanitizer must design and implement the exact sanitization method.

For example, if the data is statistical and not personally identifying, then generalization could

be used. However, if there are names accompanied by quasi-identifiers, then a combination

of suppression and generalization would be better. The implementation will require selecting

techniques that will best satisfy all the privacy and analysis requirements, as described by

the policies. But whatever technique may be employed, data sanitization requires the data

to be either hidden or revealed, which makes these two rules as sufficient for this problem.

The exact implementation of the hide rule will be dependent upon the problem at hand

due to the varying requirements of privacy and utility, but using this rule, we can reach a

sanitized state of the dataset.

Consider the dataset as a system. This system can be in one of the following states:

• raw dataset - In this state, the dataset provides full utility but no privacy. The dataset

contains all the data fields and records.

• semi-sanitized with utility - In this state, the dataset has a subset of data from the

raw dataset. The dataset complies with the utility policy, but not the privacy policy.

Hence the dataset is not sanitized.

• semi-sanitized without utility - In this state, the dataset has a subset of data from the

raw dataset. The dataset does not comply with the utility policy, but it may or may

not comply with the privacy policy. Hence the dataset is not sanitized.

• private without utility - In this state, the dataset has a subset of data from the raw

dataset. The dataset complies with the utility policy, but not the privacy policy. Hence
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the dataset is not sanitized.

• sanitized - In this state, the dataset has a subset of data from the raw dataset. The

dataset complies with both the privacy and utility policies. Hence the dataset is

sanitized and this is the only final state.

The idea behind representing the process of sanitization as a sequence of transitions

through various states, lies in the fact that the ultimate goal is for a raw dataset to end up

in a sanitized state. To demonstrate the process as a series of state transitions, let us assume

that we always start from a raw dataset. The amount of data in this state also gives us a

reference to how the complete set of data looks like. We mention this because it is possible

that the raw dataset in consideration is part of a larger dataset. But whatever data lies

outside the raw dataset shall be considered a part of the external information. Figure 6.1.2

shows the various states this system can be in.

The relationship analysis tells the sanitizer if the privacy requirements are satisfied. If

they are not, the relationship analysis helps to figure out which relationships can be hidden

or revealed to satisfy the above. The dataset can also be in a state which may not offer

adequate utility. For this, we assume there exists an oracle which can verify if the dataset is

in a state that satisfies utility requirements or not.

Therefore, define: the set of states Q = {raw dataset, semi-sanitized with utility, semi-

sanitized without utility, private without utility, sanitized}

The initial state q0 = {raw dataset}

The alphabet Σ = {hide, unhide}

A transition function δ such that Q × Σ −→ Q

The final state F = {sanitized}

Three elements of this finite state machine representation that need to be described for

its completion:

1. What are the assumptions in this representation?
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Figure 6.1.2: State machine showing the various states that data can be in depending upon
what rules are applied
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We assume that any raw dataset does not comply with the given privacy policy, but

does contain all the information that the analysis policy needs to reveal.

2. What is the function of hide and unhide?

These are operations which can be implemented on parts of the dataset. For example,

certain records might be crucial in preserving the privacy of a dataset, in which case

they must be hidden. In other scenarios, certain data fields might contain personally

identifying information for every record, in which case the whole data field might have

to be hidden. The reason we use hide and unhide as opposed to hide and reveal, is

because as the sanitization process is underway, the sanitizer could choose to hide a

certain data field which could be later “unhidden” due to changing policy requirements.

An “unhide” operation does not indicate a correction to an incorrect hide, but reflects

the dynamic nature of policy requirements which can change if sufficient conflicts are

discovered by the sanitizer.

3. How do we figure out the exact implementation of hide and unhide?

This is where the relationship analysis feeds the model, as to how and what data has

to be hidden. Based on the various techniques of how information can be hidden, our

model can generate more specific rules to hide data like generalize, mask, suppress or

perturb.

4. How do we implement the reveal rule?

Fundamentally speaking, the way to sanitize any dataset is by removing or hiding

some or all the data from it. As we go through the various iterations of this model,

the sanitizer potentially discovers more external information and more data within the

dataset which has to be hidden to satisfy the privacy requirements. So a sanitized state

is essentially a dataset with some parts of it needing to be concealed, while others need

not be. This is where the reveal rule is important. We can see the sanitized state as

a subset of the raw dataset, whereby all the data left can be revealed. However, the
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sanitizer can choose which data fields or parts of data fields must be revealed. This is

because, the analysis requirements might not require all the data which is not hidden

to be revealed. Hence the reveal rule helps to distinguish which parts of the dataset

should actually be revealed.

6.1.4 Phase 4: Risk and Utility Analysis

Once the rules have been implemented, the de-identified data must be analyzed to determine

relationships, which if revealed, could potentially result in privacy violations. This phase

should also help in analyzing whether sufficient utility is being offered by the dataset.

Calculating risk is a very hard problem because it can depend upon many factors like

impact or consequences of a disclosure, probability of a successful attack, number of vul-

nerabilities and so on. Most of these are very uncertain and almost impossible to quantify.

Therefore, our risk analysis entails an evaluation of which relationships are more critical

in preserving the privacy of a user in a sanitized dataset, and under what conditions can

sensitive user information be re-identified.

Refer again to the data shown in Table 6.3 which was described above. In this dataset,

the names of all patients were sanitized by removing their first names. In a closed world

scenario, this dataset is sanitized because if this is the only data present, then any association

of these records with an actual family member would be probabilistic, with a value of
1

10

because there are 10 entries. If we knew the last name of a particular family member whose

record an adversary is trying to de-anonymize, then the probability of correctly guessing

would be
1

5
. But a closed world assumption is not practical, and in most cases, there exists

a lot of information external to the dataset. For example, if the adversary knew that all

male Lock family members suffered from Hypertension except Justin Lock, then she can

clearly deduce that Justin Lock has diabetes and his information is definitely contained in

this dataset.

It is hard to predict what kind of external information will be available for an adversary.

106



Also, new data gets added to the universe of information, which might increase the risk for

re-identification of a dataset. Therefore, we do not recommend any risk calculation for our

model, but an analysis as to what kind of information, if found in the external world, can

violate user privacy.

6.1.5 Phase 5: Maintenance (only for data sharing)

Timeliness for data sanitization has affects similar to aging on the human body. Information

is always added to the external world. This could be in the form of growing social media,

declassifying documents or discovering already existing information. All these factors create

more vulnerabilities for data that has been sanitized. When data is published, maintaining an

anonymized dataset becomes impossible because it is not feasible to control what information

gets released and how the de-identified data is being used. However, when de-identified data

is shared, its access can be bounded. The usage of data can also be controlled using legal

guidelines. In this controlled environment, it also becomes more feasible to control what

kind of information can be released to prevent re-identification of data.

6.2 Model Discussion

We demonstrate some of the above concepts using a dataset that was generated using http:

//www.fakenamegenerator.com. This dataset consists of 4985 records with the following

data fields: Gender, Title, Given Name, Surname, Street Address, City, State, ZIP Code,

Email Address, Telephone Number, Birthday, Credit Card Type, Credit Card Number, CCV,

National ID, Occupation, Blood Type, Weight (in Pounds), Height (in Centimeters).

We will analyze how a dataset like this will be used in the model as described above. We

start with an informal analysis of this dataset, even without the knowledge of any privacy

requirements.

The most fundamental requirement of any privacy preserving technique is to make sure
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that a record cannot be correlated to the user whose information is contained in it. This is

why we will firstly characterize these data fields as identifiers. A simple method to start this

analysis is by looking at which data fields can directly identify a user. The Gender and Title

data fields have no unique values and hence can not individually identify any particular user.

The Gender field has 2519 values of ‘male’ and 2466 values of ‘female’. This is definitely not

enough to uniquely identify a user only based on what their gender is. Also the Title has 4

distinct values but none of them are unique. The dataset has 1289 values of ‘Ms.’, 2390 of

‘Mr.’, 1148 of ‘Mrs.’ and 158 of ‘Dr.’.

However, before moving forward in the analysis, we look at the (Gender, Title) relation-

ship. We find that there are 5 unique combinations of values in these fields. The frequency

of each combination is:

• female and Ms. = 1289

• female and Mrs. = 1148

• female and Dr. = 82

• male and Dr. = 76

• male and Mr. = 2390

The two biggest privacy concerns, when trying to conceal the identity of the people whose

information is contained in a dataset, are name and any unique value associated with an

individual. In our dataset, we have 2 fields for name: Given Name and Surname, and 1 field

for NationalID, which is another name for Social Security Number. No published dataset

should have any social security numbers and so this field must be entirely suppressed.

The distribution of names can make it viable if a part of the name of complete name

can be revealed. In our dataset, there are 1287 distinct values for the Given Name, of which

641 are unique and 2820 distinct values for the Surname, of which 2100 are unique. But

when we combine these fields, we find that now there are 4949 distinct values, of which 4914
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are unique. We find that there are 34 names which appear twice, while ‘Charles Williams’

appears 3 times. Also all the Charles Williams are male with title ‘Mr.’.

So far we have seen the amount of uniqueness between these 4 fields. This indicates how

likely would it be to identify a data value, given a different data value in the same record. To

further analyze the relationship between these values, we run an association mining algorithm

which mines rules, thereby depicting correlations between the values. Some of these rules

are trivial, for example, if we know the Title of a person to be Ms. or Mrs., then the Gender

has to be ‘female’. Often correlations have lesser confidence, e.g. if the Gender of a person

is male, then the probability of his Title being ‘Dr.’ is only 0.03.

There are other features about the name itself, which can reveal the Gender and in turn

allow the attacker to guess the Title. For example, the Given Name can usually indicate the

Gender. Using statistical methods, all these correlations can be found. We will show some

examples and how they can be interpreted.

Surname=Robinson 15 ⇒ Gender=female Title=Mrs. 5 acc:(0.37408)

Surname=Robinson 15 ⇒ Gender=male Title=Mr. 5 acc:(0.37408)

This means that if the attacker only knew the Surname of a user, which in this case is

Robinson, then the chance of the person being a female with a title of Mrs. or male with

a title of Mr. is 37.408% each. Also 5 instances of each of the above values have been

mined. There are many implications of this finding. Firstly, the sanitizer must know if

such confidence in correlation is acceptable. This is not an easy question to answer, as such

requirements can hardly be quantified. But to get a better idea of what this number means,

we need to see what kind of information exists in the external world. This is an important

implication of deriving these rules, as the sanitizer now knows what kind of information

should be searched for in the external world. Let’s assume that the sanitizer was able to

find only 5 females in the external world with their surname as Robinson. This would mean

that all those people have their information contained in this dataset. This is commonly

regarded as a privacy violation when an attacker can conclusively determine if a particular
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user’s information is definitely present in a dataset or not. One way to circumvent this would

be by deleting some of these records, which would introduce an uncertainty as to which of

5 Mrs. Robinsons are actually present in the dataset. Another problem that can occur is if

the attacker knew that there existed no female with the last name as Robinson. This allows

an attacker to conclude that either the gender values for those 5 records in the dataset are

changed to female, or the entire records are fake. Identifying and eliminating noise from the

dataset can also prove to be disastrous in maintaining privacy.

Now let us look at some correlations which are less significant, but nevertheless, should

still be analyzed.

Gender=male Title=Mr. 2390 ⇒ GivenName=Henry 13 acc:(0.00506)

Gender=male Title=Mr. 2390 ⇒ GivenName=Luis 13 acc:(0.00506)

Gender=female 2519 ⇒ GivenName=Melissa 14 acc:(0.00505)

Gender=female 2519 ⇒ GivenName=Virginia 14 acc:(0.00505)

Gender=female 2519 ⇒ Title=Ms. GivenName=Susan 14 acc:(0.00505)

Title=Mr. 2390 ⇒ Gender=male GivenName=Willie 12 acc:(0.00505)

Title=Mr. 2390 ⇒ Gender=male GivenName=Jeffrey 12 acc:(0.00505)

Gender=male Title=Mr. 2390 ⇒ Surname=Davis 12 acc:(0.00505)

Gender=male Title=Mr. 2390 ⇒ Surname=Thompson 12 acc:(0.00505)

Gender=male 2466 ⇒ Title=Mr. GivenName=Raymond 13 acc:(0.00505)

Gender=male 2466 ⇒ Title=Mr. GivenName=Lawrence 13 acc:(0.00505

Given the size of this dataset and the small amount of correlations, these rules are fairly

harmless for preserving user privacy. What this means is that knowing just the gender of

a person to be male, there is a very small possibility of correctly guessing that it might be

Mr. Raymond or Mr. Lawrence. This correlation will certainly get stronger once more data

fields are added, which reveal more information about the records in consideration.

Now consider the Telephone data field, which consists of the phone numbers of all the

users. These phone numbers are 10 digits long, in which the first 3 digits are the area code.
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We want to analyze whether phone numbers can be revealed. Firstly, it must be noted

that information regarding the owner of a phone number can be found publicly, so the full

phone number cannot be revealed. Therefore, we could reveal a part of this phone number.

One way would be to simply reveal the phone number without the area code. This might be

innocuous with the given information so far, but what if the ZIP codes of all these users were

also revealed. Now sometimes people live in a different ZIP code than the one in which they

got their phone number from. Also, many area codes are assigned over multiple ZIP codes.

So we ran an experiment to find out that if only a 7 digit telephone number (i.e. without an

area code) was given along with the ZIP code, what were the chances of correctly guessing

the area code? Using our naive algorithm, we were able to find 2612 unique matches. Hence,

this is another correlation which has been discovered. Here the external information required

is the relationship between ZIP codes and telephone area codes.

So this discussion shows how various data entities within a dataset can be correlated. It

is imperative that the model can capture these correlations, for which we use the methods

described in Chapter 5.

6.3 Case Study: Basketball Statistics

In this section we present a case study using a dataset and two policies: the privacy and

analysis policy. The dataset used to demonstrate our model consists of some basketball

statistics. This dataset consists of 7 fields which are described as follows:

• Name - Player name

• Minutes per game (min/g) - Average minutes played per game by the player in the

season

• Points per game (pts/g) - Average points scored per game by the player in the season
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• Threes per game (3/g) - Average number of 3 point shots successfully made per game

by the player in the season

• Rebounds per game (reb/g) - Average number of rebounds made per game by a player

in the season

• Assists per game (ast/g) - Average number of assists made per game by a player in

the season

• Blocks per game (blk/g) - Average number of blocks made per game by a player in the

season

Sports analytics have gained tremendous popularity over the last few years and although

in the past sanitizing such datasets has been rare to nonexistent, this is an interesting

example for many reasons. From a computer science perspective, this is an atypical dataset.

However, the uniqueness of its content helps to show a powerful aspect of this model, which

is its domain-independence. Most data sanitization examples show how data in domains like

medicine, networks, power grid and social networks can be sanitized. However, to make data

sanitization platforms truly universal, a model should have the capacity to be instantiated

by any policy and any data, irrespective of their structure and content. This does not

mean that all problems will result in successfully sanitized outputs. If a feasible solution is

not possible, the model should be able to show that. This example also helps in showing

an inherent flexibility in how we define user attributes. Generally, most of the common

literature includes names and social security numbers as personally identifiable information.

Similarly, the combination of date of birth, ZIP codes and gender is a typical example of a

quasi-identifier. But not all datasets will incorporate this data, and these are not the only

examples of which attributes can identify a human being. So how can we identify other

attributes and their value in preserving user identity?

To demonstrate these points, we will be sanitizing a dataset consisting of National Bas-

ketball Association’s (NBA) regular season statistics from 2011. This season only had 66
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games per team as opposed to the normal 82. All statistics are in averages. This is another

interesting nuance, because we don’t yet know how would playing 16 fewer games affect the

season averages. An intuitive guess would be that the averages do not get affected at all

because the sample size of 66 is still large enough, with games spread over 4 months.

So let us consider a scenario in which the following policies are needed to be satisfied.

Privacy policy: No names in the dataset can be revealed.

Analysis policy: Must preserve statistical correlation between different

fields in all the records.

Table 3 in Appendix B shows the dataset that we used. To sanitize this dataset, we are

going to use our model and show how to go through each phase. We begin with iteration 1

in the Analysis Phase

1. Analysis Phase, iteration 1:

(a) Informal analysis - The privacy policy states that no names can be revealed. If

a subset of sanitized information is revealed, it must be not have any data fields

which can:

• Directly identify the name by itself

• Identify the name associated with a record by using a combination of data

fields.

The analysis policy requires that we must preserve statistical correlation between

different fields. This is a very abstract policy and is representative of how policies

may be written. We will analyze the given fields and estimate how much data

can be revealed. For example, this dataset

(b) Formal analysis - These policies can be represented using policy modeling lan-

guages like XML, which can help in formal analysis of conflicts. However, we

are going to present our own analysis using representations and formal modeling.

Figure 6.3.1 shows how all the data fields are related to each other in the raw
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dataset. Note that all the relationships are 1-to-1, except (name, 3/g). This is

because there are 8 values in the 3/g field that are 0. As shown in Chapter 4, we

represent these relationships with an arrow.

Figure 6.3.1: Representing Relationships Between Fields

Our goal is to convert all these 1-to-1 relationships into 1-to-many or many-to-

many, depending upon what field it is. For example, all the identifiers must be

deleted. The other values, must be retained for maintaining sufficient utility but

keeping the values as they are will reveal the player name associated with each

record. This is why, we must generalize the values to preserve statistical integrity

of the data.

2. Information Collection Phase, iteration 1:

In this phase we must analyze the auxiliary information. There is no way of knowing

what information exists and more crucially what information might exist in the future.

As depicted in Figure 6.3.1, all the data field relationships, except (name, 3/g), are

connected 1-to-1 with each other. So the goal of the information collection phase in
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the first iteration is to do a preliminary analysis of relationships that could exist in the

external world and how crucial can they be in preserving the privacy of this dataset.

If we look at any popular sports’ website, most of these values are present. Therefore,

all these relationships already exist in the external world. So each relationship must

be hidden in order to avoid any inference with the externally available values. More-

over, there are other common player statistics that exist like steals/game, field goal

percentage and free throw percentage which are not included in our dataset. However,

adding these fields makes it harder for the sanitizer to sanitize the dataset.

3. Design Phase, iteration 1:

In this phase, we design the data sanitization methodology. This primarily consists of

two steps:

• Deriving policy rules

• Selecting a technique

These two steps are in no particular order. The fact that both these are dependent

upon each other usually makes this an iterative process.

For our example, we cannot reveal the exact values of each fields because most of these

values are unique and easily available online. Any disclosure of values will directly link

a record to the player name. On the contrary, deleting values completely is not an

option either, because then the dataset loses its utility. Hence we generalize all these

attributes.

Generalization has two benefits in this scenario. The conversion of exact values to a

range helps obfuscate relationships. However, the extent of obfuscation depends upon

the context, requirements and policy. For example, if the utility requirements are

relatively weaker than the privacy requirements, then the amount of obfuscation using

generalization will be high.

115



If all the values were generalized with the same range, then there would be no utility

in the sanitized data. The sanitized dataset would look like the one shown in Table

6.51. There are a total of 234 players with known statistics. Out of these, our dataset

only includes 46 player records. Therefore, the probability of correctly guessing that a

player record is included in the sanitized dataset is 46/234 = 0.1965. This gives us a

base case for the probability of correctly correlating a name to its attributes.

Table 6.5: Generalized Values with k = 46

mins/g pts/g 3/g reb/g ast/g blk/g
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

As the next step, we derive policy rules that can be implemented on the dataset. To

conceal the player identity, the names must be deleted. Now we look at the individual

relationships and analyze how each affects the player identity.

Different combinations of data fields result in quasi-identifiers. For this example, let us

denote all quasi-identifier relationships with a superscript of ρ on the relationships set.

Therefore, (3/g, reb/g, blk/g)ρ represents a quasi-identifier marked red in Figure 6.3.2.

Since quasi-identifiers can reveal user identity, then intuitively, every subset of data

fields reveal some kind of information. For example, (3/g, reb/g, blk/g)ρ represents

the following information:

(a) A higher value of reb/g and blk/g typically represents a player who is physically

big. So this relationship indicates a higher probability for a taller player, usually

1The complete table is given in Appendix B
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playing at the position of center or forward.

(b) A higher value of 3/g and blk/g is rare, because players playing at the center

position are typically bad shooters from the 3-point line. In the entire dataset,

there are only 3 out of 234 players with both the values greater than 1.

(c) A higher value of 3/g and reb/g is a more common occurrence and can represent

players playing in variety of positions. However, there are only 3 out of 234 players

with both these values greater than 1 and 7.5 respectively.

(d) A higher value of all three data fields is not possible. However, since 2 of the

3 scenarios described above only include 3 players, then any reflection of those

values missing from the sanitized dataset will reveal that certain players were not

included. This could also be a privacy violation and must be accounted for in

analyzing risk.

Based on the above analysis, we will try to implement a policy by choosing the size

of groups in generalizing values as 3. If we chose a number greater than 3, then the

generalization of values is expected to hamper the utility. This is because there are

only 3 players satisfying 2 of the criteria, so groups bigger than 3 will use bigger rangers

of values and reduce utility.

4. Implementation Phase, iteration 1:

An example of the implementation is shown in Table 6.6. In this anonymization, we

have set the following parameters, with the value of k as 3:

• name - Deleted

• mins/g - generalized to values in the range [0-20), [20-40]

• pts/g - generalized to values in the range [0-15), [15-30]

• 3/g - generalized to values in the range [0-1), [1-3]
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Figure 6.3.2: A Sample Quasi-Identifier

• reb/g - generalized to values in the range [0-7.5), [7.5-15]

• ast/g - generalized to values in the range [0-4), [4-8), [8-12]

• blk/g - generalized to values in the range [0-2), [2-4]

5. Risk and Utility Analysis Phase 1:

From a privacy standpoint the result in Figure 6.3.2 groups player stats into many

groups. The groups are represented in Table 6.7. The smallest group is of the size

3. This group marked purple has the largest range of values for all fields and the

probability for any correlation is the lowest. The group colored blue and white are

the most interesting ones, as they have relatively smaller ranges and fewest records in

them.

Let us analyze the blue area. These records have the following values:

(a) mins/g = [20:40]

(b) pts/g = [0:15)

(c) 3/g = [0:1.0)

118



Table 6.6: Output with k = 3

mins/g pts/g 3/g reb/g ast/g blk/g

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [7.5:15] [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [15:30) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [15:30) [1:3] [7.5:15] [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[20:40] [0:15) [0:1.0) [7.5:15] [0:12] [0:2)

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [7.5:15] [0:12] [0:2)

[20:40] [0:15) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)119



Table 6.7: Output with k = 3

mins/g pts/g 3/g reb/g ast/g blk/g

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [0:15) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [0:15) [0:1.0) [7.5:15] [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [0:15) [1:3] [1:7.5) [0:12] [0:2)

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [0:15) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [0:1.0) [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [1:7.5) [0:12] [0:2)

[20:40] [15:30) [1:3] [7.5:15] [0:12] [0:2)

[20:40] [15:30) [1:3] [7.5:15] [0:12] [0:2)

[20:40] [15:30) [1:3] [7.5:15] [0:12] [0:2)120



(d) reb/g = [7.5:15]

(e) ast/g = [0:12]

(f) blk/g = [0:20)

If the adversary had stats of all the players, then the above criteria would be satisfied

by 13 players as shown in Table 6.8. Therefore, the sanitizer can associate a certain

probability of correctly guessing a player to be present in the blue subgroup. This is

just one way to quantify the risk, and different rules of probabilities and heuristics can

be used.

Table 6.8: Basketball Statistics Dataset

name mins/g pts/g 3/g reb/g ast/g blk/g
Anderson Varejao 31.3846667 10.84 0 11.48 1.76 0.68
Emeka Okafor 28.941358 9.85185185 0 7.92592593 0.88888889 0.96296296
Ersan Ilyasova 27.5811111 13.0333333 0.85 8.81666667 1.18333333 0.73333333
Chris Kaman 29.1907801 13.106383 0 7.72340426 2.14893617 1.63829787

Humphries Kris 34.8672043 13.7903226 0 10.98387097 1.451612903 1.193548387
Joakim Noah 30.3888021 10.1875 0 9.8125 2.484375 1.4375

Kenneth Faried 22.5492754 10.2391304 0 7.65217391 0.7826087 1.02173913
Marc Gasol 36.4666667 14.6461538 0.01538462 8.90769231 3.13846154 1.86153846

Marcus Camby 22.9081921 4.86440678 0.03389831 8.98305085 1.81355932 1.44067797
Roy Hibbert 29.7994872 12.8307692 0 8.78461538 1.66153846 1.98461538

Tyson Chandler 33.2344086 11.27419355 0 9.870967742 0.919354839 1.435483871
Zach Randolph 26.2494048 11.5714286 0.07142857 8.03571429 1.71428571 0.14285714
Zaza Pachulia 28.2807471 7.84482759 0 7.86206897 1.36206897 0.48275862

This however gives a new aspect to the privacy and risk definition in this particular

example. The data stakeholders gave a very abstract privacy policy which had to

interpreted by the sanitizer. If there was no analysis policy, implementing the privacy

policy would simply require deleting all the values. However, the analysis policy makes

us retain some data. This comes at a cost of revealing data and information, which

is typically detrimental to the privacy aspect of this problem. Hence, a compromise

has to be made between the two policies. From the analysis above, we can induce that

probability can be used to achieve this. Hence, we must redefine what privacy means

at the policy level. This is where the iterativeness of the model helps re-analyze the

problem using the newly added parameter.

6. Analysis Phase, iteration 2:
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To apply both privacy and utility policies to the data, we need a common parameter

against which both of them can be formalized and analyzed. Adding utility injects risk

into privacy, for which we are currently employing no measurement heuristic. However,

if the sanitizer is releasing a subset of data and an adversary can break the privacy

using correlations between records using external information, then the adversary is

trying to maximize its probability while making these correlations. Merely based on

statistics, one can estimate this probability . For example, if we refer to the blue

subgroup example above, we can estimate the probability of choosing 3 records from

a pool of 13 records in the following way. The probability will be (1 ÷
(
13
3

)
). This

probability is derivable from just one group produced by one of the implementations

of the policy. Also, we refer back to the design phase, where we analyzed one quasi-

identifier which resulted in this particular instantiation. As we will see below, there are

many other instantiations possible. Hence, we must formalize this privacy definition.

Let U be the universe of data from which D is taken from. We assume U is constant

and finite.

Let D denote the dataset which has to be sanitized.

Let D′ denote a dataset, where di represents the ith subset of D′.

Assuming that D′ results from generalizing values in D, it is possible to correlate

anonymized records in D′ to data in U .

The dataset D′, is said to be sanitized, iff:

Max{Pr(correlating d1 with records from U), Pr(correlating d2 with records from U)

. . . Pr(correlating dn with records from U)} < ε;

where n = total number of subsets,

and ε = the maximum permissible probability decided by the stakeholders.

7. Information Collection Phase, iteration 2:
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In this phase we must look at newer relationships which may have been created due

to our consolidated privacy definition. During design phase 1, we derived a value of

k = 3 for implementing k-anonymity. Now under the same assumption, if we were

to still keep the size of our smallest group as 3 and there existed n matching records

that could be correlated to this group, the probability of correctly guessing who these

3 players are would be: (1÷
(
n
3

)
).

However, so far we have not used the fact that these statistics are only from the year

2011. What if the adversary used k-anonymity on data from other years too. This

would be especially important if we were sanitizing the full dataset of records from

2011. Then this phase would require an analyses of how the values were spread over

player statistics from other seasons too. The reason for this is as follows:

The value for k was chosen as 3, because while analyzing a quasi-identifier subset, this

was the smallest subset of unique values that were found. What if we analyzed all

other seasons similarly, and the smallest returned value was not 3? Consequently, if

the fact that these numbers were from 2011 was also sensitive, then this correlation

must also be prevented. One way would be to make a new dataset in which all the

years, and their corresponding lowest group sizes are written. Then this dataset can

be generalized in a similar way using our model.

It is also important to realize what each group in a generalized dataset represents. For

example, if we refer back to the values of the blue marked subgroup, we expect to

correlate those records with players who are playing more than 20 minutes, score less

than 15 points but have at least 7 rebounds. When we couple this with the fact that

this group shoots less than 1 3-pointer per game, we can deduce with a high confidence

that these players are big men, typically playing as Centers. We can also infer that

since the number of minutes are high and the points are low, the players could be

starters or important players coming off the bench, who are all more defense-oriented

rather than offensive players.
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We can then look at statistics from all the seasons and chose values to classify players as

elite, good, average and bad. This can help in categorizing players to make the analysis

more manageable. For example, an elite Center would average at least 20 pts/g with

10 reb/g and play high number of minutes. So the area shaded blue in Table 6.7

cannot represent an elite Center. However, the area shaded yellow can and will most

definitely include elite centers. This is because no other group includes players with

high number of mins/g, pts/g and reb/g except yellow and white. The problem with

the white area is that the number of 3/g is high, which typically is not a characteristic

of elite Centers. However, high rebounds, points and minutes, coupled with a high

number of 3’s per game indicates the player is big (big players catch more rebounds),

scores a lot of points and can make 3 point shots. This is usually a characteristic of

players playing at the Small Forward position.

Now if we assume this dataset has 3 elite Centers and 4 very good Small Forwards, we

must analyze the trend and numbers spread over multiple seasons to figure out if this

particular dataset has a unique spread or not.

We can further investigate more about the year that these statistics belong to. The

basketball trend over the years has shifted from big defensive players to smaller offensive

players. One of the biggest changes on the offense has been the amount of 3-point

shooting which has tremendously increased. Therefore, the cardinality of each group

can help us deduce which time frame these statistics could belong to.

8. Design Phase, iteration 2:

In a typical design phase, we must analyze all quasi-identifiers. Due to the size of this

analysis, we can only show one example during each phase. In this phase, we show a 4

tuple quasi-identifier like the one shown in Figure 6.3.3. In this quasi-identifier subset,

we include 3/g, pts/g, mins/g and reb/g. Therefore, (3/g, pts/g, mins/g, reb/g)ρ

quasi-identifier represents the following information:
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Figure 6.3.3: A Sample Quasi-Identifier

• A higher value of all data fields represents an important player, possibly a star

player, who filing up the stats sheet. This relationship indicates a player playing

at the Small Forward position.

• A higher value of all but 3/g represents a big player who is not a good 3-point

shooter. This typically represents a player playing as a Center.

• A higher value of 3/g and lower mins/g would represent a 3-point specialist. In

our reduced dataset, no player fits this criteria.

• A lower value of all data fields represents a player who is probably coming off the

bench and is merely a squad player with no starting role.

In the design phase, we must also figure out the possible value(s) of ε. The threshold

that determines if information can be deemed as private or not, depends upon the

requirements of the stakeholders. Once a value for ε is determined, we must do similar

analysis as shown in the Information Collection Phase 1, to figure out a value for k

which will then be implemented in the next phase. Finally, a risk and utility analysis

will be done, similar to the first Risk and Utility analysis and this model will go on. The

model terminates only when the Risk and Utility analysis phase returns no negative

conclusions.
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6.4 Case Study: Cohort Discovery at UC Davis Med-

ical Center (UCDMC)

Cohort Discovery is a tool for querying databases, that includes de-identified information of

patients from sensitive databases like Clarity, an electronic medical records (EMR) database.

Doctors can query specific attributes of patients and get an approximate number of records

that match their criteria. Although, most of these values are anonymized, the ability to

query user information can lead to privacy concerns. In this report, we assess the severity

of these concerns, the conditions under which they can become harmful and measures to

counter them. We describe the threat model of Cohort Discovery and discuss how it tries to

de-identify the queries. We then propose 3 different attacks on the system.

This section describes how Cohort Discovery captures the UC Davis Medical Center

(UCDMC) user privacy requirements. We also look at how it helps the researchers search

EMRs without violating user privacy. And finally, we try to understand the limits and

assumptions under which Cohort Discovery can run successfully.

The Cohort Discovery provides a paradigm shift in three fundamental areas:

• Clinical care, billing data and laboratory results are aggregated into one single reposi-

tory for data analysis.

• The queryable patient data protects user privacy, which is made possible by a number

of regulations.

• A data dictionary framework was created for a better knowledge management which

will lead to a better understanding of the EHRs.

The central data repository gets data from many sources like electronic medical records,

lab results and demographic data. Using Cohort Discovery, an authorized user can query

this database and get an obfuscated result showing the number of records that meet the

searched criteria. This tool addresses all the important regulations like HIPAA [59] , FISMA
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[48], FERPA [47], GINA [36] and many more. Based on all these regulations, the UC Davis

Institutional Review Board (IRB) and the Office of Compliance agreed upon the following

rules:

• Prisoner data is excluded

• Patient ID is replaced with a PseudoID

• Source field data including, but not limited to, the following is de-identified

– Order Medication ID

– Patient CSN ID (Encounter ID)

– Order ID

– Encounter Number (from Finance for in-patient stay)

– Medical Record Number (MRN)

• Patients 89 years and older are excluded

• Patient and Provider first and last names are excluded

• Phone, fax and pager numbers are excluded

• Patient address is excluded

• ZIP code truncated to 3 digits

– ZIP set to 000 for 3-digit ZIP codes with populations less than 20,000

• Birth dates are normalized to the first day of each year (01/01/yyyy)

• Dates are internally consistent per patient, but shifted +/- up to 14 days

• Data from Notes (Clinician, Progress Notes, etc.) is currently not available

• Patient counts less than 10 return “less than 10 patients in Web client
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• All queries return counts +/- 3 records in Web client

Note: More detailed information (including a complete data dictionary) can be found on

http://www.ucdmc.ucdavis.edu/ctsc/area/informatics/cohortdiscovery/.

6.4.1 Threat Model

• Adversary: The adversary can be an insider or someone who has gained an unautho-

rized access.

• Private information: The Cohort Discovery queries can help an adversary either infer

information about a patient, or infer statistics about a population that is otherwise

deemed sensitive.

The key concept that we use in this project is relationship analysis [18] [20]. We define

any association between two data fields as a relationship. Understanding the structure of

these relationships is critical to determining what kind of sanitization techniques work with

the given data and privacy policy.

Medical data used for research, like most other datasets, can be either shared or published.

When data is shared, usually more control can be exercised as compared to when data is

published. This is because the sanitizer can have a better understanding of who the possible

adversary can be, and what kind of external information and de-sanitization tools could

be used against the sanitized information. Cohort Discovery has controlled access and is

usually granted to the employees of UCDMC. Unless an insider has malicious intent (which

is usually a problem with data sharing) there is great control over how the de-identified data

is used. This is why we consider Cohort Discovery as an example of data sharing.

The nature of utility requirement allows for a sanitization model that seems more potent

than techniques in which anonymized tables of data are released. This is because Cohort

Discovery is only required to show an approximate number of records that match the queried

criteria. This leaves room for adding noise, whereby utility is not greatly compromised.

128



Therefore, Cohort Discovery adds an extra layer of abstraction which helps in hiding the

relationships between data entities contained in the dataset.

Sanitized data can be represented in different perspectives. Data is typically released in

the form of a table, in which data fields and their sanitized data values can be clearly seen.

At UCDMC, doctors and researchers can be granted access to EMRs once they can figure

out whether or not a sufficient number of records exist that match the searched criteria.

This is where Cohort Discovery is used as it allows them to query the EMRs even before

the IRB has granted access. Once the IRB allows access to EMRs, the researchers are held

legally responsible for any misuse of data and are accountable for all the actions they take.

Therefore, using Cohort Discovery, if a user can learn anything more than just the number of

records matching a particular search criteria, then a privacy violation can occur. The threat

therefore is learning more than just the number of records matching a particular criteria.

Relationship analysis entails looking at all such relationships and analyzing their relative

strength towards keeping the risks for data re-identification as low as possible. One of

the biggest advantages of an aggregated query response system like the Cohort Discovery

is that not only are the values and query responses perturbed, but the aggregation itself

adds more distortion to the existing relationships. This would not have been possible if the

utility requirements demanded actual patient records with anonymized values. The success

of Cohort Discovery greatly lies in this assumption of utility requirements.

The Cohort Discovery has several data fields of patient information. These data fields

are associated with each other and a combination of these associations may correspond to

more information. This information could be of a patient with whom these data fields are

associated2, or it could reveal an aggregated statistic that is considered a secret3.

Some relationships are more critical in preserving user privacy than others. For example,

2For example, a x year old male, living in ZIP code abcde with a disease D. With such information, one
can look at external sources of information like on online social media and try to deduce the identity of this
person

3For example, a large number of patients suffering from a specific condition that is associated with a
particular profession like military could indicate a high number of soldiers or military officers living in that
area. Such information could be adversely used which may lead to issues of national security.
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if we know a rare disease and some patient attributes like age, gender and/or ZIP code, it

will be easier than trying to deduce user identity given a more common disease and patient

attributes like average blood pressure or Body Mass Index (BMI). This is because uniqueness

in values helps segregate records that point to a smaller population as compared to queries

that yield broader results. Hence, trying to choose the correct user identity from a larger pool

of user identities makes it harder for an adversary to re-identify user information. Another

way to cause higher uncertainty for the adversary is by adding noise or modifying the values

that are released in the anonymized dataset. For example, if the adversary knows the precise

date of birth rather than a normalized date of birth (for example, normalized to the first day

of every month), then it causes more uncertainty for the attacker. Cohort Discovery captures

both of the above features. The first feature is instantiated by the policy that if a query

yields an answer which is less than 10, the Cohort Discovery outputs “less than 10” rather

than displaying the actual number of matching records. The second feature is instantiated

by the policy that all query outputs are displayed with an offset of ±3.

Another important scenario to consider is how would the system change if data fields are

added or removed from the existing model. Adding data fields would add more relationships

which means more information is available to make deductions. However, more information

could also add more uncertainty.

We want to focus on 3 nuances in the Cohort Discovery:

• If a query has less than 10 matches then the tool returns “Less than 10 Patients”

• Query results are obfuscated by an offset of +/- 3

• The same query can not be made more than 6 times

6.4.2 Open Questions

This information leads to the following questions:
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1. What is the rationale behind the limit of less than 10 patients? If 10 is not the ideal

number, then what is? Can such a number even be quantified?

The requirement of a lower bound for a system like Cohort Discovery has already been

proven [11]. Although there has been no successful attack showing the existence of a

vulnerability due to the number set at 10, this does not prove that such a susceptibility

could not exist. As a matter of fact, the selection of the number 10 has not been justified

in the Cohort Discovery manual.

2. The cohort discovery results lie in the range of +/- 3. How does this range balance

privacy and utility? Is this the best possible range? Is it possible to find the optimum

range?

Since Cohort Discovery has very specific utility and privacy requirements, a small range

can ensure sufficient privacy and utility. The fact that the user only searches for “an

approximate” number of records before contacting IRB for the actual medical records,

means the utility requirements are fairly relaxed. There is an added stipulation of not

running the same query more than 6 times. This means that statistically, we can find

the probability of re-identifying the obfuscated query response in the following way:

• To find the re-identified value, we need a scenario in which the difference between

the highest and lowest returned query response is 6.

• For this analysis, we can assume any output to be within the range of +/- 3 with

equal probability. Assuming the real query response is r, then we need r+ 3 and

r − 3 as 2 of the maximum possible 6 outputs.

• The probability for that to happen is approximately 0.8 (details shown in Ap-

pendix C). However, we have a big enough sample size of queries, in which none

of the queries ever yielded both the r + 3 and r − 3. So we can conclude that

there must be some heuristic running in the system to make sure such values do

not show up.
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Figure 6.4.1 shows the how the difference between the highest and lowest query

compared to the number of times we ran a single query. Although we calculated

odds of getting a difference of 6 to be as high as approximately 33%, in practice

this did not happen. Therefore, we can conclude that the query generation is not

completely random and there is some heuristic running in order to prevent this

vulnerability.

Figure 6.4.1: Relationship between the highest and lowest query to the number of times that
query was run

3. Can we identify attacks or even possible points of failure in this anonymized database?

Almost every system is vulnerable to administrative and technical attacks. At the

administrative end, many protocols and rules exists, which if violated, can result in

vulnerabilities of disclosure. Some of these can be as simple as giving someone your

user name and password and allowing them to gain unauthorized access. It also seems

like there is no proper protocol of disabling cohort discovery access, once employees

leaves. An ex-employee is not an authorized user and being able to log into the system

after leaving the job is considered being a malicious outsider access.

Many attacks are possible due to vulnerabilities from flaws in system design and im-
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plementation. We present a theoretical account of some of the possible attacks which

the system is vulnerable to. Let Px be a search parameter, where x is an index. Let

Query() be the function that returns the number of matching records based on the

searched parameters.

(a) True Estimation: Since the values are obfuscated by ±3, true values can be

estimated on how the query answers appear. Assuming the lowest query answer

is a and the highest answer is a+ 6, the de-identified answer is a+ 3 and knowing

this could violate the privacy policy.

(b) Record Isolation: Find a combination of search parameters such that:

Query1: Query(P1, P2, P3.....Pn) = n

Query2: Query(P1, P2, P3.....Pn, Pn+1) = n− 1

{Query2 \ Query1} can help us isolate the information of 1 record about 1 per-

son who possesses all attributes queried in Query1 AND does not possess the

extra attribute Pn+1 queried in Query2 [24]. This can be a powerful method but

works under very strict assumptions. Firstly, each query needs to be accurately

determined, the probabilities for which are figured out above. Secondly, the at-

tributes in each of the queries have to be designed so precisely, that the resulting

information is good enough to determine a privacy violation.

For example, if the attribute Pn+1 is gender = ‘female’, we can conclude that

there is one male patient with the conditions described in Query1 and Query2.

If the query contains sufficient attributes that can help us narrow down the pa-

tient’s identity, typically using geographic information and rare diseases, then this

could lead to re-identifying sensitive patient information.

(c) Query Breakup: Syntactically different and semantically similar queries can be

used to infer more information. Cohort Discovery lets a user search for records

by allowing inclusion or exclusion of attributes and their values. For example,
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Query1 = {Gender: male, ZIP code: 12345, disease X}

Query2 = {Gender: not female, ZIP code: 12345, disease X}

will yield the same result, provided Query3 = {Gender: other} yields 0. Although

there is no way to conclusively determine if Query3 will result 0, it does output

”less than 10”. It is however reasonable to assume that Query3 is 0 and once

other attributes are added in the query along with Query3, the probability of it

being 0 are even higher.

This attack can work provided the attacker has extensive domain knowledge.

There are diseases which are prevalent under certain conditions. For example,

instead of searching for a certain condition in pregnant woman, querying with the

gender specified as ”female” and querying without gender should yield the same

result. This can lead to doing the same query more than 6 times, which greatly

increases the probability that we calculated earlier.
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Chapter 7

Conclusion

In this dissertation we have proposed an iterative model for effectively sanitizing data, which

uses relationship analysis and helps predict what data and relationships, if present external

to the dataset, may help an adversary in de-sanitizing the sanitized dataset. We have also

shown how data and relationships can be formally and graphically represented to allow

analysis using different properties and algorithmic methods.

Data sanitization is the problem of removing sensitive information while retaining its sta-

tistical integrity to comply with an analysis requirement. Fundamentally, some information

must be removed from a dataset to ensure non-disclosure of sensitive information. This is

governed by a privacy policy. Correspondingly, some information within the same dataset

must be retained to ensure analytical requirements, that are governed by an analysis policy.

Overall, there has to be a balance between privacy and utility. If we do not anonymize data

appropriately, crucial data and relationships may be revealed in the sanitized dataset that

have the potential to be correlated with information present in the external world. This infer-

ence is what leads to revealing sensitive information. On the contrary, if we over-sanitize the

data, analytically useful statistical relationships and correlations within the dataset are de-

stroyed, which may provide little or no utility value to the dataset. This leads to a question:

is data sanitization that enables both privacy and utility possible?
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7.1 Is Data Sanitization Possible?

There is no simple answer to this question because the answer is almost certainly dependent

on the dataset and corresponding privacy and utility policies used. We must remember that

any data sanitization problem has a privacy and an analysis aspect to it. An assertion that

a dataset can be sanitized would provide guarantees of the satisfaction of both the privacy

and analysis aspects of it. So the possibility of sanitizing a dataset can only be determined

if we know exactly how the problem is instantiated. This is where answering the question

becomes tricky because knowing all the parameters in a problem of data sanitization can be

very hard.

The instantiation of a data sanitization problem requires understanding the privacy and

analysis policies, and a threat model for the given dataset. Externally available information

is usually the most critical factor when preserving the disclosure of sensitive information.

What makes the problem challenging is the fact that the extent and scope of externally

available information is hard to quantify, both at the time of sanitization and in the future.

Coupled with this, is the ever-changing privacy definitions and policies, which make the

predictability of de-sanitization extremely hard.

Therefore, data sanitization may or may not be possible. When data is sanitized however,

it is imperative to assess the risks, that is, predicting what type of externally available data

can potentially help infer sensitive information that was conceal in the sanitization process.

7.2 Discussion

In this section, we discuss some open-ended questions and relate our work to how they can

be answered.

• There are many approaches in which pre-identified types of data must be removed to

attain privacy. These techniques, also known as Safe Harbor approaches, are easier and

cost effective but may yield sanitized results with more vulnerabilities than alternative
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approaches that use a more thorough analysis to determine what data must be hidden

to sanitize a dataset.

The U.S. Department of Health and Human Services (HHS) conducted a case-study

in 2011 examining 15,000 patient records, which were anonymized using HIPAA. Out

of these, 216 unique profiles were found. When multiple user records have a lot of

traits in common, it becomes harder to re-identify data. However, these 216 unique

or near-unique profiles presented an opportunity for an attack, and out of these, two

records were de-anonymized.

What this example shows is that regardless of the percentage of records which might

be vulnerable to an attack, a Safe Harbor approach may or may not be successful as a

guard against privacy. One of the main reasons for this is that data sanitization prob-

lems are highly dependent upon the type of data and the assumptions of the domain.

The data may be such that even after applying a Safe Harbor approach, the sanitized

dataset contains uniqueness, which can be deterrent to preserving privacy. This is why

we have proposed an iterative model where these vulnerabilities can be analyzed. A

Safe Harbor approach might be a good place to start, but without the analysis of the

results produced by this approach, there can not be placed any guarantees on how

effective the sanitization will be.

• De-sanitization attacks may require an exhaustive search of data in the external world,

which is required to correlate with the sanitized information. Sophisticated attacks

may require a lot of resources in man-hours to yield a low number of successful de-

sanitizations as shown in the Netflix and AOL attacks. Considering a very low de-

anonymization to cost ratio, should the threat to privacy be taken seriously?

When it comes to the number of successful de-sanitizations, we must not take a quan-

titative approach because disclosure of different kinds of sanitized information has

different consequences. Consider a scenario in which a sanitized dataset of user logs
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from a mobile phone application was successfully de-sanitized, and the attacker was

able to infer some information about the user like geolocation, purchase history and

so on. Now consider a different scenario in which a small part sanitized file belonging

to the government was de-sanitized, which contained top secret information regarding

national security. Irrespective of the scale of these scenarios, they can have almost no

to drastic affects.

Also, a low percentage of successful de-sanitizations still does prove that there exist

vulnerabilities in data sanitization methodology, which the attackers have been able to

exploit. In fact, it may not even be possible to establish any correlation between the

number of successful attacks and the possibility of the existence of vulnerabilities.

• Does lack of uniqueness in a sanitized dataset guarantee non-disclosure? Or does

uniqueness in a sanitized dataset always lead to vulnerabilities?

Lack of uniqueness only means that an attribute or a record may not be correlated

with another attribute or a record. This does not guarantee disclosure, because the

definition of what is considered as disclosure is problem dependent. Sometimes, a

disclosure may happen by knowing if a particular person’s information is contained

in a sanitized dataset or not. Imagine a scenario in which there exists no unique

values in a sanitized dataset of medical records of some cancer patients, where the

information that a patient has cancer is considered sensitive. It may not be necessary

to link a particular record to a particular patient to deduce this information because

if simply by knowing that one of the records belong to John, it can be inferred that

John has cancer. On the contrary, exclusion from a sanitized dataset can also result

in information disclosure.

The presence of one unique value can enable the linkage of one or more parts of a

sanitized dataset to sensitive information. The ability of an adversary to do so can cause

de-sanitization. Without knowing any more information about the given scenario, it is
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not possible to estimate how detrimental would be the consequence of preventing the

disclosure of sensitive information. However, the presence of the possibility of such a

scenario should definitely be considered a vulnerability.

7.3 Future Work

There numerous areas related to the content of this dissertation that we considered but did

not fully explore, as they were outside the scope of this work. Also, there were other aspects

of our research that could have been accomplished by alternative methods. In this section,

we describe some of these things and what potential future work lies in this area.

1. We have not described an exact methodology on how larger, more complex and ab-

stract policies can be represented and analyzed for conflicts. In our research, we have

demonstrated the sanitization process by assuming the policies can be analyzed to find

mutual conflicts and then be resolved.

2. The relationship analysis can be made more powerful if the contribution of each rela-

tionship in preventing the disclosure of sensitive information and / or adding utility

value, can be weighted. Once this is framework is developed, a quantifiable risk assess-

ment may also be possible.

3. Data sanitization has typically been a fairly manual process. However, the model that

we have described in Chapter 6 has the ability to be automated. It may be possible

to create heuristics to uncover relationships automatically by applying relationship

properties and data mining algorithms as described in Chapter 5. Then, the model

would need a language or a heuristic to make the rule engine, auxiliary information

module, relationship analysis and each phase work together.

4. Data representation using Belief Networks - Bayesian Belief Networks (BBN) are used

to model uncertainties. BBNs may also be an effective way to represent data entities
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and the relationships between them. A BBN has nodes connected by directed arrows

showing causality and the direction of influence. Each of these relationships can have

different probabilities which indicate the likelihood of their existence which can be

computed based on other relationships in the dataset and external unknowns. Since our

model uses relationships which can be probabilistic or uncertain, using BBN might be a

helpful way of representing and predicting these relationships with their corresponding

probabilities.

5. Sensitive information in a dataset can be dense or sparse. In cases where sensitive

information about an entity is found close to each other, for example, each user’s de-

mographic information contained in 1 line or record of a huge file, or most cases of

structured data, it is easy to understand the semantics and privacy-preserving implica-

tions of this data. However, when data about an entity is sparsely placed over multiple

lines of a single file, or distributed over multiple files in large hadoop clusters, it may

become very hard to contextualize all the data and understand its semantic meaning.

This is because, under different contexts, the same data can have different interpre-

tations and meanings. When sanitizing a dataset, especially while using automated

techniques, quantifying the context is extremely hard and will need immense future

work. This is especially true in large quantities of unstructured data.
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Appendix A: Definitions

• Analysis Policy - A legal or a non-legal guideline that describes the minimum amount

and type of information which should be revealed from a sanitized dataset.

• Data - Values that describe a quantity or an attribute of an entity.

• Data Context - The context of a data element is its interpretation based on the

relationship that it has with other data elements, which may be present inside and

/ or outside the dataset. e.g. 10011 can be interpreted as (10011)10 which is “ten

thousand and eleven”, or (10011)2 which is ”19”, or ”yes, no, no, yes, yes” (where 1

refers to yes and 0 refers to no) and so on.

• Data Entity - A data entity is used to collective refer to a data field and the associated

values within that field.

• Dataset (D) - A dataset is a collection of data. Datasets can be structured or un-

structured, depending upon the consistency and format of data organized in them.

• Information - A derivable valid/invalid meaning by interpreting and analyzing data.

Since the information is “derived”, it is implicit in the definition that the meaning is

reasonable. However, the validity of this reason is subjective.

For example, consider the data in Table 1. The data shows login times for the following

4 users on the date of March 31st. The information that can be gathered directly from
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Table 1: A sample dataset for login times on March 31st

User IP Login Time
Abel 129.12.32.111 0030
Ben 169.31.222.11 1500
Clyde 169.31.222.133 1200
Delonte 129.12.32.1 0800

this dataset is the user names, their IP addresses and the login times. But moreover,

we can also deduce that Abel and Delonte are on the same subnet and so are Ben and

Clyde.

• Sanitizer - A sanitizer is an entity that takes a raw dataset as an input and outputs

a sanitized dataset, which satisfies the requirements of privacy and analysis policies.

• Stakeholder - The stakeholder(s) is the owner of a particular dataset. Stakeholders

are often responsible for formulating the policies which guide the privacy and analysis

requirements. Stakeholders can be persons, organizations or governments.
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Appendix B: Tables

Table 1

Table 2: Generalized Values with k = 46

min/g pts/g 3/g reb/g ast/g blk/g

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
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[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
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[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]

[0:40] [0:30] [0:3] [1:15] [0:12] [0:4]
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Table 2

Table 3: Raw Basketball Statistics Dataset

name min/g pts/g 3/g reb/g ast/g blk/g
Andre Iguodala 35.63037634 12.43548387 1.225806452 6.14516129 5.467741935 0.483870968
Al Harrington 27.51536458 14.21875 1.578125 6.09375 1.390625 0.1875
Alonzo Gee 29.0005291 10.53968254 0.698412698 5.095238095 1.777777778 0.26984127
Brook Lopez 27.19333333 19.2 0 3.6 1.2 0.8

Carmelo Anthony 34.11212121 22.63636364 1.236363636 6.254545455 3.636363636 0.436363636
Caron Butler 29.69444444 11.95238095 1.46031746 3.650793651 1.238095238 0.126984127

Chandler Parsons 28.64100529 9.507936508 0.952380952 4.746031746 2.126984127 0.476190476
DeMar DeRozan 35.01005291 16.73015873 0.380952381 3.349206349 2.031746032 0.26984127

DeMarcus Cousins 30.47057292 18.125 0.03125 10.984375 1.59375 1.171875
Dirk Nowitzki 33.53413978 21.64516129 1.258064516 6.758064516 2.193548387 0.483870968
Dwight Howard 38.32685185 20.61111111 0 14.53703704 1.925925926 2.148148148
Dwyane Wade 33.16666667 22.08163265 0.306122449 4.836734694 4.591836735 1.285714286
Goran Dragic 26.54419192 11.74242424 1.03030303 2.545454545 5.303030303 0.151515152
Grant Hill 28.11666667 10.18367347 0.285714286 3.489795918 2.183673469 0.591836735

James Harden 31.38817204 16.83870968 1.838709677 4.064516129 3.693548387 0.241935484
Jarrett Jack 34.00555556 15.55555556 0.866666667 3.911111111 6.311111111 0.2
JJ Redick 27.14615385 11.55384615 1.723076923 2.307692308 2.523076923 0.092307692

Joakim Noah 30.38880208 10.1875 0 9.8125 2.484375 1.4375
Jordan Crawford 27.38697917 14.65625 1.234375 2.625 2.96875 0.078125
Kevin Durant 38.58080808 28.03030303 2.015151515 7.984848485 3.5 1.166666667
Kevin Love 39.00848485 26.03636364 1.909090909 13.36363636 2.018181818 0.509090909
Kobe Bryant 38.48591954 27.86206897 1.5 5.396551724 4.551724138 0.310344828

Kris Humphries 34.8672043 13.79032258 0 10.98387097 1.451612903 1.193548387
Landry Fields 28.68838384 8.787878788 0.46969697 4.212121212 2.560606061 0.257575758
Larry Sanders 12.35769231 3.576923077 0 3.076923077 0.634615385 1.461538462
LeBron James 37.51962366 27.14516129 0.870967742 7.935483871 6.241935484 0.806451613
Jeremy Lin 26.86904762 14.62857143 0.685714286 3.057142857 6.142857143 0.257142857

Marco Belinelli 29.78459596 11.81818182 1.621212121 2.606060606 1.53030303 0.075757576
MarShon Brooks 29.42916667 12.64285714 0.839285714 3.571428571 2.339285714 0.267857143

Mo Williams 28.30192308 13.17307692 1.788461538 1.903846154 3.076923077 0.134615385
Monta Ellis 36.5591954 20.36206897 1.068965517 3.448275862 5.965517241 0.310344828

Nicolas Batum 30.35451977 13.86440678 1.813559322 4.593220339 1.423728814 1.016949153
Nikola Pekovic 26.89219858 13.85106383 0 7.382978723 0.659574468 0.659574468

Pau Gasol 37.38410256 17.36923077 0.107692308 10.43076923 3.676923077 1.353846154
Paul George 29.66186869 12.09090909 1.363636364 5.606060606 2.378787879 0.575757576
Paul Pierce 34.00956284 19.36065574 1.639344262 5.196721311 4.491803279 0.426229508
Rajon Rondo 36.93081761 11.88679245 0.188679245 4.849056604 11.69811321 0.056603774
Ricky Rubio 34.23658537 10.63414634 0.780487805 4.170731707 8.195121951 0.195121951

Ryan Anderson 32.19098361 16.06557377 2.721311475 7.721311475 0.885245902 0.426229508
Tim Duncan 28.17356322 15.43103448 0 8.965517241 2.275862069 1.534482759
Tony Allen 26.29655172 9.793103448 0.137931034 4 1.362068966 0.568965517
Tony Parker 32.05972222 18.25 0.233333333 2.85 7.716666667 0.083333333
Ty Lawson 34.81967213 16.3442623 1.196721311 3.721311475 6.540983607 0.098360656

Tyson Chandler 33.2344086 11.27419355 0 9.870967742 0.919354839 1.435483871
Serge Ibaka 27.14924242 9.136363636 0.015151515 7.545454545 0.424242424 3.651515152

Stephen Curry 28.14679487 14.73076923 2.115384615 3.384615385 5.307692308 0.307692308
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Appendix C: Calculations

Probability of Maximum Difference Between Query Re-

sponses

When Cohort Discovery is queried, assume the correct number of records satisfying the query

= r

Then, the possible values that Cohort Discovery can output are r − 3, r − 2, r − 1, r,

r + 1, r + 2 and r + 3

Total number of queries done = 6

The probability that the query response contains at least one instance of both r− 3 and

r + 3, if all values were chosen randomly, can be calculated as:

1 − (Probability that none of the queries are r− 3 or r+ 3) − (Probability that at least

one query is r+ 3 and there are no r− 3) − (Probability that at least one query is r− 3 and

there are no r + 3)

Probability that none of the queries are r − 3 or r + 3 = (5/7)6

Probability that at least one query is r + 3 and there are no r − 3 = Probability that

some queries are r + 3 and there are no r − 3 = (6/7)6 − (5/7)6

Probability that at least one query is r − 3 and there are no r + 3 = Probability that

some queries are r − 3 and there are no r + 3 = (6/7)6 − (5/7)6

Therefore, the probability that at least one r + 3 and at least one r − 3 is selected = 1

− (5/7)6 − ((6/7)6 − (5/7)6) − ((6/7)6 − (5/7)6) ≈ 0.33
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[16] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Proba-

bilistic Relational Reasoning for Differential Privacy. In Proceedings of the 39th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’12, pages 97–110, New York, NY, USA, 2012. ACM.

[17] Smriti Bhagat, Graham Cormode, Balachander Krishnamurthy, and Divesh Srivastava.

Class-based graph anonymization for social network data. Proc. VLDB Endow., 2:766–

777, August 2009.

[18] Bhume Bhumiratana. Privacy Aware Micro Data Sanitization. PhD thesis, University

of California, Davis, 2009.

[19] Matt Bishop, Emily Rine Butler, Kevin Butler, Carrie Gates, and Steven Greenspan.

Forgive and Forget: Return to Obscurity. In Proceedings of the 2013 Workshop on

149

http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all&_r=1&
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all&_r=1&


New Security Paradigms Workshop, NSPW ’13, pages 1–10, New York, NY, USA, 2013.

ACM.

[20] Matt Bishop, Justin Cummins, Sean Peisert, Anhad Singh, Bhume Bhumiratana, Deb-

orah Agarwal, Deborah Frincke, and Michael Hogarth. Relationships and data sanitiza-

tion: a study in scarlet. In Proceedings of the 2010 workshop on New security paradigms,

NSPW ’10, pages 151–164, New York, NY, USA, 2010. ACM.

[21] European Commission. EU Right to be Forgotten. http://europa.eu/rapid/

press-release_MEMO-14-60_en.htm.

[22] Graham Cormode, Divesh Srivastava, Ting Yu, and Qing Zhang. Anonymizing bipartite

graph data using safe groupings. Proc. VLDB Endow., 1:833–844, August 2008.

[23] Tore Dalenius. Towards a Methodology for Statistical Disclosure Control. Statistik

Tidskrift, 15:429–444, 1977.

[24] Dorothy E. Denning, Peter J. Denning, and Mayer D. Schwartz. The Tracker: A Threat

to Statistical Database Security. ACM Trans. Database Syst, pages 76–96, 1979.

[25] Cynthia Dwork. Differential Privacy. In in ICALP, pages 1–12. Springer, 2006.

[26] Thomas Goetz. How the Personal Genome Project Could Unlock the Myster-

ies of Life. http://archive.wired.com/medtech/stemcells/magazine/16-08/ff_

church?currentPage=all.

[27] Philippe Golle. Revisiting the Uniqueness of Simple Demographics in the US Population.

In Workshop on Privacy in the Electronic Society, pages 77–80. ACM Press, 2006.

[28] Ian Horrocks. DAML+OIL: a Description Logic for the Semantic Web. IEEE Data

Engineering Bulletin, 25:4–9, 2002.

150

http://europa.eu/rapid/press-release_MEMO-14-60_en.htm
http://europa.eu/rapid/press-release_MEMO-14-60_en.htm
http://archive.wired.com/medtech/stemcells/magazine/16-08/ff_church?currentPage=all
http://archive.wired.com/medtech/stemcells/magazine/16-08/ff_church?currentPage=all


[29] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and

Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

Technical report, W3C, 2004.

[30] Dr. Jan Jurjens. UMLsec Homepage. http://www4.in.tum.de/~umlsec/.

[31] M. Kantarcioglu and C. Clifton. Privacy-Preserving Distributed Mining of Associa-

tion Rules on Horizontally Partitioned Data. Knowledge and Data Engineering, IEEE

Transactions on, 16(9):1026 – 1037, sept. 2004.

[32] Daniel Kifer and Johannes Gehrke. l-Diversity: Privacy Beyond k-Anonymity. In In

ICDE, page 24, 2006.

[33] Joe Kilian. Founding Cryptography on Oblivious Transfer. In Proceedings of the twen-

tieth annual ACM symposium on Theory of computing, STOC ’88, pages 20–31, New

York, NY, USA, 1988. ACM.

[34] J J Kim. A Method for Limiting Disclosure in Microdata Based on Random Noise and

Transformation. In ASA Proceedings of the Survey Research Methods Section, 1986.

[35] Jay J. Kim, William E. Winkler, and Bureau Of The Census. Masking Microdata

Files. In Proceedings of the Survey Research Methods Section, American Statistical

Association, pages 114–119, 1995.

[36] Public Law. Genetic Information Nondiscrimination Act (GINA). http://www.gpo.

gov/fdsys/pkg/PLAW-110publ233/html/PLAW-110publ233.htm.

[37] Ninghui Li and Tiancheng Li. t-Closeness: Privacy Beyond k-Anonymity and l-

Diversity. 2007.

[38] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In JOURNAL OF

CRYPTOLOGY, pages 36–54. Springer-Verlag, 2000.

151

http://www4.in.tum.de/~umlsec/
http://www.gpo.gov/fdsys/pkg/PLAW-110publ233/html/PLAW-110publ233.htm
http://www.gpo.gov/fdsys/pkg/PLAW-110publ233/html/PLAW-110publ233.htm


[39] Kun Liu and Evimaria Terzi. Towards Identity Anonymization on Graphs. In In Pro-

ceedings of ACM SIGMOD, 2008.

[40] Frank D. McSherry. Privacy Integrated Queries: An Extensible Platform for Privacy-

preserving Data Analysis. In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’09, pages 19–30, New York, NY, USA,

2009. ACM.

[41] Mark Moriconi and R. A. Riemenschneider. Introduction to SADL 1.0: A language for

specifying software architecture hierarchies. Technical report, 1997.

[42] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with

Rules. In Journal of Web Semantics, pages 549–563. Springer, 2004.

[43] Krish Muralidhar and Rathindra Sarathy. Does Differential Privacy Protect Terry Gross’

Privacy? In Proceedings of the 2010 International Conference on Privacy in Statistical

Databases, PSD’10, pages 200–209, Berlin, Heidelberg, 2010. Springer-Verlag.

[44] Arvind Narayanan and Vitaly Shmatikov. Robust De-anonymization of Large Sparse

Datasets. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, pages

111–125, Washington, DC, USA, 2008. IEEE Computer Society.

[45] M.E. Nergiz, C. Clifton, and A.E. Nergiz. Multirelational k-anonymity. In Data Engi-

neering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 1417 –1421,

april 2007.

[46] Supreme Court of California. Jessica Pineda vs. Williams-Sonoma Stores, Inc. http:

//classactiondefense.jmbm.com/pineda_class_action_defense_cal.pdf.

[47] U.S. Department of Education. Family Educational Rights and Privacy Act (FERPA).

http://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html.

152

http://classactiondefense.jmbm.com/pineda_class_action_defense_cal.pdf
http://classactiondefense.jmbm.com/pineda_class_action_defense_cal.pdf
http://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html


[48] U.S. Department of Homeland Security. Federal Informa-

tion Security Management Act(FISMA). http://www.dhs.gov/

federal-information-security-management-act-fisma.

[49] T. B. Pedersen, Y. Saygin, and E. Savas. Secret Sharing vs. Encryption-based Tech-

niques For Privacy Preserving Data Mining. Number December, pages 17–19. Citeseer,

2007.

[50] Benny Pinkas. Cryptographic Techniques for Privacy-Preserving Data Mining. SIGKDD

Explor. Newsl., 4:12–19, December 2002.

[51] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel.

Airavat: Security and Privacy for MapReduce. In Proceedings of the 7th USENIX

Conference on Networked Systems Design and Implementation, NSDI’10, pages 20–20,

Berkeley, CA, USA, 2010. USENIX Association.

[52] Rathindra Sarathy and Krishnamurty Muralidhar. Evaluating Laplace Noise Addition

to Satisfy Differential Privacy for Numeric Data. Trans. Data Privacy, 4(1):1–17, April

2011.

[53] Latanya Sweeney. Uniqueness of Simple Demographics in the US Population. In Data

Privacy Lab White Paper Series LIDAP-WP4, 1990.

[54] Latanya Sweeney. Computational Disclosure Control. PhD thesis, 2001.

[55] Latanya Sweeney. k-anonymity: A Model for Protecting Privacy. Int. J. Uncertain.

Fuzziness Knowl.-Based Syst., 10:557–570, October 2002.

[56] Patrick Tendick. Optimal Noise Addition for Preserving Confidentiality in Multivariate

Data. In Journal of Statistical Planning and Inference 27, pages 341–353, 1991.

153

http://www.dhs.gov/federal-information-security-management-act-fisma
http://www.dhs.gov/federal-information-security-management-act-fisma


[57] M. Trottini, S. E. Fienberg, U. E. Makov, and M. M. Meyer. Additive Noise and

Multiplicative Bias as Disclosure Limitation Techniques for Continuous Microdata: A

Simulation Study. J. Comp. Methods in Sci. and Eng., 4:5–16, April 2004.

[58] District of Massachusetts United States District Court. CIVIL ACTION

NO. 11-10920-WGY: Melissa Tyler vs. Michaels Stores, Inc. http://www.

securityprivacyandthelaw.com/uploads/file/tyler%20v%20michaels.pdf.

[59] U.S. Department of Health and Human Services. Health Insurance Portability and

Accountability Act (HIPAA). http://www.hhs.gov/ocr/privacy/index.html.

[60] Ke Wang and Benjamin C. M. Fung. Anonymizing Sequential Releases. In Proceedings

of the 12th ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’06, pages 414–423, New York, NY, USA, 2006. ACM.

154

http://www.securityprivacyandthelaw.com/uploads/file/tyler%20v%20michaels.pdf
http://www.securityprivacyandthelaw.com/uploads/file/tyler%20v%20michaels.pdf
http://www.hhs.gov/ocr/privacy/index.html

	Abstract
	Acknowledgements
	1 Introduction
	1.1 The Data Sanitization Problem
	1.2 Privacy and its challenges?
	1.3 Data Sanitization
	1.4 The Complexity in Data Sanitization
	1.4.1 Weaknesses of Data Sanitization

	1.5 Dissertation Goals

	2 Background
	2.1 An Overview of Existing Techniques
	2.2 An Overview of Attack Analysis
	2.2.1 Netflix Attack
	2.2.2 Governor Weld's Medical Record De-anonymization
	2.2.3 Genomic Data Re-identification
	2.2.4 AOL Attack
	2.2.5 User X

	2.3 Comparing the Attacks
	2.4 Gaps in Existing Research

	3 General Approach
	3.1 Guidelines for Good Sanitization
	3.2 An example
	3.3 Our Approach

	4  Data and Relationships
	4.1 What is a Relationship?
	4.1.1 Properties of Relationships
	4.1.2 Property Based Relationship Classification
	4.1.3 Relationship Analysis in the Netflix Dataset

	4.2 Models of Graphical Representation
	4.2.1 Data Representation using UML
	4.2.2 Data representation using Ontologies
	4.2.3 Representation Model


	5 Operations and Algorithms
	5.1 Uncovering Relationships
	5.1.1 Transitive Closure to Uncover Relationships
	5.1.2 Statistical Analysis to Uncover Unsuspected Relationships
	5.1.3 Characterizing Relationships, Domains and Techniques

	5.2 Scalability and Visualization
	5.2.1 Data Filtering
	5.2.2 Limits


	6 Model
	6.1 Model
	6.1.1 Phase 1: Analysis 
	6.1.2 Phase 2: Information Collection
	6.1.3 Phase 3: Design and Implementation
	6.1.4 Phase 4: Risk and Utility Analysis
	6.1.5 Phase 5: Maintenance (only for data sharing)

	6.2 Model Discussion
	6.3 Case Study: Basketball Statistics
	6.4 Case Study: Cohort Discovery at UC Davis Medical Center (UCDMC)
	6.4.1 Threat Model
	6.4.2 Open Questions


	7 Conclusion
	7.1 Is Data Sanitization Possible?
	7.2 Discussion
	7.3 Future Work

	Appendix A: Definitions
	Appendix B: Tables
	Table 1: Generalized Values with k = 46 
	Table 2: Raw Basketball Statistics Dataset

	Appendix C: Calculations
	Calculation 1: Probability of Maximum Difference Between Query Responses

	References

