
SAN DIEGO SUPERCOMPUTER CENTER, UCSD

Sean Peisert
Sid Karin

UCSD/SDSC

Improving Forensic Analysis
Through Transaction-Based

Security

1

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• forensics: “The use of science and technology to investigate and
establish facts in criminal or civil courts of law.” (American
Heritage Dictionary)

• Forensic analysis helps to recreate past events. As an example, it
may be used to determine what an intruder has done to a
computer system, and used to try to help recover from the
intrusion.

• Problems we seek to address:

• Forensic analysis may have legal considerations

• Forensic analysis may be hard.

• Forensic analysis may require a huge amount of data.

Forensic Analysis

2

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• “Coroner’s Toolkit” (Farmer & Venema)

• Gathers existing data and attempts to analyze the state
of a system, primarily including “mactimes” and
unallocated disk space disk (deleted files).

• Takedown

• Dr. Andrew Gross (fmr. UCSD ECE Ph.D. student)
automated and formalized forensic methods that he
developed and used with Tsutomu Shimomura to
capture Kevin Mitnick.

Existing Approaches

3

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• “Forensic analysis” and “debugging” have a lot in
common.

• Both attempt to use available evidence to recreate
an event, be it an intrusion or a bug.

• Both are aided by a combined approach of
instrumenting a system to give the right data, then
analyzing the data.

• This could be debugging output, log output, system
call traces, etc...

Forensics & Debugging

4

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Fault-tolerance techniques do not involve analysis of faults, like
debugging, but detecting failures and recovering a system back to a
correct state.

• Checkpointing stores information which can be used to restart a
system. It usually involves saving frequent snapshots of states of
the system.

• Message logging, a form of checkpointing, involves not only saving
checkpoints, but the decisions that were made at non-
deterministic points in the code.

• A system can theoretically be implemented using message logging
to store less data than standard logs. This may improve forensic

Forensics and
Fault-Tolerance

5

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• In a legal case, rules for handling evidence
demand that a chain of custody be
guaranteed. On a computer, sufficient
information must be logged to do this.

• Most logging mechanisms can be spoofed.
As a technique for defending against
spoofing, more information than usual must
be recorded to obtain legally-valid data.

Legal Considerations

6

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Transaction: A result-oriented unit of communications processing
(Cisco Systems Internetworking Terms and Acronyms)

• “Transaction” is a commonly used term among database
programmers to describe an interaction with the database server.

• Any SQL query, for example, can be considered a transaction at a
certain level, regardless of what the query asks.

• Transactions can frequently be recorded to track changes in case
something catastrophic happens to the system and it needs to be
restored/reconstructed.

• We consider a transaction to be atomic unit of interaction, from

Transactions

7

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Transaction-based systems, more generically, are
systems for which some primary aspect of
operation is broken into (complete) atomic units.

• Transaction-based security is a transaction-based
system which uses one or more levels of uniform
transaction units for security purposes.

• We consider transactions for forensic analysis.

Transaction-Based Security

8

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Databases and web servers are examples of real-
world transaction-based systems.

• In principle, one can recreate events in a database
by determining everything that a user has looked at
or modified by entering SQL statements.

• Database systems and web servers already support
journaling, i.e. “total” software logging.

Real-World
Transaction Systems

9

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Journaling relates to message logging in that both
save data about what happened.

• Message logging saves primarily information from
the non-deterministic points in a system

• Journalling can save information about every
activity.

• Journalling may be more complete, though
message-logging may be more efficient.

Journalling vs.
Message Logging

10

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• The WISE system considers transactions for access
to resources.

• The WISE system does not necessarily consider
simply one “level” of action to make use of on a
computer system, like a database server does with
SQL queries.

• The WISE concept can be applied so that the
system could be implemented in as “low” a level as
the hardware or as “high” a level as simple human

WISE

11

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Does a WISE-enabled system provide
better forensics?

• What data does a WISE interaction create
which could be useful for forensics?

• What does the concept of “protected
resources” add to forensics?

WISE and Forensics

12

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• In principle, transaction-based systems in general,
like database systems, can record anything. How
close can we approach this on an entire computer
system?

• How much benefit for forensic purposes do we get
by recording more information through WISE?

• Most computer systems are handicapped by the
lack of sufficient pertinent information recorded.

Basic Questions

13

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Computer security always involves
tradeoffs with other elements of a
computer system, such as usability and
performance.

• We can perform near-perfect forensic
analysis if we capture all data. It is
impractical to capture all data, though.

Tradeoffs

14

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• What matters in security?

• Data Integrity

• Data Confidentiality

• System Availability

• What can we do forensically to address the three
primary general security issues? What is a threat?
What can we analyze? Ultimately, two things:

• Disk accesses (reads & writes)

• Network accesses (send/receive/lookup)

So, what do we care about?

15

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Which files were viewed or modified? How?

• Were programs run? Was a compiler run? Were
user-written functions written? What did the
programs do?

• Who is involved?

• Was there an interactive session?

• Was there a network access? A DNS lookup?

What to ask?
Some questions that can

16

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Most forensic analysis uses system logs. In
principle, we can do more:

• System calls

• Library calls (dynamically linked and static)

• Function calls (if we have the source)

• File access tables

• Network traffic

What information do we
have access to?

17

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Intrusion detection has long seen system calls as
useful for anomaly detection (Hofmeyer, Forrest
and Somayaji)

• Can we use their technique of limiting data just to
privileged processes, very specific syscalls, or some
other limit, to determine the amount of data
necessary?

• Can we utilize their technique of statistical analysis
of sequences of system calls?

System Calls
“syscalls”

18

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Darwin, a FreeBSD derivative, has 331 system calls
which programs utilize to access system functions
like “open,” “fork,” “mount,” “read,” and “exit.”

• If we log syscalls, we won’t “miss” anything, because
they would encompass both the operating system
and all applications.

• Which syscalls are most important to forensics?

• What about “covert-channels” that don’t use
syscalls?

Syscall Considerations

19

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Set up a BSD system with kernel-loadable modules which
records all syscalls and their arguments.

• Run a short, known, simple series of events.

• Attempt to recreate the events using only syscalls and
automate the system. How well does it work?

• Follow-up: What can we learn from analyzing for tty
sessions?

• Follow-up: Can we determine if just a few specific system
calls are necessary (i.e. open, close, and mmap), or all of

Experiment #1:
System Calls

20

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Record all dynamically-made library calls by
modifying lib.c.

• Attempt to recreate events. How well
does it work?

Experiment #2:
Dynamic Library Calls

21

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Instrument /dev and /proc to run “truss” on
binaries or modify each system call
individually using “ld preload”.

• Determine whether library calls are made
to dynamic shared libraries or is statically
linked into a program.

• Static library calls are a warning flag!

Experiment #3: Library Call
Comparison

22

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• User-defined function calls are extremely difficult to capture.
We can’t easily know the function names and arguments
without modifying source code. Modifying source code is
dangerous because of memory manipulation.

• Soulution: Java compiler as a proof-of-concept that does not
suffer from memory manipulation.

• Another solution: Instrument logging by going through a
profiler. It’s already built in!

• Attempt to recreate events. How well does it work?

Experiment #4:
Function Calls

23

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• If non-system binaries are executed, determine
whether they are actually just scripts calling system
binaries or are user-written.

• Do this by capturing series of “typical” system calls
to determine “signatures” of known applications, as
Hofmeyer & Forrest did.

• Does this work? Is it effective?

Experiment #5:
Binaries Executed

24

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Assuming we can obtain all of the information we need
about the filesystem from system and library calls, we can
look at networks.

• Can we learn enough by logging DNS names queried,
ports used, packet types, etc...?

• Can we track these vulnerabilities, among others:

• Port opened (vulnerability created)

• DNS queried

• Packets sent (information leaked)

Experiment #6: Network

25

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Log the “table of accesses” in realtime to
determine which user is doing what.

• Does it help? Is it accurate? Are
compromised accounts being used? Does
it tell us about compilation?

Experiment #7: Users

26

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• “Message logging” is a popular form of
checkpointing in fault-tolerant systems.

• Can we use message logging in non-deterministic
conditions to replay an intrusion for forensic
purposes with less data than typical logging?

• Can we use the fault-tolerance technique of not
displaying system results until they have been
properly logged?

Experiment #8:
Message Logging

27

SAN DIEGO SUPERCOMPUTER CENTER, UCSD

• Forensics can use transaction-based systems to capture
the right data.

• Forensics is closely related to both debugging and fault-
tolerance and can rely on the previous research towards
both.

• Experiments will demonstrate precisely which data needs
to be captured and analyzed.

• Analysis of the experiments and related disciplines may
show that recording only small amounts of data is
practical and viable.

Summary

28

