
5/25/00 LLNL Power Programming 1

Performance Programming I
Exploiting the Power Processor

Larry Carter
Sean Peisert

5/25/00 LLNL Power Programming 2

Outline

• Exploiting the Power Processor (Monday)
– Peak processor performance:

• Is it attainable?

• What can go wrong?

• Tricks and pitfalls

– Skills
• Reading assembly code

• Timing & profiling

• Lab

• Cache and TLB issues (Tuesday)

5/25/00 LLNL Power Programming 3

Approach

• Engineer’s method:
– DO UNTIL (exhausted)

– tweak something

– IF (better) THEN accept_change

• Scientific method:
– DO UNTIL (enlightened)

– make hypothesis

– experiment

– revise hypothesis

5/25/00 LLNL Power Programming 4

 Power3’s power … and limits

• Eight pipelined functional
units
– 2 floating point

– 2 load/store

– 2 single-cycle integer

– 1 multi-cycle integer

– 1 branch

• Powerful operations
– Fused multiply-add (FMA)

– Load (or Store) update

– Branch on count

• Launch 4 ops per cycle

• Can’t launch 2 stores/cyc

• FMA pipe 3-4 cycles long

• Memory hierarchy (Tues)

5/25/00 LLNL Power Programming 5

Can its power be harnessed?

 for (j=0; j<n; j+=4){
p00 += a[j+0]*a[j+2];
m00 -= a[j+0]*a[j+2];
p01 += a[j+1]*a[j+3];
m01 -= a[j+1]*a[j+3];
p10 += a[j+0]*a[j+3];
m10 -= a[j+0]*a[j+3];
p11 += a[j+1]*a[j+2];
m11 -= a[j+1]*a[j+2];

 }

8 FMA’s

4 Loads

Runs at 4.6 cycles/iteration (= 772 MFLOP/S)

CL.6:
FMA fp31=fp31,fp2,fp0,fcr
LFL fp1=(*)double(gr3,16)
FNMS fp30=fp30,fp2,fp0,fcr
LFDU fp3,gr3=(*)double(gr3,32)
FMA fp24=fp24,fp0,fp1,fcr
FNMS fp25=fp25,fp0,fp1,fcr
LFL fp0=(*)double(gr3,24)
FMA fp27=fp27,fp2,fp3,fcr
FNMS fp26=fp26,fp2,fp3,fcr
LFL fp2=(*)double(gr3,8)
FMA fp29=fp29,fp1,fp3,fcr
FNMS fp28=fp28,fp1,fp3,fcr
BCT ctr=CL.6,

5/25/00 LLNL Power Programming 6

Can its power be harnessed (part II)

• 8 FMA, 4 Load - 1.15 cycle/load (previous slide)

• 8 FMA, 6 Load - 1.3 cycle/load

• 8 FMA, 8 Load - 1.2 cycle/load

• 4 Add, 4 Load - 1.1 cycle/load

• Shift, Add, Load, Store - 1.15 cycle/MemOp

• Load, Store - 1.1 cycle/MemOp

• I haven’t broken the 1 cycle/MemOp barrier!
• but I’ve only spent 2 days trying …maybe the AGEN unit is disabled ...

5/25/00 LLNL Power Programming 7

FLOP to MemOp ratio

• Most programs have at most one FMA per MemOp

– Matrix-vector product: (K+1) loads, K fma’s

– FFT butterfly: 8 MemOps, 10 floats (but 5 or 6 FMA)

– DAXPY: 2 Loads, 1 Store, 1 FMA

– DDOT: 2 Loads, 1 FMA

• A few have more (use ESSL!)
– Matrix multiply (well-tuned): 2 FMA per load

– Radix-8 FFT

• Performance is limited by Memory Operations!

5/25/00 LLNL Power Programming 8

The effect of pipeline latency

 for (i=0; i<size; i++) {
 sum = a[i] + sum;
}

 for (i=0; i<size; i+=4) {
 sum0 += a[i];
 sum1 += a[i+1];
 sum2 += a[i+2];
 sum3 += a[i+3];
}
sum = sum0+sum1+sum2+sum3;

3.86 cycles/addition

1.1 cycles/addition

Next add can’t start until previous is finished (3 to 4 cycles later)

May change answer due to different rounding.

5/25/00 LLNL Power Programming 9

What’s so great about Fortran??
DO I = 1, N
 A(I) = B(I)
ENDDO

CL.8:
L4A gr0=b(gr5,4)
L4A gr6=b(gr5,8)
L4A gr7=b(gr5,12)
L4AU gr8,gr5=b(gr5,16)
ST4A a(gr4,8)=gr6
ST4A a(gr4,4)=gr0
ST4A a(gr4,12)=gr7
ST4U gr4,a(gr4,16)=gr8
BCT ctr=CL.8,

 for (i=0; i<N; i++) {
 b[I] = a[i];
 }

CL.6:
ST4U gr4,(*)int(gr4,4)=gr24
L4AU gr24,gr3=(*)int(gr3,4)
BCT ctr=CL.6,

5/25/00 LLNL Power Programming 10

Fortran vs C - what’s going on??

• C prevents compiler from unrolling code
– A feature, not a bug!

– User may want b[0] and a[1] to be same location

– tricky way to set a[n] = ..… = a[1] = a[0]

• Most C compilers don’t try to prove non-aliasing
– a and b were malloc-ed in this example

• Fortran doesn’t allow arrays to be aliased
– Unless explicit, e.g. via EQUIVALENCE

5/25/00 LLNL Power Programming 11

Fortran vs. C - does it matter??

for (i=0; i<N; i+=4) {
 b0 = a[i];
 b1 = a[i+1];
 b2 = a[i+2];
 b3 = a[i+3];
 b[i] = b0;
 b[i+1] = b1;
 b[i+2] = b2;
 b[i+3] = b3;
}

• Yes - Fortan code should perform better
– My tests show both are about 1 cycle/MemOp

– Fortran should be .5 cycle/MemOp

• No - you could get the “Fortran” object code from

5/25/00 LLNL Power Programming 12

Miscellany

• Excellent reference:
– RS/6000 Scientific and Technical Computing: Power3

Introduction and Tuning Guide

• Use ESSL and PESSL if appropriate

• MASS is much faster for intrinsic functions
– But may differ in last bit from IEEE standard

• I’m carter@cs.ucsd.edu, www.cs.ucsd.edu/users/carter

5/25/00 LLNL Power Programming 13

Performance Programming II
Cache and TLB Issues

Larry Carter

Sean Peisert

5/25/00 LLNL Power Programming 14

Stride one memory access

0

1

2

3

4

5

10 100 1000 10000 100000

KB of memory accessed (as ints)

C
yc

le
s

pe
r

lo
ad

L1

cache

L2

cache

5/25/00 LLNL Power Programming 15

Strided Memory Access

1

10

100

1000

1 10 100 1000 10000

Stride

C
yc

le
s

pe
r

lo
ad

> 1 element/cacheline > 1 element/page 1 element/page

(as bad as it gets)

TLB misses start

Program adds 4440 integers located at given stride

L1 misses start

5/25/00 LLNL Power Programming 16

Strided Memory Access

1

10

100

1000

1 10 100 1000 10000

Stride

C
yc

le
s

pe
r

lo
ad

> 1 element/cacheline

(shows effect of L2 cache)

> 1 element/page

(shows effect of TLB)

1 element/page

(as bad as it gets)

Stride 64

Program adds 22200 integers located at given stride

5/25/00 LLNL Power Programming 17

Strided Memory Access

1

10

100

1000

1 10 100 1000 10000

Stride

C
yc

le
s

pe
r

lo
ad

> 1 element/cacheline > 1 element/page 1 element/page

(as bad as it gets)

Stride 64

Square - 4,440 element sum, diamond - 22,200 element sum

55

110

5/25/00 LLNL Power Programming 18

Decreasing MemOp to FLOP Ratio

for (i=1; i<N; i++)

for (j=1; j<N; j++)

b[i,j] = 0.25 *

 (a[i-1][j] + a[i+1][j]
 + a[i,j-1] + a[i][j-1]);

for (i=1; i<N-2; i+=3) {

for(j=1; j<N; j++) {

b[i+0][j] = ... ;

b[i+1][j] = ... ;

b[i+2][j] = ... ;

}

}

for (i = i; i < N; i++) {

... ; /* Do last rows */

3 loads
1 store

4 floats

5 loads
3 store

12 floats

