Performance Measuring on
Blue Horizon and Sun HPC
Systems:

Timing, Profiling, and Reading
Assembly Language

NPACI Parallel Computing Institute 2000

Sean Peisert
peisert@sdsc.edu

Performance Programming

 This talk will give you the tools to use with
tuning code for optimal performance.

« Stick around for Larry Carter’s talk to take the
knowledge of profiling, timing, and reading
assembly language and learn how to actually
tune programs.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 2

Purpose

* Applications, as they are first written, can be
initially very slow.

« Sometimes, even the most well-planned code
can be made to run one or more orders of
magnitude faster.

* To speed up applications, one must
understand what is happening in the
application.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 3

Techniques

* By timing code, one can understand how fast
or slow an application is running but not how
fast it can potentially run.

* By profiling code, one can understand where
the application is taking the most time.

* By reading assembly language, one can
understand if the sections that the profiler
identifies as slow are acceptable or poorly
compiled.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 4

Benefits

« By tuning code in a knowledgeable way, one
can often significantly speed up an
application.

« Using the techniques of timing, profiling, and
reading assembly language, one can make
educated guesses about what to do instead
of shooting blindly.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 5

Timing Terms

* Code for a single node:

— Wallclock time
— CPU time

* Code for a parallel machine:
— Computation time

— Communication time

» Latency
« Bandwidth

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert

Timing on Parallel Machines

» Latency is the time it takes to send a
message from one processor to another.

« Bandwidth is the amount of data in a given
time period that can be sent from one
processor to another.

[communication time] = [startup time] +
[message size]/[bandwidth]

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 7

Timing Latency

 Different machines might be suited for coarse
or fine-grained communication.

* The Sun HPC system and Blue Horizon both
do fairly well intra-node, but inter-node
communication is slower.

* Run ‘ring’ benchmarks to time communication
latency.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 8

Ring

Pass messages from one processor to the
next and back to the first in a ring fashion.

Have it do multiple cycles (it has to warm up).

Increase the size of the message passed until
the time to pass it stabilizes.

It will help to characterize the performance of
message-passing to determine how large the
messages in a “real” program can/should be.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 9

Timing on Parallel Machines Tips

« Make sure that the system clocks on all
machines are the same.

* |n addition to the time for communication and
computation, there is also “waiting.”

 Remember that some forms of
communication (i.e. MP|_Recv()) are
“blocking.”

* (Goal is to minimize waiting and
communication relative to computation.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 10

Timing Example

* Determining “waiting time”:
start = MPI_Wtime();
MPI_Barrier(MPI_COMM_WORLD);
finish = MP1_Wtime();
cout << “Waiting time: ” << finish-start << endl;

« Alternatives: Any “blocking” communication, such as:
MPI_Recv(...), MPI_Bcast, MPIl_Gather, MP|_ Scatter,

etc...

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 11

Performance Measuring with
Timings: Wallclock

« Wallclock time (real time, elapsed time)
— High resolution (unit is typically 1 us)
— Best to run on dedicated machines
— Good for inner loops in programs or |/O.

— First run may be varied due to acquiring page
frames.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 12

Performance Measuring with
Timings: CPU
 CPU time

— User Time: instructions, cache, & TLB misses

— System time: initiating 1/O & paging, exceptions,
memory allocation

— Low resolution (typically 1/100 second)

— Good for whole programs or a shared system.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 13

Timing Tips

« Wallclock time contains everything that CPU
time contains but it also includes waiting for
/O, communication, and other jobs.

* For any timing results use several runs (three
or more) and use the minimum time, not the
average times.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 14

Wallclock Time

gettimeofday() — C/C++

— Resolution up to microseconds.

MP|_ Wtime() — C/C++/Fortran
Others: ftime, rtc, gettimer, ...

Both Blue Horizon and “gaos” (Sun HPC)
have gettimeofday(), MPIl_Wtime(), and ftime.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 15

gettimeofday()

C++ Example

#i ncl ude <sys/tine. h>
struct tinmeval *Tps, *Tpf;
void *Tzp;
Tps = (struct tineval*) nmalloc(sizeof(struct tinmeval));
Tpf = (struct tineval*) nmalloc(sizeof(struct tineval));
Tzp = 0;
gettineofday (Tps, Tzp);

<code to be tined>
gettineofday (Tpf, Tzp);
printf("Total Tinme (usec): %d\n",

(Tpf->tv_sec-Tps->tv_sec)*1000000
+ Tpf->tv_usec-Tps->tv_usec);

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 16

MPI|_ Witime()

C++ Example

#i ncl ude <npi . h>
doubl e start, finish:

start = MPI _Wine();
<code to be tined>
finish = MPI_Wine();

printf(“Final Tinme: %",
/[* Time is in mlliseconds since a particular date */

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert

finish-start);

17

CPU Timing

* For timing the entire execution, use UNIX
Tine’
— Gives user, system and wallclock times.

* For timing segments of code:

« ANSIC
#i ncl ude <tines. h>
Clock t is type of CPU tines
cl ock()/ CLOCKS PER SEC

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 18

CPU Timing

« SYSTEM CLOCK() — Fortran (77, 90)

— Resolution up to microseconds

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 19

SYSTEM CLOCK()

| NTEGER TI CK, STARTTIME, STOPTIME, TIME
CALL SYSTEM CLOCK(COUNT _RATE = TI CK)

CALL SYSTEM CLOCK (COUNT = STARTTI ME)
<code to be tinmed>
CALL SYSTEM CLOCK (COUNT = STOPTI ME)

TI VE = REAL(STOPTI ME- STARTTI ME) / REAL(TI CK)

PRINT 4, STARTTI ME, STOPTIME, TICK
4 FORMAT (31 10)

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert

20

Example t I ne Output

5.250u 0.470s 0:06.36 89.9% 7787+30041k 0+0io 805pf+0w

 1st column = user time
e 2nd column = system time
e 3rd column = total time

* 4th column = (user time + system time)/total time in %. In other
words, the percentage of time your job gets alone.

* 5th column = (possibly) memory usage
e 7th column = page faults

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 21

time Tips

« Might need to specifically call
[usr/ bi n/ti ne instead of the built-in

tine.
* Look for low “system” time. A significant

system time may indicate many exceptions or
other abnormal behavior that should be

corrected.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 22

More About Timing

« Compute times in cycles/iteration and
compare to plausible estimate based on the
assembly instructions. For instance, with the
times in microseconds:

* (([program time]-[initialization time]) * [clock
speed in Hz])/[number of cycles]

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 23

More About Timing

« Compute time of the program using only a
single iteration to determine how many
seconds of timing, loop, and execution
overhead are present in every run.

« Subtract the overhead time from each run
when computing cycles/iteration.

* Make sure that the system clock on each
machine is the same time.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 24

Profiling — Where does the time
go?

Technique using x| ¢ compiler for an executable
called ‘a. out ’:

Compile and link using ‘- pg’ flag.

Run a.out. The executable produces the file
‘gnon. out ' in the same directory.

Run several times and rename ‘gnon. out ’ to
‘gnon. 1, gnon. 2, etc...’

Execute: ‘gprof a.out gnon.1l gnon.2 >
profile.txt’

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 25

Profiling: gprof output

* Output may look like this:

% cumlative self sel f total
time seconds seconds calls ns/call ns/call nane
72.5 8.10 8.10 160 50. 62 50.62 .snhswp3d [3]
7.9 8. 98 0. 88 _vrec [9]
6.2 9. 67 0. 69 160 4. 31 7.19 .snhnext [§]
4.1 10. 13 0. 46 160 2. 88 2.88 .snneed [10]
3.1 10. 48 0.35 2 175.00 175.00 .initialize [1]]
1.8 10. 68 0.20 2 100.00 700.00 .rtrmain [7]
1.5 10. 85 0.17 8 21.25 1055.00 . snflwxyz@.@
0.7 10. 93 0. 08 320 0.25 0.25 .snxyzbc [12]

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 26

Profiling Techniques

* Look for the routing taking the largest
percentage of the time. That is the routine,

most possibly, to optimize first.

* Optimize the routine and re-profile to
determine the success of the optimization.

« Tools on other machines: prof, gvprof,
Apprentice (SGI), Prism (Sun), xprofiler
(IBM).

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 27

Profiling Multithreaded Programs

e On the Sun HPC, use Prism, i.e.:

prism-n [#procs] -bsubargs "-multra" executable
* On the IBM Blue Horizon, use “xprofiler”.

« Both are X-Windows tools with GUI’s that can profile
parallel code with multiple threads.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 28

Assembly Code

* Being able to read assembly code is critical to
understanding what a program is doing.
Writing assembly code is often unnecessary,
however.

* To get useful assembly code on Blue
Horizon, compile with the “-gsource” and -
glist” options.

« After being compiled, the output gets putin a
“Ist” file.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 29

Reading .Ist Files

» At the top of the file, there is a list of line
numbers. Find the line number(s) of the inner
loop(s) of your program, then scroll down to

where those lines appear (in the leftmost
column).

* |If you are using timers around your inner

loop, it will usually be between the timing
statements.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 30

Don’t Panic!

* There are a few commands that one wants to
learn. They appear in the third column and
they describe what the program is doing. If
there are “unnecessary commands,” the
program is wasting time.

« Additionally, there are “predicted” numbers of

cyc
wel
cyc

es in the fifth column. Determining how
these match up with the actual number of
es per iteration is very useful.

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 31

Basic PowerPC Commands

fadd = floating-point add
subf = floating-point subtract
Ifd = load double word

lwz = load integer word

stw = store integer word

bc = branch on count

addi = add immediate

ori = or immediate

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 32

More Information

« contact: peisert@sdsc.edu

 slides and sample code downloadable from:
http://www .sdsc.edu/~peisert/research.html

PRISM Documentation:
http://docs.sun.com:80/ab2/coll.514.2/PRISMUG/

Parallel Communication Benchmarks:
http://www.cse.ucsd.edu/users/baden/cse268a/PA/pal.htm

Timer & Profiler Documentation:
man [gprof, prism, xprofiler, MPl_Wtime, etc...]

NPACI Parallel Computing Institute 2000 — Timing, Profiling and Reading Assembly Language — Sean Peisert 33

