Security: Myths, Reality, Effectiveness

Abe Singer & Sean Peisert San Diego Supercomputer Center

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Quick Overview

Intro Myths, realities, and unknowns What security is Security strategies **Evolution of security at SDSC** DTF/Teragrid **Incident** management Parting thoughts

3 years, no intrusions No Firewalls

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Myths

It takes a genius I'm not a target "Hackers" are the biggest threat Imperfect Security == No Security

Myths

Obscurity is good enough The end-user is responsible They don't really do any damage <technology> is the answer

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

It takes a genius It only takes one genius

You're not a target Many attacks are "random"

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

"Hackers" are the biggest threat "Insiders" are an even larger threat

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Imperfect security == no security Decent security raises the bar

Security through obscurity is good enough Only the first time

ATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

The user is responsible... Users can't fix broken software

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Intruders don't really cause damage Intrusions cost *somebody* money

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

<technology> will solve everything

- Firewalls,
- PKI

- Anti-virus
- Intrusion Detection

Technology is only a piece of the puzzle

Where firewalls fail

Can't handle high speed and multiroute networks

Don't protect from internal attacks Don't work well with many protocols Are difficult to configure and maintain Don't pay attention to content

Where PKI fails

PKI is only an authentication mechanism no authorization included User certificates must be kept safe and the Certificate Authority Revocation doesn't scale well

NFA

Where AVI and IDS fail

Reactive -- only address known threats

 always behind the curve IDS is detection only NIDS doesn't scale well

Unknowns

Unknown

We don't really have any good metrics

How long until a system is compromised?

What's the acceptable window of time for installing patches?

Is product A more secure than product B?

Practicality

N ACI NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

What is Security

- It's a process to provide...
 - Reliability
 - Integrity
 - Confidentiality
 - Accountability

What is Security

Three points of security:

- Prevention
- Detection
- Recovery

Why Security?

Why Security

Reduce support costs Reduce downtime **Reduce** loss Measure (and charge) for usage Improve efficiency Prevent being used to attack someone else

General Security Strategy

Strategy

Protect what you can Detect what you can't

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Strategy

Software Network Systems

Software

Plan for failure Group Therapy Don't roll your own **Test for failure** Keep a list naughty and nice

ATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Network

No plaintext passwords Strong authentication

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Systems

Patch early, patch often Strong configuration management Good audit trails Incident management **Policy enforcement** User awareness

The SDSC Story

SDSC

Rapidly changing environment • sometimes bleeding edge Very high speed networks Most users not local Heterogeneous environment

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

In the beginning Rampant intrusions Fix one system, they'd compromise another • "whack-a-mole"

The cleanup

- Took everything off-line
- Systems not brought on-line until they were in a known, secure configuration.

 Director said he never wanted to do that again

Since then

- "Reference Systems" -- scalable configuration management
- Aggressive patch installation
- "Trusted" vs. "un-trusted" networks
- Slowly eliminated plaintext passwords

Reference system

Known good configurations

- no unnecessary services
 - workstations aren't servers
- only setuid where necessary
- tcp-wrappers on all allows services
- proper permissions on files, directories
- replace config files

Reference system

Cfengine for scalable configuration management

- central database containing configuration information
- detects and fixes things out which have been changed
 - self-healing
- OS independent

Reference System

- Database kept on central, read-only NFS partition
 - can't be changed from a compromised desktop
- Run on boot and nightly
 Cost of adding or replacing a host is nominal

Patching

One person per OS

- tests
- distributes

Different distribution schemes per OS

Networks

Trusted networks

- only reference systems allowed
- NFS server has routes only to these networks
- SMB only on windows network

Appletalk only on Mac network
 Untrusted networks

for non-reference systems

Eliminating Plaintext Passwords

Started with

- Kerberos
- SSH
- SNK when Kerberos and SSH not available
- Still had to support telnet, as clients were unavailable and/or costly
- No solutions for FTP, POP, IMAP, etc.

Eliminating Plaintext Passwords

Over time

- Open source/free SSH clients became available
- Open source SSL software
- September 1998, we turned off telnet

Eliminating Plaintext Passwords

The last steps

- IMAP/S, KPOP, APOP, and secure webmail for e-mail access.
- Secure-FTP software developed
- SFTP protocol as part of SSH v.2
- Recently eliminated SNK

Audit trails

Central syslog server

- All host forward log entries
- Windows logging coming soon
- Moving to secure syslog and reliable transport

System process accounting User session accounting (wtmp)

DTF/Teragrid

DTF -- What it is

5 sites, each with their own

- "Similar" clusters
- Security policy

- Certificate Authority
- User Account Management
- GSI authentication "standard"

DTF -- What's not there

No global security policy No incident response plan

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

DTF -- Current issues

How to honor a certificate from another CA with a different policy **Dependence** on particular software packages (e.g. Globus) What is acceptable patching strategy?

DTF -- Future

More Sites **Different OS's -- more complexity** More trust relationships between sites Centralized account management Automated jobs across clusters

ATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

General principles

- Don't Panic!
- Don't change anything!
- Get some help
- Take copious notes
- Be clear what your goal(s) are...

What are your goals?

- Stop the activity
- Restore the system/repair damage
- Close the hole
- Hunt down/destroy the intruder
- How about reporting to law enforcement?

Verify there's a compromise often there isn't Determine the nature of the compromise who, what, when, where, how Maybe watch for a while **Collect and preserve evidence**

ATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

N

Take down system(s) don't use shutdown pull the plug instead Image drive(s) preserve original drive if possible **Reformat and re-install system** don't try and repair existing system

Be sure to plug the hole that the intruder used

On all systems that are vulnerable

TIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Some Questions you should be able to answer

Some questions

How fast can you locate a machine?

- Given its IP address?
- Given some traffic indicators?
- If it's wireless?

NΡΔ

What activity is logged? How long are logs kept? What has user X done?

How fast can you rebuild a system?

The End

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE SAN DIEGO SUPERCOMPUTER CENTER

