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Motivation

e Supercomputers in science are evolving
such that fewer and fewer are vector
machines and mainframe
multicomputers. Most are clusters of
multiprocessors.

A multiprocessor Is a shared-memory
machine whereas a multicomputer is
“shared-nothing,” or distributed memory
MAChINE.  copyigno 2000 sean i peiser
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Clusters of Multiprocessors

« Multiprocessors are bullt largely using
component parts. They are also very
modular.

e Easy to upgrade a portion of the nodes
In the cluster with new nodes.

 Having different speed nodes
In the cluster mean that
programs have to be written
differently.  copisne 2000 sean priip peiser
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Heterogeneity Problem

« A parallel program will only run as fast
as the slowest node.

 For example, if one adds new nodes to
a cluster that run faster than the existing
nodes, the new nodes will finish first
and idle until the slower nodes finish.
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Heterogeneity Problem

 If processors are idle, they are wasting
processing power when they could be
processing data.

e The program is not performing optimally
and can be run faster.

 The machine is not being used
efficiently.
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Related Work
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Foster and Karonis: Grid-Enabled MPI
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Crandall and Quinn: Decomposition
Advisory System
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Heterogeneity Solution

e Optimize the program individually for
each separate node based on prior
iInformation about each node.

e This Is not easy.
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Goals of Sputnik

e Allow a programmer to write software
for a heterogeneous cluster as if the
cluster Is homogeneous. In other
words, without adding much more
complexity.

* Improve performance of the program
being run and the utilization and
efficiency of the cluster.
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The Sputnik Model

e Two-stage process for optimizing
performance on a heterogeneous
cluster.

e ClusterDiscovery
e ClusterOptimization
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ClusterDiscovery

 Performs a “resource discovery” — a
search of a defined parameter space —
to understand how the application In
guestion runs on each individual node In
the cluster.

* Runs the kernel repeatedly inside a
“shell” to determine the best performing
optimizations.
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Cluster Discovery

e Saves the best optimization data inside
a file for future use.
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ClusterOptimization

 Makes the specific optimizations for
each node based on what the first stage
has discovered.

e Some possible optimizations include:
Adjusting the number of threads per
node, cache tiling, data partitioning,
machine and data “class” optimization.
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The Sputnik API

 Focuses on just a few specific
optimizations.

e The Sputnik APl is built on top
of KeLP, which Is used for
data description and inter-
node communication.

 OpenMP is used for intra-

" LISer Proctal m—

!

Sputhik

kelF

node communication.

Copyright © 2000 Sean Philip Peisernt

BRI

O kP




ClusterDiscovery (API)

* Instead of searching the entire
parameter space for possible
optimizations, | focused on two:

— Adjusting the number of OpenMP threads.
— Repartitioning the data.
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ClusterDiscovery (API)

* Runs the kernel repeatedly with
different numbers of threads on each
node. When it finds the optimal number
of threads for a given node, it saves the
timing for that node.

 The saved timing Is compared with the
other timings In the cluster and ratios

are formed.
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ClusterOptimization (API)

* The ratios from ClusterDiscovery are
used to re-partition the data so that the
ratio of a given node’s power In relation
to the rest of the cluster is the same
fraction of the data that it works on.
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ClusterOptimization (API)
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API| Limitations/Assumptions

One-dimensional decomposition.
Confined to two tiers of parallelism.

Assumes that a node given a smaller
chunk of data will run at the same
MFLOPS rate as with the original size
chunk.

The problems do not fit into the highest
level of cache.
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API| Limitations/Assumptions

e Assume no node iIs less than half as
fast as any other node.
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main()

iInt main(int argc, char **argv) {
MPI_Init(&argc, &argv); // Initialize MPI
InitkeLP(argc,argv); // Initialize KeLP

/[ Call Sputnik's main routine, which in turn will
// then call SputnikMain().
SputnikGo(argc,argv);

MPI_Finalize(); // Close off MPI

return (0);
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SputnikGo()

while(i > 0 && time[last iteration] < time[second-to-last iteration]) {
omp_set_num_threads(i);
time[i] = SputnikMain(int argc, char **argv, NULL);
1=1/2;

}

| = iteration before the best we found in the previous loop;

while (time[last iteration] < time[2nd-to-last iteration]) {
omp_set_num_threads(i);
time[i] = SputnikMain(int argc, char **argv, NULL);
1 =1-2;

}

omp_set _num_threads(optimal number);

time[i] = SputnikMain(int argc, char **argv, bestTimes);
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SputnikMain()

double SputnikMain(int argc,char ** argv, double * SputnikTimes) {
double start, finish;

<declarations, initializations>
start = MPI_Wtime(); // start timing
kernel(); // call the kernel function

finish = MP1_Wtime(); // finish timing

return finish-start;
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Application Study

 The purpose of the experiment Is to
determine the effect of these
optimizations.

* | use a kernel that solves Poisson’s
equation using Gauss-Seidel’s method
with red-black ordering was used.
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ISOMP PARALLEL PRIVATE(j,ii,k,j,i,jK)
dojj = ull+l, uhl-1, 5
do ii = ul0+1, uh0-1, s
I$SOMP DO SCHEDULE(STATIC)
do k = ul2+1, uh2-1
do j =jj, min(jj+5-1,uhl-1)
jk = mod(j+k,2)
do i =ii+Hk, min(ii+jk+si-1,uh0-1), 2
u(i,j,k) =c*
2 ((u(i-1,k) + u(i+1,j,k)) + (u@i,j-1,k) +
3 u(i,j+1,k)) + (u(i,j,k+1) + u(i,j,k-1) -
4  c2*rhg(i,j,k)))
end do
end do
end do
ISOMP END DO
end do
end do
I$SOMP END PARALLEL
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Computing Hardware
SGI Origin2000’s

balder.ncsa.uiuc.edu aeqgir.ncsa.uiuc.edu

e 256 250-MHz e 128 250-MHz
R10000 processors R10000 processors
e 128 GB main 64 GB main memory

memory
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Virtual Cluster

e Sputnik APl is designed for commodity
clusters. None were available, so a pair

of SGI Origin 2000’s at NCSA were
used.

 The API allows the number of OpenMP
threads to be set manually.

 Different numbers of threads used on
each Origin to simulate heterogeneity.
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redblack3D Speedup with 48 threads on balder
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Validation

* Results for the API indicate better than
35% Iimprovement in the situations
where balder Is running twice as many
threads as aeqir.

 The model and the API both succeed In
the goal of being easy to program and
Improving performance.
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Anomalies

 The code demonstrated scaling, but ran 50%
slower than with MPI alone, (without
OpenMP).

 OpenMP thread binding and memory
distribution are both complex issues on the

Origin 2000 that are the probable causes of
the slowdown.

« Real target of Sputnik APl is commodity
cluster.
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Future Work

e Tests on more applications and computing
hardware, especially a cluster of Sun servers
and Blue Horizon at SDSC.

« Dynamic repartitioning for
grid/metacomputing applications.

e Supporting Phenomenally Heterogeneous

Clusters (PHCs) — not just multicomputer-
based clusters.
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Future Work

 Different types of optimizations (not just
repartitioning and adjusting the number
of OpenMP threads).
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