
Sputnik:
Automated Decomposition on

Heterogeneous Clusters of
Multiprocessors

Sean Philip Peisert
peisert@sdsc.edu

http://www.sdsc.edu/~peisert
LLNL — June 8, 2000

Photo courtesy of NASA.

Copyright © 2000 Sean Philip Peisert

Collaboration

• This work was done under the advice of
Professor Scott B. Baden at University
of California, San Diego.

Copyright © 2000 Sean Philip Peisert

Motivation

• Supercomputers in science are evolving
such that fewer and fewer are vector
machines and mainframe
multicomputers. Most are clusters of
multiprocessors.

• A multiprocessor is a shared-memory
machine whereas a multicomputer is
“shared-nothing,” or distributed memory
machine.

Copyright © 2000 Sean Philip Peisert

Multiprocessor
Main Memory/Memory Bus

Processor 0

L1 Cache

L2 Cache

Processor 1

L1 Cache

L2 Cache

Processor 2

L1 Cache

L2 Cache

Processor 3

L1 Cache

L2 Cache

Bus

Copyright © 2000 Sean Philip Peisert

Clusters of Multiprocessors

• Multiprocessors are built largely using
component parts. They are also very
modular.

• Easy to upgrade a portion of the nodes
in the cluster with new nodes.

• Having different speed nodes
in the cluster mean that
programs have to be written
differently.

P
ho

to
 c

ou
rt

es
ty

 o
f S

G
I

Copyright © 2000 Sean Philip Peisert

Heterogeneous
Cluster of Multiprocessors

Copyright © 2000 Sean Philip Peisert

Heterogeneity Problem

• A parallel program will only run as fast
as the slowest node.

• For example, if one adds new nodes to
a cluster that run faster than the existing
nodes, the new nodes will finish first
and idle until the slower nodes finish.

Copyright © 2000 Sean Philip Peisert

Heterogeneity Problem

• If processors are idle, they are wasting
processing power when they could be
processing data.

• The program is not performing optimally
and can be run faster.

• The machine is not being used
efficiently.

Copyright © 2000 Sean Philip Peisert

Related Work

• Fink and Baden: KeLP2
• Foster and Karonis: Grid-Enabled MPI
• Anglano, Schopf, Wolski and Berman:

Zoom
• Crandall and Quinn: Decomposition

Advisory System
• Wolski, Spring and Peterson: Network

Weather Service

Copyright © 2000 Sean Philip Peisert

Heterogeneity Solution

• Optimize the program individually for
each separate node based on prior
information about each node.

• This is not easy.

Copyright © 2000 Sean Philip Peisert

Goals of Sputnik

• Allow a programmer to write software
for a heterogeneous cluster as if the
cluster is homogeneous. In other
words, without adding much more
complexity.

• Improve performance of the program
being run and the utilization and
efficiency of the cluster.

Copyright © 2000 Sean Philip Peisert

The Sputnik Model

• Two-stage process for optimizing
performance on a heterogeneous
cluster.

• ClusterDiscovery
• ClusterOptimization

Copyright © 2000 Sean Philip Peisert

ClusterDiscovery

• Performs a “resource discovery” — a
search of a defined parameter space —
to understand how the application in
question runs on each individual node in
the cluster.

• Runs the kernel repeatedly inside a
“shell” to determine the best performing
optimizations.

Copyright © 2000 Sean Philip Peisert

Cluster Discovery

• Saves the best optimization data inside
a file for future use.

Copyright © 2000 Sean Philip Peisert

ClusterOptimization

• Makes the specific optimizations for
each node based on what the first stage
has discovered.

• Some possible optimizations include:
Adjusting the number of threads per
node, cache tiling, data partitioning,
machine and data “class” optimization.

Copyright © 2000 Sean Philip Peisert

The Sputnik API

• Focuses on just a few specific
optimizations.

• The Sputnik API is built on top
of KeLP, which is used for
data description and inter-
node communication.

• OpenMP is used for intra-
node communication.

Copyright © 2000 Sean Philip Peisert

ClusterDiscovery (API)

• Instead of searching the entire
parameter space for possible
optimizations, I focused on two:
– Adjusting the number of OpenMP threads.
– Repartitioning the data.

Copyright © 2000 Sean Philip Peisert

ClusterDiscovery (API)

• Runs the kernel repeatedly with
different numbers of threads on each
node. When it finds the optimal number
of threads for a given node, it saves the
timing for that node.

• The saved timing is compared with the
other timings in the cluster and ratios
are formed.

Copyright © 2000 Sean Philip Peisert

ClusterOptimization (API)

• The ratios from ClusterDiscovery are
used to re-partition the data so that the
ratio of a given node’s power in relation
to the rest of the cluster is the same
fraction of the data that it works on.

Copyright © 2000 Sean Philip Peisert

ClusterOptimization (API)

Node 0 Node 1 Node 2

Original Partitioning: New Partitioning:

Example: Node 0 runs
twice as fast as node 1
and node 2.

Copyright © 2000 Sean Philip Peisert

API Limitations/Assumptions

• One-dimensional decomposition.
• Confined to two tiers of parallelism.
• Assumes that a node given a smaller

chunk of data will run at the same
MFLOPS rate as with the original size
chunk.

• The problems do not fit into the highest
level of cache.

Copyright © 2000 Sean Philip Peisert

API Limitations/Assumptions

• Assume no node is less than half as
fast as any other node.

Copyright © 2000 Sean Philip Peisert

main()

int main(int argc, char **argv) {
 MPI_Init(&argc, &argv); // Initialize MPI
 InitKeLP(argc,argv); // Initialize KeLP

 // Call Sputnik's main routine, which in turn will
 // then call SputnikMain().
 SputnikGo(argc,argv);
 MPI_Finalize(); // Close off MPI
 return (0);
}

Copyright © 2000 Sean Philip Peisert

SputnikGo()

while(i > 0 && time[last iteration] < time[second-to-last iteration]) {

 omp_set_num_threads(i);

 time[i] = SputnikMain(int argc, char **argv, NULL);

 i = i / 2;
}

i = iteration before the best we found in the previous loop;

while (time[last iteration] < time[2nd-to-last iteration]) {

 omp_set_num_threads(i);

 time[i] = SputnikMain(int argc, char **argv, NULL);
 i = i - 2;

}

omp_set_num_threads(optimal number);

time[i] = SputnikMain(int argc, char **argv, bestTimes);

Copyright © 2000 Sean Philip Peisert

SputnikMain()

double SputnikMain(int argc,char ** argv, double * SputnikTimes) {

 double start, finish;

 ...

 <declarations, initializations>
 ...

 start = MPI_Wtime(); // start timing

 kernel(); // call the kernel function

 finish = MPI_Wtime(); // finish timing

 ...
 return finish-start;

}

Copyright © 2000 Sean Philip Peisert

Application Study

• The purpose of the experiment is to
determine the effect of these
optimizations.

• I use a kernel that solves Poisson’s
equation using Gauss-Seidel’s method
with red-black ordering was used.

Copyright © 2000 Sean Philip Peisert

!$OMP PARALLEL PRIVATE(jj,ii,k,j,i,jk)
 do jj = ul1+1, uh1-1, sj
 do ii = ul0+1, uh0-1, si
!$OMP DO SCHEDULE(STATIC)
 do k = ul2+1, uh2-1
 do j = jj, min(jj+sj-1,uh1-1)
 jk = mod(j+k,2)
 do i = ii+jk, min(ii+jk+si-1,uh0-1), 2
 u(i,j,k) = c *
 2 ((u(i-1,j,k) + u(i+1,j,k)) + (u(i,j-1,k) +
 3 u(i,j+1,k)) + (u(i,j,k+1) + u(i,j,k-1) -
 4 c2*rhs(i,j,k)))
 end do
 end do
 end do
!$OMP END DO
 end do
 end do
!$OMP END PARALLEL

Copyright © 2000 Sean Philip Peisert

Image courtesy of SGI.

Copyright © 2000 Sean Philip Peisert

Computing Hardware
SGI Origin2000’s

balder.ncsa.uiuc.edu
• 256 250-MHz

R10000 processors
• 128 GB main

memory

aegir.ncsa.uiuc.edu
• 128 250-MHz

R10000 processors
• 64 GB main memory

Copyright © 2000 Sean Philip Peisert

Virtual Cluster

• Sputnik API is designed for commodity
clusters. None were available, so a pair
of SGI Origin 2000’s at NCSA were
used.

• The API allows the number of OpenMP
threads to be set manually.

• Different numbers of threads used on
each Origin to simulate heterogeneity.

Copyright © 2000 Sean Philip Peisert

Predicted Time

Copyright © 2000 Sean Philip Peisert

redblack3D - 48 threads on balder

0

10

20

30

40

50

60

70

24 30 36 42 48

threads on aegir

tim
e

(s
ec

on
ds

)

balder Original Computation

aegir Original Computation

balder New Computation

aegir New Computation

Predicted Computation

Copyright © 2000 Sean Philip Peisert

redblack3D Speedup with 48 threads on balder

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

24 30 36 42 48

threads on aegir

sp
ee

du
p

Speedup

Theoretical Speedup

Copyright © 2000 Sean Philip Peisert

redblack3D with 32 threads on balder

0

10

20

30

40

50

60

70

80

90

100

16 20 24 28 32

number of threads on aegir

tim
e

(s
ec

on
ds

)

balder Original Computation

aegir Original Computation

balder New Computation

aegir New Computation

Predicted Time

Copyright © 2000 Sean Philip Peisert

redblack3D Speedup with 32 threads on balder

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16 20 24 28 32

number of threads on aegir

sp
ee

du
p

Speedup

Theoretical Speedup

Copyright © 2000 Sean Philip Peisert

Validation

• Results for the API indicate better than
35% improvement in the situations
where balder is running twice as many
threads as aegir.

• The model and the API both succeed in
the goal of being easy to program and
improving performance.

Copyright © 2000 Sean Philip Peisert

Anomalies

• The code demonstrated scaling, but ran 50%
slower than with MPI alone, (without
OpenMP).

• OpenMP thread binding and memory
distribution are both complex issues on the
Origin 2000 that are the probable causes of
the slowdown.

• Real target of Sputnik API is commodity
cluster.

Copyright © 2000 Sean Philip Peisert

Image courtesy of SGI.

Copyright © 2000 Sean Philip Peisert

Future Work

• Tests on more applications and computing
hardware, especially a cluster of Sun servers
and Blue Horizon at SDSC.

• Dynamic repartitioning for
grid/metacomputing applications.

• Supporting Phenomenally Heterogeneous
Clusters (PHCs) — not just multicomputer-
based clusters.

Copyright © 2000 Sean Philip Peisert

Future Work

• Different types of optimizations (not just
repartitioning and adjusting the number
of OpenMP threads).

Sean Philip Peisert
peisert@sdsc.edu

http://www.sdsc.edu/~peisert
Lawrence Livermore National Labs

Sputnik Talk
June 8, 2000

