Sputnik:
Automated Decomposition on
Heterogeneous Clusters of

Multiprocessors

Sean Philip Pelsert

peisert@sdsc.edu
http://www.sdsc.edu/~peisert
LLNL — June 8, 2000

Collaboration

* This work was done under the advice of
Professor Scott B. Baden at University
of California, San Diego.

Copyright © 2000 Sean Philip Peisernt

Motivation

e Supercomputers in science are evolving
such that fewer and fewer are vector
machines and mainframe
multicomputers. Most are clusters of
multiprocessors.

A multiprocessor Is a shared-memory
machine whereas a multicomputer is
“shared-nothing,” or distributed memory
MAChINE. copyigno 2000 sean i peiser

Multiprocessor

Main Memory/Memory Bus

L2 Cache L2 Cache L2 Cache L2 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

Processor O Processor 1 Processor 2 Processor 3

Bus

Copyright © 2000 Sean Philip Peisernt

Clusters of Multiprocessors

« Multiprocessors are bullt largely using
component parts. They are also very
modular.

e Easy to upgrade a portion of the nodes
In the cluster with new nodes.

 Having different speed nodes
In the cluster mean that
programs have to be written
differently. copisne 2000 sean priip peiser

ty of SGI

Photo courtes

Heterogeneous
Cluster of Multiprocessors

Metwork Hub or Suiteh
Multiprocasar Multiprocessor Multiprocassor
Moda 0 Mode 1 Mode 2
N § O e -, ™,

Procassoss Nodes vt vW

of procassoss.

Copyright © 2000 Sean Philip Peisernt

Heterogeneity Problem

« A parallel program will only run as fast
as the slowest node.

 For example, if one adds new nodes to
a cluster that run faster than the existing
nodes, the new nodes will finish first
and idle until the slower nodes finish.

Copyright © 2000 Sean Philip Peisernt

Heterogeneity Problem

 If processors are idle, they are wasting
processing power when they could be
processing data.

e The program is not performing optimally
and can be run faster.

 The machine is not being used
efficiently.

Copyright © 2000 Sean Philip Peisernt

Related Work

Fink and Baden: KeLP2
Foster and Karonis: Grid-Enabled MPI

Anglano, Schopf, Wolski and Berman:
Zoom

Crandall and Quinn: Decomposition
Advisory System

Wolski, Spring and Peterson: Network
Weather Service

Copyright © 2000 Sean Philip Peisernt

Heterogeneity Solution

e Optimize the program individually for
each separate node based on prior
iInformation about each node.

e This Is not easy.

Copyright © 2000 Sean Philip Peisernt

Goals of Sputnik

e Allow a programmer to write software
for a heterogeneous cluster as if the
cluster Is homogeneous. In other
words, without adding much more
complexity.

* Improve performance of the program
being run and the utilization and
efficiency of the cluster.

Copyright © 2000 Sean Philip Peisernt

The Sputnik Model

e Two-stage process for optimizing
performance on a heterogeneous
cluster.

e ClusterDiscovery
e ClusterOptimization

Copyright © 2000 Sean Philip Peisernt

ClusterDiscovery

 Performs a “resource discovery” — a
search of a defined parameter space —
to understand how the application In
guestion runs on each individual node In
the cluster.

* Runs the kernel repeatedly inside a
“shell” to determine the best performing
optimizations.

Copyright © 2000 Sean Philip Peisernt

Cluster Discovery

e Saves the best optimization data inside
a file for future use.

Copyright © 2000 Sean Philip Peisernt

ClusterOptimization

 Makes the specific optimizations for
each node based on what the first stage
has discovered.

e Some possible optimizations include:
Adjusting the number of threads per
node, cache tiling, data partitioning,
machine and data “class” optimization.

Copyright © 2000 Sean Philip Peisernt

The Sputnik API

 Focuses on just a few specific
optimizations.

e The Sputnik APl is built on top
of KeLP, which Is used for
data description and inter-
node communication.

 OpenMP is used for intra-

" LISer Proctal m—

!

Sputhik

kelF

node communication.

Copyright © 2000 Sean Philip Peisernt

BRI

O kP

ClusterDiscovery (API)

* Instead of searching the entire
parameter space for possible
optimizations, | focused on two:

— Adjusting the number of OpenMP threads.
— Repartitioning the data.

Copyright © 2000 Sean Philip Peisernt

ClusterDiscovery (API)

* Runs the kernel repeatedly with
different numbers of threads on each
node. When it finds the optimal number
of threads for a given node, it saves the
timing for that node.

 The saved timing Is compared with the
other timings In the cluster and ratios

are formed.

Copyright © 2000 Sean Philip Peisernt

ClusterOptimization (API)

* The ratios from ClusterDiscovery are
used to re-partition the data so that the
ratio of a given node’s power In relation
to the rest of the cluster is the same
fraction of the data that it works on.

Copyright © 2000 Sean Philip Peisernt

ClusterOptimization (API)

Original Partitioning: New Partitioning:

I
|
|
I I
I I
I I
| |
|
|
1

Example: Node O runs
twice as fast as node 1

and node 2. |
Node 0 Node 1 Node 2

Copyright © 2000 Sean Philip Peisernt

API| Limitations/Assumptions

One-dimensional decomposition.
Confined to two tiers of parallelism.

Assumes that a node given a smaller
chunk of data will run at the same
MFLOPS rate as with the original size
chunk.

The problems do not fit into the highest
level of cache.

Copyright © 2000 Sean Philip Peisernt

API| Limitations/Assumptions

e Assume no node iIs less than half as
fast as any other node.

Copyright © 2000 Sean Philip Peisernt

main()

iInt main(int argc, char **argv) {
MPI_Init(&argc, &argv); // Initialize MPI
InitkeLP(argc,argv); // Initialize KeLP

/[Call Sputnik's main routine, which in turn will
// then call SputnikMain().
SputnikGo(argc,argv);

MPI_Finalize(); // Close off MPI

return (0);

Copyright © 2000 Sean Philip Peisernt

SputnikGo()

while(i > 0 && time[last iteration] < time[second-to-last iteration]) {
omp_set_num_threads(i);
time[i] = SputnikMain(int argc, char **argv, NULL);
1=1/2;

}

| = iteration before the best we found in the previous loop;

while (time[last iteration] < time[2nd-to-last iteration]) {
omp_set_num_threads(i);
time[i] = SputnikMain(int argc, char **argv, NULL);
1 =1-2;

}

omp_set _num_threads(optimal number);

time[i] = SputnikMain(int argc, char **argv, bestTimes);

Copyright © 2000 Sean Philip Peisernt

SputnikMain()

double SputnikMain(int argc,char ** argv, double * SputnikTimes) {
double start, finish;

<declarations, initializations>
start = MPI_Wtime(); // start timing
kernel(); // call the kernel function

finish = MP1_Wtime(); // finish timing

return finish-start;

Copyright © 2000 Sean Philip Peisernt

Application Study

 The purpose of the experiment Is to
determine the effect of these
optimizations.

* | use a kernel that solves Poisson’s
equation using Gauss-Seidel’s method
with red-black ordering was used.

Copyright © 2000 Sean Philip Peisernt

ISOMP PARALLEL PRIVATE(j,ii,k,j,i,jK)
dojj = ull+l, uhl-1, 5
do ii = ul0+1, uh0-1, s
I$SOMP DO SCHEDULE(STATIC)
do k = ul2+1, uh2-1
do j =jj, min(jj+5-1,uhl-1)
jk = mod(j+k,2)
do i =ii+Hk, min(ii+jk+si-1,uh0-1), 2
u(i,j,k) =c*
2 ((u(i-1,k) + u(i+1,j,k)) + (u@i,j-1,k) +
3 u(i,j+1,k)) + (u(i,j,k+1) + u(i,j,k-1) -
4 c2*rhg(i,j,k)))
end do
end do
end do
ISOMP END DO
end do
end do
I$SOMP END PARALLEL

Copyright © 2000 Sean Philip Peisernt

H'—N’ N H’

4 processor
system "‘
8 processor
system

16 processor
system

32 processor B4 processor
system system Image courtesy of SGI.

Copyright © 2000 Sean Philip Peisert

Computing Hardware
SGI Origin2000’s

balder.ncsa.uiuc.edu aeqgir.ncsa.uiuc.edu

e 256 250-MHz e 128 250-MHz
R10000 processors R10000 processors
e 128 GB main 64 GB main memory

memory

Copyright © 2000 Sean Philip Peisernt

Virtual Cluster

e Sputnik APl is designed for commodity
clusters. None were available, so a pair

of SGI Origin 2000’s at NCSA were
used.

 The API allows the number of OpenMP
threads to be set manually.

 Different numbers of threads used on
each Origin to simulate heterogeneity.

Copyright © 2000 Sean Philip Peisernt

Predicted Time

newamountofdatafornode:

.Tf] timal — T; orig ¥
plima M9 originalamountofdatafornodei

. N-1.
workiotal . Zj‘: T"p

7 N—1.,
rl-'...f,:l{.j? "L'“i,ﬂ?"ig ‘-"'ln,."—]_ EJ‘=D Tj
k=0 'Tk,nrig

Copyright © 2000 Sean Philip Peisert

time (seconds)

70

»
o

a1
o

N
o

w
o

N
o

10 -

redblack3D - 48 threads on balder

m balder Original Computation

m aegir Original Computation

m balder New Computation

m aegir New Computation

o Predicted Computation

36
threads on aegir

Copyright © 2000 Sean Philip Peisert

redblack3D Speedup with 48 threads on balder

——Speedup

—&— Theoretical Speedup

24 30 36 42 48
threads on aegir

Copyright © 2000 Sean Philip Peisert

time (seconds)

100

redblack3D with 32 threads on balder

m balder Original Computation
m aegir Original Computation
m balder New Computation

m aegir New Computation

o Predicted Time

24
number of threads on aegir

Copyright © 2000 Sean Philip Peisert

32

redblack3D Speedup with 32 threads on balder

- Speedup

—&— Theoretical Speedup

16 20 24 28 32
number of threads on aegir

Copyright © 2000 Sean Philip Peisert

Validation

* Results for the API indicate better than
35% Iimprovement in the situations
where balder Is running twice as many
threads as aeqir.

 The model and the API both succeed In
the goal of being easy to program and
Improving performance.

Copyright © 2000 Sean Philip Peisernt

Anomalies

 The code demonstrated scaling, but ran 50%
slower than with MPI alone, (without
OpenMP).

 OpenMP thread binding and memory
distribution are both complex issues on the

Origin 2000 that are the probable causes of
the slowdown.

« Real target of Sputnik APl is commodity
cluster.

Copyright © 2000 Sean Philip Peisernt

H'—N’ N H’

4 processor
system "‘
8 processor
system

16 processor
system

32 processor B4 processor
system system Image courtesy of SGI.

Copyright © 2000 Sean Philip Peisert

Future Work

e Tests on more applications and computing
hardware, especially a cluster of Sun servers
and Blue Horizon at SDSC.

« Dynamic repartitioning for
grid/metacomputing applications.

e Supporting Phenomenally Heterogeneous

Clusters (PHCs) — not just multicomputer-
based clusters.

Copyright © 2000 Sean Philip Peisernt

Future Work

 Different types of optimizations (not just
repartitioning and adjusting the number
of OpenMP threads).

Copyright © 2000 Sean Philip Peisernt

Sean Philip Pelsert

peisert@sdsc.edu
http://www.sdsc.edu/~peisert
Lawrence Livermore National Labs
Sputnik Talk
June 8, 2000

