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Abstract

Two distinct, rigorous views of cryptography have developed over
the years, in two mostly separate communities. One of the views re-
lies on a simple but effective formal approach; the other, on a detailed
computational model that considers issues of complexity and proba-
bility. There is an uncomfortable and interesting gap between these
two approaches to cryptography. This paper starts to bridge the gap,
by providing a computational justification for a formal treatment of
encryption.
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1 Two Views of Cryptography

A fairly abstract view of cryptographic operations is often adequate for the
design, analysis, and implementation of systems that use cryptography. For
example, it is often convenient to ignore the details of an encryption function,
and to work instead with a high-level description of what encryption is
supposed to achieve.

At least two distinct abstract views of cryptographic operations have de-
veloped over the years. They are both consistent and they have both been
useful, but they come from two mostly separate communities and they are
quite different. In one of them, cryptographic operations are seen as func-
tions on a space of symbolic (formal) expressions; their security properties
are also modeled formally (e.g., [5, 13, 15, 21–23, 25, 27–30, 34]). In the other,
cryptographic operations are seen as functions on strings of bits; their se-
curity properties are defined in terms of the probability and computational
complexity of successful attacks (e.g., [7–9, 11, 16–19, 37]).

There is an uncomfortable gap between these two views. In this paper,
we call attention to this gap and start to bridge it. Representing the two
views, we give two accounts of symmetric (shared-key) encryption: a sim-
ple one, based on a formal system, and a more elaborate one, based on a
computational model. Our main theorem is a soundness result that relates
the two accounts. It establishes that secrecy properties that can be proved
in the formal world are true in the computational world. Thus, we obtain a
computational justification for the formal treatment of encryption.

As we relate the two accounts of encryption, we identify and make ex-
plicit some important choices. In particular, our main theorem excludes cer-
tain encryption cycles (such as encrypting a key with itself). A restriction
along these lines is essential within the prevailing computational approach;
in contrast, formal methods typically ignore cycles. We also consider, for ex-
ample, whether two ciphertexts may manifest whether they were produced
using the same key.

We believe that this paper suggests a profitable line of further research.
It will take a significant research effort to relate the views of the people
who invent, implement, break, and use cryptography. Continuing this work,
it would be worthwhile to consider other cryptographic operations (such
as signatures and hash functions), and to treat complete security protocols
(such as key-distribution protocols) in addition to basic algorithms.

Connections between the formal view and the computational view should
ultimately benefit both:
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• These connections should strengthen the foundations of formal cryp-
tology, and help in elucidating implicit assumptions and gaps in for-
mal methods. They should confirm or improve the relevance of for-
mal proofs about a protocol to concrete instantiations of the protocol,
making explicit requirements on the implementations of cryptographic
operations.

• Methods for high-level reasoning seem necessary for computational
cryptology as it treats increasingly complex systems. Formal ap-
proaches suggest such high-level reasoning principles, and even permit
automated proofs. In addition, some formal approaches capture naive
but powerful intuitions about cryptography; a link with those intu-
itions should increase the appeal and accessibility of computational
cryptology.

The next section is a more detailed discussion of the two views of cryp-
tography; it also mentions related work. The rest of the paper proceeds as
follows.

In Section 3, we define a class of expressions and an equivalence rela-
tion on those expressions. The expressions represent data, of the sort used
in messages in security protocols; the equivalence relation captures when
two pieces of data “look the same” to an adversary, treating encryption as
a formal operator. These definitions are simple and purely syntactic. In
particular, they do not require any notion of probability or computational
complexity. They are typical of the definitions given in formal treatments
of cryptography, and directly inspired by some of them.

Then, in Section 4, we present a computational model with strings of
bits, probabilities, and complexities. In this model, we define secure encryp-
tion in terms of computational indistinguishability; our definition is similar,
but not identical, to those of semantic security [7, 18].

Finally, in Section 5, we relate equivalence to computational indistin-
guishability. We associate a probability ensemble with each formal expres-
sion; our main theorem establishes that equivalent expressions induce com-
putationally indistinguishable ensembles. For example, the two expressions
that represent two pieces of data encrypted under a fresh key will be equiv-
alent. This equivalence can be read as a secrecy property, namely that the
ciphertexts do not reveal the data. Our main theorem implies that the two
expressions correspond to computationally indistinguishable ensembles.
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2 Background and Related Work

This section explains the two views of cryptography, still informally. It
points to a few examples of work informed by those two views; there are
many more. It also describes some related research.

The formal view There is a large body of literature that treats cryp-
tographic operations as purely formal. There, for example, the expression
{M}K may represent an encrypted message, with plaintext M and key K.
All of {M}K , M , and K are formal expressions, rather than sequences of
bits. Various functions can be applied to such expressions, yielding other
expressions. One of them is decryption, which produces M from {M}K
and K. Crucially, there is no way to recover M or K from {M}K alone.
Thus, the idealized security properties of encryption are modeled (rather
than defined). They are built into the model of computation on expressions.

This body of literature starts with the work of Dolev and Yao [15],
DeMillo, Lynch, and Merritt [14], Millen, Clark, and Freedman [28], Kem-
merer [23], Burrows, Abadi, and Needham [13], and Meadows [27]. It in-
cludes many different agendas and approaches, with a variety of techniques
from the fields of rewriting, modal logic, process algebra, and others. Over
the years, it has been used in the design of protocols, it has helped develop
confidence in some existing protocols, and it has enabled the discovery of
many attacks. It has also led to the development of effective methods and
tools for automated protocol analysis; Lowe’s and Paulson’s works are two
recent examples of these advances [25, 30].

This formal perspective is fairly easy to apply for the users of encryption,
for example for protocol designers. It captures an important intuition: an
encrypted message reveals its plaintext only to those that know the corre-
sponding decryption key, and it reveals nothing to others. This assertion is a
simple (and simplistic) all-or-nothing statement, which can be conveniently
built into a formal method. In particular, it does not require any notion of
probability or of computational complexity: there is no need to say that an
adversary may obtain some data but only with low probability or after an
expensive computation. (However, probability and computational complex-
ity are compatible with formalism, as demonstrated by the work of Lincoln
et al. [24].)

Those who employ the formal definitions often warn that a formal proof
does not imply a guarantee of security. One of the reasons for this caveat
is the gap between the representation of encryption in a formal model and
its concrete implementation. At the very least, it is desirable to know what
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assumptions about encryption are necessary. Those assumptions have sel-
dom been stated explicitly, and not in enough detail to permit systematic
discussion and rigorous proofs. We aim to remedy this situation.

A somewhat similar situation arises from the use of the random-oracle
model in cryptography [10]: proofs that assume random oracles do not au-
tomatically yield guarantees when the oracles are instantiated. However, we
do not know of any natural examples where this gap has manifested itself.

The computational view Another school of cryptographic research is
based on the framework of computational complexity theory. A typical
member of that school would probably say that the formal perspective is
naive and disconnected from the realities of concrete cryptographic algo-
rithms and protocols. Keys, plaintexts, and ciphertexts are all just strings
of bits. An encryption function is just an algorithm. An adversary is es-
sentially a Turing machine. Good protocols are those in which adversaries
cannot do “something bad” too often and efficiently enough. These defini-
tions are all about success probabilities and computational cost.

This computational view originates in the work of Blum and Micali [11],
Yao [37], and Goldwasser and Micali [18]. It has strengthened the scientific
foundations of cryptography, with a sophisticated body of definitions and
theorems. It has also played a significant role in the development and study
of particular protocols.

As an important example of the computational approach, we sketch a
notion of secure encryption. Specifically, we choose to treat symmetric en-
cryption, following Bellare, Desai, Jokipii, and Rogaway [7]. An encryption
scheme is defined as a triple of algorithms Π = (K, E ,D). Algorithm K (the
key generator) makes random choices and then outputs a string k. Algo-
rithm E (the encryption algorithm) flips random coins r to map strings k
and m into a string Ek(m, r). Algorithm D (the decryption algorithm) maps
strings k and c into a string Dk(c). We expect that Dk(Ek(m, r)) = m for
appropriate k, m, and r.

An adversary for an encryption scheme Π = (K, E ,D) is a Turing ma-
chine which has access to an oracle. We imagine realizing this oracle in one
of two ways. In the first, the oracle chooses (once and for all) a random
key k, and then encrypts each query x using Ek and fresh random coins. In
the second, the oracle chooses (once and for all) a key k, and then, when
presented with a query x, encrypts a string of 0 bits of equal length, using
fresh random coins. An adversary’s advantage is the probability that the
adversary outputs 1 when the oracle is realized in the first way minus the
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probability that the adversary outputs 1 when the oracle is realized in the
second way. An encryption scheme is regarded as good if an adversary’s
maximal advantage is a slow-growing function of the adversary’s computa-
tional resources. This definition of security can be worked out rigorously
and elegantly in both asymptotic and concrete versions (see Section 4.3). In
any case, it is based on notions of probability and computational power.

Related work The desire to relate the two views of cryptography is not
entirely new (e.g., [3, 20, 26]). Nevertheless, there have been hardly any re-
search efforts in this general direction. The work of Pfitzmann, Schunter,
and Waidner [31] (which is simultaneous to ours and independent) starts
from motivations similar to our own. It proves that some reactive, crypto-
graphic systems satisfy high-level (non-cryptographic) specifications, under
computational assumptions on cryptographic operations. These results do
not concern a formal model of cryptography, such as the one studied in
this paper, but the relation to a formal model of cryptography is mentioned
as an interesting subject for further work. Also relevant is the work of
Lincoln, Mitchell, Mitchell, and Scedrov [24], which develops a rich process-
algebraic framework that draws on both views of cryptography. Further
afield, Abadi, Fournet, and Gonthier [1, 2] and Lynch [26] relate the formal
view of cryptography with higher-level (non-cryptographic) descriptions of
security mechanisms. Finally, Volpano and Smith [35] analyze the complex-
ity of attacking programs written in a simple, typed language; however, this
language does not include cryptographic primitives.

As we compare two accounts of encryption, we arrive at the concept
of which-key concealing encryption, with which ciphertexts do not mani-
fest whether they were produced using the same key (see Section 4.2). In-
dependently and concurrently, the work of Bellare, Boldyreva, Desai, and
Pointcheval studies this concept from a different perspective [6].

3 Formal Encryption and Expression Equivalence

In this section we present the formal view of cryptography, specifically treat-
ing symmetric encryption. We describe the space of expressions on which
encryption operates, and what it means for two expressions to be equivalent.

As explained in the introduction, the expressions represent data, of the
sort used in messages in security protocols. Expressions are built up from
bits and keys by pairing and encryption. The equivalence relation captures
when two pieces of data “look the same” to an adversary that has no prior
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knowledge of the keys used in the data. For example, an adversary (with
no prior knowledge) cannot obtain the key K from the ciphertexts {0}K
and {1}K ; therefore, the adversary cannot decrypt and distinguish these ci-
phertexts, so they are equivalent. Similarly, the pairs (0, {0}K) and (0, {1}K)
are equivalent. On the other hand, the pairs (K, {0}K) and (K, {1}K) are
not equivalent, since an adversary can obtain K from them, then decrypt
{0}K or {1}K and obtain 0 or 1, respectively, thus distinguishing the pairs.
In this section, we formalize these informal arguments about equivalence;
the soundness theorem of Section 5 provides a further justification for them.

3.1 Expressions

We write Bool for the set of bits {0, 1}. These bits can be used to spell
out numbers and principal names, for example. We write Keys for a fixed,
nonempty set of symbols disjoint from Bool. The symbols K, K ′,K ′′, . . . and
K1,K2, . . . are all in Keys. Informally, elements of the set Keys represent
cryptographic keys, generated randomly by a principal that is constructing
an expression. Formally, however, keys are atomic symbols, not strings of
bits. We write Exp for the set of expressions defined by the grammar:1

M,N ::= expressions
K key (for K ∈ Keys)
i bit (for i ∈ Bool)
(M,N) pair
{M}K encryption (for K ∈ Keys)

Informally, (M,N) represents the pairing of M and N , which might be im-
plemented by concatenation plus markers, and {M}K represents the encryp-
tion of M under K, which might be implemented using a symmetric algo-
rithm like DES, in CBC mode and with a random initialization vector. Pair-
ing and encryption can be nested, as in the expression ({{(0,K ′)}K}K′ ,K).

We emphasize that the elements of Exp are formal expressions (essen-
tially, parse trees, abstract syntax trees) rather than actual keys, bits, con-
catenations, or encryptions. In particular, they are unambiguous: for exam-

1An equivalent way to define Exp is as the language generated by the context-free
grammar with start symbol E, nonterminals E and K, terminals “0”, “1”, “(”, “)”, “,”,
“{”, “}”, and the set of elements in Keys, and the productions:

E −→ 0 | 1 | (E,E) | K | {E}K
K −→ K for each K ∈ Keys
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ple, (M,N) equals (M ′, N ′) if and only if M equals M ′ and N equals N ′,
and it never equals {M ′}K . Similarly, {M}K equals {M ′}K′ if and only if M
equals M ′ and K equals K ′. However, according to definitions given below,
{M}K and {M ′}K′ may be equivalent even when M and M ′ are different
and when K and K ′ are different.

There are several possible extensions of the set of expressions:

• We could allow expressions of the form {M}N , where an arbitrary
expression N is used as encryption key.

• We could distinguish encryption keys from decryption keys, as in
public-key cryptosystems.

These extensions are useful in modeling realistic protocols, but would com-
plicate our definitions and theorems. We therefore leave them for further
work.

It is also important to consider a restriction to the set of expressions.
We say that K encrypts K ′ in M if there exists an expression N such that
{N}K is a subexpression of M and K ′ occurs in N . For each M , this
defines a binary relation on keys, the “encrypts” relation. (As a variant,
a more liberal definition that ignores occurrences of K ′ as a subscript may
also be adequate for our purposes.) We say that M is cyclic (or acyclic)
if its associated “encrypts” relation is cyclic (or acyclic, respectively). For
example, {K}K and ({K}K′ , {K ′}K) are both cyclic, while ({K}K′ , {0}K)
is acyclic.

Cycles, such as encrypting a key under itself, are a source of errors in
practice (e.g., [36]); they also lead to weaknesses in common computational
models, as explained in Section 4. Moreover, cycles can often be avoided in
practice—and they should generally be avoided given what is, and is not,
known about them. The soundness theorem of Section 5 deals only with
acyclic expressions. In contrast, cycles are typically permitted (without
discussion) in formal methods.

3.2 Equivalence

Next we give a formal definition of equivalence of expressions. It draws
on definitions from the works of Syverson and van Oorschot, Schneider,
Paulson, and others [30, 32, 33]. Some of the auxiliary definitions concern
how expressions can be analyzed and synthesized; such definitions are quite
common in formal methods for protocol analysis. Equivalence relations are
useful in semantics of modal logics: in such semantics, one says that two

7



states in a computation “look the same” to a principal only if the principal
has equivalent expressions in those states. Equivalence relations also appear
in bisimulation proof techniques [4, 12], where one requires that bisimilar
processes produce equivalent messages.

First, we define an entailment relation M ` N , where M and N are
expressions. Intuitively, M ` N means that N can be computed from M .
Formally, we define the relation inductively, as the least relation with the
following properties:

• M ` 0 and M ` 1,

• M `M ,

• if M ` N1 and M ` N2 then M ` (N1, N2),

• if M ` (N1, N2) then M ` N1 and M ` N2,

• if M ` N and M ` K then M ` {N}K ,

• if M ` {N}K and M ` K then M ` N .

This definition of M ` N models what an attacker can obtain from M
without any prior knowledge of the keys used in M . For example, we have

({{K1}K2}K3 ,K3) ` K3

and
({{K1}K2}K3 ,K3) ` {K1}K2

but not
({{K1}K2}K3 ,K3) ` K1 (false)

It is simple to derive a more general definition from this one: obtaining N
from M with prior knowledge of K is equivalent to obtaining N from (M,K)
with no prior knowledge.

Next, we introduce the box symbol 2, which represents a ciphertext
that an attacker cannot decrypt. We define the set Pat of patterns as an
extension of the set of expressions, with the grammar:

P,Q ::= patterns
K key (for K ∈ Keys)
i bit (for i ∈ Bool)
(P,Q) pair
{P}K encryption (for K ∈ Keys)
2 undecryptable
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Intuitively, a pattern is an expression that may have some parts that an
attacker cannot decrypt.

We define a function that, given a set of keys T and an expression M ,
reduces M to a pattern. Intuitively, this is the pattern that an attacker can
see in M if the attacker has the keys in T .

p(K, T ) = K (for K ∈ Keys)
p(i, T ) = i (for i ∈ Bool)

p((M,N), T ) = (p(M,T ), p(N,T ))

p({M}K , T ) =

{
{p(M,T )}K if K ∈ T
2 otherwise

Further, we define a pattern for an expression without an auxiliary set T ,
but using the set of keys obtained from the expression itself.

pattern(M) = p(M, {K ∈ Keys |M ` K})

Intuitively, this is the pattern that an attacker can see in M using the set of
keys obtained from M . (As above, we assume that the attacker has no prior
knowledge of the keys used in M , without loss of generality.) For example,
we have

pattern(({{K1}K2}K3 ,K3)) = ({2}K3 ,K3)

Finally, we say that two expressions are equivalent if they yield the same
pattern:

M ≡ N if and only if pattern(M) = pattern(N)

For example, we have:

{{K1}K2}K3 ,K3) ≡ ({{0}K1}K3 ,K3)

since both expressions yield the pattern ({2}K3 ,K3).
We may view keys as bound names, subject to renaming (as in the spi

calculus [5]). For example, although ({0}K ,K) and ({0}K′ ,K ′) are not
equivalent, we may say that they are equivalent up to renaming. More
generally, we define equivalence up to renaming, ∼=, as follows:

M ∼= N if and only if there exists a bijection σ on Keys
such that M ≡ Nσ

where Nσ is the result of applying σ as a substitution to N . Although
this relation ∼= is looser than ≡, our soundness theorem treats it smoothly,
without difficulty. Therefore, we focus on ∼=. In informal discussions, we
often do not distinguish the two relations, calling them both equivalence.
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3.3 Some examples and some subtleties

In this section we give a few more examples. Some of the examples indicate
assumptions and choices built into the definition of equivalence. These are
fairly subtle but important, and it is useful to be explicit about them. We
revisit them in Section 4.

• 0 ∼= 0, of course.

• 0 6∼= 1, of course.

• {0}K ∼= {1}K .

• (K, {0}K) 6∼= (K, {1}K), but (K, {({0}K′ , 0)}K) ∼= (K, {({1}K′ , 0)}K).

• K 6≡ K ′ and K ∼= K ′, since keys are subject to renaming with ∼= but
not with ≡.

• {0}K ∼= {1}K′ and even {0}K ≡ {1}K′ , although the two ciphertexts
are under different keys.

• ({K ′}K , {0}K) ∼= ({K ′}K , {1}K′) and even ({K ′}K , {0}K) ≡ ({K ′}K ,
{1}K′), similarly.

• {0}K ∼= {K}K , despite the encryption cycle in {K}K .

• {(((1, 1), (1, 1)), ((1, 1), (1, 1)))}K ∼= {0}K .

Informally, we are assuming that a plaintext of any size can be en-
crypted, and that the size of the plaintext cannot be deduced from the
resulting ciphertext without knowledge of the corresponding decryp-
tion key. This property justifies equivalences such as the one above,
where the two plaintexts are of different sizes. In an implementation, it
can be guaranteed by padding plaintexts up to a maximum size, and
truncating larger expressions or mapping them to some fixed string
(see Section 4).

We could easily refine the equivalence relation to make it sensitive to
sizes, for example by introducing a symbol 2n for each size n. The
resulting definitions would be heavier.

• ({0}K , {0}K) ∼= ({0}K , {1}K).

Informally, we are assuming that an attacker who does not have a
key cannot even detect whether two plaintexts encrypted under the
key are identical. For example, the attacker should not be able to
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tell that the same plaintext appears twice under K in ({0}K , {0}K),
hence ({0}K , {0}K) ∼= ({0}K , {1}K). In an implementation, this sort
of equivalence can be guaranteed by randomization of the encryption
function (see Section 4).

We could easily refine the equivalence relation to make it sensitive to
message identities (for example as in [4]); but, again, the resulting
definitions would be heavier.

• ({0}K , {1}K) ∼= ({0}K , {1}K′).

Informally, we are assuming that an attacker who does not have a key
cannot even detect whether two ciphertexts use that same key. For
example, the attacker should not be able to tell that the same key is
used twice in ({0}K , {1}K), hence ({0}K , {1}K) ∼= ({0}K , {1}K′).

Again, an alternative definition would be possible, with some compli-
cations.

4 The Computational View: Encryption Schemes
and Indistinguishability

In this section we provide a computational treatment for symmetric encryp-
tion. First we describe the functions that constitute a symmetric encryption
scheme, and then we describe when an encryption scheme should be called
secure. Actually, there are a few different possibilities for defining security,
and we discuss several of them. The notion that we focus on—which we call
type-0 security—is stronger than the customary notion of security (that is,
semantic security, and notions equivalent to it [7, 18]). Nonetheless, one can
achieve type-0 security under standard complexity-theoretic assumptions.
We focus on type-0 security because it matches up with the formal defini-
tions of Section 3. Other computational notions of security can be paired
with analogous formal ones.

4.1 Preliminaries

Elements of an encryption scheme Let String = {0, 1}∗ be the set of all
finite strings, and let |x| be the length of string x. Let Plaintext, Ciphertext,
and Key be nonempty sets of finite strings. Let 0 be a particular string in
Plaintext. Encrypting a string not in Plaintext will result in a ciphertext that
decrypts to 0. We assume that if x ∈ Plaintext then x′ ∈ Plaintext for all x′

of the same length as x. Let Key be endowed with some fixed distribution.
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(If Key is finite, the distribution on Key is the uniform one.) Let Coins be
a synonym for {0, 1}ω (the set of infinite strings), and Parameter (the set of
security parameters) be a synonym for 1∗ (the set of finite strings of 1 bits).

An encryption scheme, Π, is a triple of algorithms (K, E ,D), where

K : Parameter× Coins→ Key

E : Key× String× Coins→ Ciphertext

D : Key× String→ Plaintext

and each algorithm is computable in time polynomial in the size of its input
(but without consideration for the size of Coins input). Algorithm K is called
the key-generation algorithm, E is called the encryption algorithm, and D
is called the decryption algorithm. We usually write the first argument to E
or D, the key, as a subscript. When we omit mention of the final argument
to K or E this indicates the corresponding probability space, or, when used
as a set, the support of that probability space (that is, the strings which are
output with nonzero probability). We require that for all η ∈ Parameter,
k ∈ K(η), and r ∈ Coins, if m ∈ Plaintext then Dk(Ek(m, r)) = m, while if
m 6∈ Plaintext then Dk(Ek(m, r)) = 0. For example, the encryption function
could treat an out-of-domain message as though it was 0. We insist that
|Ek(x)| depends only on η and |x| when k ∈ K(η).

The definition above is for probabilistic, stateless encryption. One can
be a bit more general, allowing the encryption algorithm to maintain state.
We do not pursue this generalization here.

Other basic concepts A function ε : N→ R is negligible if ε(η) ∈ η−ω(1).
This means that for all c > 0 there exists Nc such that ε(η) ≤ η−c for all
η ≥ Nc. An ensemble (or probability ensemble) is a collection of distributions
on strings, D = {Dη}, one for each η. We write x

R←Dη to indicate that x
is sampled from Dη. Let D = {Dη} and D′ = {D′

η} be ensembles. We say
that D and D′ are indistinguishable (or computationally indistinguishable),
and write D ≈ D′, if for every probabilistic polynomial-time adversary A,
the function

ε(η) def= Pr[x R←Dη : A(η, x) = 1]− Pr[x R←D′
η : A(η, x) = 1]

is negligible.

4.2 Aspects of encryption-scheme security

In this section we consider some possible attributes of encryption schemes,
and also consider encryption cycles. These issues already appear in Section 3
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in a formal setting; here we explore them further in a computational setting.

Attributes (present or absent) of a secure encryption scheme We
single out three characteristics of an encryption scheme. The first and third
are well-known, while the second seems not to have received attention till
now.

• Repetition concealing vs. repetition revealing

Given ciphertexts c and c′, can one tell if their underlying plaintexts
are equal? If so, we call the scheme repetition revealing; otherwise, it is
repetition concealing. A repetition-concealing scheme must be proba-
bilistic (or stateful); making encryption schemes repetition concealing
is one motivation for probabilistic encryption [18].

• Which-key concealing vs. which-key revealing

If one encrypts messages under various keys, can one tell which mes-
sages were encrypted under the same keys? If so, we call the scheme
which-key revealing; otherwise, it is which-key concealing. Though
standard instantiations of encryption schemes are which-key conceal-
ing, standard definitions for encryption-scheme security (like those
in [7, 18]) do not guarantee this. Demanding that an encryption scheme
be which-key concealing is useful in contexts beyond that of the present
paper (for example, in achieving forms of anonymity). The current
work of Bellare et al. undertakes a thorough treatment of which-key
concealing encryption [6].

• Message-length concealing vs. message-length revealing

Does a ciphertext reveal the length of its underlying plaintext? If so,
we call the scheme message-length revealing; otherwise, it is message-
length concealing. Most encryption schemes are message-length reveal-
ing. The reason is that implementing message-length concealing en-
cryption invariably entails padding messages to some maximal length,
and it may therefore be quite inefficient. Message-length concealing
encryption is possible when the message space is finite, or when all
ciphertexts are infinite streams (rather than finite strings as stated in
our definitions).

These three characteristics are orthogonal, and all eight combinations make
sense. Let us call these eight notions of security type-0, type-1, . . ., type-7,
with the numbering determined as follows: concealing corresponds to a 0 bit
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and revealing to a 1 bit, and we interpret the three characteristics above as a
3-bit binary number, the most significant bit being for repetition concealing
or revealing, then which-key concealing or revealing, finally message-length
concealing or revealing. With this terminology, the conventional concept
of encryption-scheme security, ever since the work of Goldwasser and Mi-
cali [18], has been type-3 security: a ciphertext may reveal the length of
the message and which key is being used, but it should not reveal if two
ciphertexts are encryptions of the same message. However, this concept of
security is not the only reasonable one.

Encryption cycles Given a type-n (n ∈ {0, . . . , 7}) secure encryption
scheme Π = (K, E ,D), one can construct a type-n secure encryption scheme
Π′ = (K, E ′,D′) with the following property: Π′ would be completely inse-
cure if the adversary were given (for example, as an additional input) even
a single encryption c

R←E ′k(k) of the underlying key k. Goldwasser and Mi-
cali were aware of this (in the public-key setting) when they published their
work [18].

It is not only encrypting k under k that is problematic; longer cycles may
also cause problems. For example, even if an encryption scheme is type-3
secure, it may not be safe to encrypt a message b under a key a and then,
reversing the roles of a and b, to encrypt a under b. For all we know, the
concatenation of the two ciphertexts might trivially reveal both a and b.
For probabilistic encryption, for cycles of length greater than one, we do
not have any example to demonstrate that this problem can actually arise,
but the hybrid arguments [18, 37] often used to prove encryption schemes
secure, and which we use here, do not work in the presence of such cycles.

Therefore, as discussed in Section 3, we focus on expressions without
encryption cycles. In return, we can rely on standard-looking definitions
and tools in the computational setting.

4.3 Definitions of encryption-scheme security (types 0, 1, 3)

The formal treatment in Section 3 corresponds to type-0 security (repetition
concealing, which-key concealing, and message-length concealing), so let us
define this notion more precisely. An explanation of the notation follows the
definition.

Definition 1 (Type-0 security) Let Π = (K, E ,D) be an encryption
scheme, let η ∈ Parameter be a security parameter, and let A be an ad-
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versary. Define

Adv0
Π[η](A) def= Pr

[
k, k′ R←K(η) : AEk(·), Ek′ (·) (η) = 1

]
−

Pr
[
k

R←K(η) : AEk(0), Ek(0) (η) = 1
]

Encryption scheme Π is type-0 secure if for every probabilistic polynomial-
time adversary A, Adv0

Π[η](A) is negligible (as a function of η).

We are looking at the difference of two probabilities.

• First, let us focus on the first probability. The quantity in brackets
describes an experiment that is performed, and then an event. In this
experiment, one first chooses two keys, k and k′, independently, by
running the key-generation algorithm K. Then one runs adversary A,
with two oracles: a left oracle f and a right oracle g. If the adversary
asks the left oracle f a query m ∈ String, the oracle returns a random
encryption of m under key k. That is, the oracle computes c

R←Ek(m)
and returns c. If the adversary asks the right oracle g a query m ∈
String, the oracle returns a random encryption of m under key k′,
similarly. Independent coins are used each time a string is encrypted
(but the keys k and k′ stay fixed).

• Next, let us consider the second probability. In this experiment, a
single key k is selected by running the key-generation algorithm K.
The adversary again has two oracles, a left oracle f and a right oracle g,
and these oracles again expect queries m ∈ String. But now the oracles
behave in the same way. When asked a query m, the oracles ignore
the query, sample c

R←Ek(0), and return c. Independent coins are used
each time a string is encrypted (but the key k stays fixed).

The type-0 advantage is the difference in the above probabilities. One can
imagine that the adversary is trying to distinguish a good encryption box
from a false one. A good encryption box encrypts the specified query using
the selected key. A false encryption box ignores the query and encrypts
a fixed message under a fixed random key. Intuitively, a scheme is type-0
secure if no reasonable adversary can do a good job of telling apart the two
encryption boxes on the basis of their input/output behavior.

Various other equivalent formalizations for type-0 encryption are possi-
ble. For example, it adds no power for there to be more than two oracles. (In
the first experiment, each oracle would encrypt queries under its own key; in
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the second, every oracle would encrypt 0 under a common key.) Likewise, it
takes away no power if Ek′(·) is replaced with Ek′(0) in the first experiment.

We also give detailed definitions of type-1 and type-3 security; they
resemble that of type-0 security. In these definitions, Ek(·) is an oracle that
returns c

R←Ek(m) on input m, as above, and Ek(0|·|) is an oracle that returns
c

R←Ek(0|m|) on input m.

Definition 2 (Type-1 security) Let Π = (K, E ,D) be an encryption
scheme, let η ∈ Parameter be a security parameter, and let A be an ad-
versary. Define

Adv1
Π[η](A) def= Pr

[
k, k′ R←K(η) : AEk(·),Ek′ (·) (η) = 1

]
−

Pr
[
k

R←K(η) : AEk(0|·|),Ek(0|·|) (η) = 1
]

Encryption scheme Π is type-1 secure if for every probabilistic polynomial-
time adversary A, Adv1

Π[η](A) is negligible (as a function of η).

Definition 3 (Type-3 security) Let Π = (K, E ,D) be an encryption
scheme, let η ∈ Parameter be a security parameter, and let A be an ad-
versary. Define

Adv3
Π[η](A) def= Pr

[
k

R←K(η) : AEk(·) (η) = 1
]
−

Pr
[
k

R←K(η) : AEk(0|·|) (η) = 1
]

Encryption scheme Π is type-3 secure if for every probabilistic polynomial-
time adversary A, Adv3

Π[η](A) is negligible (as a function of η).

4.4 Achieving type-0 and type-1 security with standard tools

Since type-3 security is standard but type-0 and type-1 security are not,
we show that type-0 and type-1 security can be achieved using standard
assumptions and constructions. Although this fact is not necessary for our
soundness theorem, it provides support for the hypotheses of the theorem.

Block ciphers Let β ≥ 1 be a number (the blocksize) and let Block =
{0, 1}β. Let Key be a finite nonempty set. Then a block cipher is a function
E : Key×Block→ Block such that, for every k ∈ Key, we have that Ek(·) =
E(k, ·) is a permutation. Example block ciphers are DES and the emerging
AES (Advanced Encryption Standard).
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One measure of security for a block cipher is:

Advprp
E (A) = Pr

[
k

R←Key : AEk(·) = 1
]
− Pr

[
π

R←Perm(β) : Aπ(·) = 1
]

Here Perm(β) denotes the set of all permutations on {0, 1}β. Informally,
the adversary A is trying to distinguish the block cipher E, as it behaves on
a random key k, from a random permutation π. We think of E as a good
block cipher if Advprp

E (A) is small as long as A is of reasonable computational
complexity.

Block cipher modes of operation Block ciphers are the most common
building block for making symmetric encryption schemes. Two well-known
ways to do this are CBC mode and CTR mode. In CBC mode (with a
random initialization vector), the encryption of a plaintext x = x1 . . . xn

using key k ∈ Key, where n ≥ 1 and |xi| = {0, 1}β , is y0y1 . . . yn where
y0

R←Block and yi = Ek(yi−1 ⊕ xi) for all 1 ≤ i ≤ n. In CTR mode, the
encryption of a plaintext x using key k is the concatenation of r

R←Block with
the xor of x and the |x|-bit prefix of the concatenation of Ek(r), Ek(r + 1),
Ek(r+2), . . . . Here r+i is the β-bit string that encodes the sum of r (treated
as an unsigned number) and i, modulo 2β . In [7], Bellare et al. establish
the (type-3) security of these two modes of operation. Their results are
quantitative, measuring how well one can attack the block cipher E in terms
of how well one can attack the given encryption schemes based on E (in the
sense of type-3 security).

CBC and CTR modes are which-key concealing Even though the
results just mentioned do not indicate that CBC mode or CTR mode are
which-key concealing, these schemes are in fact which-key concealing and
those results can be used to show it, as we now sketch. Let Π = (K, E ,D)
be an encryption scheme, let A be an adversary, and define

Advrand
Π[η] = Pr

[
k

R←Key(η) : AEk(·) (η) = 1
]
−

Pr
[
k

R←Key(η) : A$|Ek(·)|
(η) = 1

]
By $|Ek(·)| we denote an oracle which, on input m, computes c

R←Ek(m) and
returns a random string of length |c|. (By an assumption stated above, |c|
depends only on η and |m|.) Informally, the adversary cannot tell if it is
given a real encryption oracle or an oracle that returns a random string (of
the appropriate length) in response to every query.
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The proofs of security in [7] actually establish that CBC mode and CTR
mode are good schemes according to Advrand, assuming that the underlying
block cipher E is secure according to Advprp. To complete the picture,
we claim that any good scheme according to Advrand is also type-1 secure.
(This claim is not hard to prove, though we omit doing so here.) Therefore,
CBC mode and CTR mode (as defined above) are type-1 secure: repetition
concealing, which-key concealing, but message-length revealing.

Hiding message lengths for type-0 security Finally, we have to con-
ceal message lengths. This step is standard, provided the message space
is finite. Let Π = (K, E ,D) be a type-1 secure encryption scheme with
Plaintext = {0, 1}∗. Let Plaintext′ ⊆ String be a finite set, with a particu-
lar element 0′. To make a type-0 secure encryption scheme we just encode
all messages of Plaintext′ into strings of some fixed length, and then en-
crypt these using E . That is, we choose any convenient function encode(·)
which (reversibly) takes strings in Plaintext′ to a subset of {0, 1}`, for some
number `. The encryption scheme Π′ = (K, E ′,D′), with message space
Plaintext′, is defined by letting E ′k(m) = Ek(encode(m)) for m ∈ Plaintext′,
setting E ′k(m) = E ′k(0′) for m 6∈ Plaintext′, and defining D′ in the obvious
way. Type-1 security of Π immediately implies type-0 security of Π′.

5 The Computational Soundness of Formal Equiv-
alence

In this section we relate the two views of cryptography. We proceed in two
steps. First, we show how to associate an ensemble to an expression M ,
given an encryption scheme Π. Then we show that, under appropriate as-
sumptions, equivalent expressions give rise to indistinguishable ensembles.

5.1 Associating an ensemble to an expression

Let Π = (K, E ,D) be an encryption scheme and let η ∈ Parameter be a
security parameter. We associate to each formal expression M ∈ Exp a
distribution on strings [[M ]]Π[η], and thereby an ensemble [[M ]]Π. This as-
sociation constitutes a concrete semantics for expressions (in the style of
programming-language semantics or logic semantics); it works as follows:

• First, we map each key symbol K that occurs in M to a string of bits
τ(K), using the key generator K(η).
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algorithm Initializeη(M)
for K ∈ Keys(M) do τ(K) R←K(η)

algorithm Convert(M)
if M = K where K ∈ Keys then

return 〈 τ(K), “key” 〉
if M = b where b ∈ Bool then

return 〈 b, “bool” 〉
if M = (M1,M2) then

return 〈Convert(M1),Convert(M2), “pair” 〉
if M = {M1}K then

x
R←Convert(M1)

y
R←Eτ(K)(x)

return 〈 y, “ciphertext” 〉

Figure 1: How to map (probabilistically) an expression M to a string
Convert(M), given an encryption scheme Π = (K, E ,D) and a security
parameter η.

• We map the formal bits 0 and 1 to standard string representations for
them.

• We obtain the image of a formal pair (M,N) by concatenating the
images of the components M and N .

• We obtain the image of a formal encryption {M}K by calculating
Eτ(K)(x), where x is the image of M .

• In all cases, we tag string representations with their types (that is,
“key”, “bool”, “pair”, “ciphertext”) in order to avoid any ambiguities.

This association is defined more precisely in Figure 1. In the figure, we
write Keys(M) for the set of all key symbols that occur in M , and write
〈x1, . . . , xk 〉 for an ordinary string encoding of x1, . . . , xk. The auxiliary
initialization procedure Initializeη(M) maps every key symbol in Keys(M)
to a unique key τ(K). The probability of a string in [[M ]]Π[η] is that induced
by the algorithm Convert(M) of Figure 1.
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5.2 Equivalence implies indistinguishability

Next we prove that equivalent expressions correspond to indistinguishable
ensembles (that is, M ∼= N implies [[M ]]Π ≈ [[N ]]Π), assuming that the ex-
pressions are acyclic and that the underlying encryption scheme is type-0
secure.

We start with a few simple examples, instantiating the claim that M ∼= N
implies [[M ]]Π ≈ [[N ]]Π.

• Since 0 ∼= 0, we conclude that [[0]]Π ≈ [[0]]Π. The two ensembles being
compared put all the probability mass on a single point, 〈 0, “bool” 〉.

• Since K ∼= K ′, we conclude that [[K ]]Π ≈ [[K ′ ]]Π. The two ensembles
being compared are identical: they are induced by the key generator K.

• Since {0}K ∼= {1}K , we conclude that [[{0}K ]]Π ≈ [[{1}K ]]Π. This in-
distinguishability is nontrivial: it relies on the assumption that the
encryption scheme is type-0 secure.

• Although {0}K ∼= {K}K , we cannot conclude anything about how
[[{0}K ]]Π may relate to [[{K}K ]]Π, because of the encryption cycle in
{K}K .

Reconsidering some of the other examples of Section 3.3 can also be instruc-
tive.

Our theorem is:

Theorem 1 Let M and N be acyclic expressions and let Π be a type-0
secure encryption scheme. Suppose that M ∼= N . Then [[M ]]Π ≈ [[N ]]Π.

Proof The proof is a hybrid argument, as in [11, 18, 37]. One must be
particularly careful in forming the hybrids, relying on acyclicity. Because
of the generality of the claim, the description of the hybrid argument is
somewhat complex. Therefore, we include a running example, in italics. We
also break up the proof into several phases.

Key renaming The first phase of the proof deals with renaming keys.
Roughly, its goal is to modify the expressions M and N by renaming keys so
that pattern(M) = pattern(N), still, and M has “hidden” keys K1, . . . ,Km

and N has “hidden” keys K1, . . . ,Kn, where KI encrypts Ki only when
I ≥ i, and both M and N have “recoverable” keys J1, . . . , Jµ.
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As above, Keys(M) is the set of all keys that occur in M . First we
partition Keys(M), separating those keys that the adversary can recover
from the rest:

recoverable(M) = {K ∈ Keys(M) |M ` K}
hidden(M) = Keys(M)− recoverable(M)

Let µ = |recoverable(M)| and let m = |hidden(M)|. We form a graph
GM = (VM , EM ) whose vertices are VM = hidden(M) and where there is
an arc K → K ′ in EM if and only if K encrypts K ′ in M . (Recall that
K encrypts K ′ in M if there is a subexpression {M1}K of M where K ′

occurs in M1.) The acyclicity of M means that GM is acyclic and, as a
consequence, we can rename the keys in Keys(M) so that the hidden keys
are K1, . . . ,Km, the recoverable keys are J1, . . . , Jµ, and KI → Ki ∈ EM

implies I ≥ i. In other words, a deeper key of M gets a smaller number.
We let M ′ be the resulting expression.

Let us start our running example. Suppose that M is the expression:

{0}K6 {K1 1}K4 K2 {0}K3 {K6}K4 {K1 K3}K4 {1 1 1}K5 0 {K1}K6 {K5}K2

Here we have omitted commas, for readability, and also parentheses. The
parentheses are irrelevant in this example, but we should hold them fixed
as the example is developed; for concreteness, we may think of elements as
being grouped left-to-right, so that a b c d is short for (((a, b), c), d). In this
example, we have:

Keys(M) = {K1,K2,K3,K4,K5,K6}
recoverable(M) = {K2,K5}

hidden(M) = {K1,K3,K4,K6}

The graph GM = (VM , EM ) has vertices VM = {K1,K3,K4,K6} and arcs
K4 → K1, K4 → K3, K4 → K6, and K6 → K1. We rename (K1,K2,K3,
K4,K5,K6) to (K1, J1,K2,K4, J2,K3), obtaining a new expression M ′:

{0}K3 {K1 1}K4 J1 {0}K2 {K3}K4 {K1 K2}K4 {1 1 1}J2 0 {K1}K3 {J2}J1

Because M ∼= N , and by the definition of equivalence up to renaming,
there exists a function σ on Keys(N) such that pattern(M) = pattern(Nσ).
The keys that occur in this pattern are those in the sets recoverable(M) and
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recoverable(Nσ), which are therefore equal. Moreover, the value of σ on
hidden(N) is irrelevant, since the keys in this set get obliterated with the
symbol 2. So, by acyclicity, we can again rename those keys to K1, . . . ,Kn

in such a way that KI encrypts Ki only if I ≥ i. This renaming is much as in
M , so we omit its justification. We obtain a function σ′ and an expression
N ′ such that N ′ = Nσ′, M ′ ≡ N ′, recoverable(M ′) = recoverable(N ′) =
{J1, . . . , Jµ}, hidden(N ′) = {K1, . . . ,Kn}, and KI encrypts Ki in N ′ only if
I ≥ i.

Continuing our example, let N be the expression:

{1 1}K2 {K3}K2 K1 {K3}K2 {K8}K2 {1}K5 {1 1 1}K3 0 {0 0}K8 {K3}K1

so recoverable(N) = {K1,K3} and hidden(N) = {K2,K5,K8}. We rename
(K1,K2,K3,K5,K8) to (J1,K3, J2,K1,K2), obtaining a corresponding ex-
pression N ′:

{1 1}K3 {J2}K3 J1 {J2}K3 {K2}K3 {1}K1 {1 1 1}J2 0 {0 0}K2 {J2}J1

Note that N ′ (and N) have a different number of hidden keys than M ′

(and M). On the other hand, they have the same number of recoverable
keys; this equality is implied by the definition of equivalence.

In sum, we can thus apply renamings to M and N , obtaining M ′ and
N ′ such that pattern(M ′) = pattern(N ′), M ′ has hidden keys K1, . . . ,Km,
N ′ has hidden keys K1, . . . ,Kn, if KI encrypts Ki then I ≥ i in both M ′

and N ′, and both have recoverable keys J1, . . . , Jµ.

The hybrid patterns Mi and Nj In the next phase of the proof,
we introduce patterns (that is, extended expressions) M0,M1, . . . ,Mm and
N0, N1, . . . , Nn so that these patterns form a chain between M ′ and N ′.
Relying on the function p from Section 3.2, we let:

Mi = p(M ′, recoverable(M ′) ∪ {K1, . . . ,Ki})

where K1, . . . ,Km are the hidden keys of M ′ and i ∈ {0, . . . ,m}. In particu-
lar, we have M0 = pattern(M ′) and Mm = M ′. Similarly, for j ∈ {0, . . . , n},
we let:

Nj = p(N ′, recoverable(N ′) ∪ {K1, . . . ,Kj})

and in particular obtain N0 = pattern(N ′) and Nn = N ′. Intuitively, Mi and
Ni are the patterns that the adversary sees in M ′ and N ′, respectively, if the
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adversary has a priori knowledge of the otherwise hidden keys K1, . . . ,Ki.
The ordering of the keys guarantees that this knowledge does not permit
the discovery of other hidden keys.

In our example, we have:

M ′

‖
M4 : {0}K3 {K1 1}K4 J1 {0}K2 {K3}K4 {K1 K2}K4 {1 1 1}J2 0 {K1}K3 {J2}J1

M3 : {0}K3 2 J1 {0}K2 2 2 {1 1 1}J2 0 {K1}K3 {J2}J1

M2 : 2 2 J1 {0}K2 2 2 {1 1 1}J2 0 2 {J2}J1

M1 : 2 2 J1 2 2 2 {1 1 1}J2 0 2 {J2}J1

M0 : 2 2 J1 2 2 2 {1 1 1}J2 0 2 {J2}J1

‖
N0 : 2 2 J1 2 2 2 {1 1 1}J2 0 2 {J2}J1

N1 : 2 2 J1 2 2 {1}K1 {1 1 1}J2 0 2 {J2}J1

N2 : 2 2 J1 2 2 {1}K1 {1 1 1}J2 0 {0 0}K2 {J2}J1

N3 : {1 1}K3 {J2}K3 J1 {J2}K3 {K2}K3 {1}K1 {1 1 1}J2 0 {0 0}K2 {J2}J1

‖
N ′

Note that pattern(M ′) = M0 = N0 = pattern(N ′).

Defining ensembles for the patterns Mi and Nj Next we map each
of the patterns M0, . . . ,Mm, N0, . . . , Nn to an ensemble [[M0 ]]Π, . . . , [[Mm ]]Π,
[[N0 ]]Π, . . . , [[Nn ]]Π, respectively. We define this mapping by extending the
conversion algorithm of Figure 1 so that it applies to patterns, not just to
expressions. The extension is simple: any time it encounters the symbol 2,
it returns the encryption of 0 using a new, fixed key, which is used for
no other purpose. More precisely, we extend the algorithm of Figure 1 by
adding to Initialize the line:

τ(K0)
R←K(η)

and adding to Convert the lines:

if M = 2 then
y

R←Eτ(K0)(0)
return 〈 y, “ciphertext” 〉

Finding a large gap Clearly [[M ]]Π = [[M ′ ]]Π, since M and M ′ differ
only in their indexing, and similarly [[N ]]Π = [[N ′ ]]Π. Therefore, our goal is
to show that [[M ′ ]]Π ≈ [[N ′ ]]Π.
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We argue by contradiction: we assume that there is an adversary A that
distinguishes [[M ′ ]]Π and [[N ′ ]]Π, in order to contradict the type-0 security
of Π. According to the definitions, the adversary A runs in polynomial time,
and the function:

λ(η) = Pr[y R← [[M ′ ]]Π : A(η, y) = 1]− Pr[y R← [[N ′ ]]Π : A(η, y) = 1]

is not negligible, that is, for some constant c, for some infinite set N , λ(η) >
η−c for all η ∈ N . For 0 ≤ i ≤ m and 1 ≤ j ≤ n, we define:

pi(η) = Pr[y R← [[Mi ]]Π[η] : A(η, y) = 1]

qi(η) = Pr[y R← [[Nj ]]Π[η] : A(η, y) = 1]

Below, we sometimes omit the argument η for notational simplicity. Since
M ′ = Mm and N ′ = Nn, we have that λ = pm − qn. In addition, we have
that p0 = q0 because M ′ and N ′ yield the same pattern, so we also have
that:

λ = (pm − pm−1) + (pm−1 − pm−2) + . . . + (p1 − p0) +
(q0 − q1) + (q1 − q2) + . . . + (qn−1 − qn)

We thus have m+n summands that add up to λ. By the triangle inequality,
there is either i ∈ {1, . . . ,m} such that pi − pi−1 ≥ λ/(m + n) or there is
j ∈ {1, . . . , n} such that qi−1− qi ≥ λ/(m+n). Moreover, a suitable index i
or j exists for each η ∈ N , so there is an index i or j that works for infinitely
many η ∈ N , since the number of summands is finite and fixed. Let i be
such an index; the case of an index j is exactly analogous. Hence, there
exists an infinite set N ′ ⊆ N such that pi(η) − pi−1(η) ≥ λ(η)/(m + n) for
each η ∈ N ′.

In our example, we are assuming that there is some adversary A with
a good advantage, say 0.50, in distinguishing [[M4 ]]Π[η] and [[N3 ]]Π[η], that
is, [[M ]]Π[η] and [[N ]]Π[η]. So the adversary A will distinguish one of the
following with advantage at least 0.50/7: [[M4 ]]Π[η] and [[M3 ]]Π[η]; [[M3 ]]Π[η]

and [[M2 ]]Π[η]; [[M2 ]]Π[η] and [[M1 ]]Π[η]; [[M1 ]]Π[η] and [[M0 ]]Π[η]; [[N0 ]]Π[η] and
[[N1 ]]Π[η]; [[N1 ]]Π[η] and [[N2 ]]Π[η]; or [[N2 ]]Π[η] and [[N3 ]]Π[η]. For example,
suppose that it is [[M3 ]]Π[η] and [[M2 ]]Π[η]. Then A answers 1 substantially
more often when given samples from [[M3 ]]Π[η] than when given samples from
[[M2 ]]Π[η].
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algorithm Af,g
0 (η)

for K ∈ Keys(M ′) do τ(K) R←K(η)
y

R←Convert2(M ′)
b

R←A(η, y)
return b

algorithm Convert2(M∗)
if M∗ = K where K ∈ Keys then

return 〈 τ(K), “key” 〉
if M∗ = b where b ∈ Bool then

return 〈 b, “bool” 〉
if M∗ = (M∗

1 ,M∗
2 ) then

return 〈Convert2(M∗
1 ),Convert2(M∗

2 ), “pair” 〉
if M∗ = {M∗

1 }K then
if K ∈ {J1, . . . , Jµ,K1, . . . ,Ki−1} then

x
R←Convert2(M∗

1 )
y

R←Eτ(K)(x)
return 〈 y, “ciphertext” 〉

else if K = Ki then
x

R←Convert2(M∗
1 )

y
R← f(x)

return 〈 y, “ciphertext” 〉
else if K ∈ {Ki+1, . . . ,Km} then

y
R← g(0)

return 〈 y, “ciphertext” 〉

Figure 2: Given an adversary A that distinguishes [[M ′
i ]]Π from [[M ′

i−1 ]]Π,
the adversary A0 violates the type-0 security of Π, using the oracles f and g.
As in the rest of the proof, K1, . . . ,Km are the hidden keys and J1, . . . , Jµ

the recoverable keys of M ′.
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Contradicting the type-0 security of Π Using A, we construct an
adversary A0 that violates the type-0 security of Π. The definition of A0 is
in Figure 2. Since A0 attacks the type-0 security of an encryption scheme,
it has access to two oracles, f and g. Those oracles can be instantiated in
one of two ways. In one case, the oracle f is Eki

(·), for a randomly chosen
ki

R←K(η), while the oracle g is Ek0(·), for a randomly chosen k0
R←K(η).

In the other case, the oracle f is Ek0(0), for a randomly chosen k0
R←K(η),

while the oracle g is again Ek0(0).
We have:

pi(η) = Pr[ki, k0
R←K(η) : A

Eki
(·), Ek0

(·)
0 (η) = 1]

pi−1(η) = Pr[k0
R←K(η) : A

Ek0
(0), Ek0

(0)
0 (η) = 1]

These equalities hold because Convert2(M ′) returns a sample from [[Mi ]]Π
when f = Eki

(·) and g = Ek0(·), and Convert2(M ′) returns a sample from
[[Mi−1 ]]Π when f = Ek0(0) and g = Ek0(0). In both cases, notice that en-
cryption under a recoverable key K corresponds to encryption under the
associated key τ(K). Encryption under a hidden key K in {K1, . . . ,Ki−1}
also corresponds to encryption under the associated key τ(K), while encryp-
tion under a hidden key in {Ki+1, . . . ,Kn} results in 0 encrypted under k0.
For the first equality, encryption under the hidden key Ki corresponds to en-
cryption under ki; for the second, encryption under Ki results in 0 encrypted
under k0.

We therefore also have:

Adv0
Π[η](A0) = Pr[ki, k0

R←K(η) : A
Eki

(·), Ek0
(·)

0 (η) = 1]−

Pr[k0
R←K(η) : A

Ek0
(0), Ek0

(0)
0 (η) = 1]

= pi(η)− pi−1(η)

For infinitely many values of η (those greater than (m+n) in N ′), we obtain:

Adv0
Π[η](A0) ≥ λ(η)/(m + n)

> η−c/(m + n)
> η−(c+1)

Hence, the function Adv0
Π[η](A0) is not negligible. This conclusion contra-

dicts the hypothesis that the encryption scheme Π is type-0 secure, as de-
sired.

Completing our example, let us suppose that A answers 1 substantially
more often when given samples from [[M3 ]]Π[η] than when given samples from
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[[M2 ]]Π[η], as above. We use A to show that the encryption scheme Π is not
type-0 secure by constructing a successful adversary A0 against Π. This
adversary relies on two oracles f and g, with two instantiations each. The
two instantiations come from the definition of type-0 security. With the first
instantiation, A0 creates a sample from [[M3 ]]Π[η] and then calls A. With the
second instantiation, A0 creates a sample from [[M2 ]]Π[η] and then calls A.
Therefore, A0 answers 1 substantially more often in the first case. 2

Theorem 1 gives an asymptotic statement of security. From its proof one
can, as always, extract a corresponding concrete-security statement. This
statement would say the following. Let M and N be acyclic expressions
with m and n keys and lengths |M | and |N |, respectively. (The length of
an expression is just the number of rules used to generate it.) Suppose
that M ∼= N . Assume further that m,n ≥ 1, thus excluding only triv-
ial cases. Fix a security parameter η and an encryption scheme Π. Let
A be an adversary that runs in time t and achieves advantage ε(η) =
Pr[y R← [[M ]]Π[η] : A(η, y) = 1] − Pr[y R← [[N ]]Π[η] : A(η, y) = 1] in distin-
guishing [[M ]]Π[η] and [[N ]]Π[η]. Then there exists an adversary A0 that
breaks the type-0 security of Π[η] with advantage ε0 = Adv0

Π[η](A0) ≥
ε/(m + n). Moreover, there exist constants α and α′ such that A0 makes
at most max{m,n} queries to its encryption oracles, these queries having
length at most α′ · max{|M |, |N |}; and the running time of A0 is at most
t+α·TΠ[η]·(|M |+|N |), where TΠ[η] is the maximum time to choose a key from
K(η) plus the time to encrypt a message of length at most α′ ·max{|M |, |N |}
bits using the key. The numbers α and α′ depend only on encoding conven-
tions and details of the model of computation.

One may wonder whether a converse to Theorem 1 holds, that is, whether
indistinguishability implies equivalence. Such a converse fails for a fairly
trivial reason: if applying the algorithm of Figure 1 to the expressions M
and M ′ gives rise to encryptions of strings outside the message space Plaintext
of the encryption scheme Π, then identical ensembles may be associated
with M and M ′ even when M and M ′ are not equivalent. We have not
explored whether the converse holds when Plaintext is large enough.

6 Conclusions

The formal approach to cryptography often deals with simple, all-or-nothing
assertions about security. The computational approach, on the other hand,
makes a delicate use of probability and computational complexity. However,
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one may intuit that the formal assertions are valid in computational mod-
els, if not absolutely at least with high probability and against adversaries
of limited computational power. In this paper, we develop this intuition, ap-
plying it to the study of encryption. We prove that the intuition is correct
under substantial but reasonable hypotheses. This study of encryption is
a step—perhaps modest but hopefully suggestive—toward treating security
protocols and complete systems, and toward combining the sophistication
of computational models with the simplicity and power of formal reasoning.
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