
Online Ciphers from Tweakable Blockciphers

Phillip Rogaway and Haibin Zhang

Dept. of Computer Science, University of California, Davis, California 95616, USA
{rogaway,hbzhang}@cs.ucdavis.edu

Abstract. Online ciphers are deterministic length-preserving permu-
tations EK : ({0, 1}n)+ → ({0, 1}n)+ where the i-th block of ciphertext
depends only on the first i blocks of plaintext. Definitions, constructions,
and applications for these objects were first given by Bellare, Boldyreva,
Knudsen, and Namprempre. We simplify and generalize their work, show-
ing that online ciphers are rather trivially constructed from tweakable
blockciphers, a notion of Liskov, Rivest, and Wagner. We go on to show
how to define and achieve online ciphers for settings in which messages
need not be a multiple of n bits.

Key words: Online ciphers, modes of operation, provable security, sym-
metric encryption, tweakable blockciphers.

1 Introduction

Background. Informally, a cryptographic transform is said to be online if
it can be computed by an algorithm that reads in the (unknown number of)
input bits—in order, one at a time—as it writes out the corresponding output
bits—again in order, one at a time—never using more than a constant amount of
memory or incurring more than a constant amount of latency.1 Most blockcipher
modes of operation are online—for example, modes like CBC, HMAC, and GCM
certainly are. But one kind of transformation is not online, and can never be
online: a general cipher [20], one secure in the customary sense of a PRP (a
pseudorandom permutation). Such objects take a key K and a plaintext M of
unbounded length and produce a ciphertext C of length |M |, doing so in such
a way that the mapping resembles a random permutation. EME2 is a soon-to-
be-standardized example [14]. The reason an online cipher can’t be PRP-secure
is simple: the first bit of output, for example, has got to depend on every bit
of input, else it is trivial to distinguish the cipher from a random permutation.
This requirement makes bounded memory, or latency, an impossibility.

One can weaken PRP security to capture what is possible in the online set-
ting. Bellare, Boldyreva, Knudsen, and Namprempre (BBKN) were the first to
do so, defining online ciphers [3]. The authors fix a parameter n (likely the
blocksize of some underlying blockcipher). They then demand that the i-th (n-
bit) block of ciphertext depend only on the first i blocks of plaintext (and, of

1 For online ciphers, two alternative formulations—one corresponding to the opening
sentence of the abstract, plus one other—will subsequently be described.

course, the key).2 BBKN did not explicitly demand that encryption and decryp-
tion be computable with constant memory and latency, but follow-on work by
Boldyreva and Taesombut strengthened BBKN’s definition in a way that ensures
this is so [9].

Like other kinds of ciphers, online ciphers can be secure in either the CPA
(chosen plaintext) or CCA (chosen ciphertext, or “strong”) sense, depending on
whether the adversary is given oracle access to the decryption (or “backwards”)
functionality as well as the encryption (or “forwards”) functionality. For online
ciphers it initially seemed as though CCA-security was harder to achieve than
CPA-security [3], but, at present, the most efficient CCA-secure construction
has essentially the same overhead as the most efficient CPA-secure one, needing
just one extra xor per block [22].

Online ciphers are useful tools. For example, BBKN demonstrate a simple
recipe for turning a CCA-secure online cipher into an authenticated-encryption
scheme (one prepends and appends a random value R ∈ {0, 1}n) [4]; Boldyreva
and Taesombut (following, Fouque Joux, Martinet, and Valette [10]) show how
to turn a CCA-secure online cipher into either an online encryption scheme se-
cure against “blockwise-adaptive” CCA attacks, or else an online authenticated-
encryption (AE) scheme likewise secure against BA-CCA attacks [9]; and Ama-
natidis, Boldyreva, and O’Neill describe the use of online ciphers to solve a
database-security problem [1].

Our contribution. In this paper we make two contributions. First, we recast
the constructions of BBKN [3, 4], plus a subsequent construction by Nandi [21,
22], into the language of tweakable blockciphers, a notion of Liskov, Rivest, and
Wagner [17]. The new starting point yields constructions more general and trans-
parent than those before. See Fig. 1. Second, we show how to relax the notion of
an online cipher to deal with messages that are not a multiple of n bits. Besides
definitions, we provide a simple and efficient construction to handle this set-
ting. Dealing with arbitrary-length inputs is a necessary precursor to practical
schemes, which we also describe.

Discussion. The original BBKN paper had fairly complex schemes and proofs [3].
Nandi found some bugs in these proofs and offered up his own [21, 22]. BBKN
corrected the issues in their proofs, which they regarded as minor, but the
proofs remain complex [4]. BBKN’s modes relied on xor-universal hash func-
tions, and subsequent work did too, or else doubled the number of blockcipher
calls [3, 4, 21, 22]. Our own constructions are simple, and they are natural gen-
eralizations of the existing schemes. The proofs are simple too. We do not re-
gard this simplicity as a defect. Without the tweakable-blockcipher abstraction,
constructions and proofs in this domain are not simple, as the above history
suggests.

The question of fractional final blocks was earlier asked by Nandi [22, p. 361].
Note that one cannot just say to pad to the next multiple of n (as suggested, for

2 It follows that the i-th block of plaintext will likewise depend only on the key and
the first i blocks of ciphertext.

TC1
10 algorithm EK(M)
11 if M �∈({0, 1}n)+ return ⊥
12 m← |M |/n; T ← 0n

13 for j ← 1 to m do
14 C[j]← ˜E T

K(M [j])
15 T ← C[j]
16 return C

EK
~EK

~ EK
~EK

~
0

M [1]

C [1] C [3]C [2] C [4]

M [4]M [3]M [2]

TC2

20 algorithm EK(M)
21 if M �∈({0, 1}n)+ return ⊥
22 m←|M |/n; T ← 02n

23 for j ← 1 to m do
24 C[j]← ˜E T

K(M [j])
25 T ←M [j] ‖ C[j]
26 return C

EK
~EK

~ EK
~EK

~0
0

M [1]

C [1] C [3]C [2] C [4]

M [4]M [3]M [2]

TC3
30 algorithm EK(M)
31 if M �∈({0, 1}n)+ return ⊥
32 m←|M |/n; T ← 0n

33 for j ← 1 to m do
34 C[j]← ˜E T

K(M [j])
35 T ←M [j]⊕ C[j]
36 return C

M [1]

C [1]

EK
~EK

~ EK
~EK

~~
0

C [3]C [2] C [4]

M [4]M [3]M [2]

Fig. 1. Modes TC1, TC2, and TC3. The first is a CPA-secure online cipher; the
next two are CCA-secure. Plaintexts must have a length divisible by n. In the diagrams,
the object ˜EK is a keyed tweakable blockcipher; the tweak comes in at left, the n-
bit input comes in at the top, and the n-bit output emerges from the bottom. TC1,
TC2, and TC3 simplify and generalize HCBC1 [3, 4], HCBC2 [4], and MHCBC [21, 22],
respectively.

example, by Bard [2, p. 134]). This doesn’t make sense definitionally, because
it leaves one without any notion for what it means to have an online-encipher
outside of ({0, 1}n)+, and it doesn’t make sense procedurally, because, if you
did pad and then encipher, you would no longer have a cipher at all (ciphers
preserve length).

Dealing with arbitrary-length inputs is important for efficiency: if we are
going to turn an online cipher into an authenticated-encryption scheme or a
blockwise-adaptive (BA) online encryption scheme, there will be ciphertext ex-
pansion if is forced to pad.

Correctly constructing arbitrary-input-length online ciphers would be diffi-
cult without the tweakable blockcipher abstraction. Liskov, Rivest, and Wagner
had argued that tweakable blockciphers would be useful tools for designing sym-
metric protocols [17]. Our results bolster this point of view.

Joux, Martinet, and Valette [15] implicitly argue that our notion of security
for online ciphers is not strong enough, since it treats the encryption operation as
“atomic,” not attending to attacks that, for example, select the second block of a
plaintext being encrypted based on the encryption of the first. We do not dispute
this insight, but nonetheless prefer not to deal with these blockwise-adaptive ad-
versarial attacks. First, enriching the security notion to allow for them hardly
changes things in the CPA-setting [11, Theorem 8]. Second, “atomic” online
ciphers are already useful for higher-level applications, as described above. Fi-
nally, “true” CCA security becomes impossible in the BA setting, leading to
more subtle definitions for what actually is achievable [9].

2 Preliminaries

Notation. A string is a member of {0, 1}∗. The notation A ‖ B, or just AB,
denotes the concatenation of strings A and B. If X is a string then |X| denotes
its length. The empty string is denoted ε. Throughout this paper we fix a positive
number n called the blocksize. The set ({0, 1}n)+ is the set of all strings having
length jn for some j ≥ 1. If X ∈ ({0, 1}n)+ we let X[i] denotes its ith n-bit
block, soX = X[1] · · ·X[m] wherem = |X|/n. We will later extend this notation
to the case when X is not a multiple of n bits. We write X[i..j] for X[i] · · ·X[j].

Ciphers. A map f : X → X for X ⊆ {0, 1}∗ is a length-preserving function if
|f(x)| = |x| for all x ∈ {0, 1}∗. It is a length-preserving permutation if it is also
a permutation. A cipher is a map Ẽ: K ×M→M where K is a nonempty set
(finite or otherwise endowed with some distribution),M⊆ {0, 1}∗ is a nonempty
set, and EK = E(K, ·) is a length-preserving permutation for all K ∈ K. The
set K is called the key space andM is called the message space. If E : K×M→
M is a cipher then its inverse is the cipher E−1: K × M → M defined by
E−1(K,Y) = E−1K (Y) being the unique point X such that EK(X) = Y .

Blockciphers and tweakable blockciphers. A blockcipher is a function
E: K × {0, 1}n → {0, 1}n where K is a finite nonempty set and EK(·) = E(K, ·)
is a permutation on {0, 1}n for every K ∈ K. Equivalently, a blockcipher is
a cipher with message space M = {0, 1}n. A tweakable blockcipher is a func-
tion Ẽ: K × T × {0, 1}n → {0, 1}n where K is a finite nonempty set and T is
a nonempty set (the tweak space) and ẼT

K(·) = Ẽ(K,T, ·) is a permutation
on {0, 1}n for every K ∈ K, T ∈ T .

Let Perm(n) be the set of all permutations on n bits, Perm(M) be the
set of all length-preserving permutations on the finite set M ⊆ {0, 1}∗, and
Perm(T , n) the set of all functions π: T ×{0, 1}n → {0, 1}n where πT (·) = π(T, ·)
is a permutation for each T ∈ T . We may regard Perm(n), Perm(M), and
Perm(T , n) as blockciphers, ciphers, and tweakable blockciphers, respectively;
they are the ideal blockcipher on n bits, the ideal cipher on M, and the ideal
tweakable blockcipher on n bits and tweak space T . When an adversary A is
run with an oracle O we let AO⇒ 1 denote the event that A outputs 1. Define

the prp, ±prp, p̃rp, and ±p̃rp advantage of A against E or Ẽ by:

Advprp
E (A) = Pr[K

$←K : AEK ⇒ 1]−Pr[π
$← Perm(n) : Aπ⇒ 1]

Adv±prpE (A) = Pr[K
$←K : AEK ,E−1

K ⇒ 1]−Pr[π
$← Perm(n) : Aπ,π−1 ⇒ 1]

Advp̃rp

Ẽ
(A) = Pr[K

$←K : AẼK ⇒ 1]−Pr[π
$← Perm(T , n) : Aπ⇒ 1]

Adv±p̃rp
Ẽ

(A) = Pr[K
$←K : AẼK , Ẽ−1

K ⇒ 1]−Pr[π
$← Perm(T , n) : Aπ, π−1 ⇒ 1]

Online ciphers. A length-preserving function f : ({0, 1}n)+ → ({0, 1}n)+ is
online if, for all i, f(X)[1..i] depends only on X[1..i]. Here we say that f(X)[1..i]

depends only on X[1..i] if f(XY)[1..i] = f(XY ′)[1..i] for all X ∈ {0, 1}in
and Y, Y ′ ∈ {0, 1}∗ where f(XY) and f(XY ′) are defined. A cipher E : K ×
({0, 1}n)+ → ({0, 1}n)+ is online if each EK is. Let Online(n): K× ({0, 1}n)+ →
({0, 1}n)+ be the ideal online cipher on n bits: each key names one of the pos-
sible online ciphers, the set being given the uniform distribution in the natural
way. If E : K× ({0, 1}n)+ → ({0, 1}n)+ is an online cipher and A is an adversary
we define:

Advoprp
E (A) = Pr[K

$←K : AEK ⇒ 1]−Pr[π
$←Online(n) : Aπ⇒ 1]

Adv±oprpE (A) = Pr[K
$←K : AEK , E−1

K ⇒ 1]−Pr[π
$←Online(n) : Aπ, π−1 ⇒ 1]

We comment that the definitions allow variable-input-length (VIL) attacks: the
adversary may ask queries of varying lengths. On the other hand, definitions
only countenance ciphers onM = ({0, 1}n)+, and it is not obvious what to do
beyond this domain, Online(n) being quite specific to it.

Discussion. The notion for an online cipher just given, taken from BBKN [3],
can be criticized for not prohibiting, for example, that that computation of
C[m] requires one to retain all of M [1] · · ·M [m]. A stronger notion appears
in Boldyreva and Taesombut [9], the definition asserting that C[i] may only
depend on M [i], M [i− 1], C[i− 1], and the underlying key. We believe that this
requirement does not make for a desirable security definition: the cipher in which
each C[i] is a random permutation of M [i], tweaked by M [i−1]‖C[i−1], ought
not to be regarded ideal, since one can easily do better and still, intuitively, be
“online.” Still, our constructions enjoy the BT-style locality property, ensuring
that they can be implemented with constant latency and memory.

An alternative notion for an online cipher would capture the intuition from
the opening paragraph of this paper, saying that a cipher E : K ×M → M is
Online[m] if it can be implemented by an algorithm that is fed in bits one at a
time, and that retains just m bits of state. This would natively handle ciphers
on arbitrary bit strings. We leave it as an open question to explore these ideas.

3 Online Ciphers Achieving CPA-Security

Let Ẽ: K × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable blockcipher. From this

primitive we define a cipher E =TC1[Ẽ] with key space K and message space

M = ({0, 1}n)+. See Fig. 1. The construction is online CPA-secure, as formalized
below.

Theorem 1 (TC1 is oprp-secure). Let π̃ = Perm({0, 1}n, n). If A asks
queries having at most σ blocks then Advoprp

TC1[π̃](A) ≤ 1.5σ2/2n.

We omit the proof because we will in a moment be proving, by analogous but
slightly more involved means, what is essentially a stronger result: online CCA-
security for the equally efficient cipher TC3. The complexity-theoretic analog
for the theorem, using a “real” tweakable PRP Ẽ instead of the ideal tweakable
PRP π̃, follows by standard techniques. One would need Ẽ to be secure in the
prp-sense. We omit the theorem statement, showing later how it would look for
scheme TC3.

Mechanism TC1 is a generalization of BBKN’s mode of operation HCBC1 [4]
(formerly named HCBC [3]); the latter can be realized as a special case of TC1
by selecting the tweakable blockcipher Ẽ: (K1 × K2) × {0, 1}n → {0, 1}n to
be ẼT

K1 K2(X) = EK1(M ⊕ HK2(T)) where H: K2 × {0, 1}n → {0, 1}n is an
almost-xor universal hash function and E is a blockcipher.3 This is in fact the
“standard” construction of a tweakable blockcipher from an ordinary one [17].
Of course one can instantiate the tweakable blockcipher Ẽ from an ordinary
blockcipher E in a variety of other ways as well. We comment that TC1 can also
be regarded as Liskov, Rivest, and Wagner’s “tweak block chaining” mode [17,
Section 4] but with a zero IV.

Note that TC1 is not a secure online cipher with respect to CCA attacks. A
simple attack is as follows. The adversary makes a decryption query of C ‖C ‖C
for any C ∈ {0, 1}n. The oracle returns M1 ‖M2 ‖M3 as the reply. If M2 = M3,
return 1; otherwise, return 0. Under the TC1 construction, one will always have
that M2 = M3, but with a random on-line cipher this will rarely be true.

4 Online Ciphers Achieving CCA-Security

Let Ẽ: K × {0, 1}2n × {0, 1}n → {0, 1}n be a tweakable blockcipher. From this

primitive we define a cipher E =TC2[Ẽ] with key space K and message space
M = ({0, 1}n)+. Again see Fig. 1. The construction is CCA-secure, as formalized
below.

Theorem 2 (TC2 is ±oprp-secure). Let π̃ = Perm({0, 1}2n, n). If A asks
queries having at most σ blocks then Adv±oprpTC2[π̃](A) ≤ 1.5σ2/2n.

We again omit the proof, and the complexity-theoretic analog, which would this
time need the ±p̃rp assumption, preferring, for concision, to do this just for
TC2’s more efficient cousin, TC3.

3 We recall the definition, due to Krawczyk [16], that H: K2×X → {0, 1}n is ε-almost
XOR universal (ε-AXU) if for all distinct X,X ′ ∈ X and all C ∈ {0, 1}n we have that

Pr[HK(X)⊕HK(X ′) = C] ≤ ε, the probability over K
$←K2. Simple constructions

achieve ε = 2−n, the minimum value possible.

Mechanism TC2 is a generalization of BBKN’s mode HCBC2 [4] (formerly
named HPCBC), which can be regarded as TC2 with a tweakable blockcipher
Ẽ: (K1×K2)×{0, 1}n → {0, 1}n of ẼT

K1 K2(X) = EK1(M⊕HK2(T))⊕HK2(T)

where H: K2 × {0, 1}2n → {0, 1}n is an almost-xor universal hash function and
E is a blockcipher. This is also the “standard” construction of a strong tweakable
blockcipher from an ordinary one [17].

We are now ready to consider TC3. Let Ẽ: K×{0, 1}n×{0, 1}n → {0, 1}n be a

tweakable blockcipher. From this primitive define the online cipher E =TC3[Ẽ]
with key space K and message space M = ({0, 1}n)+. Again see Fig. 1. The
construction is CCA-secure, as formalized below.

Theorem 3 (TC3 is ±oprp-secure). Let π̃ = Perm({0, 1}n, n). If A asks
queries having at most σ blocks then Adv±oprpTC3[π̃](A) ≤ 1.5σ2/2n.

The idea of the proof is to “give up”—regard the adversary as having won—if
we ever generate a “new” tweak that collides with any prior one.

Proof. Without loss of generality we can assume that A is deterministic and
makes queries totaling exactly σ blocks. We can further assume that it never
repeats an encryption query, never repeats a decryption query, never asks a de-
cryption query of a value that it earlier received from an encryption query, and
never asks an encryption query of a value that it earlier received from a decryp-
tion query. For strings X, X1, . . . , XI ∈ ({0, 1}n)∗, let find(X; X1, . . . , XI) be
the unique pair of numbers (ı, �) for which X and Xı share a common prefix
X[1..�] = Xı[1..�], no Xj (j ∈ [1..I]) shares a longer common prefix with X
(X[1..� + 1] = Xj[1..� + 1]), and ı is the smallest index in [1..I] for which the
above is true. If X = ε define find(X; X1, . . . , XI) = (0, 0). By way of examples,
if a, b, c ∈ {0, 1}n are distinct blocks then find(abca; abaa, abcb, abcc) = (2, 3),
find(abca; a, abc, abcab) = (3, 4), and find(abca; bbab, cba, b) = (1, 0).

We employ the code-based games [6] shown in Fig. 2. Booleans are silently
initialized to false and integers to 0. The one variable that is a set, T , is silently
initialized to {0n}. (This is done because T will be used to record the set of
tweaks that have been utilized and, in effect, 0n is a tweak that is always used—
it is used in processing each query’s first block.) Partial functions πx (where
x ∈ {0, 1}∗) are, initially, everywhere undefined. As they grow we refer to their
current domain and range by domain(πx) and range(πx). We write codomain(πx)
and corange(πx) for the complements relative to {0, 1}n.

We begin Fig. 2 with game G1, which precisely emulates the TC3 construc-
tion with the ideal tweakable blockcipher Ẽ. We end with game G6, which
precisely emulates the ideal online cipher. Thus we have that Advoprp

Ẽ
(A) =

Pr[GA1 ⇒ 1] − Pr[GA6 ⇒ 1]. Games G2, G3, G4, and G5 are hybrid games in
between these two extremes, and we bound the Pr[GA1 ⇒ 1] − Pr[GA6 ⇒ 1] as∑

1≤j≤5
(
Pr[GAj ⇒ 1]− Pr[GAj+1⇒ 1]

)
.

Passing from games G1 to G2 is just the usual approach of lazy sampling [6];
the games G1 and G2 are adversarially indistinguishable. By the game-playing
lemma, Pr[GA2 ⇒1]−Pr[GA3 ⇒1] is at most the probability that game A manages

100 procedure E(M)
101 m← |M |/n; (ı, �)← find(M ; M1, ...,Mi)
102 C[1..�]← Cı[1..�]
103 for j ← � + 1 to m do
104 if j = 1 then t← 0n

105 else t←M [j − 1]⊕ C[j − 1];
106 C[j]← πt(M [j])
107 i← i + 1; (Mi, Ci)← (M,C)
108 return C

150 procedure D(C)
151 m← |C|/n; (ı, �)← find(C; C1, ..., Ci)
152 M [1..�]← Mı[1..�]
153 for j ← � + 1 to m do
154 if j = 1 then t← 0n

155 else t← M [j − 1]⊕ C[j − 1];

156 M [j]← π−1
t (C[j])

157 i← i + 1; (Mi, Ci)← (M,C)
158 return M Game G1

200 procedure E(M)
201 m← |M |/n; (ı, �)← find(M ; M1, ...,Mi)
202 C[1..�]← Cı[1..�]
203 for j ← � + 1 to m do
204 if j = 1 then t← 0n

205 else t←M [j − 1]⊕ C[j − 1];
206 x←M [j]
207 if x ∈ domain(πt) then
208 bad1 ← true;

[
C[j]← πt(x);next

]

209 y
$← {0, 1}n

210 if y ∈ range(πt) then

211 bad2 ← true;
[
y

$← corange(πt)
]

212 πt(x)← y; C[j]← y; t← x⊕ y
213 if t ∈ T then bad3 ← true
214 T ← T ∪ {t}
215 i← i + 1; (Mi, Ci)← (M,C)
216 return C

250 procedure D(C)
251 m← |C|/n; (ı, �)← find(C; C1, ..., Ci)
252 M [1..�]←Mı[1..�]
253 for j ← � + 1 to m do
254 if j = 1 then t← 0n

255 else t←M [j − 1]⊕ C[j − 1];
256 y ← C[j]
257 if y ∈ range(πt) then

258 bad1 ← true;
[
M [j]← π−1

t (y);next
]

259 x
$← {0, 1}n

260 if x ∈ domain(πt) then

261 bad2 ← true;
[
x

$← codomain(πt)
]

262 πt(x)← y; M [j]← x; t← x⊕ y
263 if t ∈ T then bad3 ← true
264 T ← T ∪ {t}
265 i← i + 1; (Mi, Ci)← (M,C)

[
Game G2

]
266 return M Game G3

300 procedure E(M)
301 m← |M |/n; (ı, �)← find(M ; M1, ...,Mi)
302 C[1..�]← Cı[1..�]

303 for j ← � + 1 to m do C[j]
$← {0, 1}n

304 i← i + 1; (Mi, Ci)← (M,C)
305 return C

350 procedure D(C)
351 m← |C|/n; (ı, �)← find(C; C1, ..., Ci)
352 M [1..�]← Mı[1..�]

353 for j ← � + 1 to m do M [j]
$← {0, 1}n

354 i← i + 1; (Mi, Ci)← (M,C)
355 return M Game G4

400 procedure E(M)
401 m← |M |/n; (ı, �)← find(M ; M1, ...,Mi)
402 C[1..�]← Cı[1..�]
403 for j ← � + 1 to m do

404 P←M [1..j − 1]; x←M [j]; y
$← {0, 1}n

405 if y ∈ range(πP) then

406 bad ← true;
[
y

$← corange(πP)
]

407 πP (x)← y; C[j]← y
408 i← i + 1; (Mi, Ci)← (M,C)
409 return C

450 procedure D(C)
451 m← |C|/n; (ı, �)← find(C; C1, ..., Ci)
452 M [1..�]← Mı[1..�]
453 for j ← � + 1 to m do

454 P ← M [1..j − 1]; y ← C[j]; x
$← {0, 1}n

455 if x ∈ domain(πP) then

456 bad ← true;
[
x

$← codomain(πP)
]

457 πP (x)← y; M [j]← x
458 i← i + 1; (Mi, Ci)← (M,C) Game G5

459 return M
[
Game G6

]

Fig. 2. Games used in the proof of Theorem 3. Game G2 includes the brack-
eted statements while game G3 does not. Similarly, game G6 includes the bracketed
statements while game G5 does not.

to set one of the badj variables in game G3. The crux of the proof is the following
observation:

Claim: Every execution of game G3 that sets flag bad1 also sets flag bad3.

In fact, flag bad3 was introduced as a trick for bounding the probability that
bad1 gets set. The proof of the claim is as follows. Suppose we are executing
adversary A with game G2 and, at some point in time it happens that, at
line 207, we have x ∈ domain(πt), so that bad1 will get set in the following
line. Fix the current values M , m, (ı, �), C[1..�], t, and x. Now x belonging to
domain(πt) means that some triple (t, x, y) was already added into the set of
triples that constitute the partial function π (that is, (t, x, y) is “in” π if we
have set πt(x) = y). This triple had to have been added to π at some earlier
execution of line 212 or 262. We distinguish two possibilities: (t, x, y) is the only
triple in π with this t-value; or else there are, already, at least two distinct triples
(t, x, y), (t, x′, y′) with this particular t-value. In the latter case, when we added
the temporally second of these two triples into π we checked, at line 213 or 263,
if t was already in T . It would have been, so bad3 would already have been set.
What remains is the case that (t, x, y) is the only triple in π with the given
value t. Focus on the fact that M [1] · · ·M [�] matches Mı[1] · · ·Mı[�]. Now if the
latter string is all of Mı then there were two prior times that t was generated:
one is when (t, x, y) got added to π, and another is when the final t-value was
generated in response to the ı-th query—that is, when we executed the final
statement at line 212 or 262. The temporally second of these t-producing events
would have resulted in production of a t that was already in T and bad3 would
have been set. If, instead, M [1] · · ·M [�] = Mı[1] · · ·Mı[�] and Mı continues with
at least one nonempty blockMı[�+1], then we know thatM [�+1] �= Mı[�+1] and
the one and only triple in π with the given t-value must be (t,Mı[�+1], Cı[�+1]),
so x = M [�+ 1] �= Mı[�+ 1] could not have caused line 207 to evaluate to true.

The case where bad1 gets set on a decryption query, at line 258, is symmetric
with the paragraph above: again bad3 will already have been set. This completes
the proof of the claim. �

Continuing, we now know that Pr[bad1 ∧ bad2 ∧ bad3] = Pr[bad2 ∧ bad3],
which is at most Pr[bad2] + Pr[bad3]. The first probability is at most 0.5σ(σ −
1)/2n and the second is at most 0.5σ(σ + 1)/2n (recall that T was initially
seeded with a point). We thus have that Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1] ≤ σ2/2n.

Games G3 and G4 are easily seen to be adversarially indistinguishable; we
have simply eliminated the pointless code. Games G4 and G5 are adversarially
indistinguishable; here we are introducing using lazy sampling. Passing from G5

to G6 can be regarded as a form of the PRP/PRF switching lemma (cf. [4,
Lemma 3.7]) and the probability that bad gets set to true in game G6 is at most
0.5σ2/2n. The theorem now follows.

The complexity-theoretic analog easily follows. This time, we show how the
theorem looks.

Corollary 1 (TC3 is ±oprp-secure). Let Ẽ: K×{0, 1}n×{0, 1}n → {0, 1}n
be a tweakable blockcipher. Let A be an adversary that runs in time t and asks
queries totaling at most σ blocks. Then there exists an adversary B such that
Advp̃rp

TC3[Ẽ](B) ≥ Advoprp
E (A)− 1.5σ2/2n. Adversary B runs in time at most

t+ cnσ, for some absolute constant c, and asks at most σ queries.

Mode TC3, beyond being a natural simplification to the generalization to mode
HCBC2 [4], is a generalization of Nandi’s mode MHCBC [22]; the latter can be
realized as a special case of TC3 by selecting the tweakable blockcipher Ẽ: (K1×
K2)×{0, 1}n → {0, 1}n to be ẼT

K1 K2(X) = EK1(M⊕HK2(T))⊕HK2(T) where
H: K2 × {0, 1}n → {0, 1}n is an almost-xor universal hash function and E is a
blockcipher [17].

5 Online Ciphers for Arbitrary-Length Strings

We start out by extending the notation M [i] so that, for each nonempty stringM
we have that M = M [1] · · ·M [m− 1]M [m] where m = |M |/n�, |M [i]| = n for
all 1 ≤ i ≤ m − 1, and n ≤ |M [m]| ≤ 2n − 1. In other words, when M is not a
multiple of n bits its final block M [m] is chosen to be long, having between n+1
and 2n− 1 bits. All other blocks remain n-bits in length. With this notation in
hand we define Online∗(n) to be the set of all length-preserving permutations
π : {0, 1}∗ → {0, 1}∗ such that π(M [1] · · ·M [i]) depends only on M [1] · · ·M [i]
(for all i ≥ 1). This set can be regarded as an idealized cipher, just like Perm(n)
and Online(n). Now if E : K × {0, 1}∗ → {0, 1}∗ is an online cipher and A is
an adversary we can extend our prior definitions by using Online∗(n) in our
reference experiment:

Advoprp
E (A) = Pr[K

$←K : AEK ⇒ 1]−Pr[π
$←Online∗(n) : Aπ⇒ 1]

Adv±oprpE (A) = Pr[K
$←K : AEK , E−1

K ⇒ 1]−Pr[π
$←Online∗(n) : Aπ, π−1 ⇒ 1]

There is an alternative notion of security where, whenM is not a multiple of n
bits, the final block is short (having 1 to n−1 bits) instead of long (having n+1
to 2n− 1 bits). There are problems with this alternative notion. First, it is too
weak. If the adversary learns C = EK(X ‖0), where X ∈ ({0, 1}n)+, then it also
knows C ′ = EK(X ‖1), which is just C with its final bit flipped. Second, despite
this alternative notion being weak, instantiations are hard. This is because it is
not known how to construct from an n-bit blockcipher an efficient and provably-
secure cipher, with good bounds, for arbitrary input lengths less than n; see the
literature on “format-preserving encryption” for a discussion of this problem [5].
While this short-string enciphering problem cannot be avoided if the original
message M has fewer than n bits, there is no need to deal with it when |M | has
more than n bits, which, in applications, is likely to be most or all the time.

Now turning to constructions, let Ẽ: K×{0, 1}n×{0, 1}≤2n−1 → {0, 1}≤2n−1
be a tweakable cipher. From this primitive define the online cipher E = TC3∗[Ẽ]
with key space K and message spaceM = {0, 1}∗. See Fig. 3. The construction
is CCA-secure, as formalized below. We will take up in the next section how one
constructs a tweakable cipher with message space {0, 1}≤2n−1.

TC3∗

40 algorithm EK(M)
41 if M = ε then return ε
42 m←
|M |/n�; T ← 0n

43 for j ← 1 to m− 1 do
44 C[j]← ˜E T

K(M [j])
45 T ←M [j]⊕C[j]
46 C[m]← ˜E T

K(M [m])
47 return C

M [1]

C [1]

EK
~EK

~ EK
~EK

~~
0

C [3]C [2] C [4]

M [4]M [3]M [2]

Fig. 3. Mode TC3∗. The CCA-secure online cipher now takes an input of arbitrary
bit length, but it depends on a richer primitive than does TC3: we start with a cipher
˜E: {0, 1}≤2n−1 → {0, 1}≤2n−1. The block input to ˜E is “usually” n bits, but a single
long-block call (up to 2n − 1 bits) will be used when |M | ≥ n and n doesn’t divide
|M |, while a single short-block call will be needed if |M | < n.

Theorem 4 (TC3∗ is ±oprp-secure). Let π̃ = Perm({0, 1}≤2n−1). If A asks
queries having at most σ blocks then Adv±oprpTC3∗[π̃](A) ≤ 1.5σ2/2n.

We omit the proof since it is almost the same as that for Theorem 3.

6 Instantiating the Schemes

Let us consider how to instantiate TC3 starting from a conventional (instead of
a tweakable) blockcipher E: {0, 1}k × {0, 1}n → {0, 1}n. The simplest and most
natural solution is to create the tweakable blockcipher by way of Ẽ T

K(X) =
EK1

(X ⊕Δ)⊕Δ where Δ = T ·K2 and K = K1 ‖K2 for |K1| = k and |K2| = n.
Here multiplication, T ·K2, is in GF(2n), representing field points as n-bit strings
in the usual way. We know that Ẽ: K × {0, 1}n × {0, 1}n → {0, 1}n will be a
CCA-secure tweakable PRP as long as E is a CCA-secure conventional PRP; this
is the well-known construction from Liskov, Rivest, and Wagner [17, Theorem 2],
together with the fact that multiplication in GF(2n)—that is, HK(X) = K ·X—
is a 2−n-AXU hash function.

The above construction is quite efficient, involving one blockcipher invoca-
tion and one GF(2n) multiply for each message block. This is comparable to
the work involved with the authenticated-encryption scheme GCM [19], which
has, for example, been implemented by Gueron and Kounavis to run as fast as
3.54 cycles per byte [13] (on Intel processors supporting AES and PCLMULQDQ
assembly instructions). This timing figure, however, would overestimate the ex-
pected speed of TC3, on similar hardware, since the blockcipher chaining in TC3
will decrease instruction-level parallelism.

Following Boldyreva and Taesombut, TC3 can be augmented, with little over-
head, to provide a solution to the problem of blockwise-adaptive CCA-secure
authenticated-encryption [9]. Doing so would give an AE scheme with efficiency
roughly comparable to GCM but provably achieving a useful security property
that GCM does not achieve.

Instantiating TC3∗ from a conventional blockcipher is more involved than
instantiating TC3, as now we need a map Ẽ : K × {0, 1}n × {0, 1}≤2n−1 →
{0, 1}≤2n−1. Actually our tweakable cipher will not have to deal with messages
having fewer than n bits unless the higher-level construction E is itself asked
to encipher messages of fewer than n bits, so let us put this case aside. Our
problem then is to create from an ordinary n-bit blockcipher E a VIL-secure
tweakable cipher that can encipher messages of n to 2n − 1 bits. Fortunately
there are some ready solutions to this problem. Four or more rounds of Feistel
would be the classical approach [18]. One would use a blockcipher-based, tweak-
dependent round function. A different possibility is the EME2 cipher (formerly
named EME∗) of Halevi [14]; the mechanism was recently approved as the IEEE
standard P1619.2-2010. The scheme is simple, provably secure, and, using five
blockcipher calls and a modest amount of additional overhead, provides a tweak-
able and VIL cipher over the domain that we need. More efficient still would be
the XLS construction of Ristenpart and Rogaway [24]. This can encipher strings
of n+ 1 to 2n− 1 bits using three blockcipher calls and very little extra work.4

Enciphering strings of fewer than n bits takes special techniques. One pro-
posal is FFX [7], which uses a conventional, unbalanced, or alternating Feistel
network on these small domains. We note that if one is going to deal with short
final blocks by a patchwork of techniques, one for strings in {0, 1}≤n−1 and one
for other strings that are not a multiple of n bits, it is important to use distinct
keys, or to use other techniques, to provably ensure VIL security.

Acknowledgments

Many thanks for the perceptive comments from the anonymous referees. Our
apologies that we have not expanded on points where this ought be done.

The authors gratefully acknowledge the support of NSF grant CNS 0904380.

References

1. G. Amanatidis, A. Boldyreva, and A. O’Neill. Provably-secure schemes for basic
query support in outsourced databases. Working Conference on Data and Appli-
cations Security (DBSec 2007), LNCS vol. 4602, Springer, pp. 14–30, 2007.

2. G. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext attack on
SSL. SECRYPT 2006, International Conference on Security and Cryptography,
INSTICC Press, pp. 99–109, 2006.

3. M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-line ciphers and
the hash-CBC constructions. CRYPTO 2001, LNCS vol. 2139, Springer, pp. 292–
309, 2001.

4 In fact, none of the methods just surveyed was designed specifically to create a
tweakable cipher with n-bit tweaks and a message space of n to 2n − 1 bits. With
this limited goal in mind we believe that provably-good methods related to those of
Naor-Reingold [23] will give a cipher needing just two blockcipher calls for strings
of n+ 1 to 2n− 1 bits.

4. M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-line ciphers and
the hash-CBC constructions. Cryptology ePrint report 2007/197, June 29, 2007.
Full version of [3].

5. M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format preserving en-
cryption. Selected Areas in Cryptography, SAC 2009. LNCS vol. 5867, Springer,
pp. 295–312, 2009.

6. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of
triple encryption. EUROCRYPT 2006, LNCS vol. 4004, Springer, pp. 409–426,
2006.

7. M. Bellare, P. Rogaway, and T. Spies. The FFX mode of operation for format-
preserving encryption (draft 1.1). NIST submission, February 2010. See also the
addendum (September 2010) by the same authors.

8. D. Bernstein and P. Schwabe. New AES software speed records. INDOCRYPT
2008, LNCS vol. 5365, Springer, pp. 322–336, 2008.

9. A. Boldyreva and N. Taesombut. Online encryption schemes: new security notions
and constructions. CT-RSA 2004, LNCS vol. 2964, Springer, pp. 1–14, 2004.

10. P. Fouque, A. Joux, G. Martinet, and F. Valette. Authenticated on-line encryption.
SAC 2003, LNCS vol. 3006, Springer, pp. 145–159, 2003.

11. P. Fouque, A. Joux and G. Poupard. Blockwise adversarial model for on-line ci-
phers and symmetric encryption schemes. SAC 2004, LNCS vol. 3357, Springer,
pp. 212–226, 2004.

12. P. Fouque, G. Martinet, G. Poupard. Practical symmetric on-line encryption.
FSE 2003, LNCS vol. 2887, Springer, pp. 362–375, 2003.

13. S. Gueron and M. Kounavis. Intel carry-less multiplication instruction and its
usage for computing the GCM mode (revision 2). White paper, available at
www.intel.com. May 2010.

14. S. Halevi. EME∗: extending EME to handle arbitrary-length messages with asso-
ciated data. INDOCRYPT 2004, LNCS vol. 3348, Springer, pp. 315–327, 2004.

15. A. Joux, G. Martinet, and F. Valette. Blockwise-adaptive attackers: revisiting
the (in)security of some provably secure encryption models: CBC, GEM, IACBC.
CRYPTO 2002, LNCS vol. 2442, Springer, pp. 17–30, 2002.

16. H. Krawczyk. LFSR-based hashing and authentication. CRYPTO 1994, LNCS
vol. 839, Springer, pp. 129–139, 1994.

17. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. CRYPTO 2002,
LNCS vol. 2442, Springer, pp. 31–46, 2002.

18. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal of Computing, 17(2), pp. 373–386, 1988.

19. D. McGrew and J. Viega. The security and performance of the Galois/counter
mode (GCM) of operation. INDOCRYPT 2004, LNCS vol. 3348, Springer,
pp. 343–355, 2004.

20. C. Meyer and M. Matyas. Cryptography: A New Dimension in Data Security. John
Wiley & Sons, New York, 1982.

21. M. Nandi. A simple security analysis of Hash-CBC and a new efficient one-key
online cipher. Cryptology ePrint report 2007/158. May 7, 2007.

22. M. Nandi. Two New Efficient CCA-secure online ciphers: MHCBC and MCBC.
INDOCRYPT 2008, LNCS vol. 5365, Springer, pp. 350–362, 2008. Also Cryptology
ePrint report 2008/401, September 20, 2008.

23. M. Naor and O. Reingold. On the construction of pseudorandom permutations:
Luby-Rackoff revisited. Journal of Cryptology, 12(1), pp. 29–66, 1999.

24. T. Ristenpart and P. Rogaway. How to enrich the message space of a cipher.
FSE 2007, LNCS vol. 4593, pp. 101–118, 2007.

