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Abstract
Web applications typically interact with a back-end database to re-
trieve persistent data and then present the data to the user as dy-
namically generated output, such as HTML web pages. However,
this interaction is commonly done through a low-level API by dy-
namically constructing query strings within a general-purpose pro-
gramming language, such as Java. This low-level interaction is ad
hoc because it does not take into account the structure of the output
language. Accordingly, user inputs are treated as isolated lexical
entities which, if not properly sanitized, can cause the web applica-
tion to generate unintended output. This is called a command injec-
tion attack, which poses a serious threat to web application security.
This paper presents the first formal definition of command injec-
tion attacks in the context of web applications, and gives a sound
and complete algorithm for preventing them based on context-free
grammars and compiler parsing techniques. Our key observation is
that, for an attack to succeed, the input that gets propagated into
the database query or the output document must change the in-
tended syntactic structure of the query or document. Our definition
and algorithm are general and apply to many forms of command
injection attacks. We validate our approach with SQLCHECK, an
implementation for the setting of SQL command injection attacks.
We evaluated SQLCHECK on real-world web applications with sys-
tematically compiled real-world attack data as input. SQLCHECK
produced no false positives or false negatives, incurred low run-
time overhead, and applied straightforwardly to web applications
written in different languages.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Reliability, Validation; D.3.1
[Programming Languages]: Formal Definitions and Theory—
Syntax; F.4.2 [Mathematical Logic and Formal Languages]: Gram-
mars and Other Rewriting Systems—Parsing, Grammar Types

General Terms Algorithms, Experimentation, Languages, Relia-
bility, Security, Verification

Keywords command injection attacks, web applications, gram-
mars, parsing, runtime verification

1. Introduction
Web applications are designed to present to any user with a web
browser a system-independent interface to some dynamically gen-
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erated content. They are ubiquitous. For example, when a user
logs on to his bank account through a web browser, he is using
a web database application. These applications normally interact
with databases to access persistent data. This interaction is com-
monly done within a general-purpose programming language, such
as Java, through an application programming interface (API), such
as JDBC. A typical system architecture for applications is shown in
Figure 1. It is normally a three-tiered architecture, consisting of a
web-browser, an application server, and a back-end database server.
Within the underlying general-purpose language, such an applica-
tion constructs database queries, often dynamically, and dispatches
these queries over an API to appropriate databases for execution. In
such a way, a web application retrieves and presents data to the user
based on the user’s input as part of the application’s functionality;
it is not intended to be simply an interface for arbitrary interaction
with the database.

However, if the user’s input is not handled properly, serious se-
curity problems can occur. This is because queries are constructed
dynamically in an ad hoc manner through low-level string manip-
ulations. This is ad hoc because databases interpret query strings
as structured, meaningful commands, while web applications often
view query strings simply as unstructured sequences of characters.
This semantic gap, combined with improper handling of user input,
makes web applications susceptible to a large class of malicious at-
tacks known as command injection attacks.

We use one common kind of such attacks to illustrate the prob-
lem, namely the SQL command injection attacks (SQLCIA). An
SQLCIA injection attack occurs when a malicious user, through
specifically crafted input, causes a web application to generate and
send a query that functions differently than the programmer in-
tended. For example, if a database contains user names and pass-
words, the application may contain code such as the following:

query = "SELECT * FROM accounts WHERE name=’"
+ request.getParameter("name")
+ "’ AND password=’"
+ request.getParameter("pass") + "’";

This code generates a query intended to be used to authenticate a
user who tries to login to a web site. However, if a malicious user
enters “badguy” into the name field and “’OR’ a’=’a” into the
password field, the query string becomes:

SELECT * FROM accounts WHERE
name=’badguy’ AND password=’’ OR ’a’=’a’

whose condition always evaluates to true, and the user will bypass
the authentication logic.

Command injection vulnerabilities continue to be discovered on
large, real-world web applications [37], and the effects can be se-
vere. A recent news article [23] told about a major university whose
student-application login page had a vulnerability much like the
example shown above. Using appropriate input, an attacker could
retrieve personal information about any of the hundreds of thou-



Figure 1. A typical system architecture for web applications.

sands of that school’s applicants. The university had to notify every
applicant whose records were in the database about the possibility
that the applicant was now the victim of identity theft. This conse-
quence was both an expense and a blow to public relations for the
university.

The problem goes beyond simply failing to check input that
is incorporated into a query. Even web applications that perform
some checks on every input may be vulnerable. For example, if
the application forbids the use of the single-quote in input (which
may prevent legitimate inputs such as “O’Brian”), SQLCIAs may
still be possible because numeric literals are not delimited with
quotes. The problem is that web applications generally treat input
strings as isolated lexical entities. Input strings and constant strings
are combined to produce structured output (SQL queries) without
regard to the structure of the output language (SQL).

A number of approaches to dealing with the SQLCIA problem
have been proposed, but to the best of our knowledge, no formal
definition for SQLCIAs has been given. Consequently, the effec-
tiveness of these approaches can only be evaluated based on ex-
amples, empirical results, and informal arguments. This paper fills
that gap by formally defining SQLCIAs and presenting a sound and
complete algorithm to detect SQLCIAs using this definition com-
bined with parsing techniques [1].

This paper makes the following contributions:

• A formal definition of a web application, and in that context the
first formal definition of an SQLCIA.

• An algorithm for preventing SQLCIAs, along with proofs of its
soundness and completeness. Both the definition and the algo-
rithm apply directly to other settings that generate interpreted
output (see Section 4).

• An implementation, SQLCHECK, which is generated from
lexer- and parser-generator input files. Thus SQLCHECK can
be modified for different dialects of SQL or different choices of
security policy (see Section 3.1) with minimal effort.

• An empirical evaluation of SQLCHECK on real-world web ap-
plications written in PHP and JSP. Web applications of differ-
ent languages were used to evaluate SQLCHECK’s applicabil-
ity across different languages. In our evaluation, we used lists
of real-world attack- and legitimate-data provided by an inde-
pendant research group [13], in addition to our own test data.
These lists were systematically compiled and generated from
sources such as CERT/CC advisories. SQLCHECK produced no
false positives or false negatives. It checked in roughly 3ms per
query, and thus incurred low runtime overhead.

The rest of this paper is organized as follows: Section 2 gives an
overview of our approach and Section 3 formalizes it with defini-
tions, algorithms, and correctness proofs. Section 4 discusses other
settings to which our approach applies. Sections 5 and 6 present
our implementation and an evaluation of the implementation, re-

<%!
// database connection info
String dbDriver = "com.mysql.jdbc.Driver";
String strConn = "jdbc:mysql://"

+ "sport4sale.com/sport";
String dbUser = "manager";
String dbPassword = "athltpass";

// generate query to send
String sanitizedName =
replace(request.getParameter("name"),"’","’’");

String sanitizedCardType =
replace(request.getParameter("cardtype"),

"’","’’");
String query = "SELECT cardnum FROM accounts"

+ " WHERE uname=’" + sanitizedName + "’"
+ " AND cardtype=" + sanitizedCardType + ";";

try {
// connect to database and send query
java.sql.DriverManager.registerDriver(

(java.sql.Driver)
(Class.forName(dbDriver).newInstance()));

javaq.sql.Connection conn =
java.sql.DriverManager.getConnecion(

strConn, dbUser, dbPassword);
java.sql.Statement stmt =

conn.createStatement();
java.sql.ResultSet rs =

stmt.executeQuery(query);

// generate html output
out.println("<html><body><table>");
while(rs.next()) {

out.println("<tr> <td>");
out.println(rs.getString(1));
out.println("</td> </tr>");

}
if (rs != null) {

rs.close();
}
out.println("</table> </body> </html>");

} catch (Exception e)
{ out.println(e.toString()); }

%>

Figure 2. A JSP page for retrieving credit card numbers.

spectively. Section 7 discusses related work, and finally, Section 8
concludes.

2. Overview of Approach
Web applications have injection vulnerabilities because they do not
constrain syntactically the inputs they use to construct structured
output. Consider, for example, the JSP page in Figure 2. The con-
text of this page is an online store. The website allows users to
store credit card information so that they can retrieve it for future
purchases. This page returns a list of a user’s credit card numbers
of a selected credit card type (e.g., Visa). In the code to construct a
query, the quotes are “escaped” with the replace method so that
any single quote characters in the input will be interpreted as literal
characters and not string delimiters. This is intended to block at-
tacks by preventing a user from ending the string and adding SQL
code. However, cardtype is a numeric column, so if a user passes



Figure 3. System architecture of SQLCHECK.

“2 OR 1=1” as the card type, all account numbers in the database
will be returned and displayed.

We approach the problem by addressing its cause: we track
through the program the substrings from user input and constrain
those substrings syntactically. The idea is to block queries in which
the input substrings change the syntactic structure of the rest of the
query. Such queries are command injection attacks (SQLCIAs, in
the context of database back-ends). We track the user’s input by
using meta-data, displayed as ‘L’ and ‘M,’ to mark the beginning
and end of each input string. This meta-data follows the string
through assignments, concatenations, etc., so that when a query is
ready to be sent to the database, it has matching pairs of markers
identifying the substrings from input. We call this annotated query
an augmented query.

We want to forbid input substrings from modifying the syntac-
tic structure of the rest of the query. To do this we construct an
augmented grammar for augmented queries based on the standard
grammar for SQL queries. In the augmented grammar, the only pro-
ductions in which ‘L’ and ‘M’ occur have the following form:

nonterm ::= L symbol M

where symbol is either a terminal or a non-terminal. For an aug-
mented query to be in the language of this grammar, the substrings
surrounded by ‘L’ and ‘M’ must be syntactically confined. By select-
ing only certain symbols to be on the rhs of such productions, we
can specify the syntactic forms permitted for input substrings in a
query.

One reason to allow input to take syntactic forms other than lit-
erals is for stored queries. Some web applications read queries or
query fragments in from a file or database. For example, Bugzilla, a
widely used bug tracking system, allows the conditional clauses of
queries to be stored in a database for later use. In this context, a tau-
tology is not an attack, since the conditional clause simply serves
to filter out uninteresting bug reports. Persistent storage can be a
medium for second order attacks [2], so input from them should be
constrained, but if stored queries are forbidden, applications that
use them will break. For example, in an application that allows
conditional clauses to be stored along with associated labels, a ma-
licious user may store “val = 1; DROP TABLE users” and as-
sociate a benign-sounding label so that an unsuspecting user will
retrieve and execute it.

We use a parser generator to build a parser for the augmented
grammar and attempt to parse each augmented query. If the query
parses successfully, it meets the syntactic constraints and is legit-
imate. Otherwise, it fails the syntactic constraints and either is a

command injection attack or is meaningless to the interpreter that
would receive it.

Figure 3 shows the architecture of our runtime checking system.
After SQLCHECK is built using the grammar of the output language
and a policy specifying permitted syntactic forms, it resides on the
web server and intercepts generated queries. Each input that is to be
propagated into some query, regardless of the input’s source, gets
augmented with the meta-characters ‘L’ and ‘M.’ The application
then generates augmented queries, which SQLCHECK attempts to
parse. If a query parses successfully, SQLCHECK sends it sans the
meta-data to the database. Otherwise, the query is blocked.

3. Formal Descriptions
This section formalizes the notion of a web application, and, in that
context, formally defines an SQLCIA.

3.1 Problem Formalization
A web application has the following characteristics relevant to
SQLCIAs:

• It takes input strings, which it may modify;
• It generates a string (i.e., a query) by combining filtered inputs

and constant strings. For example, in Figure 2, sanitizedName
is a filtered input, and "SELECT cardnum FROM accounts"
is a constant string for building dynamic queries;

• The query is generated without respect to the SQL grammar,
even though in practice programmers write web applications
with the intent that the queries be grammatical; and

• The generated query provides no information about the source
of its characters/substrings.

In order to capture the above intuition, we define a web application
as follows:

Definition 3.1 (Web Application). We abstract a web applica-
tion P : 〈Σ∗, . . . ,Σ∗〉 → Σ∗ as a mapping from user inputs (over
an alphabet Σ) to query strings (over Σ). In particular, P is given
by {〈f1, . . . , fn〉, 〈s1, . . . , sm〉} where

• fi : Σ∗ → Σ∗ is an input filter;
• si : Σ∗ is a constant string.

The argument to P is an n-tuple of input strings 〈i1, . . . , in〉, and
P returns a query q = q1 + . . . + q` where, for 1 ≤ j ≤ `,

qj =

{

s where s ∈ {s1, . . . , sm}
f(i) where f ∈ {f1, . . . , fn} ∧ i ∈ {i1, . . . , in}

That is, each qj is either a static string or a filtered input.

Definition 3.1 says nothing about control-flow paths or any
other execution model, so it is not tied to any particular program-
ming paradigm.

In order to motivate our definition of an SQLCIA, we return to
the example JSP code shown in Figure 2. If the user inputs “John”
as his user name and perhaps through a dropdown box selects credit
card type “2” (both expected inputs), the generated query will be:

SELECT cardnum FROM accounts WHERE uname=’John’
AND cardtype=2

As stated in Section 2, a malicious user may replace the credit card
type in the input with “2 OR 1=1” in order to return all stored
credit card numbers:

SELECT cardnum FROM accounts WHERE uname=’John’
AND cardtype=2 OR 1=1



(a) (b)

Figure 4. Parse trees for WHERE clauses of generated queries. Substrings from user input are underlined.

Figure 4 shows a parse tree for each query. Note that in Fig-
ure 4a, for each substring from input there exists a node in the
parse tree whose descendant leaves comprise the entire input sub-
string and no more: lit for the first substring and num lit/value for
the second, as shown with shading. No such parse tree node ex-
ists for the second input substring in Figure 4b. This distinction is
common to all examples of legitimate vs. malicious queries that
we have seen. The intuition behind this distinction is that the mali-
cious user attempts to cause the execution of a query beyond the
constraints intended by the programmer, while the normal user
does not attempt to break any such constraints. We use this dis-
tinction as our definition of an SQLCIA. The definition relies on
the notion of a parse tree node having an input substring as its de-
scendants, and we formalize this notion as a valid syntactic form:

Definition 3.2 (Valid Syntactic Form). Let G = 〈V,Σ, S, P 〉
be a context-free grammar with non-terminals V , terminals Σ, a
start symbol S, and productions P . Let U ⊆ V ∪ Σ. Strings in the
sub-language L generated by U are called valid syntactic forms
w.r.t. U . More formally, L is given by:

L = (U ∩ Σ) ∪
⋃

u∈U∩V

L(〈V, Σ, u, P 〉)

where L(G) denotes the language generated by the grammar G.

Definition 3.2 allows for a modifiable security policy: The set U
can be assigned such that L includes only the syntactic forms that
the application programmer wants to allow the user to supply. Hav-
ing a definition for valid syntactic forms, we define SQL command
injection attacks as follows:

Definition 3.3 (SQL Command Injection Attack). Given a web
application P and an input vector 〈i1, . . . , in〉, the following SQL
query:

q = P (i1, . . . , in)

constructed by P is an SQL command injection attack (SQLCIA)
if the following conditions hold:

• The query string q has a valid parse tree Tq;
• There exists k such that 1 ≤ k ≤ n and fk(ik) is a substring

in q and is not a valid syntactic form in Tq .

The first condition, that q have a valid parse tree, prevents
query strings that would fail to execute from being considered
attacks. The second condition includes a clause specifying that
valid syntactic forms are only considered within the context of the
query’s parse tree. This is necessary because the same substring
may have multiple syntactic forms when considered in isolation.
For example, “DROP TABLE employee” could be viewed either as
a DROP statement or as string literal data if not viewed in the context
of a whole query.

Note that these definition do not include all forms of dangerous
or unexpected behavior. Definition 3.1 provides no means of al-
tering the behavior of the web application (e.g., through a buffer
overflow). Definition 3.3 assumes that the portions of the query
from constant strings represent the programmer’s intentions. If a
programmer mistakenly includes in the web application a query to
drop a needed table, that query would not be considered an SQL-
CIA. Additionally, Definition 3.3 constrains the web application to
use input only where a valid syntactic form is permitted. By Def-
inition 3.2, a valid syntactic form has a unique root in the query’s
parse tree. Consider, for example, the following query construction:

query = "SELECT * FROM tbl WHERE col " + input;

If the variable input had the value "> 5", the query would be
syntactically correct. However, if the grammar uses a rule such as
“e → e opr e” for relational expressions, then the input cannot have
a unique root, and this construction will only generate SQLCIAs.

However, we believe these limitations are appropriate in this
setting. By projecting away the possibility of the application server
getting hacked, we can focus on the essence of the SQLCIA prob-
lem. Regarding the programmer’s intentions, none of the literature
we have seen on this topic ever calls into question the correctness
of the constant portions of queries (except Fugue [9], Gould et



select stmt ::= SELECT select list from clause
| SELECT select list from clause where clause

select list ::= id list
| *

id list ::= id
| id , id list

from clause ::= FROM tbl list
tbl list ::= id list
where clause ::= WHERE bool cond
bcond ::= bcond OR bterm

| bterm
bterm ::= bterm AND bfactor

| bfactor
bfactor ::= NOT cond

| cond
cond ::= value comp value
value ::= id

| str lit
| num

str lit ::= ’ lit ’
comp ::= = | < | > | <= | >= | !=

Figure 5. Simplified grammar for the SELECT statement.

al.’s work on static type checking of dynamically generated query
strings [12], and our earlier work on static analysis for web applica-
tion security [41], which consider this question to some limited de-
gree). Additionally, programmers generally do not provide formal
specifications for their code, so taking the code as the specification
directs us to a solution that is fitting for the current practice. Finally,
we have not encountered any examples either in the literature or in
the wild of constructed queries where the input cannot possibly be
a valid syntactic form.

3.2 Algorithm
Given a web application P and query string q generated by P and
input 〈i1, . . . , in〉, we need an algorithm A to decide whether q is
an SQLCIA, i.e., A(q) is true iff q is an SQLCIA. The algorithm
A must check whether the substrings fj(ij) in q are valid syntactic
forms, but the web application does not automatically provide in-
formation about the source of a generated query’s substrings. Since
the internals of the web application are not accessible directly, we
need a means of tracking the input through the web application to
the constructed query. For this purpose we use meta-characters ‘L’
and ‘M,’ which are not in Σ. We modify the definition of the filters
such that for all filters f ,

• f : (Σ ∪ {L, M})∗ → (Σ ∪ {L, M})∗; and
• for all strings σ ∈ Σ∗, f(LσM) = Lf(σ)M.

By augmenting the input to 〈Li1M, . . . , LinM〉, we can determine
which substrings of the constructed query come from the input.

Definition 3.4 (Augmented Query). A query qa is an aug-
mented query if it was generated from augmented input, i.e., qa =
P (Li1M, . . . , LinM).

We now describe an algorithm for checking whether a query
is an SQLCIA. This algorithm is initialized once with the SQL
grammar and a policy stating the valid syntactic forms, with which
it constructs an augmented grammar.

Definition 3.5 (Augmented Grammar). Given a grammar
G = {V,Σ, S, P} and a set U ⊆ V ∪ Σ specifying the valid

select stmt ::= SELECT select list from clause
| SELECT select list from clause where clause

select list ::= id list
| *

ida ::= id
| L id M

id list ::= ida

| ida , id list
from clause ::= FROM tbl list
tbl list ::= id list
where clause ::= WHERE bcond
bcond ::= bcond OR bterm

| bterm
bterm ::= bterm AND bfactor

| bfactor
bfactor ::= NOT conda

| conda

conda ::= cond
| L cond M

cond ::= value comp value
value ::= ida

| str lit
| numa

numa ::= num
| L num M

lita ::= lit
| L lit M

str lit ::= ’ lita ’
comp ::= = | < | > | <= | >= | !=

Figure 6. Augmented grammar for grammar shown in Figure 5.
New/modified productions are shaded.

syntactic forms, an augmented grammar Ga has the property that
an augmented query qa = P (Li1M, . . . , LinM) is in L(Ga) iff:

• The query q = P (i1, . . . , in) is in L(G); and
• For each substring s that separates a pair of matching ‘L’ and

‘M’ in qa , if all meta-characters are removed from s, s is a valid
syntactic form in q’s parse tree.

A natural way to construct an augmented grammar Ga from
G and U is to create a new production rule for each u ∈ U
of the form ua → LuM | u, and replace all other rhs occur-
rences of u with ua. We give our construction in Algorithm 3.6.

Algorithm 3.6 (Grammar Augmentation). Given a grammar
G = 〈V,Σ, S, R〉 and a policy U ⊆ V ∪ Σ, we define G’s
augmented grammar as:

G
a = 〈V ∪ {va |v ∈ U},Σ ∪ {L, M}, S,Ra〉

where va denotes a fresh non-terminal. Given rhs = v1 . . . vn

where vi ∈ V ∪ Σ, let rhsa = w1 . . . wn where

wi =

{

vi
a if vi ∈ U

vi otherwise
Ra is given by:

R
a = {v → rhs

a | v → rhs ∈ R}

∪ {va → v | v ∈ U} ∪ {va → LvM | v ∈ U}



(a) (b)

Figure 7. Parse tree fragments for an augmented query.

To demonstrate this algorithm, consider the simplified grammar
for SQL’s SELECT statement in Figure 5. This is the grammar used
to generate the parse trees in Figure 4. If a security policy of
U = {cond, id, num, lit} is chosen, the result of Algorithm 3.6
is shown in Figure 6. Suppose the queries shown in Figure 4
were augmented. Using the augmented grammar, the parse tree for
the first query would look the same as Figure 4a, except that the
subtrees shown in Figures 7a and 7b would be substituted in for the
first and second input strings, respectively. No parse tree could be
constructed for the second augmented query.

A GLR parser generator [28] can be used to generate a parser
for an augmented grammar Ga .

Algorithm 3.7 (SQLCIA Prevention). Here are steps of our al-
gorithm A to prevent SQLCIAs and invalid queries:

1. Intercept augmented query qa ;
2. Attempt to parse qa using the parser generated from Ga ;
3. If qa fails to parse, raise an error;
4. Otherwise, if qa parses, strip all occurrences of ‘L’ and ‘M’ out

of qa to produce q and output q.

3.3 Correctness
We now argue that the algorithms given in Section 3.2 are correct
with respect to the definitions given in Section 3.1. Lemmas 3.8
and 3.9 prove the soundness and completeness respectively of Al-
gorithm 3.6 for constructing augmented grammars. Using these
lemmas, Theorem 3.10 proves the soundness and completeness of
Algorithm 3.7 for preventing SQLCIAs.

Lemma 3.8 (Grammar Construction: Sound). Let Ga be the
augmented grammar constructed from grammar G and set U . For
all 〈i1, . . . , in〉, if P (i1, . . . , in) ∈ L(G) and P (i1, . . . , in) is not
an SQLCIA, then

P (Li1M, . . . , LinM) ∈ L(Ga )

Proof. Consider an arbitrary query q = P (i1, . . . , in) for some
〈i1, . . . , in〉 such that q ∈ L(G) and q is not an SQLCIA. Be-
cause q ∈ L(G), there exists a parse tree Tq for q from G’s
productions R. For each parse tree node v in Tq with children
v1, . . . , vm, there exists a rule v → v1, . . . , vm ∈ R. For each
rule v → v1, . . . , vm ∈ R, Algorithm 3.6 specifies a rule v →
w1, . . . , wm ∈ Ra where wi = vi

a if vi ∈ U and wi = vi oth-
erwise. For each vi ∈ U , Algorithm 3.6 specifies a rule vi

a → vi.

Consequently, there exists a parse tree T a
q for q from Ga ’s pro-

ductions Ra . By assumption, q is not an SQLCIA, which by Def-
initions 3.2 and 3.3 means that for each σ = fj(ij) used in the
construction of q, there exists some parse tree node v in Tq such
that v ∈ U and v’s leaf-descendants are exactly σ. Find such a
parse tree node v for each σ. The construction of T a

q from Tq cre-
ates a mapping from the parse tree nodes in Tq to the parse tree
nodes in T a

q . Using that mapping, find the corresponding node v in
T a

q . By the definition of meta-characters and of augmented queries,
P (Li1M, . . . , LinM) produces a query identical to q, except that each
σ is replaced with LσM. Algorithm 3.6 specifies that there is a rule
vi

a → LviM for each vi ∈ U . These rules allow each v identified
above in T a

q to be replaced with LvM. This results in the parse tree
T a

qa , which proves that qa ∈ L(Ga).

Lemma 3.9 (Grammar Construction: Complete). Let Ga be the
augmented grammar constructed from grammar G and set U . For
all P (Li1M, . . . , LinM) = qa ∈ L(Ga), P (i1, . . . , in) = q ∈ L(G)
and q is not an SQLCIA.

Proof. Suppose for contradiction that there exists some 〈i1, . . . ,
in〉 such that P (Li1M, . . . , LinM) = qa ∈ L(Ga ), but P (i1, . . . ,
in) = q is an SQLCIA. This implies that qa has a parse tree
T a

qa from Ra in Ga . Because q is an SQLCIA, there exists some
substring LσM in qa where σ is not a valid syntactic form, i.e.,
no node v in T a

qa both has σ as it descendant leaves and has
v ∈ U . If v /∈ U , then Algorithm 3.6 specifies no rule of the
form va → LvM ∈ Ra . Consequently T a

qa cannot exist, and this
contradicts our initial assumption.

Theorem 3.10 (Soundness and Completeness). For all
〈i1, . . . , in〉, Algorithm 3.7 will permit query q = P (i1, . . . , in) iff
q ∈ L(G) and q is not an SQLCIA.

Proof. Step 2 of Algorithm 3.7 attempts to parse the augmented
query qa = P (Li1M, . . . , LinM). By Lemma 3.8, if q is an SQLCIA
or if q is not a syntactically correct SQL query, qa will fail to parse.
If qa fails to parse, step 3 will prevent q from being executed. By
Lemma 3.9, if q is syntactically correct and is not an SQLCIA, qa

will parse. Step 4 causes the query to be executed.

3.4 Complexity
Theorem 3.11 (Time Complexity). The worst-case time bound
on Algorithm 3.7 is:

O(|q|) LALR
O(|q|2) if Ga is not LALR but is deterministic
O(|q|3) non-deterministic

Proof. These time bounds follow from known time-bounds for
classes of grammars [1]. Achieving them for Algorithm 3.7 is
contingent on the parser generator being able to handle each case
without using an algorithm for a more expressive class of grammar.

4. Applications
Although we have so far focused on examples of SQL command
injections, our definition and algorithm are general and apply to
other settings that generate structured, meaningful output from
user-provided input. We discuss three other common forms of com-
mand injections.



4.1 Cross Site Scripting
Web sites that display input data are subject to cross site scripting
(XSS) attacks. This vulnerability is perhaps more widespread than
SQLCIAs because the web application need not access a back-end
database. As an example of XSS, consider an auction website that
allows users to put items up for bid. The site then displays a list of
item numbers where each item number is a link to a URL to bid on
the corresponding item. Suppose that an attacker enters as the item
to add:

><script>document.location=
’http://www.xss.com/cgi-bin/cookie.cgi?
’%20+document.cookie</script

When a user clicks on the attacker’s item number, the text in
the URL will be parsed and interpreted as JavaScript. This script
sends the user’s cookie to http://www.xss.com/, the attacker’s
website. Note that the string provided by the attacker is not a valid
syntactic form, since the first character completes a preceding tag.

4.2 XPath Injection
A web application that uses an XML document/database for its
back-end storage and accesses the data through dynamically con-
structed XPath expressions may be vulnerable to XPath injection
attacks [19]. This is closely related to the problem of SQLCIAs,
but the vulnerability is more severe because:

• XPath allows one to query all items of the database, while an
SQL DBMS may not provide a “table of tables,” for example;
and

• XPath provides no mechanism to restrict access on parts of the
XML document, whereas most SQL DBMSs provide a facility
to make parts of the database inaccessible.

The following piece of ASP code is vulnerable to XPath injection:

XPathExpression expr =
nav.Compile("string(//user[name/text()=’"
+TextBox1.Text+"’ and password/text()=’"
+TextBox2.Text+"’]/account/text()");

Entering a tautology as in Figure 4b would allow an attacker to
log in, but given knowledge of the XML document’s node-set, an
attacker could enter:

NoUser’] | P | //user[name/text()=’NoUser

where P is a node-set. The surrounding predicates would always be
false, so the constructed XPath expression would return the string
value of the node-set P. Such attacks can also be prevented with our
technique.

4.3 Shell Injection
Shell injection attacks occur when input is incorporated into a
string to be interpreted by the shell. For example, if the string vari-
able filename is insufficiently sanitized, the PHP code fragment:

exec("open(".$filename.")");

will allow an attacker to be able to execute arbitrary shell com-
mands if filename is not a valid syntactic form in the shell’s
grammar. This vulnerability is not confined to web applications.
A setuid program with this vulnerability allows a user with re-
stricted privileges to execute arbitrary shell commands as root.
Checking the string to ensure that each substring from input is a
valid syntactic form would prevent these attacks.

5. Implementation
We implemented the query checking algorithm as SQLCHECK.
SQLCHECK is generated using an input file to flex and an input

file to bison. For meta-characters, we use two randomly generated
strings of four alphabetic characters: one to represent ‘L’ and the
other to represent ‘M.’ We made this design decision based on two
considerations: (1) the meta-characters should not be removed by
input filters, and (2) the probability of a user entering a meta-
character should be low.

First, we selected alphabetic characters because some input fil-
tering functions restrict or remove certain characters, but generally
alphabetic characters are permitted. The common exceptions are
filters for numeric fields which allow only numeric characters. In
this case either the meta-characters can be added after applying an
filter, or they can be stripped off leaving only numeric data which
cannot change the syntactic structure of the generated query. We
added them after the filter, where applicable.

Second, ignoring case, 264 = 456, 976 different four-character
strings are possible. To avoid using meaningful words as meta-
characters, we forbid meta-characters from being represented as
strings that occur in the dictionary. The default dictionary for
ispell contains 72,421 words, and if these are forbidden for use
as meta-characters, 384,555 unique strings remain. It is difficult to
quantify precisely the probability of a user accidentally entering a
substring identical to one of the strings used for meta-characters be-
cause of several unknown factors. If we assume (1) that 90% of the
words that a user enters occur in the dictionary and the remaining
10% are chosen uniformly at random from non-dictionary words,
(2) that the average number of words entered on a web session is
100, and (3) that the word length is 4, the probability of a user
accidentally entering a meta-character string in one web session is:

1 −

(

1 −
2

264 − 72, 421

)(.1×100)

≈ .000052

This probability can be further reduced by using longer encodings
of meta-characters. We expect that the actual probability is less than
what is shown above, since the numbers chosen for the calculation
were intended to be conservative. Also, in settings where input is
least expected to occur in a dictionary (e.g., passwords), sequences
of alphabetic characters are often broken up by numeric and “spe-
cial” characters, and the same non-dictionary words are repeatedly
entered. Section 6.3 addresses the possibility of a user guessing the
meta-character encodings.

The input to flex requires roughly 70 lines of manually writ-
ten C code to distinguish meta-characters from string literals, col-
umn/table names, and numeric literals when they are not separated
by the usual token delimiters.

The algorithm allows for a policy to be defined in terms of
which non-terminals in the SQL grammar are permitted to be at
the root of a valid syntactic form. For the evaluation we selected
literals, names, and arithmetic expressions to be valid syntactic
forms. Additional forms can be added to the policy at the cost
of one line in the bison input file per form, a find-and-replace
on the added symbol, and a token declaration. Additionally, if the
DBMS allows SQL constructs not recognized by SQLCHECK, they
can be added straightforwardly by updating the bison input file.
The bison utility includes a glr mode, which can be used if the
augmented grammar is not LALR. For the policy choice used here,
the augmented grammar is LALR.

6. Evaluation
This section presents our evaluation of SQLCHECK.

6.1 Evaluation Setup
To evaluate our implementation, we selected five real-world web
applications that have been used for previous evaluations in the lit-
erature [13]. Each of these web applications is provided in mul-



Subject Description LOC Query Query Metachar External
PHP JSP Checks Sites Pairs Query

Added Added Data
Employee Directory Online employee directory 2,801 3,114 5 16 4 39
Events Event tracking system 2,819 3,894 7 20 4 47
Classifieds Online management system for classifieds 5,540 5,819 10 41 4 67
Portal Portal for a club 8,745 8,870 13 42 7 149
Bookstore Online bookstore 9,224 9,649 18 56 9 121

Table 1. Subject programs used in our empirical evaluation.

Language Subject Queries Timing (ms)
Legitimate Attacks Mean Std Dev

(Attempted/allowed) (Attempted/prevented)
Employee Directory 660 / 660 3937 / 3937 3.230 2.080
Events 900 / 900 3605 / 3605 2.613 0.961

PHP Classifieds 576 / 576 3724 / 3724 2.478 1.049
Portal 1080 / 1080 3685 / 3685 3.788 3.233
Bookstore 608 / 608 3473 / 3473 2.806 1.625
Employee Directory 660 / 660 3937 / 3937 3.186 0.652
Events 900 / 900 3605 / 3605 3.368 0.710

JSP Classifieds 576 / 576 3724 / 3724 3.134 0.548
Portal 1080 / 1080 3685 / 3685 3.063 0.441
Bookstore 608 / 608 3473 / 3473 2.897 0.257

Table 2. Precision and timing results for SQLCHECK.

tiple web-programming languages, so we used the PHP and JSP
version of each to evaluate the applicability of our implementa-
tion across different languages. Although the notion of “applica-
bility across languages” is somewhat qualitative, it is significant:
the more language-specific an approach is, the less it is able to
address the broad problem of SQLCIAs (and command injections
in general). For example, an approach that involves using a modi-
fied interpreter [32, 31] is not easily applicable to a language like
Java (i.e., JSP and servlets) because Sun is unlikely to modify its
Java interpreter for the sake of web applications. To the best of our
knowledge, this is the first evaluation in the literature run on web
applications written in different languages.

Table 1 lists the subjects, giving for each subject its name, a
brief description of its function, the number of lines of code in
the PHP and JSP versions, the number of pairs of meta-characters
added, the number of input sites, the number of calls to SQLCHECK
added, and the number of points at which complete queries are
generated. The number of pairs of meta-characters added was less
than the number of input sites because in these applications, most
input parameters were passed through a particular function, and
by adding a single pair of meta-characters in this function, many
inputs did not need to be instrumented individually. For a similar
reason, the number of added calls to SQLCHECK is less than the
number of points at which completed queries are generated: In
order to make switching DBMSs easy, a wrapper function was
added around the database’s SELECT query function. Adding a
call to SQLCHECK within that wrapper ensures that all SELECT
queries will be checked. Calling SQLCHECK from the JSP versions
requires a Java Native Interface (JNI) wrapper. We report both
figures to indicate approximately the numbers of checks that need
to be added for web applications of this size that are less cleanly
designed. For this evaluation, we added the meta-characters and the
calls to SQLCHECK manually; in the future, we plan to automate
this task using a static flow analysis.

In addition to real-world web applications, the evaluation
needed real-world inputs. To this end we used a set of URLs
provided by Halfond and Orso. These URLs were generated by

first compiling one list of attack inputs, which were gleaned from
CERT/CC advisories and other sources that list vulnerabilities and
exploits, and one list of legitimate inputs. The data type of each
input was also recorded. Then each parameter in each URL was
annotated with its type. Two lists of URLs were then generated,
one ATTACK list and one LEGIT list, by substituting inputs from
the respective lists into the URLs in a type consistent way. Each
URL in the ATTACK list had at least one parameter from the list of
attack inputs, while each URL in the LEGIT list had only legitimate
parameters. Finally, the URLs were tested on unprotected versions
of the web applications to ensure that the ATTACK URLs did, in
fact, execute attacks and the LEGIT URLs resulted in normal, ex-
pected behavior.

The machine used to perform the evaluation runs Linux kernel
2.4.27 and has a 2 GHz Pentium M processor and 1 GB of memory.

6.2 Results
Table 2 shows, for each web application, the number of attacks at-
tempted (using URLs from the ATTACK list) and prevented, the
number of legitimate uses attempted and allowed, and the mean
and standard deviation of times across all runs of SQLCHECK for
that application. SQLCHECK successfully prevented all attacks and
allowed all legitimate uses. Theorem 3.10 predicted this, but these
results provide some assurance that SQLCHECK was implemented
without significant oversight. Additionally, the timing results show
that SQLCHECK is quite efficient. Round trip time over the Inter-
net varies widely, but 80–100ms is typical. Consequently, SQL-
CHECK’s overhead is imperceptible to the user, and is also reason-
able for servers with heavier traffic.

In addition to the figures shown in Table 2, our experience using
SQLCHECK provides experimental results. Even in the absence of
an automated tool for inserting meta-characters and calls to SQL-
CHECK, this technique could be applied straightforwardly. Most
existing techniques for preventing SQLCIAs either cannot make
syntactic guarantees (e.g., regular expression filters) or require a
tool with knowledge of the source language. For example, a type-
system based approach requires typing rules in some form for each



construct in the source language. As another example, a technique
that generates automata for use in dynamic checking requires a
string analyzer designed for the source language. Forgoing the use
of the string analyzer would require an appropriate automaton for
each query site to be generated manually, which most web appli-
cation programmers cannot/will not do. In contrast, a programmer
without a tool designed for the source language of his choice can
still use SQLCHECK to prevent SQLCIAs.

6.3 Discussions
We now discuss some of our design decisions and limitations of the
current implementation.

First, we used a single policy U for all test cases. In practice we
expect that a simple policy will suffice for most uses. In general, a
unique policy can be defined for each pair of input site (by choosing
a different pair of strings to serve as delimiters) and query site (by
generating an augmented grammar according to the desired policy
for each pair of delimiters). However, even if U were always chosen
to be V ∪ Σ, SQLCHECK would restrict the user input to syntactic
forms in the SQL language. In the case where user input is used
in a comparison expression, the best an attacker can hope to do is
to change the number of tuples returned; no statements that modify
the database, execute external code, or return columns other than
those in the column list will be allowed.

Second, because the check is based on parsing, it would be pos-
sible to integrate it into the DBMSs own parser. From a software
engineering standpoint, this does not seem to be a good decision.
Web applications are often ported to different environments and in-
terface with different backend DBMS’s, so the security guarantees
could be lost without the programmer realizing it.

Finally, the test cases used for the evaluation were generated by
an independant research group from real-world exploits. However,
they were not written by attackers attempting to defeat the partic-
ular security mechanism we used. In its current implementation,
our technique is vulnerable to an exhaustive search of the charac-
ter strings used as delimiters. This vulnerability can be removed by
modifying the augmenting step: in addition to adding delimiters,
it must check for the presence of the delimiters within the input
string. If the delimiters occur, it must “escape” them by prepend-
ing them with some designated character. SQLCHECK must also be
modified so that first, its lexer will not interpret escaped delimiters
as delimiters, and second, it will remove the escaping character af-
ter parsing.

7. Related Work
7.1 Input Filtering Techniques
Improper input validation accounts for most security problems in
database and web applications. Many suggested techniques for in-
put validation are signature-based, including enumerating known
“bad” strings necessary for injection attacks, limiting the length of
input strings, or more generally, using regular expressions for fil-
tering. An alternative is to alter inputs, perhaps by adding slashes
in front of quotes to prevent the quotes that surround literals from
being closed within the input (e.g., with PHP’s addslashes func-
tion and PHP’s magic quotes setting, for example). Recent re-
search efforts provide ways of systematically specifying and en-
forcing constraints on user inputs [5, 35, 36]. A number of com-
mercial products, such as Sanctum’s AppShield [34] and Kavado’s
InterDo [17], offer similar strategies. All of these techniques are
an improvement over unregulated input, but they all have weak-
nesses. None of them can say anything about the syntactic struc-
ture of the generated queries, and all may still admit bad input; for
example, regular expression filters may be under-restrictive. More
significantly, escaping quotes can also be circumvented when sub-

tle assumptions do not hold, as in the case of the second order at-
tacks [2]. In the absence of a principled analysis to check these
methods, security cannot be guaranteed.

7.2 Syntactic Structure Enforcement
Other techniques deal with input validation by enforcing that all
input will take the syntactic position of literals. Bind variables and
parameters in stored procedures can be used as placeholders for
literals within queries, so that whatever they hold will be treated
as literals and not as arbitrary code. SQLrand, a recently proposed
instruction set randomization for SQL in web applications, has a
similar effect [4]. It relies on a proxy to translate instructions dy-
namically, so SQL keywords entered as input will not reach the
SQL server as keywords. The main disadvantages of such a system
are its complex setup and security of the randomization key. Hal-
fond and Orso address SQL injection attacks through first building
a model of legal queries and then ensuring that generated queries
conform to this model via runtime monitoring [13], following a
similar approach to Wagner and Dean’s work on Intrusion Detec-
tion Via Static Analysis [8]. The precision of this technique is sub-
ject to both the precision of the statically constructed model and the
tokenizing technique used. Because how their model is generated,
user inputs are confined to statically defined syntactic positions.
These techniques for enforcing syntactic structure do not extend
to applications that accept or retrieve queries or query-fragments,
such as those that retrieve stored queries from persistent storage
(e.g., a file or a database).

7.3 Static and Runtime Checking
Many real-world web applications have vulnerabilities, even though
measures such as those mentioned above are used. Vulnerabilities
exist because of insufficiency of the technique, improper usage,
incomplete usage, or some combination of these. Therefore, black-
box testing tools have been built for web database applications.
One from the research community is called WAVES (Web Appli-
cation Vulnerability and Error Scanner) [14]. Several commercial
products also exist, such as AppScan [33], WebInspect [38], and
ScanDo [17]. While testing can be useful in practice for finding vul-
nerabilities, it cannot be used to make security guarantees. Thus,
several techniques based on static analysis or runtime checking
have been proposed, most of which are based on the notion of
“taintedness,” similar to Perl’s “tainted mode” [40]. In particular,
there are two recent techniques using static analysis to track the
flow of untrusted input through a program: one based on a type
system [15] (similar to CQual [10]) and one based on a points-
to analysis [24] (using a precise points-to analysis for Java [43]
and policies specified in PQL [22, 26]). Both systems trust user
filters, so they do not provide strong security guarantee. There is
also recent work on runtime taint tracking [31, 32]. Pietraszek et al.
suggest the use of meta-data for tracking the flow of input through
filters [32]. The closest work to ours is by Buehrer et al. [6]. They
bound user input, and at the point where queries are sent, they re-
place input by dummy literals and compare the parse trees of the
original query and the substituted query. In this case, a lexer would
suffice for the check, since input substrings must be literals. We do
not address the question of completeness of usage (i.e., that all input
and query sites in the application source code are augmented and
checked, respectively). However, a web application programmer
using SQLCHECK need not make the false-positive/false-negative
tradeoffs that come with less rigorous approaches. Consquently, a
guarantee of completeness of usage for SQLCHECK implies that
SQLCIAs will not occur.

This work also relates to some recent work on security analysis
for Java applications. Naumovich and Centonze propose a static
analysis technique to validate role-based access control policies



in J2EE applications [30]. They use a points-to analysis to deter-
mine which object fields are accessed by which EJB methods to
discover potential inconsistencies with the policy that may lead to
security holes. Koved et al. study the complementary problem of
statically determining the access rights required for a program or a
component to run on a client machine [21] using a dataflow analy-
sis [16, 18].

7.4 Meta-Programming
To be put in a broader context, our research can be viewed as an
instance of providing runtime safety guarantee for meta-program-
ming [39]. Macros are a very old and established meta-program-
ming technique; this was perhaps the first setting where the issue
of correctness of generated code arose. Powerful macro languages
comprise a complete programming facility, which enable macro
programmers to create complex meta-programs that control macro-
expansion and generate code in the target language. Here, basic
syntactic correctness, let alone semantic properties, of the gener-
ated code cannot be taken for granted, and only limited static check-
ing of such meta-programs is available. The levels of static check-
ing available include none, syntactic, hygienic, and type checking.
The widely used cpp macro pre-processor allows programmers to
manipulate and generate arbitrary textual strings, and it provides no
checking. The programmable syntax macros of Weise & Crew [42]
work at the level of correct abstract-syntax tree (AST) fragments,
and guarantee that generated code is syntactically correct with re-
spect (specifically) to the C language. Weise & Crew macros are
validated via standard type checking: static type checking guaran-
tees that AST fragments (e.g., Expressions, Statements, etc.) are
used appropriately in macro meta-programs. Because macros in-
sert program fragments into new locations, they risk “capturing”
variable names unexpectedly. Preventing variable capture is called
hygiene. Hygienic macro expansion algorithms, beginning with
Kohlbecker et al. [20] provide hygiene guarantees. Recent work,
such as that of Taha & Sheard [39], focuses on designing type
checking of object-programs into functional meta-programming
languages. There are also a number of proposals to provide type-
safe APIs for dynamic SQL, including, for example Safe Query
Objects [7], SQL DOM [27], and Xen [3, 29]. These proposals sug-
gest better programming models, but require programmers to learn
a new API. In contrast, our approach does not introduce a new API,
and it is suited to address the problems in the enormous number of
programs that use existing database APIs. There are also research
efforts on type-checking polylingual systems [11, 25], but they do
not deal with applications interfacing with databases such as web
applications.

8. Conclusions and Future Work
In this paper, we have presented the first formal definition of com-
mand injection attacks in web applications. Based on this defini-
tion, we have developed a sound and complete runtime checking
algorithm for preventing command injection attacks and produced
a working implementation of the algorithm. The implementation
proved effective under testing; it identified SQLCIAs precisely and
incurred low runtime overhead. Our definition and algorithm are
general and apply directly to other settings that produce structured,
interpreted output.

Here are a few interesting directions for future work:

• First, we plan to experiment with other ways to evaluate SQL-
CHECK. A natural choice will be to use SQLCHECK in some
online web applications to expose SQLCHECK to the real world.
By logging the blocked and permitted queries, we hope to val-
idate that it does not disrupt normal use and does not allow at-
tacks. A more novel approach to evaluating SQLCHECK will

be to generate queries with “place-holder” user inputs. Then,
using a modified top-down parser, we will generate random in-
puts that, when put in place of the place-holder inputs, form
syntactically correct queries. By feeding these randomly gener-
ated inputs to the web application, we will test SQLCHECK on
randomly generated yet meaningful queries.

• Second, we plan to explore static analysis techniques to help
insert meta-characters and calls to SQLCHECK automatically.
The challenge will be to insert the meta-characters such that
no constant strings are captured and the control-flow of the
application will not be altered.

• Third, we plan to adapt our technique to other settings, for
example, to prevent cross-site scripting and XPath injection
attacks.
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