

NSOM: A Real-Time Network-Based Intrusion
Detection System Using Self-Organizing Maps

Khaled Labib and Rao Vemuri

Department of Applied Science
University of California, Davis

Davis, California, U.S.A.

Abstract. In this paper we describe an
implementation of a network based Intrusion
Detection System (IDS) using Self-Organizing
Maps (SOM). The system uses a structured
SOM to classify real-time Ethernet network
data. A graphical tool continuously displays
the clustered data to reflect network activities.
Different system parameters such as data
collection, data preprocessing and classifier
structure are discussed. The systems shows
promise in its ability to classify regular v.s.
irregular and possibly intrusive network
traffic for a given host.

I. Introduction

With the growing rate of interconnections among
computer systems, network security is becoming
a major challenge. In order to meet this
challenge, Intrusion Detection Systems (IDS) are
being designed to protect the availability,
confidentiality and integrity of critical networked
information systems. They protect computer
networks against denial-of-service (DoS) attacks,
unauthorized disclosure of information and the
modification or destruction of data. The
automated detection and immediate reporting of
intrusion events is required in order to provide a
timely response to attacks [1].

Early in the research into IDS, two major
principles known as anomaly detection and
signature detection were arrived at, the former
relying on flagging all behavior that is abnormal
for an entity, the later flagging behavior that is
close to some previously defined pattern
signature of a known intrusion [2]. NSOM, our
Network-based detector using SOM, could be
classified as an anomaly detection system.

Anomaly detection attempts to quantify the usual
or acceptable behavior and flags other irregular
behavior as potentially intrusive [3].

We created a prototype system, NSOM, to
classify network traffic in real-time. The system
is implemented is a combination of C and
TCL/TK. We continually collect network data
from a network port, preprocess that data and
select the features suitable for classification. We
then start the classification process - a chunk of
packets at a time - and then send the resulting
classification to a graphical tool that portrays the
activities that are taking place on the network
port dynamically as we receive more packets.

Our hypothesis is that routine traffic that
represents normal behavior would be clustered
around one or more cluster centers and any
irregular traffic representing abnormal and
possibly suspicious behavior would be clustered
outside of the normal clustering.

The remainder of the paper is organized as
follows. Section II discusses other related work
in the field. Section III discusses the problem
that we are trying to solve. Section IV describes
in detail the process of data collection and
preprocessing. Section V describes the SOM
structure used. Section VI presents the results
obtained from the experiment and Section VII is
the conclusion.

II. Related Work

Most of the related work in anomaly detection
using Self-Learning utilizes ANN (Artificial
Neural Networks) as in HyperView [4]. The
system’s normal traffic is fed to an ANN, which
subsequently learns the pattern of normal traffic.
The new traffic, including possible attacks, is

then applied to the ANN and the output is used
to form the intrusion detection decision.

Other systems utilize descriptive statistics by
collecting uni-modal statistics from certain
system parameters into a profile, and construct a
distance vector for the observed traffic and the
profile. If the distance is great enough the system
raises the alarm. Examples of these systems are
NIDES[5], EMERALD[6] and Haystack[7].

A system developed by [8], uses multiple self-
organizing maps for intrusion detection. They
use a collection of more specialized maps to
process network traffic for each layered protocol
separately. They suggest that each neural
network become a kind of specialist, trained to
recognize the normal activity of a single
protocol.

Another approach that differs from anomaly
detection and misuse detection considers human
factors to support the exploration of network
traffic [9]. They use self-organizing maps to
project the network events on a space appropriate
for visualization, and achieve their exploration
using a map metaphor.

Both the last two systems use static logs and do
not address the real-time issues that we address
in the design of NSOM. We believe that real-
time performance can only be achieved by
minimizing the processing of data, and therefore
using simpler designs. They also do not describe
how to handle the problem of representing time
in their work. We believe that time
representation is an important element when
considering network traffic considering that
attacks takes place using a number of successive
packets that are targeted towards a host in a finite
time limit.

III. Why SOM ?

Unsupervised learning using SOM provide a
simple and efficient way of classifying data sets.
To process real-time data for classification we
believe that SOM are best suited due to their
high speed and fast conversion rates as compared
with other learning techniques. Also SOMs
preserve topological mappings between
representations, a feature which is desired when
classifying normal v.s. intrusive behavior for
network data. That is, the relationships between
senders, receivers and the protocols used

amongst them, which are the primary features
that we use, are preserved by the mapping.

Figure 1 depicts a block level diagram of
NSOM. The diagram shows the different steps
the system performs to achieve the real time
classification of network traffic.

Figure 1: Block Diagram of NSOM

IV. Data Collection and Preprocessing

We used a host PC running Linux as our primary
test bed. This system is connected to a network

using an Ethernet controller. The subnet that the
host is connected to has tens of other hosts,
which are running several daemons such that
data and control frames are constantly flowing
across the subnet. We used a popular Linux tool
called “tcpdump” for the purpose of data
collection and filtering. Tcpdump is a powerful
tool that allows us to put the Ethernet controller
in a promiscuous mode to monitor all packet
activities on the subnet. We can also use its
powerful filtering capabilities to filter out
unwanted traffic and isolate broadcast, multicast
and control frames.

We used tcpdump to filter and collect all
network traffic to or from our host, discarding
packets that are intended for other hosts.
Tcpdump is run as a background process, which
dumps the information it collects into a file on a
regular basis. Every time we collect 50 packets
we store them in a file for further preprocessing
and classification as described below, and then
repeat the process. All the different system
parameters such as the number of packets to
collect per processing cycle and all the
parameters associated with the classifier, are
easily configurable in the source code to be
customized for any given host. We used 50
packets here since this was the most suitable
number to use given the amount of traffic
involving our host system in our subnet. This
value constitutes the “window” that we analyze
packets through. If this value is too small, then
there is a potential risk of losing important
relationships between the packets that would
otherwise show specific important patterns
characteristics. If the value is too large, then the
real-time effect could be lessened due to the fact
that the graphical updates would be less frequent,
especially for hosts with light traffic.

When writing the packets information to the disk
in each processing cycle, we minimize the
information written using special tcpdump flags
and filtering commands. After receiving the
packet information, we had to make a choice
over which information from this file to use for
the SOM classifier. The choice of which traffic
features to represent and how to translate them in
a form suitable for the SOM, will unavoidably
involve highlighting certain aspects of the
network activity while making other obscure or
even invisible to the classifier [8]. We selected
only a portion of the information received to
serve as a feature list for the packet, as follows:

For each Ethernet packet received{
 - Extract the IP address of the destination: Use
the least significant two numbers only for
classification
 - Extract the IP address of the source: Use the
least significant two numbers only for
classification
 - Extract the protocol type
}

The IP addresses for both the destination and
source are in the form of 4 decimal numbers
separated by dots. (e.g. 192.138.45.3) We only
select the least significant two numbers of these
to represent the source and destination,
separately, instead of using the whole numbers.
Since the upper two numbers do not change
frequently in our subnet, we decided not to use
them since they could potentially pollute the
classification results as being redundant
background. NSOM could be changed to allow
including the entire IP address if this behavior is
desired.

Another important feature that we keep in the
process of representing a packet is the protocol
type. Protocol type can include and TCP/IP or
UDP. All the different variations such as ICMP,
ARP and RARP are supported. Since all protocol
type names are decoded by tcpdump as text, we
convert the text to a decimal number by adding
the ASCII values of all its characters and we use
at most 5 characters from each protocol type
name for the representation. In our opinion, this
provides a uniform representation of the protocol
type.

Data normalization and scaling

A feature vector representing a packet consists of
five features representing partial destination and
source addresses and the protocol type. That is,
two numbers for sender, two for receiver and one
for the protocol type. Due to the large variations
of these numbers we normalized each vector
such that it components are in the range of [0,1].
This makes it more suitable for SOM
applications. We used the standard normalization
given by:

∑
=

K
kv
ivinv

2][
][][

Where nv[i] is the normalized value of feature
(i), v[i] is the feature value of i, and K is the
number of features in a vector.

During initial testing we found that the
normalization of the feature vector was not
providing acceptable classification results. So we
further scaled the vector values to the range to
[-1, 1]. This provided for better performance of
the SOM classifier.

Time Representation

Even though packet arrival and departure times
were explicitly available before the data was
preprocessed, we decided not to use explicit time
representation for reasons discussed in [1]. We
rather used an implicit time representation
scheme. In this scheme, n successive packet
features are gathered to form one input vector for
the classifier. We call this vector the SOM Input
Vector. So the classifier looks at n packets at
once in the same order they arrived at the
network port. The value we chose for n in our
experiment was 10. Again, NSOM can be
configured for different numbers if so desired.

V. SOM Structure

We experimented with two SOM structures:
Linear and Diamond structures. Diamond
structure gave better classification results. For
Linear structure, we updated the winning neuron
along with a neighborhood distance of R,
representing the number of neighbor neurons to
update. In this case we chose a number of R = 1.
For Diamond structure we updated the winning
neuron along with a neighborhood distance of R.
The neighboring neurons in this case were the
top, bottom, left and right neurons of the winning
neuron, which resembles a Diamond-like
structure. In this case we chose R = 1, which
means that four neurons would be updated in
addition to the winning neuron, given a central
neuron.

In our experiment there were 25 output neurons.
In the case of the Diamond structure they are
virtually arranged in a 5x5-matrix plane.

The SOM implementation we chose was a
Kohonan Net with the winning neuron
representing the one with the shortest distance as
related to the input vector. The starting value we
chose for η = 0.6. This value decrements by 0.5
in every epoch.

Figure 2: SOM structure and training vectors
layout

After m successive training vectors are collected,
normalized and scaled, the process of
classification is started until we reach
convergence. In our experiment we chose m = 5.
When conversion is reached, meaning that no
further changes are taking place in the winning
neurons between successive epochs, the winning
neuron values and their locations are sent to a
graphical tool that displays these values in a two-
dimensional form. The display maintains the old
values as well to show the clustering and
accumulation effects. During this time we start
storing packets again from the network interface
into a file as the following batch. On heavy
network loads, we could practically drop few
packets that would go by without reaching the
classifier, but we believe that their would not be
much risk involved with this situation, since it is
difficult for an attacker to finish an attack with
very few packets involved.

VI. Results

To test NSOM, we first obtained sample results
statically by collecting different sample network
traffic representing normal as well as DoS
attacks. We looked at the output of the classifier
for each case and noticed that all normal network
traffic was clustered roughly between neurons 5
and 16. When we subjected the classifier to
various simulated DoS attacks, such as frequent
SYN packets and heavy ping (ICMP req)
packets, we noticed that neuron activities began
to be scattered much outside the normal cluster
window indicated in Figures 1 and 2. The new
range for activated neurons was expanded to
cover between neurons 0 to 18 indicating a
possible attack.

When we were more confident about the results,
we tested NSOM in real-time. Network data
were collected, classified and graphically
displayed continuously in real-time. Similar
behavior as with static testing was noticed.

It is interesting to note that the Y values, on the
graph, of the attack neurons were much higher
than those for normal ones. Since the Y values
represent the distance of the winning neurons
with respect to the input vector, we can conclude
that these high Y value neurons represent
uncommon and irregular behavior and therefore
a possible attack.

Figure 3: Output of classifier for normal
traffic

Figure 4: Output of classifier for a simulated
DoS attack

The results support our initial hypothesis that
similar network traffic that takes place routinely,
that is from/to common IP addresses and
common protocol type patterns could be
classified by a close set of relatively fixed
neurons. Thereby, abnormal behavior that could
be a result of a DoS attack will be characterized
by a different set of neurons that span a larger
area on the output neuron map.

VII. Conclusion

We described the implementation of a prototype
system for classifying real-time network traffic
using Self-Organizing Maps (SOM) for the
purpose of intrusion detection. We presented the
motives behind using unsupervised learning for
this purpose, our data collection and
preprocessing procedures, how we represented
time and our technique for displaying the
classification results. We discussed the structure
of our SOM and how we conducted the testing.
The results showed that we were able to classify
simulated DoS network attacks graphically as
opposed to normal traffic by showing that the
clustering of neurons was very different between
the two.

References

[1] Lichodzijewski P., Zincir-Heywood A.,
Heywood M., “Host-based Intrusion Detection
Using Self-Organizing Maps”
[2] Axelsson S., “Intrusion Detection Systems: A
Survey and Taxonomy”. Technical report 99-15,

Department of Computer Engineering, Chalmers
University of Technology, Goteborg, Sweden,
March 2000.
[3] Lane T., Brodley C., “An Application of
Machine Learning to Anomaly Detection”.
National Information Systems Security
Conference, Baltimore M.D. 1997.
[4] Debar H., Becker M., Siboni D., “A Neural
Network Component for an Intrusion Detection
System”. Proceedings of the 1992 IEEE
Computer Society Symposium on Research in
Security and Privacy, Oakland, CA May 1992
[5] Anderson D., Frivold T., Valdes A., “Next-
Generation Intrusion Detection Expert System
(NIDES). Technical Report SRI-CSL-95-07,
Computer Science Laboratory, SRI International,
Menlo Park CA , May 1995
[6] Porras P., Neumann P., “EMERALD: Event
monitoring enabling responses to anomalous live
disturbances”. Proceedings of the 20th National
Information Systems Security Conference,
Baltimore, Maryland 1997
[7] Smaha S., “Haystack: An Intrusion Detection
System” Proceedings of the IEEE forth
Aerospace Computer Security Applications
Conference, Orlando, Florida, 1988
[8] Rhodes B., Mahaffey J., Cannady J.,
“Multiple Self-Organizing Maps for Intrusion
Detection”. Proceedings of the NISSC 2000
conference.
[9] Girardin L., “An Eye on Network Intruder-
Administrator Shootouts”. Proceedings of the
Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, CA, USA, April 9-12,
1999.

