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Abstract. In this paper we describe an 
implementation of a network based Intrusion 
Detection System (IDS) using Self-Organizing 
Maps (SOM). The system uses a structured 
SOM to classify real-time Ethernet network 
data. A graphical tool continuously displays 
the clustered data to reflect network activities. 
Different system parameters such as data 
collection, data preprocessing and classifier 
structure are discussed. The systems shows 
promise in its ability to classify regular v.s. 
irregular and possibly intrusive network 
traffic for a given host. 
 

I. Introduction 
 
With the growing rate of interconnections among 
computer systems, network security is becoming 
a major challenge. In order to meet this 
challenge, Intrusion Detection Systems (IDS) are 
being designed to protect the availability, 
confidentiality and integrity of critical networked 
information systems. They protect computer 
networks against denial-of-service (DoS) attacks, 
unauthorized disclosure of information and the 
modification or destruction of data. The 
automated detection and immediate reporting of 
intrusion events is required in order to provide a 
timely response to attacks [1]. 
 
Early in the research into IDS, two major 
principles known as anomaly detection and 
signature detection were arrived at, the former 
relying on flagging all behavior that is abnormal 
for an entity, the later flagging behavior that is 
close to some previously defined pattern 
signature of a known intrusion [2]. NSOM, our 
Network-based detector using SOM, could be 
classified as an anomaly detection system. 
 

Anomaly detection attempts to quantify the usual 
or acceptable behavior and flags other irregular 
behavior as potentially intrusive [3]. 
 
We created a prototype system, NSOM, to 
classify network traffic in real-time. The system 
is implemented is a combination of C and 
TCL/TK. We continually collect network data 
from a network port, preprocess that data and 
select the features suitable for classification. We 
then start the classification process - a chunk of 
packets at a time - and then send the resulting 
classification to a graphical tool that portrays the 
activities that are taking place on the network 
port dynamically as we receive more packets. 
 
Our hypothesis is that routine traffic that 
represents normal behavior would be clustered 
around one or more cluster centers and any 
irregular traffic representing abnormal and 
possibly suspicious behavior would be clustered 
outside of the normal clustering.  
 
The remainder of the paper is organized as 
follows. Section II discusses other related work 
in the field. Section III discusses the problem 
that we are trying to solve. Section IV describes 
in detail the process of data collection and 
preprocessing. Section V describes the SOM 
structure used. Section VI presents the results 
obtained from the experiment and Section VII is 
the conclusion. 

 
II. Related Work 

 
Most of the related work in anomaly detection 
using Self-Learning utilizes ANN (Artificial 
Neural Networks) as in HyperView [4]. The 
system’s normal traffic is fed to an ANN, which 
subsequently learns the pattern of normal traffic. 
The new traffic, including possible attacks, is 



then applied to the ANN and the output is used 
to form the intrusion detection decision. 
 
Other systems utilize descriptive statistics by 
collecting uni-modal statistics from certain 
system parameters into a profile, and construct a 
distance vector for the observed traffic and the 
profile. If the distance is great enough the system 
raises the alarm. Examples of these systems are 
NIDES[5], EMERALD[6] and Haystack[7]. 
 
A system developed by [8], uses multiple self-
organizing maps for intrusion detection. They 
use a collection of more specialized maps to 
process network traffic for each layered protocol 
separately. They suggest that each neural 
network become a kind of specialist, trained to 
recognize the normal activity of a single 
protocol.  
 
Another approach that differs from anomaly 
detection and misuse detection considers human 
factors to support the exploration of network 
traffic [9]. They use self-organizing maps to 
project the network events on a space appropriate 
for visualization, and achieve their exploration 
using a map metaphor. 
 
Both the last two systems use static logs and do 
not address the real-time issues that we address 
in the design of NSOM. We believe that real-
time performance can only be achieved by 
minimizing the processing of data, and therefore 
using simpler designs. They also do not describe 
how to handle the problem of representing time 
in their work. We believe that time 
representation is an important element when 
considering network traffic considering that 
attacks takes place using a number of successive 
packets that are targeted towards a host in a finite 
time limit. 
 

III. Why SOM ? 
 
Unsupervised learning using SOM provide a 
simple and efficient way of classifying data sets. 
To process real-time data for classification we 
believe that SOM are best suited due to their 
high speed and fast conversion rates as compared 
with other learning techniques. Also SOMs 
preserve topological mappings between 
representations, a feature which is desired when 
classifying normal v.s. intrusive behavior for 
network data. That is, the relationships between 
senders, receivers and the protocols used 

amongst them, which are the primary features 
that we use, are preserved by the mapping. 
 
Figure 1 depicts a block level diagram of 
NSOM. The diagram shows the different steps 
the system performs to achieve the real time 
classification of network traffic. 
 

 
 

Figure 1: Block Diagram of NSOM 

 
IV. Data Collection and Preprocessing 

 
We used a host PC running Linux as our primary 
test bed. This system is connected to a network 



using an Ethernet controller. The subnet that the 
host is connected to has tens of other hosts, 
which are running several daemons such that 
data and control frames are constantly flowing 
across the subnet. We used a popular Linux tool 
called “tcpdump” for the purpose of data 
collection and filtering. Tcpdump is a powerful 
tool that allows us to put the Ethernet controller 
in a promiscuous mode to monitor all packet 
activities on the subnet. We can also use its 
powerful filtering capabilities to filter out 
unwanted traffic and isolate broadcast, multicast 
and control frames. 
 
We used tcpdump to filter and collect all 
network traffic to or from our host, discarding 
packets that are intended for other hosts. 
Tcpdump is run as a background process, which 
dumps the information it collects into a file on a 
regular basis. Every time we collect 50 packets 
we store them in a file for further preprocessing 
and classification as described below, and then 
repeat the process. All the different system 
parameters such as the number of packets to 
collect per processing cycle and all the 
parameters associated with the classifier, are 
easily configurable in the source code to be 
customized for any given host. We used 50 
packets here since this was the most suitable 
number to use given the amount of traffic 
involving our host system in our subnet. This 
value constitutes the “window” that we analyze 
packets through. If this value is too small, then 
there is a potential risk of losing important 
relationships between the packets that would 
otherwise show specific important patterns 
characteristics. If the value is too large, then the 
real-time effect could be lessened due to the fact 
that the graphical updates would be less frequent, 
especially for hosts with light traffic. 
 
When writing the packets information to the disk 
in each processing cycle, we minimize the 
information written using special tcpdump flags 
and filtering commands. After receiving the 
packet information, we had to make a choice 
over which information from this file to use for 
the SOM classifier. The choice of which traffic 
features to represent and how to translate them in 
a form suitable for the SOM, will unavoidably 
involve highlighting certain aspects of the 
network activity while making other obscure or 
even invisible to the classifier [8]. We selected 
only a portion of the information received to 
serve as a feature list for the packet, as follows: 
 

For each Ethernet packet received{ 
    - Extract the IP address of the destination: Use 
the least significant two numbers only for 
classification 
    - Extract the IP address of the source: Use the 
least significant two numbers only for 
classification 
    - Extract the protocol type 
} 
 
The IP addresses for both the destination and 
source are in the form of 4 decimal numbers 
separated by dots. (e.g. 192.138.45.3) We only 
select the least significant two numbers of these 
to represent the source and destination, 
separately, instead of using the whole numbers. 
Since the upper two numbers do not change 
frequently in our subnet, we decided not to use 
them since they could potentially pollute the 
classification results as being redundant 
background. NSOM could be changed to allow 
including the entire IP address if this behavior is 
desired. 
 
Another important feature that we keep in the 
process of representing a packet is the protocol 
type. Protocol type can include and TCP/IP or 
UDP. All the different variations such as ICMP, 
ARP and RARP are supported. Since all protocol 
type names are decoded by tcpdump as text, we 
convert the text to a decimal number by adding 
the ASCII values of all its characters and we use 
at most 5 characters from each protocol type 
name for the representation. In our opinion, this 
provides a uniform representation of the protocol 
type. 
 

Data normalization and scaling 
 
A feature vector representing a packet consists of 
five features representing partial destination and 
source addresses and the protocol type. That is, 
two numbers for sender, two for receiver and one 
for the protocol type. Due to the large variations 
of these numbers we normalized each vector 
such that it components are in the range of [0,1]. 
This makes it more suitable for SOM 
applications. We used the standard normalization 
given by: 
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Where nv[i] is the normalized value of feature 
(i), v[i] is the feature value of i, and K is the 
number of features in a vector. 
 
During initial testing we found that the 
normalization of the feature vector was not 
providing acceptable classification results. So we 
further scaled the vector values to the range to   
[-1, 1]. This provided for better performance of 
the SOM classifier. 
 

Time Representation 
 
Even though packet arrival and departure times 
were explicitly available before the data was 
preprocessed, we decided not to use explicit time 
representation for reasons discussed in [1]. We 
rather used an implicit time representation 
scheme. In this scheme, n successive packet 
features are gathered to form one input vector for 
the classifier. We call this vector the SOM Input 
Vector. So the classifier looks at n packets at 
once in the same order they arrived at the 
network port. The value we chose for n in our 
experiment was 10. Again, NSOM can be 
configured for different numbers if so desired. 
 

V. SOM Structure 
 
We experimented with two SOM structures: 
Linear and Diamond structures. Diamond 
structure gave better classification results. For 
Linear structure, we updated the winning neuron 
along with a neighborhood distance of R, 
representing the number of neighbor neurons to 
update. In this case we chose a number of R = 1. 
For Diamond structure we updated the winning 
neuron along with a neighborhood distance of R. 
The neighboring neurons in this case were the 
top, bottom, left and right neurons of the winning 
neuron, which resembles a Diamond-like 
structure. In this case we chose R = 1, which 
means that four neurons would be updated in 
addition to the winning neuron, given a central 
neuron. 
 
In our experiment there were 25 output neurons. 
In the case of the Diamond structure they are 
virtually arranged in a 5x5-matrix plane. 
 
The SOM implementation we chose was a 
Kohonan Net with the winning neuron 
representing the one with the shortest distance as 
related to the input vector. The starting value we 
chose for η = 0.6. This value decrements by 0.5 
in every epoch. 

 
 

 
 

Figure 2: SOM structure and training vectors 
layout 

 
After m successive training vectors are collected, 
normalized and scaled, the process of 
classification is started until we reach 
convergence. In our experiment we chose m = 5. 
When conversion is reached, meaning that no 
further changes are taking place in the winning 
neurons between successive epochs, the winning 
neuron values and their locations are sent to a 
graphical tool that displays these values in a two-
dimensional form. The display maintains the old 
values as well to show the clustering and 
accumulation effects. During this time we start 
storing packets again from the network interface 
into a file as the following batch. On heavy 
network loads, we could practically drop few 
packets that would go by without reaching the 
classifier, but we believe that their would not be 
much risk involved with this situation, since it is 
difficult for an attacker to finish an attack with 
very few packets involved. 
 

VI. Results 
 



To test NSOM, we first obtained sample results 
statically by collecting different sample network 
traffic representing normal as well as DoS 
attacks. We looked at the output of the classifier 
for each case and noticed that all normal network 
traffic was clustered roughly between neurons 5 
and 16. When we subjected the classifier to 
various simulated DoS attacks, such as frequent 
SYN packets and heavy ping (ICMP req) 
packets, we noticed that neuron activities began 
to be scattered much outside the normal cluster 
window indicated in Figures 1 and 2. The new 
range for activated neurons was expanded to 
cover between neurons 0 to 18 indicating a 
possible attack. 
 
When we were more confident about the results, 
we tested NSOM in real-time. Network data 
were collected, classified and graphically 
displayed continuously in real-time. Similar 
behavior as with static testing was noticed. 
 
It is interesting to note that the Y values, on the 
graph, of the attack neurons were much higher 
than those for normal ones. Since the Y values 
represent the distance of the winning neurons 
with respect to the input vector, we can conclude 
that these high Y value neurons represent 
uncommon and irregular behavior and therefore 
a possible attack. 
 
 

 
Figure 3: Output of classifier for normal 
traffic 

 
 

 
Figure 4: Output of classifier for a simulated 
DoS attack 

 
The results support our initial hypothesis that 
similar network traffic that takes place routinely, 
that is from/to common IP addresses and 
common protocol type patterns could be 
classified by a close set of relatively fixed 
neurons. Thereby, abnormal behavior that could 
be a result of a DoS attack will be characterized 
by a different set of neurons that span a larger 
area on the output neuron map. 
 

VII. Conclusion 
 
We described the implementation of a prototype 
system for classifying real-time network traffic 
using Self-Organizing Maps (SOM) for the 
purpose of intrusion detection. We presented the 
motives behind using unsupervised learning for 
this purpose, our data collection and 
preprocessing procedures, how we represented 
time and our technique for displaying the 
classification results. We discussed the structure 
of our SOM and how we conducted the testing. 
The results showed that we were able to classify 
simulated DoS network attacks graphically as 
opposed to normal traffic by showing that the 
clustering of neurons was very different between 
the two. 
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