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Abstract. As state-of-the-art attack detection technology becomes more preva-
lent, attackers are likely to evolve, employing techniques such as polymorphism
and metamorphism to evade detection. Although recent results have been promis-
ing, most existing proposals can be defeated using only minor enhancements to
the attack vector. We present a heuristic detection method that scans network
traffic streams for the presence of polymorphic shellcode. Our approach relies
on a NIDS-embedded CPU emulator that executes every potential instruction se-
quence, aiming to identify the execution behavior of polymorphic shellcodes.
Our analysis demonstrates that the proposed approach is more robust to obfusca-
tion techniques like self-modifications compared to previous proposals, but also
highlights advanced evasion techniques that need to be more closely examined
towards a satisfactory solution to the polymorphic shellcode detection problem.

1 Introduction

The primary aim of an attacker or an Internet worm is to gain complete control over a
target system. This is usually achieved by exploiting a vulnerability in a service running
on the target system that allows the attacker to divert its flow of control and execute
arbitrary code. The code that is executed after hijacking the instruction pointer is usually
provided as part of the attack vector. Although the typical action of the injected code
is to spawn a shell (hereby dubbedshellcode), the attacker can structure it to perform
arbitrary actions under the privileges of the service that is being exploited [1].

Significant progress has been made in recent years towards detecting previously un-
known code injection attacks at the network level [2–8]. However, as organizations start
deploying state-of-the-art detection technology, attackers are likely to react by employ-
ing advanced evasion techniques such as polymorphism and metamorphism. Polymor-
phic shellcode engines create different forms of the same initial shellcode by encrypting
its body with a different random key each time, and by prepending to it a decryption rou-
tine that makes it self-decrypting. Since the decryptor itself cannot be encrypted, some
detection approaches rely on the identification of the decryption routine. Although naive
encryption engines produce constant decryptor code, advanced polymorphic engines
mutate the decryptor using metamorphism [9], which collectively refers to techniques
such as dead-code insertion, code transposition, register reassignment, and instruction
substitution [10], making the decryption routine difficult to fingerprint.



A major outstanding question in security research and engineering is thus whether
we can proactively develop the tools needed to contain advanced polymorphic attacks.
While results have been promising, most of the existing proposals can be easily de-
feated. In fact, publicly-available polymorphic engines are currently one step ahead of
the most advanced publicly-documented detection engines [11].

In this paper, we revisit the question of whether polymorphic shellcode is detectable
at the network-level. We present a detection heuristic that tests byte sequences in net-
work traffic for properties similar to polymorphism. Specifically, we speculatively ex-
ecute potential instruction sequences and compare their execution profile against the
behavior observed to be inherent to polymorphic shellcodes. Our approach relies on a
fully-blown IA-32 CPU emulator, which, in contrast to previous work, makes the de-
tector immune to runtime evasion techniques such as self-modifying code.

2 Related Work

Network intrusion detection systems (NIDS) like Snort [12] have been extensively used
to detect shellcodes, including previously unseen ones, using generic signatures that
match components common to similar exploits, such as the NOP sled, protocol framing,
or specific parts of the shellcode [13]. As a response, attackers started to employing
polymorphism [11,14–16] for evading signature-based NIDS.

Initial approaches on zero-day polymorphic shellcode detection focused on the
identification of the sled component [17, 18]. However, sleds are mostly useful in ex-
pediting exploit development, and in several cases, especially in Windows exploits, can
be completely avoided through careful engineering using register springs [19]. But-
tercup [20] attempts to detect polymorphic buffer overflow attacks by identifying the
ranges of the possible return addresses for existing buffer overflow vulnerabilities.

Several research efforts have focused on the automated generation of signatures
for previously unknown worms based on the prevalence of common byte sequences
across different worm instances by correlating payloads from different traffic flows [2,
3, 21]. However, these approaches are ineffective against polymorphic and metamor-
phic worms [9, 22]. Polygraph [4], PAYL [6], and PADS [5] attempt to detect poly-
morphic worms by identifying common invariants among different worm instances,
such as return addresses, protocol framing, and poor obfuscation, and derive regular
expression or statistical signatures. Although above approaches can identify simple ob-
fuscated worms, their effectiveness is still questionable in the presence of extensive
polymorphism [11]. Moreover, they require multiple worm instances before reasoning
for a threat, which makes them ineffective against targeted attacks.

Having identified the limitations of signature-based approaches, recent research ef-
forts have turned to static binary code analysis for identifying exploit code in network
flows. Payer et al. [23] describe a hybrid polymorphic shellcode detection engine based
on a neural network that combines several heuristics, including a NOP-sled detector
and recursive traversal disassembly. However, the neural network must be trained with
both positive and negative data in order to achieve a good detection rate, which makes it
ineffective against zero-day attacks. Kruegel et al. [7] present a worm detection method
that identifies structural similarities between different worm mutations. In contrast, our



approach can detect targeted polymorphic code-injection attacks from the first attack
instance. Styx [8] differentiates between benign data and program-like exploit code in
network streams by looking for meaningful data and control flow, and blocks identi-
fied attacks using automatically generated signatures. A fundamental limitation of such
static analysis based approaches is that an attacker can evade them using obfuscations
such as self-modifying code, as we discuss in the following section.

3 Static Analysis Resistant Polymorphic Shellcode

Several research efforts have been based on static binary code analysis for the detection
of previously unknown polymorphic code injection attacks at the network level [7,8,17,
18,23]. These approaches treat the input network stream as potential machine code and
analyze it for signs of malicious behavior. Some methods rely solely to disassembly for
identifying long instruction chains that may denote the existence of a NOP sled [17,18]
or shellcode [23], while others derive further control flow information that is used for
the discrimination between shellcode and benign data [7,8].

However, after the flow of control reaches the shellcode, the attacker has complete
freedom to structure it in a complex way that can thwart attempts to statically analyze
it. In this section, we discuss ways in which polymorphic code can be obfuscated for
evading network-level detection methods based on static binary code analysis.

Note that the techniques presented here are rather trivial, compared to elaborate
obfuscation methods [24–26], but enough to illustrate the limitations of detection meth-
ods based on static analysis. Advanced techniques for complicating static analysis have
also been extensively used for tamper-resistant software and for preventing the reverse
engineering of executables, as a defense against software piracy [27–29].

3.1 Thwarting Disassembly

There are two main disassembly techniques:linear sweepandrecursive traversal[30].
Linear sweep decodes each instruction sequentially until it encounters an invalid op-
code or reaches the end of the stream. Since the IA-32 instruction set is very dense,
disassembling random data is likely to give long instruction sequences of seemingly
legitimate code [31]. The main drawback of linear sweep is that it cannot distinguish
between code and data embedded in the instruction stream [32], and thus can be hin-
dered using several well-known anti-disassembly techniques such as interspersing junk
data among the shellcode, creating overlapping instructions, and jumping into the mid-
dle of instructions [33]. The recursive traversal algorithm overcomes some of these
limitations by taking into account the control flow behavior of the program.

Figure 1 shows the disassembly of the decoder part of a shellcode encrypted using
the Countdown encryption engine of the Metasploit Framework [34] using linear sweep
and recursive traversal. The target of thecall instruction at address0x0003 lies
at address0x0007 , one byte before the end of thecall instruction, i.e., thecall
instruction jumps to itself. This tricks linear disassembly to interpret the instructions
immediately following thecall instruction incorrectly. In contrast, recursive traversal
follows the branch target and disassembles the overlapping instructions correctly.



0000 6A7F push 0x7F
0002 59 pop ecx
0003 E8FFFFFFFF call 0x7
0008 C15E304C rcr [esi+0x30],0x4C
000C 0E push cs
000D 07 pop es
000E E2FA loop 0xA
0010
... <encrypted payload>
008F

(a)

0000 6A7F push 0x7F
0002 59 pop ecx
0003 E8FFFFFFFF call 0x7
0007 FFC1 inc ecx
0009 5E pop esi
000A 304C0E07 xor [esi+ecx+0x7],cl
000E E2FA loop 0xA
0010
... <encrypted payload>
008F

(b)

Fig. 1. Disassembly of the decoder produced by the Countdown shellcode encryption engine
using (a) linear sweep and (b) recursive traversal.

However, the targets of control transfer instructions are not always identifiable. In-
direct branch instructions transfer control to the address contained in a register operand
and their destination cannot be statically determined. In such cases, recursive traversal
also does not provide an accurate disassembly, and thus, an attacker could use indirect
branches extensively to hinder it. Although some advanced static analysis methods can
heuristically recover the targets of indirect branches, e.g., when used in jump tables,
they are effective only with compiled code and well-structured binaries [30,32,35,36].

3.2 Thwarting Control Flow Graph Extraction

Once the code has been disassembled, the next step of some approaches is to perform
analysis based on the control flow of the code by extracting the Control Flow Graph
(CFG). Kruegel et al. [7] use the CFG of several instances of a polymorphic worm to
detect structural similarities. Chinchani et al. [8] differentiate between data and exploit
code in network streams based on the control flow of the extracted code. However,
even if a precise approximation of the CFG can be derived in the presence of indirect
jumps, a motivated attacker can still hide the real CFG usingself-modifyingcode, which
changes itself dynamically at runtime. Although payload encryption is also a form of
self-modification, in this section we consider modifications to the decoder code itself,
which is the only shellcode part exposed to static binary code analysis.

A very simple example of this technique, also known as “patching,” is presented
in Fig. 2, which shows a modified version of the Countdown decoder of Fig. 1: an
add instruction has been added at address0x000A , andloop has been replaced by
add bh,dl . At first sight this code does not look like a polymorphic decryptor, since
the flow of control is linear, without any backward jumps that would form a decryp-
tion loop. Nevertheless, the code decrypts the ecrypted payload correctly, as shown by
the execution trace of Fig. 3. Theadd [esi+0xA],0xE0 instruction modifies the
contents of address0x0012 , which initially contains the instructionadd bh,dl . By
adding the value0xE0 to this memory location, the code at this location is modified and
add bh,dl is transformed toloop 0xe . Thus, when the instruction pointer reaches
the address0x0012 , the instruction that is actually executed isloop 0xe .

Even in this simple form, the above technique is very effective in obfuscating the
real CFG of shellcodes. Going one step further, an attacker could implement a poly-
morphic engine that produces decryptors with arbitrarily fake CFGs, different in each
shellcode instance, for evading detection methods based on CFG extraction.



0000 6A7F push 0x7F
0002 59 pop ecx
0003 E8FFFFFFFF call 0x7
0007 FFC1 inc ecx
0009 5E pop esi
000a 80460AE0 add [esi+0xA],0xE0
000e 304C0E0B xor [esi+ecx+0xB],cl
0012 02FA add bh,dl
0014
... <encrypted payload>
0093

Fig. 2. A modified, static analysis resistant version of the Countdown decoder.

0000 6A7F push 0x7F
0002 59 pop ecx ;ecx = 0x7F
0003 E8FFFFFFFF call 0x7 ;PUSH 0x8
0007 FFC1 inc ecx ;ecx = 0x80
0009 5E pop esi ;esi = 0x8
000a 80460AE0 add [esi+0xA],0xE0 ;ADD [0012] 0xE0
000e 304C0E0B xor [esi+ecx+0xB],cl ;XOR [0093] 0x80
0012 E2FA loop 0xE ;ecx = 0x7F
000e 304C0E0B xor [esi+ecx+0xB],cl ;XOR [0092] 0x7F
0012 E2FA loop 0xE ;ecx = 0x7E
...

Fig. 3. Execution trace of the modified Countdown decoder.

4 Network-level Execution

Carefully crafted polymorphic shellcode can evade detection methods based on static
binary code analysis. Using anti-disassembly techniques, indirect control transfer in-
structions, and self-modifications, static analysis resistant polymorphic shellcode will
not reveal its actual form until it is eventually executed on a real CPU. This observation
motivated us to explore whether it is possible to detect such highly obfuscated shellcode
by actuallyexecutingit, using only information available at the network level.

4.1 Approach

Our goal is to detect network streams that contain polymorphic exploit code by pas-
sively monitoring the incoming network traffic. The detector attempts to “execute”
each incoming request in a virtual environment as if it was executable code. Besides
the NOP sled, the only executable part of polymorphic shellcodes is the decryption rou-
tine. Therefore, the detection algorithm focuses on the identification of the decryption
process that takes place during the initial execution steps of a polymorphic shellcode.

Being isolated from the vulnerable host, the detector lacks the context in which the
injected code would run. Crucial information such as the OS of the host and the process
being exploited might not be known in advance. The execution of a polymorphic shell-
code can be conceptually split into the execution of two sequential parts: the decryptor
and the actual payload. The accurate execution of the payload, which usually includes
several advanced operations such as the creation of sockets or files, would require a
complete virtual machine environment. In contrast, the decryptor simply performs a
certain computation over the memory locations of the encrypted payload. This allows
us to simulate the execution of the decryptor using merely a CPU emulator.



Up to this point, the context of the vulnerable process in which the shellcode would
be injected is still missing. Specifically, since the emulator has no access to the victim
host, it lacks the memory and CPU state of the vulnerable process at the time its flow
of control is diverted to the injected code. However, the construction of polymorphic
shellcodes conforms to several restrictions that allow us to simulate the execution of the
decryptor part even with no further information about the context in which it is destined
to run. In the remainder of this section we discuss these restrictions.

Position-independent code.In a dynamically changing stack or heap, the exact mem-
ory location where the shellcode will be placed is not known in advance. For this reason,
any absolute addressing is avoided and reliable shellcode is made completely relocat-
able, otherwise the exploit becomes fragile [1]. For example, in case of Linux stack-
based buffer overflows, the absolute address of the vulnerable buffer varies between
systems, even for the same compiled executable, due to the environment variables which
are stored in the beginning of the stack. The position-independent nature of shellcode
allows us to map it in an arbitrary memory location and start its execution from there.

GetPC code.Since the absolute memory address of the injected shellcode cannot be ac-
curately predicted in advance, the decoder needs to find some reference to that memory
location in order to decrypt the encrypted payload. During the execution, the program
counter (PC, or EIP in the IA-32 architecture) points to the decryptor code, i.e., to the
memory region where the decryptor, along with the encrypted payload, has been placed.
However, the IA-32 architecture does not provide any EIP-relative memory addressing
mode,3 as opposed to instruction dispatch, so the decryptor has to somehow find the
absolute address of the encrypted payload in order to modify it.

The simplest way to derive a pointer to the encrypted payload is to read the program
counter using thecall instruction. Whencall is executed, the CPU pushes the return
address in the stack and jumps to the first instruction of the called procedure. Thus,
the decryptor can compute the address of the encrypted payload by reading the return
address from the stack and adding to it the appropriate offset. This technique is used
by the decryptor shown in Fig. 1. The encrypted payload begins at addresses0x0010 .
Call pushes the address of the instruction immediately following it (0x0008 ), which
is then popped toesi . The size of the encrypted payload is computed inecx , and the
effective address computation[esi+ecx+0x7] in xor corresponds to the last byte
of the encrypted payload at address0x08F . As the name of the engine implies, the
decryption is performed backwards, starting from the last encrypted byte.

Finding the absolute memory address of the decryptor is also possible using the
fstenv instruction, which saves the current FPU operating environment at the mem-
ory location specified by its operand [37]. The stored record includes the instruction
pointer of the FPU, thus if a floating point instruction has been executed as part of the
decryptor, thenfstenv can be used to retrieve its absolute memory address.

A third getPC technique is possible by exploiting the structured exception handling
(SEH) mechanism of Windows [38]. However this technique is feasible only with older

3 The IA-64 architecture supports a RIP-relative data addressing mode.



versions of Windows, and the introduction of registered SEH in Windows XP and 2003
limits its applicability. From the tested polymorphic shellcode engines (cf. Section 5.2),
only Alpha2 [39] supports this type of getPC, although not by default.

Known operand values. Polymorphic shellcode engines produce generic decryptor
code for a specific hardware platform that runs independently of the OS version of the
victim host or the vulnerability being exploited. The decoder is constructed with no
assumptions about the state of the process in which it will run, and any registers or
memory locations being used are initialized on the fly. For instance, the execution trace
of the Countdown decoder in Fig. 3 is always the same, independently of the process in
which it has been injected. Indeed, the code is self-contained, which allows us to execute
even instructions with non-immediate operands, which otherwise would be unknown,
as shown from the comments next to the code. The emulator can correctly initialize the
registers, follow stack operations, compute all effective addresses, and even follow self
modifications, since every operand eventually becomes known.

Note that, depending on the vulnerability, a skilled attacker may be able to construct
a non-self-contained decryptor, which our approach would not be able to fully execute.
This can be possible by including in the computations of the decoder values read by
known locations of the memory image of the vulnerable process that remain consistent
across all vulnerable systems. We further discuss this issue in Section 6.

4.2 Detection Algorithm

The algorithm takes as input a byte stream and reasons whether it contains polymor-
phic shellcode by executing it on a CPU emulator as if it was executable code. Due
to the dense instruction set and the variable instruction length of the IA-32 architec-
ture, even non-attack streams can be interpreted as valid executable code. However,
such random code usually stops running soon, e.g., due to an illegal instruction, while
real polymorphic code is being executed until the encrypted payload is fully decrypted.
The pseudocode of the algorithm is presented in Fig. 4 with several simplifications for
brevity. Each input buffer is mapped to a random location in the virtual address space of
the emulator. This is similar to the placement of the attack vector into the input buffer
of a vulnerable process. Before each execution attempt, the state of the virtual proces-
sor is randomized (line 5). Specifically, theEFLAGSregister, which holds the flags for
conditional instructions, and all general purpose registers are assigned random values,
exceptesp , which is set to point to the middle of the stack of a supposed process.

Running the shellcode.Depending on the vulnerability, the injected code may be lo-
cated in an arbitrary position within the stream. For example, the first bytes of a TCP
stream or a UDP packet payload will probably be occupied by protocol data, depend-
ing on the application (e.g., theMETHODfield in case of an HTTP request). Since the
position of the shellcode is not known in advance, the main routine consists of a loop
which repeatedly starts the execution of the supposed code that begins from each and
every position of the input buffer (line 3). We call a complete execution starting from
positioni anexecution chain fromi.



1 emulate(buf_start_addr, buf_len) {
2 invalidate_translation_cache();
3 for (pos=buf_start_addr; pos<buf_len; ++pos) {
4 PC = pos;
5 reset_CPU();
6 do {
7 / * decode instruction if no entry in translation cache * /
8 if (translation_cache[PC] == NULL)
9 translation_cache[PC] = decode_instruction(buf[PC]);

10 if (translation_cache[PC] == (ILLEGAL || PRIVILEGED)
11 break;
12 execute(translation_cache[PC]); / * changes PC * /
13 if (vmem[PC] == INVALID)
14 break;
15 }
16 while (num_exec++ < XT);
17 if (has_getPC_code && (payload_reads >= PRT)
18 return TRUE;
19 }
20 return FALSE;
21 }

Fig. 4. Simplified pseudo-code for the detection algorithm.

Note that it is necessary to start the execution from each positioni, instead of start-
ing only from the first byte of the stream and relying on the self-synchronizing property
of the IA-32 architecture [7,8], since we may otherwise miss the execution of a crucial
instruction that initializes some register or memory location. For example, going back
to the execution trace of Fig. 3, if the execution misses the first instructionpush 0xF ,
e.g., due to a misalignment or an overlapping instruction placed in purpose immediately
beforepush , then the emulator will not execute the decryptor correctly, since the value
of theecx register will be arbitrary. Furthermore, the execution may stop even before
reaching the shellcode, e.g., due to an illegal instruction.

For each positionpos , the algorithm enters the main loop (line 6), in which a new
instruction is fetched, decoded, and executed. Since instruction decoding is an expen-
sive operation, decoded instructions are stored in a translation cache (line 9). If an in-
struction at a certain position of the buffer is going to be executed again, e.g., as part
of a different execution chain of the same input buffer or as part of a loop body in the
same execution chain, the instruction is instantly fetched from the translation cache.

Optimizing performance. For large input streams, starting a new execution from each
and every position incurs a high execution overhead per stream. We have implemented
the following optimization in order to mitigate this effect. Since in most cases the in-
jected code is treated by the vulnerable application as a string, any NULL byte in the
shellcode will truncate it and render it nonfunctional. We exploit this restriction by
taking advantage of the zero bytes found in binary network traffic. Before starting the
execution from positioni, a look-ahead scan is performed to find the first zero byte after
bytei. If a zero byte is found at positionj, andj− i is less than a minimum sizeS, then
the positions fromi to j are skipped and the algorithm continues from positionj + 1.
We have chosen a rather conservative value forS = 50, given that most polymorphic
shellcodes have a size greater than 100 bytes.



In the rare case that a protected application accepts NULL characters as part of
the input, this optimization should be turned off. On the other hand, if the application
protocol has more restricted bytes, which is quite common [34], extending the above
optimization to also consider these bytes would dramatically improve performance.

Detection heuristic. Although the execution behavior of random code is undefined,
there exists a generic execution pattern inherent to all polymorphic shellcodes that al-
lows us to accurately distinguish polymorphic code injection attacks from benign re-
quests. During decryption, the decoder must read the encrypted payload in order to
decrypt it. Hence, the decryption process will result in many memory accesses to the
memory region where the input buffer has been mapped to. Since this region is a very
small part of the virtual address space, we expect that memory reads from that area
would happen rarely during the execution of random code.

Only instructions that have a memory operand can potentially result in a memory
read from the input buffer. Given that input streams are mapped to a random memory
location and that before each execution the CPU registers, some of which usually take
part in the computation of the effective address, are randomized, the probability to en-
counter a memory read from the input buffer in random code is very low. In contrast,
the decryptor will access tens or hundreds ofdifferentmemory locations within the in-
put buffer. This observation led us to initially choose the number of reads fromdistinct
memory locations of the input buffer as the detection criterion. We refer to memory
reads from distinct locations of the input buffer as“payload reads.” For a given exe-
cution chain, a number of payload reads greater than a certain payload reads threshold
(PRT) is an indication of the execution of a polymorphic shellcode.

We expected random code to exhibit a low payload reads frequency, which would
allow for a small PRT value, much lower than the typical number of payload reads found
in polymorphic shellcodes. However, preliminary experiments with network traces re-
vealed rare cases with execution chains that performed hundreds of payload reads. This
was usually due to the accidental formation of a loop with an instruction that happened
to read hundreds of different memory locations from the input buffer.

We addressed this issue by defining a more strict criterion. As discussed in Sec-
tion 4.1, a mandatory operation of every polymorphic shellcode is to find its location in
memory using some form of getPC code. This led us to augment the detection criterion
as follows: if an execution chain of an input stream executes some form of getPC code,
followed by PRT or more payload reads, then the stream is flagged to contain polymor-
phic shellcode. We discuss in detail this criterion and its effectiveness in terms of false
positives in Section 5.1. The experimental evaluation showed that the above heuristic
allows for accurate detection of polymorphic shellcode with zero false positives.

Another option for enhancing the heuristic would be to look forlinear payload reads
from a contiguous memory region. However, this heuristic can be tricked by spliting the
encrypted payload into nonadjacent parts and decrypting it in a random order [40].

Ending execution. An execution chain may end for one of the following reasons: (i) an
illegal or privileged instruction is encountered, (ii) the control is transferred to an invalid
memory location, (iii) the number of executed instructions has exceeded a threshold.



Invalid instruction. The execution stops if an illegal or privileged instruction is en-
countered (line 10). Since privileged instructions can be invoked only by the OS kernel,
they cannot take part in the execution of shellcode. Although an attacker could inter-
sperse invalid or privileged instructions in the injected code to hinder detection, these
should come with corresponding control transfer instructions that will bypass them dur-
ing execution—otherwise the execution would fail. At the same time, privileged or ille-
gal instructions appear relatively often in random data, helping this way to distinguish
between benign requests and attack vectors.

Invalid memory location.Normally, during the execution of the decoder, the program
counter will point to addresses of the memory region of the input buffer where the
injected code resides. However, highly obfuscated code could use the stack for storing
some parts, or all of the decrypted code, or even for “producing” useful instructions on
the fly, in a way similar to the self-modifications presented in Section 3.2. In fact, since
the shellcode is the last piece of code that will be executed as part of the vulnerable
process, the attacker has the flexibility to write inanymemory location mapped in the
address space of the vulnerable process [41].

The emulator cannot execute instructions that read unknown memory locations be-
cause their contents are not available to the network-level detector. Such instructions
are ignored and the execution continues normally. Otherwise, an attacker could trick
the emulator by placing NOP-like instructions that read arbitrary data from memory
locations known in advance to belong to the address space of the application. However,
the emulator keeps track of any memory locations outside of the input buffer that have
been written during execution, and marks them as valid memory locations where useful
data or code may have been placed. If at any time the program counter points to such
an address, the execution continues normally from that location. In contrast, if the PC
points to an address outside the input buffer that has not been written during the partic-
ular execution, then the execution stops (line 15). In random binary code, this usually
happens when the PC reaches the end of the input buffer.

Note that if an attacker knows in advance some memory locations of the vulnerable
process that contain code which can be used as part of the shellcode, then the emulator
would not be able to fully execute it. We further discuss this issue in Section 6.

Execution threshold.There are situations in which the execution of random code might
not stop soon, or even not at all, due to large code blocks with no backward branches
that are executed linearly, or due to the occurrence of backwards jumps that form “end-
less” or infinite loops. In such cases, an execution threshold (XT) is necessary to avoid
extensive performance degradation or execution hang ups (line 16).

An attacker could exploit this and evade detection by placing a loop before the
decryptor which would execute enough instructions to exceed the execution threshold
before the code of the actual decryptor is reached. We cannot simply skip such loops
since the loop body could perform a crucial computation for the further correct execu-
tion of the decoder, e.g., computing the decryption key. Fortunately, endless loops occur
with low frequency in normal traffic, as discussed in Section 5.3. Thus, an increase in
input requests with execution chains that reach the execution threshold due to a loop
might be an indication of a new attack outbreak using the above evasion method.



... ...
0A40 xor ch,0xc3 0F30 ror ebx,0x9
0A43 imul dx,[ecx],0x5 0F33 stc
0A48 mov eax,0xf4 0F34 mov al,0xf4
0A4D jmp short 0xa40 0F36 jpe 0xf30 ;PF=1
... ...

(a) (b)

Fig. 5. Infinite loops in random code due to (a) unconditional and (b) conditional branches.

To further mitigate the effect of endless loops, we have implemented a heuristic
for identifying and stopping infinite loops using the dynamic loop detection method
proposed by Tubella et al. [42]. The following infinite loop cases are detected: (i) there
is an unconditional backward branch from address S to address T, and there is no control
transfer instruction in the range [T,S] (the loop body), and (ii) there is a conditional
backward branch from address S to address T, and none of the instructions in the range
[T,S] is a control transfer instruction or affects the status flag(s) of the EFLAGS register
on which the conditional branch depends on. Examples of the two cases are presented
in Fig. 5. In example (b), when control reaches theror instruction, the parity flag (PF)
has been set as a result of some previous instruction. Since none of the instructions in
the loop body affects the PF, its value will not change until the jump-if-parity instruction
is executed, which will jump back to theror instruction, resulting to an infinite loop.

Clearly, these are very simple cases, and more complex infinite loop structures may
arise. Our experiments have shown that, depending on the monitored traffic, above
heuristics prune about 3–6% of the execution chains that stop due to the execution
threshold. Loops in random code are usually not infinite but are being executed for
many iterations until completion. Thus, the runtime overhead of any more elaborate
infinite loop detection method will be higher than the overhead of simply running the
extra infinite loops that may arise until the execution threshold is reached.

4.3 Implementation

The detector passively captures network packets usinglibpcap [43] and reassem-
bles TCP/IP streams usinglibnids [44]. The input buffer size is set to 64KB, which
is enough for typical service requests. Especially for web traffic, HTTP/1.1 pipelined
requests are split to separate streams, otherwise an attacker could evade detection by
filling the stream with benign requests until exceeding the buffer size. Instruction set
simulation has been implemented interpretively with a typical fetch, decode, and exe-
cute cycle. Instruction decoding is performed usinglibdasm [45].

For our prototype, we have implemented a subset of the IA-32 instruction set, in-
cluding most general-purpose instructions, but no FPU, MMX, SSE, or SSE2 instruc-
tions, exceptfstenv/fnstenv , fsave/fnsave , and rdtsc . However,all in-
structions are fully decoded, and if an unimplemented instruction is encountered, the
emulator proceeds normally to the next instruction. The implemented subset suffices
for the complete execution of all tested shellcodes (cf. Section 5.2). Even the highly
obfuscated shellcodes generated by the TAPiON engine [11], which intersperses FPU
instructions among the decoder code, are executed correctly, since any FPU instructions
are used as NOPs and do not take part in the useful computations of the decoder.



Service Port Number Number of streams Total size
www 80 1759950 1.72 GB
NetBIOS 137–139 246888 311 MB
microsoft-ds 445 663064 912 MB

Table 1.Characteristics of client-to-server network traffic traces.

5 Experimental Evaluation

In this section we evaluate the performance of the proposed approach using our pro-
totype implementation. In all experiments, the detector was running on a PC equipped
with a 2.53 GHz Pentium 4 processor and 1 GB RAM, running Debian Linux (kernel
v2.6.7). For trace-driven experiments, we used full packet traces of traffic from ports
related to the most exploited vulnerabilities, captured at ICS-FORTH and the University
of Crete. Trace details are summarized in Table 1. Since remote code-injection attacks
are performed using a specially crafted request to a vulnerable service, we keep only the
client-to-server traffic of network flows. For large incoming TCP streams, e.g., due to a
file upload, we keep only the first 64KB. Note that these traces represent a significantly
smaller portion of the total traffic that passed by through the monitored links during the
monitoring period, since we keep only the client-initiated traffic.

5.1 Tuning the Detection Heuristic

We first assess the possibility of incorrectly detecting benign requests as polymorphic
shellcode. As discussed in Section 4.2, the detection criterion requires the execution
of some form of getPC code, followed by a number of payload reads that exceed a
certain threshold. Our initial implementation of this heuristic was the following: if an
execution chain contains acall , fstenv , or fsave instruction, followed by PRT or
more payload reads, then it belongs to a polymorphic shellcode. The existence of one
of the fourcall , two fstenv , or two fsave instructions of the IA-32 instruction set
serves as an indication of the potential execution of getPC code.

We evaluated this heuristic using the traces presented in Table 1 as input to the
detection algorithm. Only 13 streams were found to contain an execution chain with
a call or fstenv instruction followed by payload reads, and all of them had non-
ASCII content. In the worst case, there were five payload reads, allowing for a minimum
value for PRT = 6. However, since the false positive rate is a crucial factor for the
applicability of our detection method, we further explored the quality of the detection
heuristic using a significantly larger data set.

We generated two million streams of varying sizes uniformly distributed between
512 bytes and 64 KB with random binary content. From our experience, binary data is
much more likely to give false positives than ASCII only data. The total size of the data
set was 61 GB. The results of the evaluation are presented in Table 2, under the column
“Initial Heuristic.” From the two million streams, 556 had an execution chain that con-
tained a getPC instruction followed by payload reads. There were 44 streams with tens
of payload reads and 37 streams with more than 100 payload reads, reaching 416 in the



Payload Streams
Reads Initial Heuristic Improved Heuristic

# % # %
1 409 0.02045 22 0.00110
2 39 0.00195 5 0.00025
3 10 0.00050 3 0.00015
4 9 0.00045 1 0.00005
5 3 0.00015 1 0.00005
6 5 0.00025 1 0.00005
7–100 44 0.00220 0 0
100–416 37 0.00185 0 0

Table 2.Streams that matched the detection heuristic with a given number of payload reads.

most extreme case. As we show in Section 5.2, there are polymorphic shellcodes that
execute as few as 32 payload reads. As a result, PRT cannot be set to a value greater
than 32 since it would otherwise miss some polymorphic shellcodes. Thus, the above
heuristic incorrectly identifies these cases as polymorphic shellcodes.

Although only the 0.00405 % of the total streams resulted to a false positive, we
can devise an even more strict criterion to further lower the false positive rate. Payload
reads occur in random code whenever the memory operand of an instructionacciden-
tally refers to a location within the input buffer. In contrast, the decoder of a polymor-
phic shellcode explicitly refers to the memory region of the encrypted payload based
on the value of the instruction pointer that is pushed in the stack by acall instruction,
or stored in the memory location specified in anfstenv instruction. Thus, after the
execution of such an instruction, the next mandatory step of a getPC code is to read the
instruction pointer from the memory location where it was stored. This led us to fur-
ther enhance the detection criterion as follows:if an execution chain contains acall ,
fstenv , or fsave instruction, followed by a read from the memory location where
the instruction pointer was stored as a result of one of the above instructions, followed
by PRT or more payload reads, then it belongs to a polymorphic shellcode.

Using the same data set, the enhanced criterion results to significantly fewer match-
ing streams, as shown under the column “Enhanced Heuristic” of Table 2. In the worst
case, one stream had an execution chain with acall instruction, an accidental read
from the memory location of the stack where the return address was pushed, and six
payload reads, which allows for a lower bound for PRT = 7.

5.2 Validation

Polymorphic Shellcode Execution.We tested the capability of the emulator to cor-
rectly execute polymorphic shellcodes using real samples produced by off-the-shelf
polymorphic shellcode engines. We generated mutations of an 128 byte shellcode using
the Clet [15], ADMmutate [14], and TAPiON [11] polymorphic shellcode engines, and
the Alpha2 [39], Countdown, JmpCallAdditive, Pex, PexFnstenvMov, PexFnstenvSub,
and ShigataGaNai shellcode encryption engines of the Metasploit Framework [34]. For
each engine, we generated 1000 instances of the original shellcode.
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Fig. 7. Average number of payload reads for the complete decryption of the payload.

Figure 6 shows the average number of executed instructions that are required for the
complete decryption of the payload for the 1000 samples of each engine. The ends of
range bars, where applicable, correspond to the samples with the minimum and maxi-
mum number of executed instructions. In all cases, the emulator decrypts the original
shellcode correctly. Figure 7 shows the average number of payload reads for the same
experiment. For simple encryption engines, the decoder decrypts four bytes at a time,
resulting to 32 payload reads. On the other extreme, shellcodes produced by the Alpha2
engine perform more that 500 payload reads. Alpha2 produces alphanumeric shellcode
using a considerably smaller subset of the IA-32 instruction set, which forces it to exe-
cute much more instructions in order to achieve the same goals.

Given that 128 bytes is a rather small size for a functional payload, these results can
be used to derive an indicative upper bound for PRT = 32. Combined with the results
of the previous section, this allows for a range of possible values for PRT from 7 to 31.
For our experiments we choose for PRT the median value of 19, which allows for even
more increased resilience to false positives.

Detection Effectiveness.To test the efficacy of our detection method, we launched a
series of remote code-injection attacks using the Metasploit Framework [34] against an
unpatched Windows XP host running Apache v1.3.22. Attacks were launched from a
Linux host using Metasploit’s exploits for the following vulnerabilities: Apache win32
chunked encoding [46], Microsoft RPC DCOM MS03-026 [47], Microsoft LSASS
MS04-011 [48]. The detector was running on a third host that passively monitored
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tion threshold.

the incoming traffic of the victim host. For the payload we used thewin32 reverse
shellcode, encrypted with different engines. We tested all combinations of the three
exploits with the engines presented in the previous section. All attacks were detected
successfully, with zero false negatives.

5.3 Processing Cost

In this section we evaluate the raw processing speed of our prototype implementation
using the network traces presented in Table 1. Although emulation is a CPU-intensive
operation, our aim is to show that it is feasible to apply it for network-level polymorphic
attack detection. One of the main factors that affects the processing speed of the emu-
lator is the execution threshold XT beyond which an execution chain stops. The larger
the XT, the more the processing time spent on streams with long execution chains. As
shown in Fig. 8, as XT increases, the throughput decreases, especially for ports 139 and
445. The reason for the linear decrease of the throughput for these ports is that some
streams have very long execution chains that always reach the XT, even when it is set to
large values. As XT increases, the emulator spends even more cycles on these chains,
which decreases the overall throughput.

We further explore this effect in Fig. 9, which shows the percent of streams with an
execution chain that reaches a given execution threshold. As XT increases, the number
of streams that reach it decreases. This effect occurs only for low XT values due to large
code blocks with no branch instructions that are executed linearly. For example, the
execution of blocks that have more than 256 but less than 512 valid instructions, reaches
a threshold of 256, but completes with a threshold of 512. However, the occurrence
probability of such blocks is reversely proportional to their length, due to the illegal
or privileged instructions that accidentally occur in random code. Thus, the percent
of streams that reach XT stabilizes beyond the value of 2048. After this value, XT
is reached solely due to execution chains with endless loops, which usually require a
prohibitive number of instructions in order to complete.

In contrast, port 80 traffic behaves differently because the ASCII data that domi-
nate in web requests produce mainly forward jumps, making the occurrence of endless
loops extremely rare. Therefore, beyond an XT of 2048, the percent of streams with an
execution chain that stops due to the execution threshold is negligible, reaching 0.12%.
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However, since ASCII web requests do not contain any null bytes, the zero-delimited
chunks optimization does not reduce the number of execution chains per stream, which
results to a lower processing speed.

Figures 8 and 9 represent two conflicting tradeoffs related to the execution thresh-
old. Presumably, the higher the processing speed, the better, which leads towards lower
XT values. On the other hand, as discussed in Section 4.2, it is desirable to have as few
streams with execution chains that reach the XT as possible, i.e., higher XT values that
increase the visibility of endless loop attacks. Based on the second requirement, XT
values higher than 2048 do not offer any improvement to the percent of streams that
reach it, which stabilizes at 2.65% for port 139 and 4.08% for port 445.

At the same time, an XT of 2048 allows for a quite decent processing speed, es-
pecially when taking into account that live incoming traffic will usually have relatively
lower volume than the monitored link’s bandwidth, especially if the protected services
are not related to file uploads. We should also stress that our prototype is highly unop-
timized. For instance, a threaded code [49] emulator combined with optimizations such
as lazy condition code evaluation [50] would result to better performance.

A final issue that we should take into account is to ensure that the execution thresh-
old allows polymorphic shellcodes to perform enough payload reads to reach the pay-
load reads threshold and be successfully detected. As shown in Section 5.2, the com-
plete decryption of some shellcodes requires the execution of even more than 10000
instructions, which is much higher than an XT as low as 2048. However, as shown in
Fig. 10, even lower XT values, which give better throughput for binary traffic, allow for
the execution of more than enough payload reads. For example, in all cases, the chosen
PRT value of 19 is reached by executing only 300 instructions.

6 Limitations

A fundamental limitation of our method is that it detects only polymorphic shellcodes
that decrypt their body before executing their actual payload. Plain or completely meta-
morphic shellcodes that do not perform any self-modifications are not captured by our



detection heuristic. However, we have yet to see a purely metamorphic shellcode engine
implementation, while polymorphic engines are becoming more prevalent and com-
plex [11], mainly for two reasons. First, polymorphic shellcode is increasingly used for
evading detection. Second, the ever increasing functionality of recent shellcodes makes
their construction more complex, while at the same time their code should not contain
NULL and, depending on the exploit, other restricted bytes. Thus, it is easier for shell-
code authors to avoid such bytes in the code by encoding its body using an off-the-shelf
encryption engine, rather than having to handcraft the shellcode [1]. In many cases
the latter is non-trivial, since many exploits require the avoidance of many restricted
bytes [34], with the most extreme cases requiring purely ASCII shellcode [16,39].

Our method works only with self-contained shellcode. Although current polymor-
phic shellcode engines produce self-contained code, a motivated attacker could evade
network-level emulation by constructing a shellcode that involves registers or memory
locations with a priori known values that remain constant across all vulnerable systems.
For example, if it is known in advance that the address0x40038EF0 in the vulnerable
process’ address space contains the instructionret , then the shellcode can be obfus-
cated by inserting the instructioncall 0x40038EF0 at an arbitrary position in the
decoder code. Although this will have no effect to the actual execution of the shellcode,
it will hinder the execution by our network-level emulator.

However, the extended use of hardcoded addresses results in more fragile code [1],
as they tend to change across different software and OS versions, especially as address
space randomization schemes are becoming more prevalent [51]. In our future work, we
plan to explore ways to augment the network-level detector with host-level information,
such as the invariant parts of the address space of the protected processes, in order to
make it more robust to such obfuscations.

Another possible evasion method is the placement of endless loops for reaching
the execution threshold before the actual decryptor code runs. Although this is a well-
known problem in the context of virus scanners for years, if attackers start to employ
such evasion techniques, our method will still be useful as a first-stage anomaly detector
for application-aware NIDS like shadow honeypots [52], given that the appearance of
endless loops in random code is rare, as shown in Section 5.3.

Finally, unicode-proof shellcodes [41], which become functional after being trans-
formed according to the unicode encoding, are not executed correctly by our prototype.
This is an orthogonal problem that can be addressed by reversing the encoding of the
protected service using appropriate filters before the emulation stage.

7 Conclusion

We have considered the problem of detecting polymorphic code injection attacks at the
network level. The main question is whether such attacks can be identified purely based
on the limited information available through passive network traffic monitoring.

The starting point for our work is the observation that previous proposals that rely
on static analysis are insufficient, because they can be bypassed using techniques such
as simple self-modifications. In response to this observation, we explore the feasibil-
ity of performing more accurate analysis through network level execution of potential



shellcodes by employing a fully-blown processor emulator on the NIDS side. We have
examined the execution profiles of a large number of shellcodes produced using various
generators and identified properties that can distinguish polymorphic shellcodes from
normal traffic with reasonable accuracy. Our analysis indicates that our approach can
detect all known classes of polymorphic shellcodes, including those that employ certain
forms of self-modifications that are not detected by previous proposals. Furthermore,
our experiments suggest that the cost of our approach is modest.

However, further analysis on the robustness of our approach also revealed that
attackers can succeed in circumventing our techniques if the shellcode is not self-
contained. In particular, the attacker can leverage context not available at the network
level for building shellcodes that cannot be unambiguously executed on the network
level processor emulator. Detecting such attacks remains an open problem.

One way of tackling this problem is to feed the necessary host-level information to
the NIDS, as suggested in [53], but the feasibility of doing so is yet to be proven. A ma-
jor concern is that, in most cases, bypassing shellcode detection techniques, including
our own, has been relatively straightforward, and appears to carry no additional cost or
risks for the attacker. Thus, these techniques do not necessarily “raise the bar” for the
attacker, while their cost for the defender in terms of the resources that need to be de-
voted to detection can be significant. At this point, it remains unclear whether accurate
network level detection is feasible. Nevertheless, we believe that the work described in
this paper brings us one step closer to answering this question.
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