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Abstract. We introduce Spatial-Temporal Memory Networks for video
object detection. At its core, a novel Spatial-Temporal Memory module
(STMM) serves as the recurrent computation unit to model long-term
temporal appearance and motion dynamics. The STMM’s design enables
full integration of pretrained backbone CNN weights, which we find to
be critical for accurate detection. Furthermore, in order to tackle object
motion in videos, we propose a novel MatchTrans module to align the
spatial-temporal memory from frame to frame. Our method produces
state-of-the-art results on the benchmark ImageNet VID dataset, and
our ablative studies clearly demonstrate the contribution of our different
design choices. We release our code and models at http://fanyix.cs.

ucdavis.edu/project/stmn/project.html.
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1 Introduction

Object detection is a fundamental problem in computer vision. While there has
been a long history of detecting objects in static images, there has been much less
research in detecting objects in videos. However, cameras on robots, surveillance
systems, vehicles, wearable devices, etc., receive videos instead of static images.
Thus, for these systems to recognize the key objects and their interactions, it is
critical that they be equipped with accurate video object detectors.

The simplest way to detect objects in video is to run a static image-based
detector independently on each frame. However, due to the different biases and
challenges of video (e.g., motion blur, low-resolution, compression artifacts), an
image detector usually does not generalize well. More importantly, videos provide
rich temporal and motion information that should be utilized by the detector
during both training and testing. For example, in Fig. 1, since the hamster’s
profile view (frames 1-2) is much easier to detect than the challenging view-
point/pose in later frames, the image detector only succeeds in detecting the
leading frame of the sequence. On the other hand, by learning to aggregate use-
ful information over time, a video object detector can robustly detect the object
under extreme viewpoint/pose.

Therefore, in recent years, there has been a growing interest in the commu-
nity on designing video object detectors [18,19,29,25,14,51,50]. However, many
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Fig. 1. Static image detectors (such as Fast-RCNN [17] or R-FCN [9]), tend to fail
under occlusion or extreme pose (false detections shown in yellow). By learning to ag-
gregate information across time, our STMN video object detector can produce correct
detections in frames with challenging pose/viewpoints. In this example, it aggregates
information from the easier profile views of the hamster (first two frames) to aid de-
tection in occluded or extreme views of the hamster (third-fifth frames).

existing methods exploit temporal information in an ad-hoc, post-processing
manner – static object detections returned by an image detector like R-FCN [9]
or Faster R-CNN [38] are linked across frames [19,29,25], or video segmenta-
tion is performed to refine the detection results [18]. Although these methods
show improvement over a static image detector, exploiting temporal informa-
tion as post-processing is sub-optimal since temporal and motion information
are ignored during detector training. As such, they have difficulty overcoming
consecutive failures of the static detector e.g., when the object-of-interest has
large occlusion or unusual appearance for a long time.

More recent works [14,51,50] learn to exploit temporal information during
training by either learning to combine features across neighboring frames or
by predicting the displacement of detection boxes across frames. However, these
methods operate on fixed-length temporal windows and thus have difficulty mod-
eling variable and long-term temporal information. While the Tubelet Proposal
Network [24] does model long-term dependencies, it uses vectors to represent the
memory of the recurrent unit, and hence loses spatial information. To compen-
sate, it computes the memory vectors at the region-level for each tube (sequence
of proposals), but this can be very slow and depends strongly on having accurate
initial tubes.

To address these limitations, we introduce the Spatial-Temporal Memory Net-
work (STMN), which jointly learns to model and align an object’s long-term
appearance and motion dynamics in an end-to-end fashion for video object de-
tection. At its core is the Spatial-Temporal Memory Module (STMM), which
is a convolutional recurrent computation unit that fully integrates pre-trained
weights learned from static images (e.g., ImageNet [11]). This design choice
is critical in addressing the practical challenge of learning from contemporary
video datasets, which largely lack intra-category object diversity; i.e., since video
frames are highly redundant, a video dataset of e.g., 1 million frames has much
lower diversity than an image dataset with 1 million images. By designing our
memory unit to be compatible with pre-trained weights from both its preceding



Video Object Detection with an Aligned Spatial-Temporal Memory 3

and succeeding layers, we show that it outperforms the standard ConvGRU [4]
recurrent module for video object detection.

Furthermore, in order to account for the 2D spatial nature of visual data,
the STMM preserves the spatial information of each frame in its memory. In
particular, to achieve accurate pixel-level spatial alignment over time, the STMM
uses a novel MatchTrans module to explicitly model the displacement introduced
by motion across frames. Since the convolutional features for each frame are
aligned and aggregated in the spatial memory, the feature for any particular
object region is well-localized and contains information across multiple frames.
Furthermore, each region feature can be extracted trivially via ROI pooling from
the memory.

In summary, our main contribution is a novel spatial-temporal memory net-
work for video object detection. Our ablative studies show the benefits provided
by the STMM and MatchTrans modules – integrating pre-trained static image
weights and providing spatial alignment across time. These design choices lead to
state-of-the-art results on the ImageNet video object detection dataset (VID) [1]
across different base detectors and backbone networks.

2 Related work

Static image object detection. Recent work that adopt deep neural networks
have significantly advanced the state-of-the-art in static image object detec-
tion [16,39,17,38,37,31,9,40,7]. Our work also builds on the success of deep net-
works to learn the features, classifier, and bounding box localizer in an end-to-end
framework. However, in contrast to most existing work that focus on detecting
objects in static images, this paper aims to detect objects in videos.

Video object detection. Compared to static image-based object detection, there
has been less research in detecting objects in videos. Early work processed videos
captured from a static camera or made strong assumptions about the type of
scene (e.g., highway traffic camera for detecting cars or an indoor room for
detecting persons) [46,8]. Later work used hand-designed features by aggregating
simple motion cues (based on optical flow, temporal differences, or tracking), and
focused mostly on pedestrian detection [45,10,23,35].

With the introduction of ImageNet VID [1] in 2015, researchers have fo-
cused on more generic categories and realistic videos. However, many existing
approaches combine per-frame detections from a static image detector via track-
ing in a two-stage pipeline [19,43,25]. Since the motion and temporal cues are
used as a post-processing step only during testing, many heuristic choices are re-
quired, which can lead to sub-optimal results. In contrast, our approach directly
learns to integrate the motion and temporal dependencies during training. Our
end-to-end architecture also leads to a clean and fast runtime.

Sharing our goal of leveraging temporal information during training, the re-
cent works of Zhu et al. [51,50] learn to combine features of different frames
with a feed-forward network for improved detection accuracy. Our method dif-
fers in that it produces a spatial-temporal memory that can carry on information



4 F. Xiao and Y. J. Lee

across long and variable number of frames, whereas the methods in [51,50] can
only aggregate information over a small and fixed number of frames. In Sec. 4.3,
we demonstrate the benefits gained from this flexibility. Although the approach
of Kang et al. [24] uses memory to aggregate temporal information, it uses a
vector representation. Since spatial information is lost, it computes a separate
memory vector for each region tube (sequence of proposals) which can make the
approach very slow. In contrast, our approach only needs to compute a single
frame-level spatial memory, whose computation is independent of the number of
proposals.

Finally, Detect and Track [14] aims to unify detection and tracking, where the
correlation between consecutive two frames are used to predict the movement of
the detection boxes. Unlike [14], our spatial-temporal memory aggregates infor-
mation across t > 2 frames. Furthermore, while our approach also computes the
correlation between neighboring frames with the proposed MatchTrans module,
we use it to warp the entire feature map for alignment (i.e., at the coarse pixel-
level), rather than use it to predict the displacement of the boxes. Overall, these
choices lead to state-of-the-art detection accuracy on ImageNet VID.

Learning with videos. Apart from video object detection, other recent work use
convolutional and/or recurrent networks for video classification [26,42,4]. These
methods tend to model entire video frames instead of pixels, which means the
fine-grained details required for localizing objects are often lost. Object tracking
(e.g., [30,33]), which requires accurate localization, is also closely-related. The
key difference is that in tracking, the bounding box of the first frame is given
and the tracker does not necessarily need to know the semantic category of the
object being tracked.

Modeling sequence data with RNNs. In computer vision, RNNs have been used
for image captioning [27,44,12], visual attention [2,32,47], action/object recog-
nition [12,4], human pose estimation [15,6], and semantic segmentation [49].
Recently, Tripathi et al. [43] adopted RNNs for video object detection. However,
in their pipeline, the CNN-based detector is first trained, then an RNN is trained
to refine the detection outputs of the CNN.

Despite the wide adoption of RNNs in various vision tasks, most approaches
work with vector-form memory units (as in standard LSTM/GRU). To take spa-
tial locality into account, Ballas et al. [4] proposed convolutional gated recurrent
units (ConvGRU) and applied it to the task of action recognition. Built upon [4],
Tokmakov et al. [41] used ConvGRUs for the task of video object segmentation.
Our work differs in three ways: (1) we classify bounding boxes rather than frames
or pixels; (2) we propose a new recurrent computation unit called STMM that
makes better use of static image detector weights pre-trained on a large-scale
image dataset like ImageNet; and (3) our spatial-temporal memory is aligned
frame-to-frame through our MatchTrans module. We show that these properties
lead to better results than ConvGRU for video object detection.
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Fig. 2. Our STMN architecture. Consecutive frames are forwarded through the convo-
lutional stacks to obtain spatial-preserving convolutional feature maps, which are then
fed into the spatial-temporal memory module (STMM). In this example, in order to
detect an object on the center frame, information flows into the center STMM from all
five frames. The STMM output from the center frame is then fed into a classification
and box regression sub-network.

3 Approach

We propose a novel RNN architecture called the Spatial-Temporal Memory Net-
work (STMN) to model an object’s changing appearance and motion over time
for video object detection.

3.1 Overview

The overall architecture is shown in Fig. 2. Assuming a video sequence of length
T , each frame is first forwarded through a convnet to obtain convolutional fea-
ture maps F1, F2, ..., FT as appearance features. To aggregate information along
the temporal axis, the appearance feature of each frame is fed into the Spatial-
Temporal Memory Module (STMM). The STMM at time step t receives the ap-
pearance feature for the current frame Ft, as well as a spatial-temporal memory
M→t−1, which carries the information of all previous frames up through timestep
t − 1. The STMM then updates the spatial-temporal memory for the current
time step M→t conditioned on both Ft and M→t−1. In order to capture infor-
mation from both previous and later frames, we use two STMMs, one for each
direction, to obtain both M→ and M←. These are then concatenated to produce
the temporally modulated memory M for each frame.

The concatenated memory M , which also preserves spatial information, is
then fed into subsequent convolution/fully-connected layers for both category
classification and bounding box regression. This way, our approach combines in-
formation from both the current frame as well as temporally-neighboring frames
when making its detections. This helps, for instance, in the case of detecting a
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frontal-view bicycle in the center frame of Fig. 2 (which is hard), if we have seen
its side-view (which is easier) from nearby frames. In contrast, a static image
detector would only see the frontal-view bicycle when making its detection.

Finally, to train the detector, we use the same loss function used in R-FCN [9].
Specifically, for each frame in a training sequence, we enforce a cross-entropy
loss between the predicted class label and the ground-truth label, and enforce
a smooth L1 loss on the predicted bounding box regression coefficients. During
testing, we slide the testing window and detect on all frames within each sliding
window, to be consistent with our training procedure.

3.2 Spatial-temporal memory module

We next explain how the STMM models the temporal correlation of an object
across frames. At each time step, the STMM takes as input Ft and Mt−1 and
computes the following:

zt = BN∗(ReLU(Wz ∗ Ft + Uz ∗Mt−1)), (1)

rt = BN∗(ReLU(Wr ∗ Ft + Ur ∗Mt−1)), (2)

M̃t = ReLU(W ∗ Ft + U ∗ (Mt−1 � rt)), (3)

Mt = (1− zt)�Mt−1 + zt � M̃t, (4)

where� is element-wise multiplication, ∗ is convolution, and U,W, Ur,Wr, Uz,Wz

are the 2D convolutional kernels, whose parameters are optimized end-to-end.
Gate rt masks elements of Mt−1 (i.e., it allows the previous state to be forgotten)
to generate candidate memory M̃t. And gate zt determines how to weight and
combine the memory from the previous step Mt−1 with the candidate memory
M̃t, to generate the new memory Mt.

match interpolate

Fig. 3. S(x;µ, σ) squashes any value
in [0,+ inf) into range [0, 1], with
a linear scaling function thresholded
at µ+K · σ. We set K = 3.

To generate rt and zt, the STMM first
computes an affine transformation of Mt−1
and Ft, and then ReLU [28] is applied to the
outputs. Since rt and zt are gates, their val-
ues need to be in the range of [0, 1]. There-
fore, we make two changes to the standard
BatchNorm [22] (and denote it as BN∗) such
that it normalizes its input to [0, 1], instead
of zero mean and unit standard deviation.

First, our variant of BatchNorm com-
putes the mean µ(X) and standard de-
viation σ(X) for an input batch X, and
then normalizes values in X with the lin-
ear squashing function S(X;µ, σ) shown in
Fig. 3. Second, we compute the mean and
standard deviation for each batch independently instead of keeping running av-
erages across training batches. In this way, we do not need to store different
statistics for different time-steps, which allows us to generate test results for
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sequence lengths not seen during training (e.g., we can compute detections on
longer sequences than those seen during training as demonstrated in Sec. 4.3).
Note that a key difference between BN∗ and instance/layer normalization [21,3] is
that BN∗ guarantees that each and every value in its output is normalized within
[0, 1] (which is necessary for gating variables), whereas neither instance nor layer
normalization ensures this property. Although simple, we find BN∗ works well for
our purpose.

Differences with ConvGRU [4] A key practical challenge of learning video
object detectors is the lack of intra-category object diversity in contemporary
video datasets; i.e., since video frames are highly redundant, a video dataset of
e.g., 1 million frames has much lower diversity than an image dataset with 1
million images. The cost of annotation is much higher in video, which makes it
difficult to have the same level of diversity as an image dataset. Therefore, trans-
ferring useful information from large-scale image datasets like ImageNet [11]—
into the memory processing unit itself—would benefit our video object detector
by providing additional diversity.

Specifically, we would like to initialize our STMN detector with the weights
of the state-of-the-art static image-based RFCN detector [9] which has been
pretrained on ImageNet DET images, and continue to fine-tune it on ImageNet
VID videos. In practice, this would entail converting the last convolution layer
before the Position-Sensitive ROI pooling in RFCN into our STMM memory
unit (see Fig. 2). However, this conversion is non-trivial with standard recurrent
units like LSTM/GRU that employ Sigmoid/Tanh nonlinearities, since they are
different from the ReLU nonlinearity employed in the R-FCN convolutional layers.

Thus, to transfer the weights of the pre-trained RFCN static image detector
into our STMN video object detector, we make two changes to the ConvGRU [4].
First, in order to make full use of the pre-trained weights, we need to make sure
the output of the recurrent computation unit is compatible with the pre-trained
weights before and after it. As an illustrative example, since the output of the
standard ConvGRU is in [−1, 1] (due to Tanh non-linearity), there would be
a mismatch with the input range that is expected by the ensuing pre-trained
convolutional layer (the expected values should all be positive due to ReLU). To
solve this incompatibility, we change the non-linearities in standard ConvGRU
from Sigmoid and Tanh to ReLU. Second, we initialize Wz, Wr and W in Eqs. 1-
3 with the weights of the convolution layer that is swapped out, rather than
initializing them with random weights. Conceptually, this can be thought of as
a way to initialize the memory with the pre-trained static convolutional feature
maps. In Sec. 4.3, we show that these modifications allow us to make better use
of pre-trained weights and achieve better detection performance.

3.3 Spatial-temporal memory alignment

Next, we explain how to align the memory across frames. Since objects move
in videos, their spatial features can be mis-aligned across frames. For example,
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Fig. 4. Effect of alignment on spatial-temporal memory. In the first and second rows,
we show the detection and the visualization of the spatial-temporal memory (by com-
puting the L2 norm across feature channels at each spatial location to get a saliency
map), respectively, with MatchTrans alignment. The detection and memory without
alignment are shown in rows 3 and 4, respectively. Without proper alignment, the
memory has a hard time forgetting an object after it has moved to a different spatial
position (third row), which is manifested by a trail of saliency on the memory map due
to overlaying multiple unaligned maps (fourth row). Alignment with MatchTrans helps
generate a much cleaner memory (second row), which also results in better detections
(first row). Best viewed in pdf.

the position of a bicycle in frame t − 1 might not be aligned to the position of
the bicycle in frame t (as in Fig. 2). In our case, this means that the spatial-
temporal memory Mt−1 may not be spatially aligned to the feature map for
current frame Ft. This can be problematic, for example in the case of Fig. 4;
without proper alignment, the spatial-temporal memory can have a hard time
forgetting an object after it has moved to a different spatial position. This is
manifested by a trail of saliency, in the fourth row of Fig. 4, due to the effect of
overlaying multiple unaligned feature maps. Such hallucinated features can lead
to false positive detections and inaccurate localizations, as shown in the third
row of Fig. 4.

To alleviate this problem, we propose the MatchTrans module to align the
spatial-temporal memory across frames. For a feature cell Ft(x, y) ∈ 1 × 1 ×
D at location (x, y) in Ft, MatchTrans computes the affinity between Ft(x, y)
and feature cells in a small vicinity around location (x, y) in Ft−1, in order
to transform the spatial-temporal memory Mt−1 to align with frame t. More
formally, the transformation coefficients Γ are computed as:

Γx,y(i, j) =
Ft(x, y) · Ft−1(x+ i, y + j)∑

i,j∈{−k,...,k} Ft(x, y) · Ft−1(x+ i, y + j)
,

where both i and j are in the range of [−k, k], which controls the size of the
matching vicinity. With Γ , we transform the unaligned memory Mt−1 to the
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match interpolate

Fig. 5. The transformation coefficients Γ for position (x, y) are computed by matching
Ft(x, y) to Ft−1(i, j), where i, j indexes a spatial neighborhood surrounding (x, y). The
transformation coefficients are then used to synthesize M ′t−1(x, y) by interpolating the
corresponding Mt−1(i, j) feature vectors.

aligned M ′t−1 as follows:

M ′t−1(x, y) =
∑

i,j∈{−k,...,k}

Γx,y(i, j) ·Mt−1(x+ i, y + j).

The intuition here is that given transformation Γ , we reconstruct the spatial
memory M ′t−1(x, y) as a weighted average of the spatial memory cells that are
within the (2k + 1) × (2k + 1) vicinity around (x, y) on Mt−1; see Fig. 5. At
this point, we can thus simply replace all occurrences of Mt−1 with the spatially
aligned memoryM ′t−1 in Eqs. 1-4. With proper alignment, our generated memory
is much cleaner (second row of Fig. 4) and leads to more accurate detections (first
row of Fig. 4). Since the computational cost is quadratic in k, we set k = 2 for
all our experiments as this choice provides a good trade-off between performance
and computation.

Our MatchTrans is related to the alignment module used in recent video
object detection work by [51,50]. However, [51,50] use optical flow, which needs
to be computed either externally e.g., using [5], or in-network through another
large CNN e.g., FlowNet [13]. In contrast, our MatchTrans is much more efficient,
saving computation time and/or space for storing optical flow. For example, it
is nearly an order of magnitude faster to compute (on average, 2.9ms vs. 24.3ms
for an 337x600 frame) than FlowNet [13], which is one of the fastest optical flow
methods. Also, a similar procedure for computing transformation coefficients
was used in [14]. However, in [14], the coefficients are fed as input to another
network to regress the displacement of bounding boxes for tracking, whereas we
use it to warp the entire feature map for aligning the memory. In other words,
rather than use the transformation coefficients to track and connect detections,
we instead use them to align the memory over time to produce better features
for each candidate object region. We show in Sec. 4.1 that this leads to better
performance on ImageNet VID.

3.4 Temporal linkage during testing

Finally, even though we enforce temporal smoothness in our spatial-temporal
memory (i.e., at the feature level), we do not have an explicit smoothness con-
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straint in the output space to ensure that detections in adjacent frames are
spatially smooth. We therefore apply standard Seq-NMS [19] over our per-frame
detections, following [51,14].

3.5 Approach summary

Through the specially designed Spatial-Temporal Memory and MatchTrans mod-
ules, our STMN detector aggregates and aligns useful information from tempo-
rally nearby frames for video object detection.

4 Results

We show quantitative and qualitative results of our STMN video object detector,
and compare to both state-of-the-art static image and video detectors. We also
conduct ablation studies to analyze the different components of our model.

Dataset. We use ImageNet VID [1], which has 3862/555/937 videos for train-
ing/validation/testing for 30 categories. Bounding box annotation is provided
for all frames. We choose ImageNet VID for its relatively large size as well as
for ease of comparison to existing state-of-the-art methods [1,9,25,24,14,51,50].

Implementation details. For object proposals, we use DeepMask [36] for our
method and our own baselines. We use the R-FCN detector [9] with ResNet-
101 [20] as the backbone network. Following [14], we first train R-FCN on
ImageNet DET, and then transfer its weights (using the method described in
Sec. 3.2) to initialize our STMN detector and continue fine-tuning it on Im-
ageNet VID. We set sequence length T = 7 during training. For testing, we
observe better performance when using a longer sequence length; specifically,
T = 11 frames provides a good balance between performance and GPU mem-
ory/computation (we later show the relationship between performance and test
sequence length). We set the number of channels of the spatial memory to 512.
To reduce redundancy within sequences, we form a sequence by sampling 1 in
every 10 video frames with uniform stride. For training, we start with a learning
rate of 1e-3 with SGD and lower it to 1e-4 when training loss plateaus. During
testing we ensemble the detection results of the STMN detector with the initial
R-FCN detector from which it started since it comes for free as a byproduct of
the training procedure. We employ standard left-right flipping augmentation.

4.1 Comparison to state-of-the-art

Table 1 shows the comparison to existing state-of-the-art image and video de-
tectors. First, our STMN detector outperforms the static-image based R-FCN
detector with a large margin (+7.1%). This demonstrates the effectiveness of
our proposed spatial-temporal memory. Our STMN detector also achieves the
best performance compared to all existing video object detection methods with



Video Object Detection with an Aligned Spatial-Temporal Memory 11

Base network Base detector Test Val

STMN (Ours) ResNet-101 R-FCN - 80.5
D&T [14] ResNet-101 R-FCN - 79.8
Zhu et al. [50] ResNet-101+DCN R-FCN - 78.6
FGFA [51] ResNet-101 R-FCN - 78.4
T-CNN [25] DeepID+Craft [34,48] RCNN 67.8 73.8
R-FCN [9] ResNet-101 R-FCN - 73.4
TPN [24] GoogLeNet TPN - 68.4

STMN (Ours) VGG-16 Fast-RCNN 56.5 61.7
Faster-RCNN [1,19] VGG-16 Faster-RCNN 48.2 52.2
ITLab VID - Inha [1] VGG-16 Fast-RCNN 51.5 -

Table 1. mAP comparison to the state-of-the-art on ImageNet VID. For both the
“R-FCN+ResNet-101” and the “Fast-RCNN+VGG-16” settings, our STMN detector
outperforms all existing methods with the same base detector and backbone network.
Furthermore, in both cases, our STMN outperforms the corresponding static-image
detector by a large margin.

ResNet-101 as the base network. Furthermore, in order to enable a fairer compar-
ison to older methods that use Fast/Faster-RCNN + VGG-16 as the base detec-
tor and backbone network, we also train an STMN model with the Fast-RCNN
as the base detector and VGG-16 as the backbone feature network. Specifically,
we first train a static-image Fast-RCNN detector and initialize the weights of
STMN using a similar procedure as described in Sec. 3.2.1 With this setting,
our STMN achieves 61.7% val mAP, which is much higher than its static-image
based counterpart (52.2%). This result shows that our method can be generalized
across different base detectors and backbone networks.

When examining per-category results, our method shows the largest improve-
ment on categories like “sheep”, “rabbit”, and “domestic cat” compared to meth-
ods like [14]. In these cases, we see a clear advantage of aggregating information
across multiple frames (vs. 2 frames as in [14]), as there can be consecutive
“hard” frames spanning multiple (> 2) frames (e.g., a cat turning away from
the camera for several frames). On the other hand, we find that the three cat-
egories on which we perform the worst are “monkey”, “snake”, and “squirrel”.
These are categories with large deformation and strong motion blur. When the
per-frame appearance features fail to accurately model these objects due to such
challenges, aggregating those features over time with our STMM does not help.
Still, overall, we find that our model produces robust detection results across a
wide range of challenges as demonstrated next in the qualitative results.

4.2 Qualitative results

Fig. 6 shows qualitative comparisons between our STMN detections and the
static image R-FCN detections. Our STMN detections are more robust to mo-

1 Specifically, we convert the conv5 layer in VGG-16 to an STMM module by initial-
izing Wz, Wr and W in Eqs. 1-3 with the weights of conv5.
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Fig. 6. Example detections produced by our STMN video object detector vs. R-FCN
image detector. Green and red boxes indicate correct and incorrect detections, respec-
tively. For any false positive detection due to misclassification or mislocalization, the
predicted category label is shown at the top-left corner of the box. The ground-truth
object in each sequence is: “squirrel”, “rabbit”, “hamster”, “dog,” and “airplane”. Best
viewed in pdf, zoomed-in.
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STMN
STMN

No-MatchTrans
ConvGRU
Pretrain

ConvGRU
FreshFC

Test mAP 50.7 49.0 48.0 44.8
Table 2. Ablation studies on ImageNet VID. Our improvements over the baselines
show the importance of memory alignment across frames with MatchTrans (vs. STMN-
No-MatchTrans), and the effectiveness of using pre-trained weights with STMM over
standard ConvGRU (vs. ConvGRU-Pretrain and ConvGRU-FreshFC).

tion blur; e.g., in the last frame of the “hamster” sequence, R-FCN gets confused
about the class label of the object due to large motion blur, whereas our STMN
detector correctly detects the object. In the case of difficult viewpoint and occlu-
sion (“dog” and “rabbit”, respectively), our STMN produces robust detections
by leveraging the information from neighboring easier frames (i.e., center frame
in the “rabbit” sequence and the first frame in the “dog” sequence). Also, our
model outputs detections that are more consistent across frames, compared with
the static image detector, as can be seen in the case of “squirrel” and “rabbit”.
Finally, our STMN detector is also more robust in crowded scenes as shown in
the “airplane” sequence.

4.3 Ablation studies

We next conduct ablation studies to analyze the impact of each component
in our model by comparing it to a number of baselines that lack one or more
components. For this, we use Fast-RCNN as the base detector and VGG-16 as
the backbone network since it is much faster to train compared to RFCN +
ResNet-101. To ensure a clean analysis, we purposely do not employ any data
augmentation during training for this ablative study.

Contribution of STMN components The first baseline, compared with our
model, lacks the MatchTrans module and thus does not align the memory from
frame to frame (STMN-No-MatchTrans). The second baseline computes the
memory using ConvGRU [4], instead of our proposed STMM. Like ours, this
baseline (ConvGRU-Pretrain) also uses pre-trained ImageNet weights for both
the feature stack and prediction layers. Our final baseline is ConvGRU without
pre-trained weights for the ensuing prediction FCs (ConvGRU-FreshFC).

Table 2 shows the results. First, comparing our STMN to the STMN-No-
MatchTrans baseline, we observe a 1.7% test mAP improvement brought by the
spatial alignment across frames. This result shows the value of our MatchTrans
module. To compare our STMM with ConvGRU, we first replace STMM with
ConvGRU and as with standard practice, randomly initialize the weights for
the FC layers after the ConvGRU. With this setting (ConvGRU-FreshFC), we
obtain a relatively low test mAP of 44.8%, due to the lack of data to train
the large amount of weights in the FCs. This result shows that initializing the
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memory by only partially transferring the pre-trained ImageNet weights is sub-
optimal. If we instead initialize the weights of the FCs after the ConvGRU with
pre-trained weights (ConvGRU-Pretrain), we improve the test mAP from 44.8%
to 48.0%. Finally, by replacing Sigmoid and Tanh with ReLU, which is our full
model (STMN), we boost the performance even further to 50.7%. This shows the
importance of utilizing pre-trained weights in both the feature stacks and pre-
diction head, and the necessity of an appropriate form of recurrent computation
that best matches its output to the input expected by the pre-trained weights.

Length of test window size We next analyze the relationship between detec-
tion performance and length of test window size. Specifically, we test our model’s
performance with test window size 3, 7, 11, and 15, on ImageNet VID validation
set (the training window size is always 7). The corresponding mAP differences,
with respect to that of window size 7, are -1.9%, 0.0%, +0.7%, +1.0%, respec-
tively; as we increase the window size, the performance tends to keep increasing.
This suggests the effectiveness of our memory: the longer the sequence, the more
longer-range useful information is stored in the memory, which leads to better
detection performance. However, increasing the test window size also increases
computation cost and GPU memory consumption. Therefore, we find that set-
ting the test window size to 11 provides a good balance.

4.4 Computational overhead of STMN

Finally, we sketch the computational overhead of our memory module. To for-
ward a batch of 11 frames of size 337x600, it takes 0.52 and 0.83 seconds for R-
FCN and STMN respectively, on a Titan X GPU. The added 0.028 (=0.31/11)
secs/frame is spent on STMM computation including MatchTrans alignment.

5 Conclusion

We proposed a novel spatial-temporal memory network (STMN) for video ob-
ject detection. Our main contributions are a carefully-designed recurrent com-
putation unit that integrates pre-trained image classification weights into the
memory and an in-network alignment module that spatially-aligns the memory
across time. Together, these lead to state-of-the-art results on ImageNet VID.
Finally, we believe that our STMN could also be useful for other video under-
standing tasks that require accurate spatial information like action detection
and keypoint detection.
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