
Int J Comput Vis (2009) 85: 143–166
DOI 10.1007/s11263-009-0252-y

Foreground Focus: Unsupervised Learning from Partially
Matching Images

Yong Jae Lee · Kristen Grauman

Received: 11 July 2008 / Accepted: 13 May 2009 / Published online: 27 May 2009
© Springer Science+Business Media, LLC 2009

Abstract We present a method to automatically discover
meaningful features in unlabeled image collections. Each
image is decomposed into semi-local features that describe
neighborhood appearance and geometry. The goal is to de-
termine for each image which of these parts are most rele-
vant, given the image content in the remainder of the col-
lection. Our method first computes an initial image-level
grouping based on feature correspondences, and then iter-
atively refines cluster assignments based on the evolving
intra-cluster pattern of local matches. As a result, the signif-
icance attributed to each feature influences an image’s clus-
ter membership, while related images in a cluster affect the
estimated significance of their features. We show that this
mutual reinforcement of object-level and feature-level sim-
ilarity improves unsupervised image clustering, and apply
the technique to automatically discover categories and fore-
ground regions in images from benchmark datasets.

Keywords Object recognition · Feature selection ·
Unsupervised learning · Feature descriptor

1 Introduction

Learning to describe and recognize visual objects is a fun-
damental problem in computer vision that serves as a build-

Y.J. Lee (�)
Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX 78712, USA
e-mail: yjlee0222@mail.utexas.edu

K. Grauman
Department of Computer Sciences, University of Texas at Austin,
Austin, TX 78712, USA
e-mail: grauman@cs.utexas.edu

ing block to many potential applications. Recent years have
shown encouraging progress, particularly in terms of generic
visual category learning (Weber et al. 2000; Leibe et al.
2004; Winn and Jojic 2005; Chum and Zisserman 2007;
Ling and Soatto 2007) and robust local feature representa-
tions (Lowe 2004; Agarwal and Triggs 2006; Lazebnik et
al. 2004). A widespread strategy is to determine the com-
monalities in appearance and shape amongst a group of la-
beled images, and then search for similar instances in new
images based on those patterns. Typically one assumes that
categories may be learned in a supervised setting, where the
recognition method is trained with manually prepared ex-
emplars of each class of interest. This format of the problem
continues to yield good results, as evidenced by steady ac-
curacy improvements on benchmark datasets (Everingham
et al. 2006; Fei-Fei et al. 2004).

However, carefully labeled exemplars are expensive to
obtain in the large numbers needed to fully represent a cate-
gory’s variability, and methods trained in this manner can
suffer from unintentional biases imparted by dataset cre-
ators. Recognition methods stand to gain from stores of
unstructured, unlabeled images and videos, if they can in-
fer which basic visual patterns are meaningful. While re-
cent work has begun to address the need for looser supervi-
sion requirements (Weber et al. 2000; Winn and Jojic 2005;
Fergus et al. 2005; Sivic et al. 2005; Grauman and Darrell
2006), learning from completely unlabeled images remains
difficult. Unsupervised learners face the same issues that
plague supervised methods—clutter, viewpoint, intra-class
appearance variation, occlusions—but must handle them
without any explicit annotation guidance.

In this work we consider the problem of automatically
identifying the foreground object(s) of interest among an un-
labeled pool of images. To qualify as foreground, we say that
the visual pattern must have observable support within the

mailto:yjlee0222@mail.utexas.edu
mailto:grauman@cs.utexas.edu

144 Int J Comput Vis (2009) 85: 143–166

Fig. 1 Summary of the problem. The horizontal lines separate clus-
ters. (a) When all features in an image are given equal weight and
many of them belong to the background, full image matches can result
in clusters that are based on similar background appearances. (b) If
we are given clusters that agree in terms of the object of interest that
each intra-cluster image holds, the reoccurring regions will be found on

the foreground. (c) If we are given images that have their foreground
features weighted higher than their background features, we can form
clusters that agree on the objects’ appearances (i.e., the foreground).
The problem we address in this work is how to discover which fea-
tures are foreground among unlabeled images, which requires simulta-
neously solving (b) and (c) above

collection—that is, it must re-occur repeatedly, albeit with
some variation in appearance across the instances. Isolat-
ing “important” features that are responsible for generating
natural image clusters would be useful to construct models
to detect discovered objects in novel images, or to gener-
ate compact summaries of visual content. Thus the task is
essentially unsupervised feature subset selection: to deter-
mine which portion of the features present can be used to
form high quality clusters under a chosen clustering objec-
tive.

How can we learn object categories from unlabeled im-
ages? If the images contain both objects of interest as well
as background clutter, a simple image clustering will likely
give poor results; the matches between background and fore-
ground features will yield noisy inter-image affinities (see
Fig. 1(a)). On the other hand, if we were to know which
features in each image belonged to the foreground, the clus-
tering task would be greatly simplified—we could cluster
images using only the foreground features (see Fig. 1(c)).
Similarly, we cannot accurately perform foreground feature
selection among a pool of images containing many differ-
ent objects; however, if we were to know which groups of
images contained the same object, then we could select the
features they share as the foreground (see Fig. 1(b)). Thus, it
is unclear which should be learned first, since one influences
the outcome of the other; the selected features will dictate
the clusters formed, while the image clustering will influ-

ence which features are deemed important. This “chicken-
and-egg” type problem means that feature selection and data
clustering must be learned simultaneously.

We propose a solution to this problem that seeks the mu-
tual support between discovered objects and their defining
features. Given a collection of examples, we extract semi-
local descriptors throughout each image. To discover ob-
ject categories, an initial image-level grouping is computed
based on the correspondences between any two images’ fea-
tures. To determine the foreground features, we analyze the
pattern of the matches within each initial group to deter-
mine the extent to which each local part agrees with parts in
other images within the current cluster. From this, we com-
pute a weight on each feature representing its significance.
The groups and feature weights are then iteratively refined
by alternately computing 1) the cluster membership given
the re-weighted features, and 2) the feature weights given
the newly refined memberships (see Fig. 2). As the common
features within a group are emphasized with high weights,
the foreground features increasingly become the focus of the
clusters found. Due to the reciprocal reinforcement between
the consistent matches and cluster assignments, the iterative
process yields both a partition of the unlabeled inputs as well
as their detected foreground, i.e., the regions for which the
grouping is most consistent.

Our main contribution is a new approach to perform un-
supervised foreground feature selection from collections of

Int J Comput Vis (2009) 85: 143–166 145

Fig. 2 Illustration of the proposed method. The images are grouped
based on weighted semi-local feature matchings (a), and then image-
specific feature weights are adjusted based on their contribution in the
match relative to all other intra-cluster images (b). These two processes
are iterated (as denoted by the block arrows in the center) to simulta-
neously determine foreground features while improving cluster quality.

As the foreground features on repeated objects receive greater weight,
the cluster memberships change, and the groups discovered more ac-
curately reflect the objects present. In this example, the dotted arrows
between clusters in (a) denote that updates to the feature weights cause
the dalmatian and face examples to swap group memberships, whereas
the okapi leaves the face cluster in favor of the other okapis

unlabeled images. Whereas previous feature selection meth-
ods could detect foreground or discriminative features in la-
beled images, our method discovers them in unlabeled im-
ages. Our secondary contribution is a new semi-local re-
gion descriptor that provides a flexible encoding of local ap-
pearance and geometry. Our results support the notion that
unsupervised foreground feature detection aids in grouping
similar objects, while important features are better found
on objects of interest (foreground) when given partitions of
partially re-occurring patterns. We compare our approach
with existing unsupervised learning algorithms and show
improvements on benchmark datasets.

2 Related Work

In this section we review relevant work in supervised im-
age feature selection, weakly supervised and unsupervised
category learning, and semi-local descriptors.

2.1 Supervised Feature Selection

Various recognition methods can learn categories from la-
beled images with segmented foreground and then detect
them within cluttered images. In Leibe et al. (2004), Marsza-
lek and Schmid (2006), the authors show how to weight fea-
tures matched to a novel test image based on their agreement

with known object geometry, thereby downplaying back-
ground and better segmenting the object. The paradigm of
“weak supervision” suggested in Weber et al. (2000) ex-
plored the idea of simultaneous learning of feature selection
and data clustering, and has since been pursued by a number
of methods (e.g. Winn and Jojic 2005; Chum and Zisserman
2007). In this model, categories are learned from cluttered,
unsegmented class-labeled images; one seeks the parts in
each image that best fit all examples sharing the same label.
The model parameters and feature selection for each image
are learned iteratively using the Expectation Maximization
(EM) algorithm. Discriminative feature selection strategies
have also been explored to detect features that occur fre-
quently in in-class examples but rarely on the background
(Quack et al. 2007; Dorko and Schmid 2003). Our approach
shares the goal of identifying consistent features in cluttered
images, but unlike the above methods it does not employ any
labeled examples to do so.

The problem of unsupervised feature selection has re-
ceived limited attention in the machine learning commu-
nity (see Dy and Brodley 2004 and references therein), but
existing methods presume a vector input space, many as-
sume the data to be generated by certain parametric distri-
butions, and/or are specifically tailored to a particular clus-
tering method—any of which can be ill-suited for the visual
learning scenario.

146 Int J Comput Vis (2009) 85: 143–166

2.2 Weakly Supervised and Unsupervised Category
Learning

Recent work in unsupervised category learning has consid-
ered ways to discover latent visual themes in images us-
ing topic models developed for text, such as probabilistic
Latent Semantic Analysis (pLSA) or Latent Dirichlet Al-
location (Quelhas et al. 2005; Fei-Fei and Perona 2005;
Sivic et al. 2005; Russell et al. 2006; Fergus et al. 2005;
Liu and Chen 2007). The main idea is to use feature co-
occurrence patterns in images to recover the underlying dis-
tributions (topics) that best account for the data. Having
discovered the topics, one can express an image based on
the mixture of topics it contains. Early models transferred
the notion of text documents containing unordered words to
images composed of “visual words” (Quelhas et al. 2005;
Fei-Fei and Perona 2005; Sivic et al. 2005). Recent exten-
sions show how to incorporate spatial constraints (Fergus et
al. 2005; Liu and Chen 2007), or use segmentation to reduce
the spatial extent of each “document” (Russell et al. 2006).

Our method also discovers feature co-occurrence pat-
terns in images, however, unlike these methods, we use ex-
plicit correspondences between feature sets. These corre-
spondences allow us to select the most distinctive features
within some partition of a dataset, and assign a confidence
value to each feature reflecting how relevant it is to one
of the discovered categories. In contrast, latent topic mod-
els produce soft cluster assignments, where an image is ex-
plained as a mixture of all the discovered topics. Thus, a
feature’s confidence is influenced by the visual word distri-
bution of the entire dataset.

Other approaches treat the unsupervised visual category
learning task as an image clustering problem, where im-
ages are given a hard assignment into one of the discovered
groups. In Grauman and Darrell (2006), affinities computed
from local feature matches are used with spectral cluster-
ing to find object clusters and prototypes, and in Dueck and
Frey (2007) a message-passing algorithm propagates non-
metric affinities and identifies good exemplars. Our method
also begins by computing pairwise affinities between im-
ages. In contrast to these techniques, however, the proposed
approach allows common feature matches to reinforce and
refine the discovered groups; as a result it provides both the
groupings as well as the predicted foreground-background
separation.

2.3 Semi-Local Descriptors

Local features are a favored representation of images due
to their resilience under common transformations, occlu-
sion, and clutter. However, in some cases too much local-
ity can also be problematic: features with minimal spatial
extent may be too generic and easily matched, and compar-
ing unordered sets of local patches enforces little geometry.

Researchers have therefore proposed “semi-local” feature
descriptors that capture information about local neighbor-
hoods surrounding an interest point (Lazebnik et al. 2004;
Agarwal and Triggs 2006; Quack et al. 2007; Sivic and Zis-
serman 2004). The general idea is to build more specific
features that reflect some geometry and aggregate nearby
features into a single descriptor. Various aggregation strate-
gies have been proposed: in Lazebnik et al. (2004), groups
are formed from regions that remain affinely rigid across
multiple views of an object, while in Agarwal and Triggs
(2006) neighborhoods are collected hierarchically in space,
in Quack et al. (2007) a tiled region is centered on each
interest point to bin nearby visual words, and in Sivic and
Zisserman (2004) the k-nearest points to the base point are
included but without any spatial ordering.

These methods aggregate information in a semi-local
neighborhood surrounding each interest point, but fail to
capture either the neighboring features’ spatial configura-
tion, spatial ordering, or spatial count. In order to compute
more reliable correspondences between images, we design
a new descriptor that counts the co-occurrence of each vi-
sual word type relative to an interest point, accumulating the
counts at increasingly distant spatial regions and in distinct
relative configurations. Our descriptor is inspired by Ling
and Soatto (2007), where a kernel is developed to compare
correlogram-like distributions of visual words. In Ling and
Soatto (2007), each image is described by the distribution of
its visual words, whereas our descriptor describes each fea-
ture’s semi-local neighborhood. Thus, our method is able to
localize an object as well as allow for multiple regions to be
represented in an image.

This article differs from our previous related conference
papers, Grauman and Darrell (2006) and Lee and Grau-
man (2008a), both in technical aspects and in evaluation.
Unlike Grauman and Darrell (2006), the proposed method
iteratively refines the discovered groups based on feature
matches and vice versa. We offer a complete analysis of how
the cluster refinements influence the discovery of foreground
features, and in turn, how the discovered patterns influence
the refinement of groups. We have also extensively tested
our method on a variety of datasets and offer more thorough
comparisons to related methods relative to Lee and Grau-
man (2008a), including an explicit evaluation of our new
semi-local descriptor.

3 Approach: Discovering Object Categories and
Foreground Features by Mutual Reinforcement

The goal is to predict which regions in unlabeled images cor-
respond to foreground, and in doing so to improve accuracy
in unsupervised visual pattern discovery. In this section, we
describe how to simultaneously group similar images and

Int J Comput Vis (2009) 85: 143–166 147

discover the foreground regions using partial matching and
feature weight refinements.

The main idea is as follows: Given a set of unlabeled im-
ages, our method groups similar examples based on the cor-
respondence between their semi-local features. This yields
an initial set of “discovered” categories. To discover the
foreground regions within a category, we weight each fea-
ture according to its contribution to the match between the
image that contains it and every other intra-cluster image.
Then, the groupings and weights for the whole image col-
lection are iteratively re-computed: the new feature weights
influence each image’s similarity to the rest, and the succes-
sive groupings that result influence the next set of feature
weights. The end result is both a partition of the image col-
lection that represents the discovered categories, as well as
weights that reflect the degree to which a feature is believed
to be foreground. Since each image is ultimately assigned
to one cluster, the method discovers one primary object of
interest per image.

In the following, we first describe the grouping process
in detail, and then overview our semi-local descriptor.

3.1 Simultaneous Image Grouping and Foreground
Detection

Given an unlabeled data set of N images, U = {I1, . . . , IN },
we represent each image Ii as a set of weighted features,
Xi = {(f1,w1), (f2,w2), . . . , (f|Xi |,w|Xi |)}, where each
fj ∈ �d is a local image descriptor weighted with some
wj ≥ 0, where wj ∈ �. The weight on a feature vector de-
termines its importance within the image, and will affect any
matching computed for the set in which it is contained. Ini-
tially, all feature weights are set to a uniform value: wj = 1,
for all features j = 1, . . . , |Xi | in all sets i = 1, . . . ,N . Sub-
sequently, every time we cluster the images, the support
(or lack of support) computed for a feature within a group
will result in an increase (or decrease) of its weight. Those
weight updates in turn influence the image groups found at
the next iteration.

3.1.1 Clustering Weighted Feature Sets

A good clustering should group together images that have a
consistent repeated appearance pattern. However, given that
the images will likely be cluttered and may contain multiple
objects, the pattern need not encompass the entire image.
Therefore, we want to compute clusters based on the ap-
pearance agreement of some portion of each example—that
is, based on a match between subsets of the local features.
Further, the weight on a feature should dictate how much
attention an image-to-image comparison pays to it, so that
features with high weight have more influence on the mea-
sured cost of a match, and features with low weight have
little effect.

To accomplish such a grouping, we perform spectral clus-
tering with an affinity matrix that reflects the least-cost par-
tial matching between weighted point sets. Also known as
the Earth Mover’s Distance (EMD) (Rubner et al. 2000),
this optimal match cost M(X,Y) reflects how much effort
is required to transform weighted point set X into weighted
point set Y :

M(X,Y) =
∑

i

∑
j Fi,j D(f

(X)
i , f

(Y)
j)

∑
i

∑
j Fi,j

, (1)

where f (X) and f (Y) denote features from sets X and Y ,
respectively, and D(f

(X)
i , f

(Y)
j) denotes the distance (typi-

cally Euclidean) between points f
(X)
i and f

(Y)
j .

The values Fi,j are scalars giving the flow, or amount

of weight that is mapped from point f
(X)
i to point f

(Y)
j .

The flows indicate both the correspondences between fea-
tures of two matching sets, and the contribution that each
feature made to the match. The EMD takes as input the
weighted features sets and produces the least cost match and
the flows as output. It can be viewed as a solution for com-
puting the minimum amount of work required to shift the
mass (weights) of the larger weighted feature set to “fill”
the holes (weights) of the smaller weighted feature set. Note
that this measure takes into account the distance between
matched points as well as the amount of weight (mass or
“dirt”) attached to each one. The EMD has previously been
used in supervised tasks to compare textures and shapes de-
scribed by local feature distributions (Lazebnik et al. 2003;
Grauman and Darrell 2004).

Due to the complexity of computing the optimal match-
ing on weighted point sets, which is super-cubic in the
number of features, in practice we approximate the EMD
with a variant of the Pyramid Match Kernel (PMK) algo-
rithm (Grauman and Darrell 2005) (see the Appendix for
details).

Typically, the weights for point sets given to EMD are
used to denote each point’s frequency of occurrence. In our
case, however, we use the weights to encode priority in the
matching: assuming an image’s foreground features are rel-
atively highly weighted, a second image cannot produce a
low matching cost against it unless it has similar point(s)
to the foreground with similar total weight(s). Likewise, a
feature with low weight cannot contribute much cost to any
match, so its influence is negligible.

At each clustering iteration, we compute affinities using
the N × N matrix A of matching scores between all pairs
of unlabeled images: Am,n = exp(−(M(Xm,Xn))

2/2σ 2),
for m,n = 1, . . . ,N . These affinities are input to a spectral
clustering algorithm that partitions the N examples into k

groups. In our implementation we use the normalized cuts
criterion (Shi and Malik 2000), which finds the optimal par-
titioning of the data by “cutting” the edges (similarity val-
ues) between the nodes (images) to form disjoint clusters in

148 Int J Comput Vis (2009) 85: 143–166

Fig. 3 An example of a heterogeneous cluster due to inconsistent
matching between image features. The thickness of the lines indicate
the strength of the match, i.e. thicker lines indicate higher matches.
(a) The Okapi image has been grouped with the four Face images due
to its high pair-wise matching similarity with each Face image. How-

ever, an okapi feature that matches highly with one face image does not
necessarily match highly with another face image—the highly match-
ing features across images are inconsistent. (b) The Face image in the
cluster has highly matching features that are consistently on the fore-
ground

which the intra-cluster similarity and the inter-cluster dis-
similarity are maximized. The objective criterion is formu-
lated such that the edges between the least similar nodes are
removed without favoring a few isolated nodes (outliers).
This allows our method to favor a broad range of similar im-
ages to be selected as a cluster in place of a few exception-
ally well-matching images. We have chosen the normalized
cuts criterion due both to its efficiency and the fact that it
prefers farther-reaching clusters.

3.1.2 Refining Foreground Feature Weights from Current
Clusters

Given a k-way partition of the images, we update the
weights attached to each feature by leveraging any current
regions of agreement among the images in a single partition.
Even when all pairs of examples within a cluster have high
matching similarity, because each matching can draw from
different combinations of features, heterogeneous clusters
are possible (see Fig. 3). To overcome this, we look to the
pattern of the flows computed by (1). The idea is to use
information among the “good” matches (images amongst
which all pairs have similar matching points) to re-interpret
the “bad” matches (images amongst which similar matching
points exist, but are not consistent across all intra-cluster
pairs).

The flows computed between two images specify which
features best match which, and using what amount of
weight. Given a cluster containing C images {X1, . . . ,XC},
for each example Xi , i = 1, . . . ,C, we define (C − 1)

|Xi |-dimensional weight vectors denoted wij , with j =
{{1, . . . ,C} \ i}. That is, we compute a vector of feature
weights for the i-th example against every other image

within the cluster. Each of the weight entries in wij spec-
ifies how much its feature from Xi contributed to the match
with set Xj . We define the d-th element as:

wij (d) =
|Xj |∑

p=1

Fd,p

D(f
(Xi)
d , f

(Xj)
p)

, (2)

for d = 1, . . . , |Xi |. Each weight is the sum of all the flow
amounts from that particular feature in Xi to any other fea-
ture in the other set Xj , normalized by the inter-feature dis-
tance between the matches (we use L2). We compute the
final weights {w1, . . . ,w|Xi |} as the element-wise median of
these (C−1) vectors, normalized to maintain the original to-
tal weight. The median is robust in skewed distributions as it
is less affected by outliers (unlike the mean). In this regard,
the median is appropriate for our method, since our goal is
to reward features that have consistently good matches and
to prevent giving high weight to a feature that produces a
few exceptionally high matches.

The final weights give a robust estimate of how much
each feature consistently matched with other features in
intra-cluster images. Highly weighted features in an im-
age will indicate that they have good consistent matches
throughout the intra-cluster images, while low weighted
features will indicate that they have inconsistent matches
throughout the intra-cluster images—there may be a few
good matches, but the matches are not consistent enough to
produce high weights. Specifically, for a feature to obtain a
high weight, it must have high matches to features belonging
to at least half of the intra-cluster images.

We normalize the final weights to maintain constant to-
tal weight per image, such that

∑|Xi |
p=1 wp = |Xi |. This pre-

vents weights attached to an irrelevant example from wast-
ing away to nothing and getting stuck in their initial cluster.

Int J Comput Vis (2009) 85: 143–166 149

Algorithm 1 The Foreground Focus algorithm

Input: Set of unlabeled images, U = {I1, . . . , IN }, and # of clusters k. Each Ii is represented by a set of weighted
features, Xi = {(f1,w1), (f2,w2), . . . , (f|Xi |,w|Xi |)}

Output: Set of k clusters and updated weights for each feature in each image
while average % change in feature weights ≤ threshold do

foreach Xi , i = 1, . . . ,N do
foreach Xj , j = 1, . . . ,N do

Compute feature correspondences between Xi and Xj ;
Obtain cost M(i, j) by (1);
Convert cost M(i, j) to affinity: Ai,j = exp(−(M(i, j))2/2σ 2);
Obtain |Xi | × |Xj | flow matrix, FXi,Xj

;
end

end
Perform NCuts on A to form k clusters;
foreach Cluster Cl , l = 1, . . . , k do

foreach Xi ∈ Cl , i = 1, . . . , |Cl | do
foreach weighted feature f

(Xi)
d ∈ Xi , d = 1, . . . , |Xi | do

foreach Xj ∈ Cl , j = 1, . . . , |Cl | do
Compute feature contribution to match, wi,j (d) by (2)

end

Update weight wd of weighted feature f
(Xi)
d by wd = median(wi,1(d), . . . ,wi,|Cl |(d))

end
end

end
end

Before normalization, an image that produces inconsistent
matches to its intra-cluster images will end up with mostly
low feature weights, enough so to prevent it from producing
meaningful image similarities in the next iteration (since the
match costs are influenced by both the distances as well as
the weights of the matching features). By normalizing the fi-
nal weights to maintain constant total weight, the image has
a chance to be assigned to the correct cluster.

In general, if a clump of images in a cluster contains in-
stances of the same category, high weights will be attributed
to their consistently re-occurring parts—the foreground. To
begin the next iteration, we re-compute the flows and affini-
ties between all pairs of all N examples using the new
weights, and re-cluster. As the weight distributions shift,
subsequent least-cost matches are biased towards matching
those features more likely to be foreground. We iterate be-
tween the matching, clustering, and re-weighting, until there
is no change in the cluster assignments or until the average
percent change in weight is below a threshold.

Essentially, our method updates the weights on the fea-
tures of each image to produce tighter clusters in the next
iteration. This is possible because our feature weight up-
dates guarantee that the matching cost between two images
decreases when compared to the matching cost obtained

prior to the weight updates. Our algorithm then chooses the
weights (by the median) for each image such that the overall
matching cost between the intra-cluster images decreases.
Therefore, subsequent iterations produce tighter clusters,
and will be required to focus the matchings on those fea-
tures that already have support across multiple images. In
practice, we observe the most impact from the first several
iterations (see Sect. 7).

Algorithm 1 gives a step-by-step summary of the Fore-
ground Focus method.

4 Semi-Local Proximity Distribution Descriptors

Our algorithm description thus far implies an orderless set-
of-features representation. We propose a novel semi-local
region descriptor that encodes the appearance and rela-
tive locations of other features in a spatial neighborhood.
Our descriptor is inspired by the proximity distribution ker-
nel (Ling and Soatto 2007), which compares images de-
scribed by cumulative histograms of nearby visual word
pairs. However, while their approach summarizes an entire
image with one histogram, we design a proximity distrib-
ution feature for each interest point, which makes it possi-

150 Int J Comput Vis (2009) 85: 143–166

Fig. 4 (Color online) Schematic of the proposed semi-local descriptor.
The base feature is p. The ellipses denote the features, their patterns
indicate their corresponding visual word types, the numbers indicate
their rank order of spatial proximity to the base feature, and the qi ’s
denote the four quadrants (directions) relative to p. Here the nearest
neighboring feature to p is the feature in q1 corresponding to the ver-
tically textured word type, and so its bin in H1 is incremented. For H2,
the bins corresponding to the word types of the two nearest neighbor-
ing features to p are incremented—the vertically textured word type
feature in q1 and the clear word type feature in q4. The process is re-
peated until all R spatially nearest features to p are observed. In this
example, R = 6

ble to use rich local configuration cues within an explicit,
weighted matching (and thus calculate the flow as described
above). As mentioned in Sect. 2, previous methods that en-
code the semi-local neighborhood information fail to either
capture the spatial configuration, spatial ordering, or spatial
count of the features in the semi-local neighborhood. Our
descriptor is built with the motivation to capture all of the
above information, and we show in our experiments that it
can lead to better object localization and classification per-
formance.

We extract local patch features at all interest points. Then
we construct a standard n-word visual vocabulary by cluster-
ing a random pool of descriptors (we use SIFT (Lowe 2004))
extracted from the unlabeled image dataset, U , and record
each feature’s word type. We use the k-means algorithm for
clustering. For each patch in an image, for each of four di-
rections (quadrants) relative to its center, we compute a cu-
mulative distribution that counts the number of each type
of visual word that occurs within that feature’s r spatially
nearest neighbor features, incremented over increasing val-
ues of r (see Fig. 4).

More precisely, consider an image with patches {p1, . . . ,

pm} and their associated word types {v1, . . . , vm}. For each
pi , we construct R total 4n-dimensional histogram vectors
Hr(pi), for r = 1, . . . ,R. In each, the first n bins represent
quadrant 1, the next n bins represent quadrant 2, and so on.
Each n-length chunk is a histogram counting the number
of occurrences of each word type vj within pi ’s r spatially
nearest feature points, divided into quadrants relative to pi .
Note that higher values of r produce a vector Hr(pi) cov-
ering a spatially larger region. Finally, our semi-local de-
scriptor for pi is the concatenation of these R histograms:
f (pi) = [H1(pi), . . . ,HR(pi)].

Every patch’s R × 4n-length vector is a translation-
invariant encoding of neighborhood appearance and coarse
geometry. (We can add rotation invariance by setting quad-
rants based on a feature’s dominant gradient; we have not
yet explored this variant.) Due to the high-dimensionality
and correlation among dimensions, we compute compact
descriptors using Principal Components Analysis (PCA).
Matching sets of our descriptors does not explicitly enforce
spatially contiguous regions to be discovered. However, due
to their spatial extent and overlap, individual point matches
are in fact dependent.

Recent work on sampling strategies shows that the single
most important criterion for recognition performance tends
to be the number of patches detected in each image (Nowak
et al. 2006). Hence, dense sampling is shown to often yield
better recognition accuracy than interest-point detectors, be-
cause it provides more coverage of the image.

The region that our semi-local descriptor encapsulates
can be quite different depending on the sampling method
for the base features. Dense sampling on uniform grid points
will produce semi-local regions that are consistent in area (in
terms of image coordinates) for each feature (except those
that lie near edges or corners) independent of the image it
belongs to, which could assist in better matching if the ob-
jects occupy similarly-sized regions across images. How-
ever, if the foreground objects in different images do not
have the same scale, the foreground coverage of the semi-
local descriptor in each image will be different—even if
the base feature covers the same part of the object in the
images. To make the descriptor scale invariant for densely
sampled features, multi-scale sampling can be used where
the sampling points are adjusted with respect to the size of
the patches, i.e., finer sampling for smaller sized patches.
When computing feature correspondences between two im-
ages, matching can proceed between all features at all scales.
This way, matches are made between descriptors that cover
the same regions of the objects, even between images that
have foreground objects of different scale.

Sparse sampling with interest point detectors will pro-
duce scale invariant semi-local descriptors that are indepen-
dent of the spatial area in terms of image coordinates. An
exception can occur for images containing objects at very
different resolutions, since different sparse points will be de-
tected (i.e., a high resolution view of an object may result in
more detections with interest point detectors than a low reso-
lution view of the same object). In this case, scale invariance
can be approximated by using scale-invariant feature detec-
tors and considering only similarly sized features in the base
feature’s neighborhood. This way, the semi-local neighbor-
hoods in different images would capture similarly sized re-
gions with respect to the scale of the objects, independent
of the image resolution. The tradeoff with dense sampling
is that sparse sampling produces less coverage of the image,

Int J Comput Vis (2009) 85: 143–166 151

and not all parts of the foreground object may be captured
by the descriptor. In our experiments in Sect. 7, we analyze
the practical tradeoffs between building our descriptor with
densely or sparsely sampled points.

Related methods for encoding the appearance of semi-
local neighborhoods have been previously proposed. The
authors of Quack et al. (2007) employ a neighborhood-based
image description of visual words in which the scale of the
neighborhood is determined by the size of the region of in-
terest (detected feature). Multiple instances of the same vi-
sual word are not counted, and the neighborhood descrip-
tions are not used explicitly for matching. Instead, the ob-
ject category is determined by the set of words in a region
using data mining tools. Similarly, in Sivic and Zisserman
(2004) the neighborhood of each region of interest is repre-
sented by encoding the set of the R spatially nearest words
to a base feature as a n-d vector, where n is the size of the
vocabulary. The authors of Agarwal and Triggs (2006) con-
struct hyperfeatures—descriptors collected hierarchically in
increasing neighborhoods of the image space. In contrast to
these methods, our descriptor considers the order of spatial
proximity as well as the spatial direction in which the neigh-
boring features are located with respect to the patch cen-
ter. This is a richer description of the semi-local neighbor-
hood of a feature; in order for two descriptors to have a high
match, having similar features in their semi-local neighbor-
hoods is not enough—the neighboring features must also
have similar geometric configurations.

The authors of Lazebnik et al. (2006) propose to repre-
sent an image as a spatial pyramid. An image is repeatedly
subdivided and histograms of features are computed over
the sub-regions, thereby capturing both the appearance in-
formation as well as the spatial layout information of the
features. However, their representation is global—the parti-
tioning of the regions is based on the image coordinates, and
the image as a whole is represented. In contrast, our semi-
local descriptor captures information specific to each fea-
ture’s neighborhood. This allows our descriptor to be used
for object localization and grants more robustness to clutter
and occlusion for image classification tasks.

5 Computational Complexity of the Algorithm

In this section we analyze the computational complexity of
our Foreground Focus method and the memory requirements
for computing and storing our semi-local proximity distrib-
ution descriptors.

Let N be the number of feature sets in the dataset and T

be the number of features in each feature set (without loss
of generality, assume all feature sets have the same number
of features). Let L be the number of levels used to construct
the pyramid tree for partitioning the feature space for the

modified PMK algorithm that approximates the EMD (see
the Appendix).

If EMD is modeled as a network flow problem, it can be
computed in O(T 3 log(T)) time (Rubner et al. 2000). This
is the worst-case complexity for our algorithm to compute
the least cost distance and flows between two feature sets,
which occurs if all the points in feature space fall in the same
node of the pyramid tree. In practice, most of the features
are spread out across the nodes since the tree is constructed
by directly sampling features from the feature sets of the
dataset. The best-case complexity is O(LT), which occurs
if each non-empty node in the tree is occupied by a single
feature from each feature set. Empirically, the typical run-
time per approximate EMD and flow computation is about
quadratic in T .

Our method’s clustering stage forms k groups from an
N × N affinity matrix using the normalized cuts algo-
rithm (Shi and Malik 2000). The computational complexity
at each iteration is O(N3), which is the time required for
eigen-decomposition of the matrix.1 The memory require-
ment for storing the matrix is O(N2).

When computing our proximity distribution descriptors,
we use PCA to reduce their dimensionality. To compute the
subspace bases efficiently, we sample the features from the
dataset (typically about 5% to 10% of the total number of
features). For V sampled features, this requires storage of
V vectors of length R ∗ 4 ∗ n, where R is the neighborhood
parameter and n is the vocabulary size.

Once the subspace bases are computed from PCA on the
covariance matrix formed from these V vectors, each feature
in the dataset is projected down to have a dimensionality that
is comparable to standard descriptors, such as SIFT which
has 128-dimensions. In our experiments, we project down to
100 and 130 dimensional descriptors.

6 Discussion and Assumptions

What are the assumptions of our approach? For a pattern to
be discovered, it must have support among multiple exam-
ples in the collection. Further, only visual patterns that share
some configuration of similar semi-local regions can ever be
found (e.g., using standard gradient-based region descrip-
tors, our method will not discover a single cluster consisting
of both soccer balls and volleyballs, but it can discover a
group comprised of different people’s faces). Finally, some
support for a pattern must be detected in the initial iteration
for progress towards refining that pattern to be made in the
remaining iterations.

1To further improve efficiency for larger datasets, we could employ
the equivalent kernel k-means formulation developed in Dhillon et al.
(2004), which also minimizes the normalized cut but does not require
eigen-decomposition.

152 Int J Comput Vis (2009) 85: 143–166

Note that features that are strictly speaking “background”
can also earn high weights, if they happen to consistently
re-occur with the same foreground class. So, what is learned
depends on what the collection U contains: for example, if
bikes are typically against a bike rack, then we can expect
the pattern to be found as a single entity. The same holds
for images with multiple objects that repeatedly co-occur—
for example, if computer monitors always exist on desks.
This is a natural outcome for unsupervised learning from
static images (e.g., nothing can indicate that the bike and
rack are not one composite object unless they often occur
separately), and satisfies the problem definition.

This also means that the discovered patterns will not al-
ways correspond to the foreground objects, i.e., the dataset
will not necessarily be partitioned in concurrence with ob-
ject class labels. This is because the feature weight updates
depend strictly on the intra-cluster matches. For two objects
that typically occur in the same setting, e.g., cows and sheep,
our method may find the co-occurring visual pattern to be
part of the background, e.g., grass. The dataset will be par-
titioned accordingly, in which case we may not end up with
a cow-cluster and/or sheep-cluster. This is still a perfectly
reasonable outcome, since our method will have found the
most consistently co-occurring visual patterns.

In our current implementation, we leave the method
completely unsupervised. However, semi-supervision can be
added to guide the algorithm to learn objects under a certain
criterion. For the cows and sheep example, we could take
a few images from each category, and remove all features
on the grass (the background) by setting their weights to 0.
This way, our algorithm would be biased towards finding the
re-occurring patterns that fall on the foreground. We could
also enforce high (low) affinity in the kernel matrix between
some examples that are constrained to be similar (dissimi-
lar). This would be especially helpful for examples that are
often misclassified due to high background clutter.

7 Results: Evaluation of the Foreground Focus Method
and Proximity Distribution Descriptor

In this section we present experiments both to analyze the
mutual reinforcement of foreground and clusters, and to
compare against existing unsupervised methods. We work
with images from the Caltech-101 (Fei-Fei et al. 2004) and
Microsoft Research Cambridge v1 (MSRC-v1) (Winn et al.
2005) datasets. We chose these datasets both because they
provide object segmentations that we need as ground truth to
evaluate our foreground detection, and because previous re-
lated unsupervised techniques were tested with this data. We
also evaluate our semi-local descriptor’s foreground discov-
ery on the Caltech Cars Rear, TUD Motorbikes, and GRAZ
Bikes datasets. Unless otherwise specified below, we sample
SIFT features at regular image intervals.

7.1 Implementation Details

To determine when to stop iterating, we measure the percent
change in the average feature weight change in all images
from one iteration to the next, and stop once it slows to 15%
or less (a threshold we set arbitrarily). When clustering, we
set k as the number of classes present in the dataset in order
to evaluate how well the true objects are discovered. Note
that k can be set higher to allow sub-categories, e.g., rear-
view, side-view of the car category, to be discovered. The
number of clusters can be automatically determined by the
self-tuning spectral clustering method (Zelnik-Manor and
Perona 2004), which was demonstrated in Lee and Grauman
(2008b) to find different aspects/views of tourist attractions.
In practice, we have found that setting the value of k to be
equal to the number of categories produces the best clusters
(consistent with the images’ class labels).

We fix the neighborhood parameter at R = 64, follow-
ing (Ling and Soatto 2007), which means that each descrip-
tor covers about 1

4 th to 1
5 th of the image in width and height.

The vocabulary size n as well as the final dimensionality d

(corresponding to the eigenvectors with the d largest eigen-
values after PCA) of the spatial descriptors are set roughly
depending on the number of input images in an attempt to
get good coverage; however, they are not optimized for each
dataset. For a dataset that has many object categories (each
having distinct appearances and shape), we expect to need a
larger vocabulary to capture the variability of the data. The
values we use are in line with typical choices for similarly
sized datasets (Ling and Soatto 2007; Fergus et al. 2005;
Lazebnik et al. 2006). The specific values for n and d are
given below in the appropriate sections.

7.2 Analyzing the Effects of Mutual
Foreground/Clustering Reinforcement

7.2.1 Caltech-101 Images

While some classes in the Caltech-101 are fairly clutter-free,
we purposely select categories with the highest clutter in or-
der to demonstrate our method’s impact. To do this, we first
built supervised classifiers on all 101 categories: one trained
with all image features, and one trained using only fore-
ground features. Then we ranked the classes for which seg-
mentation most helped the supervised classifier, since these
directed us to the classes with the most variable and confus-
ing backgrounds. In this way, we formed a four-class (Faces,
Dalmatians, Hedgehogs, and Okapi) and 10-class (previous
four plus Leopards, Car_Side, Cougar_Face, Guitar, Sun-
flower, and Wheelchair) set. For each class, we use the first
50 images. Figures 6 and 7 show example images of the
two sets. We set n and d to 200 and 100, respectively, for

Int J Comput Vis (2009) 85: 143–166 153

Fig. 5 Evaluation of feature selection and category discovery on the
Caltech dataset. (a) The average foreground scores over iterations for
all images from the 4-class (top) and 10-class (bottom) sets from the

Caltech-101. (b) The cluster quality for those sets. The black dotted
lines indicate the best possible quality that could be obtained if the
ground truth segmentation were known (see text)

the four-class set, and 400 and 130, respectively, for the 10-
class set. For this experiment, we discard any contrast-free
regions.

If our algorithm correctly identifies the important fea-
tures, we expect those features to lie on the foreground ob-
jects, since that is what primarily re-occurs in these datasets.
To evaluate this, we compare the feature weights computed
by our method with the ground truth list of foreground fea-
tures. We quantify accuracy by the percentage of total fea-
ture weight in an image that our method attributes to true
foreground features. To make values comparable across im-
ages and classes, we compute fg

fg+bg
, where fg and bg de-

note the sums of all foreground (background) weights nor-
malized by the number of all foreground (background) fea-
tures, respectively. If all weights were on foreground, the
score would be 1, while if all weights were on background,
the score would be 0. If each feature’s weight is set uni-
formly to 1, then the score would be 0.5 since fg and bg

would both be equal to 1 (regardless of the actual number of
features that are on the foreground or background).

As discussed above, our method gives the highest weights
to the most commonly reoccurring features throughout the
intra-cluster images. Therefore it is possible for so-called
“background” features to also be weighted highly, for ex-
ample, when the background consists of repeated contex-
tual features (e.g., street features often appear with car fea-
tures). However, since we purposely choose the Caltech cat-
egories which have the highest clutter and show the most
improvement in classification accuracy when using only
foreground features, the fg

fg+bg
evaluation score is appropri-

ate. In the case that contextual background features do get
high weights, this metric can only underestimate the accu-
racy of our method.

Figure 5(a) evaluates our method’s unsupervised fore-
ground selection for the two datasets across iterations. All
features start with uniform weights, which yields a base
score of 0.5. Then each image’s weights continually shift
to the foreground, with significant gains for most classes as
the clusters continue to be refined. In the 10-class set, the
Hedgehog class improves more slowly. Upon examination,
we found that this was due to many hedgehog images dis-

154 Int J Comput Vis (2009) 85: 143–166

Fig. 6 (Color online) Examples showing the highest weighted features per image. In these examples, our method attributes weight almost only to
foreground features. Note that we show the base features to our semi-local descriptors

persed across the initial clusters, resulting in more gradual
convergence and cluster swaps.

As our method weights foreground features more highly,
we also expect a positive effect on cluster quality. Since
we know the true labels of each image, we can use the F -
measure to measure cluster homogeneity. The F -measure
measures the degree to which each cluster contains only and
all objects of a particular class: F = ∑

i
Ni

N
maxj F ′(i, j),

where F ′(i, j) = 2×R(i,j)×P (i,j)
R(i,j)+P (i,j)

, and P and R denote pre-
cision and recall, respectively, and i indexes the classes and
j indexes the clusters. High values indicate better quality.
Figure 5(b) shows the impact of foreground detection on
cluster quality. To provide an upper bound on what quality
level would result if we were to have perfect foreground seg-
mentation, we also evaluate clusters obtained using only the
foreground features (black dotted lines). Note that without
any supervision or foreground/background annotation, our
approach clusters almost as well as the ideal upper bound.
Also, as we iterate, the better foreground weights incremen-
tally improve the clusters, until quality levels out.

Figure 6 illustrates example results in which our method
finds good support on the foreground. These examples have
the highest foreground scores in each category and are al-
ways associated with the correct cluster, e.g., the guitar im-
age belonging to a cluster almost entirely comprised of gui-

tars. Considering the fact that we use densely sampled fea-
tures, a great deal of irrelevant features have been discarded
(i.e., assigned low weight) by our method. Figure 7 illus-
trates example results where our method weights foreground
features highly, but also mistakenly finds good support for
some background. These examples have the lowest fore-
ground scores in each category and are almost always as-
sociated with the incorrect cluster, e.g., the guitar image be-
longing to a cluster almost entirely comprised of leopards.
These results confirm what is expected, since the majority-
class images in a cluster will have the highest weighted fea-
tures on the foreground, while the outlier images will have
the highest weighted features on regions other than (or pos-
sibly in addition to) the foreground.

Note that our algorithm finds meaningful features—by
definition, re-occurring visual patterns in the cluster images.
Therefore, this does not imply that all foreground features
are meaningful. Only those that re-occur across images in a
cluster are meaningful. Furthermore, even some background
features may be meaningful, e.g., features that capture parts
of the street in car images, since cars are commonly found on
the street. (If this were a supervised feature selection task, it
may even be favorable to include background features if we
knew that those features were part of regions that were vi-
sually re-occurring patterns across the foreground images.)

Int J Comput Vis (2009) 85: 143–166 155

Fig. 7 (Color online) Examples our method does most poorly on: it weights foreground features highly, but also (mistakenly) finds good support
for some background. Note that we show the base features to our semi-local descriptors

Our assumption for this experiment is that the backgrounds
are uncorrelated, and therefore the foreground features are
the only meaningful features. This property does not always
hold in real images, but we can still expect to get better clus-
ters with our method as long as the re-occurring patterns are
weighted highly.

Figure 8 shows an example of the refinement of clus-
ters and weights over iterations on the four-class set. The
highest weighted features are shown in yellow, and are fea-
tures that have weight greater than 1.75—a high value given
the distribution of weights in the data. Each iteration pro-
duces improvements in both cluster quality and discovery of
foreground features. At each iteration, intra-cluster images
that have similar visual patterns produce highly weighted
foreground features. On the other hand, “outlier” images in
each cluster have weights distributed fairly evenly across
foreground and background features—the highly matching
features for an outlier image are inconsistent over pair-
wise matches to intra-cluster matches and will not be re-
flected since the median values are taken among all intra-
cluster matching features’ weights. The combination of
highly weighted foreground features on the similar images,
and (approximately) evenly distributed weights on the out-
lier images produces better quality clusters in the following
iteration.

7.2.2 MSRC-v1 Images

We also evaluate our method’s unsupervised foreground dis-
covery and category learning on the MSRC-v1 dataset. The
dataset is comprised of 240 images belonging to 9 object
classes, and has more clutter and variability in the objects’
appearances than the Caltech-101 dataset. The object cat-
egories are Horse, Sheep, Tree, Building, Airplane, Cow,
Face, Car, Bicycle. The dataset creators state that there are
not enough training regions to learn reasonable models of
horses and sheep—we remove the first 30 images of the
dataset which correspond largely to these classes. Therefore,
our revised dataset consists of seven classes with 30 images
each. Examples of images in this dataset are shown in Fig. 9.
For this experiment, we set n to 400 and d to 130.

Figure 10(a) evaluates our method’s unsupervised fore-
ground selection for the dataset across iterations. Again, im-
provements in foreground discovery over iterations is ev-
ident. We also evaluate overall cluster quality using the
F-measure, which is shown in Fig. 10(b). The black dotted
lines indicate the upper bound on the quality level which is
found by evaluating clusters obtained using only foreground
features.

As our method weights foreground features more highly,
we see improvement in cluster quality. However, the in-
crease is not as significant compared to that seen on the

156 Int J Comput Vis (2009) 85: 143–166

Fig. 8 (Color online) Example cluster and weight refinement on the
4-class set. The highest weighted features are shown in yellow. The
actual number of images in a cluster for [faces, dalmatians, hedgehog,
okapi] is shown below. Images displayed are sampled proportionally

to the actual number of images per class in each cluster. Note that
as the cluster quality improves, our method weights features on the
foreground more highly

Caltech-101 dataset. Categories which have slower improve-

ment, e.g., Tree, are those that are more likely to be confused

with background, e.g., grass. This is because the MSRC-v1

has a lot of correlated background—many objects are situ-

ated on grass—and therefore the meaningful features found

are often on the background. This resulted in some of the

initial clusters being grouped based on the background fea-

tures and improvement on those clusters (in terms of class

Int J Comput Vis (2009) 85: 143–166 157

Fig. 9 Examples of images belonging to the MSRC-v1 dataset

Fig. 10 Evaluation of feature selection and category discovery on the
MSRC dataset. (a) The average foreground scores over iterations for
all images from the seven classes of the MSRC dataset. (b) The cluster

quality for those sets. The black dotted lines indicate the best possible
quality that could be obtained if the ground truth segmentation were
known (see text)

labels) could not be made over iterations. (If we were to
label the images in which the background features were
given the highest weight with “grass” or “sky” (instead of
cow, airplane, etc.), then we would see an improvement
in cluster quality since the background is the most consis-
tently re-occurring visual pattern in those images.) In order
to tune our algorithm to a particular user’s goals, we could
add semi-supervision by removing the background features
on some images to bias our algorithm to capture the fore-
grounds, or adjusting the kernel matrix based on some paired
constraints to enforce grouping or separation of some im-
ages. We would like to explore these areas in future work.

The results in this section on the Caltech and MSRC
datasets show that our method’s mutual reinforcement of un-

supervised foreground discovery and category learning can
in practice benefit both tasks.

7.3 Comparison with Existing Unsupervised Methods

Next we empirically compare our approach against pub-
lished results from alternative unsupervised visual learning
methods (Dueck and Frey 2007; Grauman and Darrell 2006;
Liu and Chen 2006, 2007).

The authors of Dueck and Frey (2007) propose a clus-
tering algorithm called affinity propagation, where mes-
sages between data points are exchanged to find a good
partition. The method considers all data points as candi-
date exemplars and iteratively finds the best set of ex-
emplars that partitions the data. They chose two sub-
sets of the Caltech-101: a 20-class subset composed of:

158 Int J Comput Vis (2009) 85: 143–166

Table 1 Comparison with affinity propagation (Dueck and Frey 2007)
for the seven-class and 20-class subsets of the Caltech 101 dataset in
terms of the purity cluster quality measure. We test our method (ab-
breviated here as “FF” for Foreground Focus) with three different
features: 1) FF-Dense, in which our semi-local descriptor uses densely
sampled SIFT descriptors as base features, 2) FF-Sparse, in which our

semi-local descriptor uses the SIFT descriptors detected with DoG
as base features (the same features as in Dueck and Frey 2007), and
3) FF-SIFT, in which the DoG SIFT features are used without our
semi-local descriptor. Overall, our method performs much better than
affinity propagation

Dueck and Frey 2007 FF-Dense FF-Sparse FF-SIFT

Purity (7-class) (%) 59.41 78.91 77.51 70.75

Purity (20-class) (%) 36.91 65.61 41.79 38.94

Table 2 Comparison with Grauman and Darrell (2006) for unsuper-
vised category learning and recognition performance on novel images
for the Caltech-4 dataset. Unsupervised category learning is measured
in terms of overall cluster purity, and recognition on unseen images
is measured in terms of the mean diagonal of the confusion matrix.
Results are mean values with standard deviations, averaged over 10
runs with randomly selected training/testing pools. We test our method
(abbreviated here as “FF” for Foreground Focus) with two different

features: 1) FF-Dense, in which our semi-local descriptor uses densely
sampled SIFT descriptors as base features, and 2) FF-Sparse, in which
our semi-local descriptor uses the SIFT descriptors detected with the
shape-adapted and maximally stable region detectors as base features.
Our method performs better than Grauman and Darrell (2006) for both
base feature types. Note the robustness of our method shown by the
small standard deviations

Grauman and Darrell 2006 FF-Dense FF-Sparse

Purity (%) 85.00 ± 4.72 88.82 ± 0.86 91.10 ± 1.10

Prediction rate (%) 84.10 ± 5.07 87.13 ± 0.37 92.29 ± 1.07

Faces, Leopards, Motorbikes, Binocular, Brain, Camera,
Car_Side, Dollar_Bill, Ferry, Garfield, Hedgehog, Pagoda,
Rhino, Snoopy, Stapler, Stop_Sign, Water_Lilly, Windsor_
Chair, Wrench, Yin_Yang, and a seven-class subset com-
posed of: Faces, Motorbikes, Dollar_Bill, Garfield, Snoopy,
Stop_Sign, Windsor_Chair. The first 100 images are taken
from each class, and n and d are set to 200 and 100, respec-
tively, for both subsets.

In Table 1 we compare our method with the same data,
using the “purity” cluster quality measure used in Dueck
and Frey (2007). Purity measures the extent to which a clus-
ter contains images of a single dominant class, Purity =
∑

j

Nj

N
maxi P (i, j), where i indexes the classes and j in-

dexes the clusters, and again P is precision. We first produce
results using our algorithm with two base feature types for
our semi-local descriptor: 1) densely sampled SIFT descrip-
tors, and 2) SIFT descriptors detected using Lowe’s Differ-
ence of Gaussians (DoG) scale space selection (the same set-
ting as in Dueck and Frey 2007). A strength of the affinity
propagation method is that non-metric affinities are allowed,
and so the authors compare images with SIFT features and
a voting-based match, which is insensitive to clutter (Lowe
2004). Still, the clusters found by our method are signif-
icantly more accurate, indicating the strength of both our
refinement process and semi-local descriptor. Our method
using dense base features performs much better than when
using sparse (DoG) base features. Since most of the ob-
jects in the seven-class and 20-class subsets are of similar
size, dense sampling produces consistently sized regions de-

scribed by our semi-local descriptor throughout the images.
More importantly, dense sampling provides better coverage
of the objects (foreground) than sparse sampling.

We also measure purity for the two subsets using only the
DoG SIFT features (without the semi-local descriptor). This
is to observe the gain that our semi-local descriptor provides
over the local base descriptors. Results are shown in Table 1,
fourth column. The clusters found using only the DoG SIFT
features still produce higher accuracy than that obtained by
Dueck and Frey (2007), but lower accuracy than when the
semi-local descriptors are built on top of the base features.
On the seven-class set, the visual patterns captured in the
first iteration corresponded mostly to the foreground objects
such that the clusters were of high quality. This improved
the foreground detection and cluster quality over iterations.
However, on the 20-class set, the cluster quality after the
first iteration was not as good—the visual patterns found did
not entirely correspond to the foreground. Since the features
did not capture any spatial and/or geometrical information,
many were erroneously matched, i.e., foreground feature to
background feature. This produced weak clusters such that
less improvement could be made over iterations. These re-
sults show the value of the proposed semi-local descriptor,
since they confirm that capturing both appearance as well as
semi-local structure improves matching quality.

In Table 2 we compare against the method of Grau-
man and Darrell (2006), which also forms groups with
partial-match spectral clustering, but does not attempt to
mutually improve foreground feature weights and clusters

Int J Comput Vis (2009) 85: 143–166 159

Fig. 11 (a) An airplane image. (b) With dense sampling, 720 features are detected, of which 119 belong on the foreground object (16.53%).
(c) With sparse sampling using interest point detectors, 253 features are detected, of which 125 belong on the foreground object (49.41%)

as our method does. We use two feature types for base
features to our semi-local descriptor: 1) densely sampled
128-dimensional SIFT descriptors (denoted as FF-Dense),
and 2) 72-dimensional SIFT features detected with shape-
adapted and maximally stable region detectors (denoted as
FF-Sparse). Base feature type one will produce many more
semi-local descriptors on average per image, than base fea-
ture type two. It also allows the semi-local descriptors to
cover similarly sized regions across images, which could be
useful if the foreground object is consistent in size across
images. Base feature type two is more sparse—there is less
coverage of foreground, but also of background which could
potentially eliminate spurious matches—yet distinctive.

We perform the same unsupervised category learning
and classification experiments as prescribed in Grauman
and Darrell (2006). In the object category learning experi-
ment, four categories are learned from the Caltech-4 data-
base comprised of 1155 rear views of cars, 800 images of
airplanes, 435 images of frontal faces, and 798 images of
motorbikes. We set n and d to 800 and 130, respectively, to
account for the large number of images. Results are aver-
aged over 10 runs with randomly selected learning pools of
100 images per class. We achieve better cluster purity with
both feature types than Grauman and Darrell (2006), where
sparse 10-dimensional Harris-affine SIFT features are used.

In the classification experiment, we use the learned cate-
gories to predict labels for novel images. We train Support
Vector Machines with the PMK using the labels produced
by the unsupervised category learning. We classify the re-
maining images of the dataset (2788 images, ranging from
300 to 1000 per class), where recognition performance is
computed as the mean diagonal of the resulting confusion
matrix, and average results over 10 runs with the randomly
selected pools of training images from the object category
learning experiment. The second row of Table 2 shows that
our method gives better prediction for novel examples than
Grauman and Darrell (2006). Our algorithm’s very small
standard deviations in accuracy for both experiments indi-
cate that it is less sensitive to the composition of the unla-
beled data, and provides significantly more reliable group-
ings.

In these experiments, our method performed better using
sparse base features rather than dense base features for the

Table 3 Comparison between semi-local descriptors and SIFT de-
scriptors for unsupervised category learning and recognition perfor-
mance on novel images for the Caltech-4 dataset. Unsupervised cate-
gory learning is measured in terms of overall cluster purity, and recog-
nition on unseen images is measured in terms of the mean diagonal of
the confusion matrix. Results are mean values with standard deviations,
averaged over 10 runs with randomly selected training/testing pools.
We test our method (abbreviated here as “FF” for Foreground Focus)
with two different features: 1) FF-Sparse, in which our semi-local de-
scriptor uses the SIFT descriptors detected with the shape-adapted and
maximally stable region detectors as base features, and 2) FF-Sparse-
Local, in which the same shape-adapted and maximally stable region
detected SIFT features are used without our semi-local descriptor. Our
method performs better with semi-local descriptors

FF-Sparse FF-Sparse-Local

Purity (%) 91.10 ± 1.10 67.48 ± 3.50

Prediction accuracy (%) 92.29 ± 1.07 71.35 ± 3.12

semi-local descriptors. Most of the error for either feature
type occurred for the airplanes being confused as cars or mo-
torbikes. Upon further examination, we found that the con-
fused images had more background clutter than other Air-
plane images, and their background features were similar
to those found on the Motorbike and Car images. We also
noticed that the Airplane images on average had the least
number of foreground features among the four classes in the
dataset, which could have resulted in semi-local descriptions
occupied by a lot of background features (see Fig. 11). Thus,
it makes sense that the sparse base features perform better,
as the dense sampling detects many more background fea-
tures.

In addition to the semi-local descriptor features, we also
evaluate our method using only the 72-dimensional SIFT
features detected with shape-adapted and maximally stable
region detectors. In Table 3, we compare our method us-
ing these features as base features to our semi-local descrip-
tor, and our method using only these features (without semi-
local information). The interest point detected SIFT features
(FF-Sparse-Local) performs much worse than the semi-local
descriptors (FF-Sparse). This again shows the value of our
semi-local descriptors—that capturing both appearance and
geometry in a local neighborhood can produce more infor-
mative and descriptive features that are less likely to spuri-
ously match. The initial clusters produced from the sparse

160 Int J Comput Vis (2009) 85: 143–166

features had low overall cluster purity, and not much im-
provement could be made over iterations.

Finally, we compare the accuracy of our method’s fore-
ground discovery to that of several latent topic models for
the Caltech motorbike class, as reported in Liu and Chen
(2007). Foreground features are determined by ground-truth
bounding box segmentations. In Liu and Chen (2007), two
probabilistic Latent Semantic Analysis (pLSA) topic mod-
els are learned from a combined dataset of the Caltech
motorbike class (826 images) and the Caltech background
class (900 images). Similarly, we learn two object cate-
gories (clusters). The foreground detection rate is computed
by varying the threshold among the top 20% most confi-
dent features as prescribed in Liu and Chen (2007). Interest
points are detected using the Hessian-affine detector (Miko-
lajczyk and Schmid 2004), and described by SIFT descrip-
tors. The descriptors are projected down by PCA to 30 di-
mensions, and n is set to 500. These features and parameters
are consistent with those used in Liu and Chen (2007).

We compare our method with a 1) standard pLSA model,
2) a pLSA model with spatial information (Liu and Chen
2006) that hypothesizes the location and scale of the object,
and 3) a correspondence-based pLSA variant (Liu and Chen
2007) that considers the configuration of patches belonging
to the object. The pLSA models compute foreground confi-
dence based on the probability of the topic given the patch.
We test our method with two feature types: 1) Hessian-affine
SIFT, as described above, and 2) semi-local descriptors with
Hessian-affine SIFT as base features. We set d to 130 for
both feature types. Results are shown in Fig. 12. Our ap-
proach outperforms the others for most points on the de-
tection curve, providing much better precision for low false
positive rates. Using the semi-local descriptors performs
overall slightly better than using the local descriptors.

The gap in performance between the pLSA methods and
our approach for this experiment makes sense due to the pri-
mary differences between the two approaches. The pLSA
methods model each image as a mixture across all topics:
they produce a soft-clustering of the data and every visual
word in an image contributes to the topic discovery. As a
result, the foreground confidence of a feature (visual word)
depends both on how likely it is part of the described topic
across the dataset as well as how likely its parent image be-
longs to that topic. This means that a motorbike image can
have highly weighted features on the background (in ad-
dition to those on the foreground), if the motorbike topic
does not dominate the background topic. Furthermore, back-
ground images that have high probability of belonging to the
motorbike topic can adversely influence the background fea-
tures in motorbike images to have high weights.

In contrast, our method selects the most distinctive fea-
tures by iteratively updating the feature weights and image
clusters. By hard-clustering the data, our method determines

Fig. 12 Comparison with several latent topic models for foreground
discovery for the Caltech motorbike class. For each method, the fore-
ground detection rate is computed by varying the threshold among
the top 20% most confident features in each image. We compare
our method with a standard pLSA model, pLSA with spatial in-
formation—“spatial pLSA” (Liu and Chen 2006), and a correspon-
dence-based pLSA variant—“corresp. pLSA” (Liu and Chen 2007).
We test our method (abbreviated as FF for “Foreground Focus”) with
two different features: 1) FF, with Hessian-affine SIFT features (same
feature setting as in Liu and Chen (2007)), without our semi-local de-
scriptor, 2) FF semi-local, in which our semi-local descriptor uses the
Hessian-affine SIFT features as base features

the feature weights solely based on intra-cluster matches:
it computes the weight of a feature by taking the median
weight among all intra-cluster matches. Therefore, the cor-
rectly clustered motorbike images will have their highest
weighted features on the regions that consistently match
well (i.e., the foreground). Likewise, our approach mitigates
the impact of an incorrectly clustered background image,
since matches made to the background features will likely
result in low weights and be ignored by the median.

Overall, the partitioning of images that our method pro-
vides makes it possible to discover distinctive features at the
object level, whereas topic models must account for an im-
age with a soft assignment to each topic, and thus can less re-
liably select the most confident per-topic features. Whether
a soft or hard partitioning of the unlabeled image collection
is preferable would depend on the ultimate application.

7.4 Evaluation of our Semi-Local Proximity Distribution
Descriptor

In previous sections, we have analyzed our method’s clas-
sification and foreground discovery accuracy on various
datasets. In this section, we analyze the performance of our
semi-local descriptor by making a direct comparison to the
neighborhood-based image descriptor of Quack et al. (2007)
and to a local alternative, a simple bag-of-words descrip-
tion. The goal of these experiments is to determine how
well our semi-local descriptor discovers the same visual pat-
terns (foreground objects) in novel images that occur in the

Int J Comput Vis (2009) 85: 143–166 161

training images. We tie this in with a modified version of
our Foreground Focus method for determining the feature
weights. The difference with our original method is that,
unlike previous experiments, the following are supervised
tasks and hence no clustering is involved.

We perform the same experiment as in Quack et al.
(2007), where a bounding box hit rate (BBHR) is measured
over the positive test sets. A bounding box hit (BBH) is
counted if more than h of the selected features lie on the ob-
ject (i.e., inside the bounding box) and the BBHR is the total
BBH normalized by the total number of object instances in
the positive test set. The BBHs are measured by using the
ground truth bounding box annotations. The BBHR is mea-
sured with respect to the False Positive Rate (FPR) which is
the number of selected features lying outside of the bound-
ing box divided by the number of selected features, aver-
aged over the entire test set. The selected features are de-
termined by varying the selection threshold over the feature
confidences. The idea behind the BBHR is that there should
be at least a certain number of features selected for later
processes (such as an object recognition system) to oper-
ate effectively. Therefore, the metric (i.e., BBHR vs FPR)
compares the tradeoff of the number of selected foreground
features at the expense of false positives (background fea-
tures that are mistakenly thought to be on the foreground).

The experiment is conducted on three object categories:
Bikes, Motorbikes, and Cars Rear. We use the same images
from the publicly available datasets and set h to five, as in
Quack et al. (2007). We use densely sampled SIFT base fea-
tures for our semi-local descriptor, and set n to 200 and d to
130. The positive training images use only regions of the im-
age that correspond to the object (inside the bounding box),
except for the Motorbikes where full images are used since
no ground truth annotation is available.

More detail on the datasets corresponding to the object
categories are as follows:
Bikes. This dataset has 250 positive training, 250 negative
training, and 125 testing images of bikes taken from the
GRAZ-01 (100 positive training, 100 negative training, and
50 testing) and GRAZ-02 (150 positive training, 150 neg-
ative training, and 75 testing) datasets (Opelt et al. 2006),
respectively.
Motorbikes. This dataset has 826 positive training images
taken from the Caltech-4 Motorbikes database and 200 im-
ages randomly taken from the Caltech-256 (Griffin et al.
2007) background class. There are 115 testing images taken
from the TUD Motorbikes (Everingham et al. 2006) dataset.
Cars Rear. This dataset has 126 positive training images and
526 testing images of rear-views of cars from the Caltech-
4 dataset. The negative training images are 1155 images of
street scenes without cars.

We compare our method with Quack et al. (2007), in
which a tiled region is centered on each interest point to

bin nearby visual words. The scale of the neighborhood is
determined by the size of the region of interest (detected
feature). The confidence of a feature in a test image is mea-
sured by counting how often it is part of a neighborhood
that matches to mined configurations of the training images.
The more matched configurations the feature is part of, the
higher its confidence. We also compare our method with the
baseline bag-of-words scheme (as defined in Quack et al.
2007), where each visual word is given a weight based on
how often it appears in the training images of the given cate-
gory. Then, each feature in a test image is given a confidence
that corresponds to the weight of its matching visual word.

In order to make a fair comparison to Quack et al. (2007),
we modify our unsupervised Foreground Focus method to
work with labeled data, and devise a method to set weights
on our features discriminatively. Since we are only working
with a single dataset at a time, no clustering is involved (and
hence no iterations).

We compute the weights on our descriptors in the test
images as follows. First, each test image is matched to all
images in the positive training set. The feature weights for a
test image are computed in exactly the same way as in our
original Foreground Focus method; we take the median over
the weights (which take into account both the mass of the
matching features as well as their distances) obtained from
the pair-wise matches between the test image and all positive
training images. We only select features that have weight
greater than one—essentially, we are only keeping the fea-
tures that our method determines to be on the foreground,
since all features initially have weights set to one. The re-
maining feature weights are set to zero. Then, the process is
repeated, but with the test images matched to the negative
training images. Again, we select features that have weight
greater than one, which are those that our method determines
to be on the background (since this time the test images are
matched to the negative training examples). Finally, among
the features that our method had determined to be on the
foreground, we discard the features that are also determined
to be on the background.

We are left with a set of features that have high confi-
dence of belonging to the foreground, while at the same
time have low confidence of belonging to the background.
This procedure is analogous to the way the confidences for
the features of Quack et al. (2007) are determined, where
both the positive and negative training examples are used to
find the most distinctive and frequent foreground features
that are unlikely to be part of the background. Results on
the three datasets are shown in Fig. 13. The results of Quack
et al. (2007) are shown as curves with square markings, the
baseline bag-of-words scheme results are shown as curves
with diamond markings, and our method’s results are shown
as curves with triangles.

162 Int J Comput Vis (2009) 85: 143–166

Fig. 13 Bounding box hit rates (BBHR) vs. mean false positive rates
(FPR) for Bikes, Motorbikes, and Cars Rear. Lower curves are better.
Overall, our method significantly outperforms the baseline bag-of-
words scheme and achieves higher BBHRs than the method of Quack

et al. (2007). On the Cars Rear and Motorbikes datasets, the higher
BBHRs are obtained with lower and comparable mean FPRs, respec-
tively, to (Quack et al. 2007)

Our semi-local descriptor significantly outperforms the
baseline bag-of-words scheme on all datasets, which con-
firms that our method for adding geometric and spatial lay-
out information to local appearance descriptors results in
better foreground discovery. When comparing to Quack et
al. (2007), our method performs better on the Cars Rear
dataset, achieves higher BBHRs (with comparable FPR at
low BBHR) on the Motorbikes dataset, and performs worse
on the Bikes dataset. We achieve the best results on the Cars
Rear dataset, because the negative training images specifi-
cally match the backgrounds of the positive training images.
Hence, any background feature that may (incorrectly) have
high weight of belonging to the foreground (when match-
ing to the positive training images) would have high weight
of belonging also to the background (when matching to the
negative training images) and would be discarded by our
modified Foreground Focus method. This method only con-
siders those features that have high weight of belonging to
the foreground and low weight of belonging to the back-
ground.

The negative training images help less on the Motorbikes
and Bikes datasets, because they are not specifically chosen
to be similar in appearance to the backgrounds that appear
in the positive training images. These datasets also have se-
vere clutter in many images, and large object scale and ap-
pearance variations. Still, our semi-local descriptor performs
well, as can be seen by the low mean FPR even as the BBHR
increases.

The method of Quack et al. (2007) is much more selec-
tive, as can be seen by the lower maximum BBHR that is
obtained on all datasets compared with our method. While
a more discriminative approach may reduce false positives,
it can also hurt performance for the ensuing object recogni-
tion system if there are too few features to work with (even
if all of them lie on the foreground). Our semi-local descrip-
tor is able to find many foreground features and still achieve
low FPR even at high BBHRs. For example, on the Motor-
bikes dataset, the curves produced from our method and the
method of Quack et al. (2007) are similar for low BBHRs,
but then our method achieves better total foreground hits, as
seen by our curve extending to higher BBHRs (at relatively

Int J Comput Vis (2009) 85: 143–166 163

low mean FPRs) while the curve produced by Quack et al.
(2007) stops when the BBHR is approximately 0.67.

In terms of the differences in neighborhood-descriptions,
we use ranked nearest neighbor (in image space) feature de-
scriptions while in Quack et al. (2007) a tiled grid is used.
The tiled neighborhood description does not count the num-
ber of occurrences of the same visual word that falls in a
tile—it is a set description rather than a bag description. This
means that the same descriptions are produced for a tile that
has many occurrences of the same visual word and a tile
that has just a single occurrence of that same visual word. In
contrast, our descriptor counts multiple occurrences of the
same visual word, regardless of the regions in which they
actually fall with respect to the base feature. Therefore, our
descriptor can be more specific.

In terms of orientation, however, our descriptor has a
coarser description of where each neighboring feature lies
(we only determine the spatial order and in which quad-
rant the feature lies with respect to the base feature), while
the tiled neighborhood description of Quack et al. (2007)
is more rigid since it depends on the actual tile in which a
feature falls. In this sense, our descriptor provides a more
flexible encoding, which can be more robust to deformable
objects, e.g., people or animals, or when there are in-plane
and/or out-of-plane rotations of the object.

Finally, our descriptor encodes all R neighbors of a base
feature’s neighborhood in its description, while in Quack
et al. (2007) the most discriminative features in each tiled
neighborhood are selected. While our descriptor can be con-
sidered to be more specific (since all nearest neighboring
features in a base feature’s neighborhood are considered),
it can also lead to more clutter features being part of the
description (for base features that fall near the edge of the
object). This can potentially hurt our descriptor and is the
main reason for its poorer performance on the Bikes dataset.
In this dataset, there are many bikes that occupy small and
narrow regions of the image (see Table 4). Furthermore,
most of the bikes occupy irregularly-shaped regions in the
image where the background intertwines with the object
(e.g., region between handle and seat). A lot of background
clutter is considered for each base feature in these regions,
which leads to incorrect high matches between descriptors
of the foreground and background regions, and incorrect
low matches between descriptors of the foreground and fore-
ground regions.

When the objects occupy regions that have regular shape,
however, most of the features considered for the base feature
will belong to the foreground object. In these situations, our
descriptors can be very discriminative (and almost clutter-
free) and can lead to very precise foreground matching. This
is confirmed by the good performance of our descriptor on
the Cars Rear dataset, where the objects also occupy a small
portion of the image but the regions covered by the object
are wide and tall rectangularly-shaped regions.

Table 4 The percentage of the image that is occupied by the fore-
ground object for each category. The percentages are computed by tak-
ing the ratio between the area occupied by the object and the area of
the entire image

Bikes Motorbikes Cars rear

Train set (%) 24.80 85.30 24.87

Test set (%) 23.93 36.20 21.91

Figure 14 illustrates example results in which our method
finds good support on the foreground. Figure 15 illustrates
example results where our method weights foreground fea-
tures highly, but also mistakenly finds good support for some
background. In these examples, we show the highest (top
10%) weighted base features to our semi-local descriptors.
Images in which our method does not perform as well on are
those that have large scale variations (our current implemen-
tation uses only one scale for dense features). Nonetheless,
the high maximum BBHRs at low mean FPRs achieved by
our method indicate that our method finds good foreground
support on most images, at relatively low cost of finding
clutter features.

7.5 Summary of Results

We have analyzed the mutual reinforcement of foreground
and clusters, and have made comparisons against existing
unsupervised methods on images from the Caltech-101 and
MSRC-v1 datasets. Our results show that foreground dis-
covery can lead to better cluster quality, and vice versa. We
have also made comparisons with different types of base
features to our semi-local descriptors—specifically, we have
compared the densely sampled SIFT features to the interest
point detected SIFT features—and have found that the per-
formance of the sampling type is dependent on the specific
distribution of the features and images of the dataset. We
have shown good performance compared to the latent topic
models for foreground segmentation tasks on the Caltech-
4 Motorbikes dataset. Finally, we have evaluated our semi-
local descriptor by measuring foreground discovery on the
Bikes, Motorbikes, and Cars Rear datasets. Our descriptor
significantly outperforms a baseline bag-of-words scheme
on all datasets, and offers some advantages relative to a
state-of-the-art frequent configurations descriptor.

8 Conclusion

We have introduced a novel unsupervised method for dis-
covering foreground features in images. Clusters are de-
termined by matching weighted feature sets, and weights
are iteratively adjusted based on contributions to intra-
cluster image matches. We show that this mutual rein-
forcement improves both cluster quality and foreground

164 Int J Comput Vis (2009) 85: 143–166

Fig. 14 Examples showing the highest weighted features per image found by our modified (supervised) Foreground Focus method. In these
examples, our method attributes weight almost only to foreground features. Note that we show the base features to our semi-local descriptors

Fig. 15 Examples our modified (supervised) Foreground Focus method does most poorly on: it weights foreground features highly, but also
(mistakenly) finds good support for some background. Note that we show the base features to our semi-local descriptors

detection, with datasets containing four to twenty cate-
gories.

In future work, we will investigate how our algorithm
could accept incremental updates to the unlabeled pool. Fea-

ture weights and image clusters will be updated incremen-
tally, specific to each added instance. This approach is ap-
pealing because it does not attempt to fix clusters, but rather
would let the discovered visual patterns adjust to the new

Int J Comput Vis (2009) 85: 143–166 165

data. We would also like to extend our method to multiple-
label cluster assignments. A soft assignment to clusters
could be made to allow multiple patterns in a single image
influence the feature weight updates and resulting clusters.

We plan to consider sparser affinity matrices to improve
the spectral clustering’s computational complexity for deal-
ing with very large datasets. Finally, while we have focused
on category discovery here, it would be interesting to see
how our unsupervised feature selection could be used to au-
tomatically construct summaries of unstructured image col-
lections.

Acknowledgements The authors would like to thank the anonymous
reviewers for providing excellent suggestions, and Delbert Dueck,
David Liu, and Till Quack for sharing their experimental data and
results. We also gratefully acknowledge support for this research
provided in part by National Science Foundation CAREER Award
0747356, a Microsoft Research New Faculty Fellowship, Texas Higher
Education Coordinating Board ARP 003658-01-40-2007, National
Science Foundation EIA-0303609, and the Henry Luce Foundation.

Appendix

Given the expense of computing the EMD, we developed
a variant of the Pyramid Match algorithm to approximate
both the partial match cost as well as the flow between two
weighted point sets.

The Pyramid Match Kernel (PMK) approximates the
least cost match for unweighted sets in linear time in the
number of points in a set by intersecting multi-resolu-
tion histograms computed in the feature space (see Grau-
man and Darrell 2005). Given a set of feature vectors,
S = {X1, . . . ,X|S|} where Xi ∈ �d , ∀i, an L-level multi-
resolution histogram H = [Ho, . . . ,HL−1] is computed. The
PMK value between two features sets Xi and Xj is defined
as the weighted sum of the number of matches that occur at
each resolution:

K(Xi ,Xj) =
L∑

k=0

wk(Ik(Xi ,Xj) − Ik−1(Xi ,Xj)), (3)

Ik(Xi ,Xj) =
bk∑

n=1

min(Hk(X
(n)
i),Hk(X

(n)
j)), (4)

where Hk(X
(n)
i) is the count in bin n of multi-dimensional

histogram Hk(Xi) having bk bins, and wk is a weight reflect-
ing the similarity between points matched at level k. Note
that I−1(Xi ,Xj) = 0.

Though defined for unweighted point sets, for this work,
we propose a variant to the PMK in which we apply weights
by scaling every histogram bin increment by the weight at-
tached to that point. Given two multi-resolution histograms
computed from two feature sets, for every intersecting bin,

we compute the optimal matching between the features from
both sets that share the bin. We record the flow and cost
that each point at the current resolution level contributes
to the match; any remaining weight is propagated to the
next coarser pyramid level and can be used in future match-
ings. Zero-weighted features at any level do not contribute
to the match. In the end, when all bins have been intersected,
we have accumulated the approximate flow and match cost.
Each per-bin flow computation is super-linear in the inter-
section value, but feature space partitions given by the pyra-
mid result in small and gradually increasing intersection
counts.

To construct the pyramid tree for this modified PMK al-
gorithm, we randomly sample a representative corpus of fea-
tures from the data, and partition the feature space with hier-
archical k-means clustering (with Euclidean distance). The
number of levels, L, and branches, B , of the tree are user-
defined parameters—we typically use 10 branches with four
or five levels.

References

Agarwal, A., & Triggs, B. (2006). Hyperfeatures multilevel local cod-
ing for visual recognition. In European conference on computer
vision.

Chum, O., & Zisserman, A. (2007). An exemplar model for learn-
ing object classes. In Conference on computer vision and pattern
recognition.

Dhillon, I., Guan, Y., & Kulis, B. (2004). Kernel k-means: spectral
clustering and normalized cuts. In ACM SIGKDD international
conference on knowledge discovery and data mining.

Dorko, G., & Schmid, C. (2003). Selection of scale-invariant parts for
object class recognition. In International conference on computer
vision.

Dueck, D., & Frey, B. (2007). Non-metric affinity propagation for un-
supervised image categorization. In International conference on
computer vision.

Dy, J., & Brodley, C. (2004). Feature selection for unsupervised learn-
ing. Journal of Machine Learning Research, 5, 845–889.

Everingham, M., Zisserman, A., Williams, C. K. I., & Van Gool,
L. (2006). The PASCal visual object classes challenge 2006
(VOC2006) Results.

Fei-Fei, L., & Perona, P. (2005). A Bayesian hierarchical model for
learning natural scene categories. In Conference on computer vi-
sion and pattern recognition.

Fei-Fei, L., Fergus, R., & Perona, P. (2004). Caltech 101 image data-
base.

Fergus, R., Fei-Fei, L., Perona, P., & Zisserman, A. (2005). Learning
object categories from Google’s image search. In International
conference on computer vision.

Grauman, K., & Darrell, T. (2004). Fast contour matching using ap-
proximate Earth mover’s distance. In Conference on computer vi-
sion and pattern recognition.

Grauman, K., & Darrell, T. (2005). The pyramid match kernel: Dis-
criminative classification with sets of image features. In Interna-
tional conference on computer vision.

Grauman, K., & Darrell, T. (2006). Unsupervised learning of categories
from sets of partially matching image features. In Conference on
computer vision and pattern recognition.

Griffin, G., Holub, A., & Perona, P. (2007). Caltech 256 image data-
base.

166 Int J Comput Vis (2009) 85: 143–166

Lazebnik, S., Schmid, C., & Ponce, J. (2003). A sparse texture rep-
resentation using affine-invariant regions. In Conference on com-
puter vision and pattern recognition.

Lazebnik, S., Schmid, C., & Ponce, J. (2004). Semi-local affine parts
for object recognition. In British machine vision conference.

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene cat-
egories. In Conference on computer vision and pattern recogni-
tion.

Lee, Y. J., & Grauman, K. (2008a). Foreground focus: Finding mean-
ingful features in unlabeled images. In British machine vision con-
ference.

Lee, Y. J., & Grauman, K. (2008b). Discovering multi-aspect structure
to learn from loosely labeled image collections. Technical report,
UT-Austin, May 2008b.

Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object cat-
egorization and segmentation with an implicit shape model. In
Wkshp on statistical learning in computer vision.

Ling, H., & Soatto, S. (2007). Proximity distribution kernel for geo-
metric context in recognition. In International conference on com-
puter vision.

Liu, D., & Chen, T. (2007). Unsupervised image categorization and ob-
ject localization using topic models and correspondences between
images. In International conference on computer vision.

Liu, D., & Chen, T. (2006). Semantic-shift for unsupervised object de-
tection. In CVPR Wkshop on Beyond Patches.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision 60(2).

Marszalek, M., & Schmid, C. (2006). Spatial weighting for bag-of-
features. In Conference on computer vision and pattern recogni-
tion.

Mikolajczyk, K., & Schmid, C. (2004). Scale and affine invariant in-
terest point detectors. International Journal of Computer Vision,
1(60), 63–86.

Nowak, E., Jurie, F., & Triggs, B. (2006). Sampling strategies for bag-
of-features image classification. In European conference on com-
puter vision.

Opelt, A., Fussenegger, M., Pinz, A., & Auer, P. (2006). Generic object
recognition with boosting. Transacations on Pattern Analysis and
Machine Intelligence 28(3).

Quack, T., Ferrari, V., Leibe, B., & Gool, L. V. (2007). Efficient mining
of frequent and distinctive feature configurations. In International
conference on computer vision.

Quelhas, P., Monay, F., Odobez, J.-M., Gatica-Perez, D., Tuytelaars,
T., & Van Gool, L. (2005). Modeling scenes with local descrip-
tors and latent aspects. In International conference on computer
vision, Beijing, China, October 2005.

Rubner, Y., Tomasi, C., & Guibas, L. (2000). The earth mover’s dis-
tance as a metric for image retrieval. International Journal of
Computer Vision, 40 (2), 99–121.

Russell, B., Efros, A., Sivic, J., Freeman, W., & Zisserman, A. (2006).
Using multiple segmentations to discover objects and their extent
in image collections. In Conference on computer vision and pat-
tern recognition.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmenta-
tion. Transacations on Pattern Analysis and Machine Intelligence,
22(8), 888–905.

Sivic, J., & Zisserman, A. (2004). Video data mining using configu-
rations of viewpoint ivariant regions. In Conference on computer
vision and pattern recognition.

Sivic, J., Russell, B., Efros, A., Zisserman, A., & Freeman, W. (2005).
Discovering object categories in image collections. In Interna-
tional conference on computer vision.

Weber, M., Welling, M., & Perona, P. (2000). Unsupervised learning
of models for recognition. In European conference on computer
vision.

Winn, J., & Jojic, N. (2005). LOCUS: Learning object classes with
unsupervised segmentation. In International conference on com-
puter vision.

Winn, J., Criminisi, A., & Minka, T. (2005). Object categorization by
learned universal visual dictionary. In International conference on
computer vision.

Zelnik-Manor, L., & Perona, P. (2004). Self-tuning spectral clustering.
In Advances in neural information processing (NIPS), Vancouver,
Canada, December 2004.

	Foreground Focus: Unsupervised Learning from Partially Matching Images
	Abstract
	Introduction
	Related Work
	Supervised Feature Selection
	Weakly Supervised and Unsupervised Category Learning
	Semi-Local Descriptors

	Approach: Discovering Object Categories and Foreground Features by Mutual Reinforcement
	Simultaneous Image Grouping and Foreground Detection
	Clustering Weighted Feature Sets
	Refining Foreground Feature Weights from Current Clusters

	Semi-Local Proximity Distribution Descriptors
	Computational Complexity of the Algorithm
	Discussion and Assumptions
	Results: Evaluation of the Foreground Focus Method and Proximity Distribution Descriptor
	Implementation Details
	Analyzing the Effects of Mutual Foreground/Clustering Reinforcement
	Caltech-101 Images
	MSRC-v1 Images

	Comparison with Existing Unsupervised Methods
	Evaluation of our Semi-Local Proximity Distribution Descriptor
	Summary of Results

	Conclusion
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

