
Track and Segment: An Iterative Unsupervised
Approach for Video Object Proposals

Fanyi Xiao and Yong Jae Lee
University of California, Davis

{fanyix, yjlee}@cs.ucdavis.edu

Abstract
We present an unsupervised approach that generates a

diverse, ranked set of bounding box and segmentation video
object proposals—spatio-temporal tubes that localize the
foreground objects—in an unannotated video. In contrast
to previous unsupervised methods that either track regions
initialized in an arbitrary frame or train a fixed model over
a cluster of regions, we instead discover a set of easy-to-
group instances of an object and then iteratively update its
appearance model to gradually detect harder instances in
temporally-adjacent frames. Our method first generates a
set of spatio-temporal bounding box proposals, and then
refines them to obtain pixel-wise segmentation proposals.
We demonstrate state-of-the-art segmentation results on the
SegTrack v2 dataset, and bounding box tracking results that
perform competitively to state-of-the-art supervised track-
ing methods.

1. Introduction
Generating object proposals—a set of candidate object-

like regions in an image that may contain the object-of-

interest—from static images has been extensively studied

in recent years [1, 50, 2, 60, 27, 41]. The success of these

methods now serves as a keystone to many state-of-the-

art object detection [49, 22, 18] and semantic segmenta-

tion [21, 10] algorithms. Object proposals are beneficial

in two main aspects: (1) Computation: compared to slid-

ing window detection, they greatly reduce the number of

regions in an image that must be considered (from poten-

tially millions to thousands); and (2) Recognition accuracy:

they tend to reduce non-object regions that would otherwise

result in false-positive detections [23].

Compared with static images, video provides rich spatio-

temporal information that can greatly benefit learning algo-

rithms. Object proposals are equally, if not more, needed

in the video domain since the number of regions in a video

is much larger than that of a single image. Furthermore,

many video applications including summarization, activity

recognition, and retrieval would benefit tremendously from

a robust video object proposals method that can reduce the

Input video:

Output:
(Mask tube)

Output:
(Box tube)

Figure 1. Given an unannotated video, our algorithm produces a

set of spatio-temporal bounding box proposals and segmentation

proposals that localize the foreground objects. Here we show one

proposal (out of multiple) for each type.

complexity of a video by focusing on its main objects. For

example, by reducing a long video down to a small set of

spatio-temporal tubes consisting of the main objects, more

accurate video summaries could be produced.

Existing approaches for video object proposals [32, 45,

40, 38, 15] (and more generally, video object segmenta-

tion [46, 6, 19, 51, 7, 11]) employ bottom-up or learned

top-down appearance and motion cues to group pixels into

spatio-temporal tubes that may belong to the same object.

However, most methods either attempt to group pixels from

all frames [19, 57, 11] or track regions that are initialized

from arbitrary frames (e.g., the 1st frame) [6, 8, 33]. Conse-

quently, these methods are susceptible to well-known chal-

lenges associated with clustering and tracking (model se-

lection and computational complexity for the former, and

initialization, drifting, and occlusion for the latter).

Inspired by the key-segments approach of [32], we in-

stead sample a group of easy instances for each candidate

object in the video to initialize an appearance model, and

use that model to detect other “harder” instances of the ob-

ject in the remaining frames. An object’s easy instances

are the regions that are object-like in appearance and have

distinct motion against their immediate surrounding back-

ground. These regions are likely to span a single object,

and therefore exhibit more appearance regularity, making

them easier to group.

However, unlike [32], our key idea is to iteratively dis-

cover the harder instances in adjacent frames and update the

object’s appearance model in a self-paced manner, which

allows the learned model to adapt and be more robust to

(potentially) large appearance variations of the object. Fur-

thermore, we work with bounding boxes, and only generate

pixel-level segmentations conditioned on the detected boxes

once all frames have been covered. Operating on bound-

ing boxes substantially reduces computational complexity,

since individual pixel predictions can be avoided. Finally,

we show how to explicitly enforce the initial easy instances

to be temporally spread-out across the video. This helps

to reduce drifting, since any new frame in which the ob-

ject needs to be detected is likely to be temporally-close

to at least one of the initial easy instances. It also has the

additional benefit to help focus on the main foreground ob-

jects that consistently appear throughout the video, and give

less emphasis to background objects that appear over only

a short period of time.

Contributions. Our main contribution is a novel unsuper-

vised algorithm that generates a set of spatio-temporal video

object proposal boxes and segmentations (see Fig. 1). By

discovering an object’s easy instances first, and gradually

detecting harder instances in temporally-adjacent frames,

our algorithm effectively adapts to the object’s changing ap-

pearance over time. We conduct experiments to evaluate our

spatio-temporal bounding box and segmentation proposals.

To evaluate our bounding box proposals, we compare with

existing tracking algorithms, which require human annota-

tion in the first frame. We demonstrate competitive results

on the Visual Tracker benchmark [55], even though we do

not use any human supervision. To evaluate our segmen-

tation proposals, we compare with existing video segmen-

tation algorithms and show state-of-the-art results on the

SegTrack-v2 [33] dataset.

2. Related Work
Video segmentation. Previous video segmentation algo-

rithms can be roughly categorized into three types. The

first includes methods that cluster pixels using appear-

ance and optical flow-based motion information across all

frames [19, 56, 11]. The second clusters long-range point

trajectories [7, 8, 36, 43, 39, 37], which tend to handle rigid

objects better. The main limitation of these approaches is

their lack of an explicit notion of object appearance; i.e.,

with only low-level bottom-up information, they tend to

oversegment objects. We instead discover a small but di-

verse set of easy instances that likely belong to the same

object, and use them as top-down supervision to detect the

harder instances in the remaining frames.

The third type of methods, which is closest to our ap-

proach, compute segments on each frame and link them to-

gether through bottom-up or learned appearance matching

and optical flow [6, 32, 3, 40, 16, 38, 53, 15]. The key dif-

ference is that we first discover a set of easy instances of

an object to build an initial model, and then we iteratively
refine the model while simultaneously discovering harder

instances in temporally-adjacent frames. For this, we lever-

age the fact that the object’s appearance will be smoothly-

varying in time. As more and more instances are discov-

ered, the model becomes more robust to the object’s chang-

ing appearance, and allows us to link together the object’s

instances that might otherwise be difficult to group due to

large appearance variations of the object. While the method

in [33] also iteratively refines a model to track an object over

the video, the model is initialized with regions from the first

frame, so can be more susceptible to drifting. Finally, un-

like [15, 27, 41, 38], which learn to propose objects either

in videos or static images, our approach does not require

any labeled video/image to train and instead adapts to each

unknown object on a per-video basis.

Tracking. Tracking algorithms (e.g., [20, 59, 55, 48, 17])

share our goal of localizing the same object over the video,

but require human-annotation as initialization in the first-

frame. In particular, the tracking approaches of [48, 24]

use the framework of self-paced learning [4, 29] to care-

fully choose which frames to learn and update a tracking

model. We also iteratively update our model and detec-

tions after initializing with the easy instances. However,

unlike [48, 24], we do not require any human supervision.

Moreover, in addition to bounding boxes, we output pixel-

level segmentation masks.

3. Approach
We are given an unlabeled video V ={f1, . . . , fN} with

N frames, and our goal is to discover the main objects in

every frame that they appear, without knowing their cate-

gories a priori. To this end, we propose to generate a set

of video object proposals – spatio-temporal tubes that track

objects that have salient appearance and motion, and appear

frequently throughout the video.

Our approach consists of three main steps: initialization,

iterative growing, and pixel-wise segmentation. In the ini-

tialization step, we discover and rank a set of clusters; each

cluster contains easy bounding box instances of an object

in the video that have salient object-like appearance and

motion. During iterative growing, we iteratively grow each

cluster to detect harder instances of the corresponding ob-

ject throughout the entire video. Finally, conditioned on the

discovered object bounding boxes, we apply a pixel-wise

segmentation algorithm to obtain fine-grained object seg-

mentation masks in each frame.

3.1. Initialization
Our initialization step aims to discover a set of clusters,

each comprised of the easy instances of a candidate ob-

ject in the video that are spread-out in time. We define as

Distributed Matching (Ours)

Query: frame 8 frame 20 frame 65 frame 113

Query: frame 8 frame 9 frame 10 frame 11

Nearest Neighbor

Figure 2. Directly searching for nearest neighbors in all frames

tends to return patches from consecutive frames, which results

in homogeneous and non-informative clusters (first row). Our

approach partitions the video into uniform-length temporal seg-

ments, and takes one nearest neighbor from each segment. This

produces more diverse and informative clusters (second row).

easy instances those that have salient appearance and mo-

tion with respect to their surrounding background, since

they will be easier for a clustering algorithm to group. By

finding instances of an object that are spread-out in time, we

can focus on the foreground objects that consistently appear

throughout the video and give less emphasis to background

objects that appear over only a short period of time.

To identify the easy instances, we begin with a construc-

tion similar to that of [32]. To ensure good coverage of the

foreground objects, we first generate a large set of static
object proposals in each frame. Since there can be many

frames in the video, we need a fast object proposals method

to reduce runtime complexity. To this end, we use Edge

Boxes [60], which produces ∼1000 box proposals in an im-

age in 0.25 seconds. The algorithm scores each proposal

based on the edge contours that are wholly-contained in it,

which is indicative of the likelihood that the proposal con-

tains a whole object [60]. We use this score to measure the

object-like appearance sa and motion distinctiveness sm of

each proposal. Specifically, we extract 1000 proposals each

from the RGB frame and the frame’s optical flow magni-

tude map (for a total of 2000 proposals), and then for each

proposal, compute its sa and sm on the edgemaps [13] com-

puted on the RGB frame and flow map, respectively. Fi-

nally, we compute a single combined objectness score for

each proposal: s = sa ∗ sm. Taking the product gives high

score to the proposals that have both high appearance and

high motion scores. In each frame, we retain the top 25

proposals with the highest objectness scores.

Let R be the set of retained high-scoring proposals

across the video. We next identify in R those that belong to

the same object and are spread-out in time, since we would

like to focus on the foreground objects that consistently ap-

pear throughout the video and ignore background objects

that only appear for a short time. Because we do not know

how many foreground objects are in the video, we generate

a large number of candidate clusters via a soft-clustering ap-

proach. The idea is to take each proposal in R as the query

patch and retrieve its k-nearest neighbors to form a clus-

ter. However, directly taking nearest neighbors for a query

patch tends to produce clusters of patches from consecutive

frames since they will be very similar in appearance (see

Fig. 2). Thus, we instead force the nearest neighbors to be

spread-out in time.

Specifically, we first split the video into Ns=10 uniform-

length contiguous segments in time (i.e., each segment has

N/Ns frames), and treat each proposal in R as a seed.

We then compute a seed’s best matching proposal (near-

est neighbor) in each of the Ns segments; we compute the

matching by taking the inner-product between proposals in

L2-normalized fc7 feature space (fully-connected 7th layer

activation feature of AlexNet [28], pre-trained on ImageNet

classification). Thus, each seed produces a cluster with Ns

instances that are spread-out over the video. To account for

any foreground objects that may be missing in some of the

Ns segments or have widely-varying appearance through-

out the video (e.g., a person who is initially facing the cam-

era and later faces away from the camera), we can further

create variable-sized clusters by retaining only the k most

similar among the Ns nearest neighbors.

Finally, we compute a score for each cluster by summing

the objectness score of its instances multiplied with the in-

stances’ appearance-similarity to the seed, which rewards

large clusters whose instances likely belong to the same ob-

ject: s(c) =
∑

j s(p
j) ∗ (

φ(pj)Tφ(pseed)
)
, where c is a

cluster, j indexes c’s instances, pseed is the seed of c, and

φ(·) denotes the L2-normalized fc7 feature. Since we gen-

erate clusters using all proposals in R as a seed, there will

be many redundant clusters. We therefore perform cluster-

level non-maximum suppression: We start with an empty

set S = Ø, and rank all the clusters in descending order

of their cluster score. We then greedily add a cluster ci to

S={S ∪ ci} if it is significantly different in appearance to

any higher-scoring cluster already in S, as measured by the

appearance similarity between the clusters’ seed proposals.

3.2. Iterative growing
The top-K ranked clusters {c1, . . . , cK} in S comprise

a diverse set of candidate objects in the video. However,

each cluster only covers a small number of easy instances

(at most Ns) of an object, and some of them could be noisy.

We thus need to detect the harder instances of the object in

the remaining frames and correct any existing noisy ones.

A natural way to proceed would be to train a detector using

the cluster’s instances as positives and any non-overlapping

proposals in their same frames as negatives, and fire that de-

tector on all frames (as done in [32]). However, the object’s

appearance can change drastically across the video, so such

an approach can be prone to drift.

To tackle this, we instead propose to iteratively update

the detector by starting with the frames that are temporally

Direct Matching

f-100 f-1 f+100f f+1

......

......
Iterative Growing (Ours)

f-110 f+110

Figure 3. Starting from frame f , both direct matching and iterative growing obtain correct detections in adjacent frames f + 1 and f − 1.

However, for frames that are very far away from f in time, direct matching can drift due to large appearance changes in the object. By

iteratively growing and simultaneously updating the detector, our approach can adapt to the object’s large appearance variation to obtain a

correct detection even in far-away frames.

close to the initial set of cluster instances, and then grad-

ually grow out to cover all N frames. See Fig. 3. When

growing out (i.e., detecting new instances), we initially do

not leverage any motion-based tracking cues from existing

detections in neighboring frames. This is because we do

not want to commit to any detection (especially early on)

since there could be noisy detections that lead to drifting.

We instead iteratively update the detector until all frames

are covered, and then combine the final detector’s outputs

with motion cues to obtain the final detections.

For each cluster c,1 we start by training an initial linear

SVM detector w using the cluster’s instances P = {pj |
j∈S} as positives and any proposal with intersection-over-

union ratio (IOU) less than 0.4 to any instance in P as neg-

atives. Denote S as the initial set of frames that c already

covers (i.e., has an instance in). We next exploit the property

that an object’s appearance will change slowly over time, in

order to make our detection problem easier.

Specifically, we first identify the set of frames S′, which

are the n = 3 temporal neighbors of S that are not yet cov-

ered. We then fire w on all 1000 proposals in each frame

in both S′ and S. By firing the detector even on the frames

in S, we can update any mis-detections in those existing

frames. We take the proposal with the highest detection

score in each frame, and add them to the set of cluster in-

stances P . We then retrain w with the new and updated

instances in P as positives, and any proposal with IOU less

than 0.4 to any instance in P as negatives. We update the

set of frames that cluster c covers as S = {S ∪ S′}. We

repeat this process of detecting/updating instances in neigh-

boring/existing frames and retraining the detector until all

frames are covered, i.e., S = V .

Finally, we take the final trained detector w, and fire it

back on all proposals in all frames in V . We combine its

per-frame detections with optical flow based motion cues to

encourage smooth detections in time. Formally, we solve

the following optimization problem to get a final set of de-

1We drop the cluster subscript for simplicity.

tections P = {p1, . . . , pN} using dynamic programming:

max
P

J(P) =

N∑

j=1

wTφ(pj) +

N−1∑

j=1

IOU(pj+1, qj+1), (1)

where φ(pj) is the fc7 feature of pj , qj+1 is the bounding

box location in frame j+1 obtained by shifting pj in frame j
to frame j+1 according to its average optical flow displace-

ment vector, and IOU is the intersection-over-union ratio.

The final set of detections P for cluster c forms a spatio-

temporal bounding box tube. We repeat the above for each

of the top-K clusters.

3.3. Pixel-wise segmentation
Thus far, our approach produces a set of spatio-temporal

bounding box proposals given an unannotated video. For

some applications however (e.g., semantic video segmen-

tation), the ensuing algorithm may require the video ob-

ject proposals to be pixel segmentations instead of bound-

ing boxes. Hence, we next show how to output pixel-wise

segmentation masks, given the bounding boxes we obtained

in the previous section as initialization. Similar to Grab-

Cut [44], the main idea is to use the bounding boxes as weak

supervision, and iteratively refine a pixel-level appearance

model of the object and its corresponding foreground object

segmentation in each frame of the video.

Since our bounding box detections have already pro-

vided a rough localization of the object-of-interest, we can

ignore any regions that are spatially far from each bound-

ing box when computing their segmentations. To this end,

we define an operating region, with size [3×w, 3×h], for

each bounding box proposal p (where w and h are the width

and height of p, respectively) and is centered on the cen-

ter pixel of p. We then initialize a pixel-level appearance

model by taking all the pixels inside each bounding box as

positives, and all pixels outside the safe region, which is

a 32 pixel-wide boundary that immediately surrounds each

bounding box, but within the operating region as negatives.

The safe region accounts for any mis-localizations of the

input bounding boxes. See Fig. 4.

Figure 4. The yellow box shows the spatio-temporal bounding box

proposal produced from our iterative growing procedure in one

frame. To compute its pixel-level segmentation, we first define

an operating region (orange box) in order to ignore any pixels

that are spatially far from the proposal. The blue dotted box is

a safe region, outside of which we sample negative data to train

our pixel-level appearance model, in order to account for any mis-

localizations of the initial box proposal.

To represent each pixel, we adapt the hypercolumn rep-

resentation [21], which models both low-level appearance

and high-level learned semantics. Specifically, we com-

bine the activation features of the pool2 and pool5 layers

of AlexNet [28]. In order to make sure we have a large

enough spatial resolution to model small objects, we resize

each operating region to 2400×2400 pixels. This produces

a corresponding activation feature map of size 147×147 and

72×72 for pool2 and pool5, respectively. We bi-linearly in-

terpolate the pool2 feature map to 72×72 to match the size

of the pool5 map. We then train a logistic regression classi-

fier with the positive (inside the bounding box) and negative

(outside the safe region) pixels.

To compute the segmentation for a frame f , we define a

graph over its operating region where a node corresponds to

a pixel, and an edge between two nodes corresponds to the

cost of a cut. The cost function we minimize is:

C(l, f) =
∑

i∈O
Di(li) +

∑

i,j∈N
Vi,j(li, lj), (2)

where l is a labeling of the pixels, O = {o1, . . . , om} is

the set of m pixels in the operating region, N consists of

the four spatially neighboring pixels, and i and j index the

pixels. Each pixel oi is assigned to li ∈ {1, 0}, where 1 and

0 correspond to foreground and background, respectively.

We use the pixel-level logistic regression classifier’s

probability output to compute the data term Di, which de-

fines the cost of labeling pixel oi with label li. The neigh-

borhood term Vi,j encourages label smoothness in space.

We compute an edge map using [13] and assign Vi,j be-

tween oi and oj with their edge confidence, which favors

assigning the same label to neighboring pixels that do not

have a strong edge between them. We then minimize Eqn. 2

using graph-cuts [5] to obtain the pixel-wise segmentation

for frame f . Finally, we update the pixel appearance model

with the newly obtained segmentations from all frames. We

take the new model and use it to update the segmentations;

we repeat this process until convergence (i.e., the pixel as-

Pixel Segmentation

Figure 5. Given a bounding box proposal output in a frame (left,

yellow box), our algorithm trains a pixel-level appearance model

to produce a segmentation mask (right, green boundary). Note

that this not only produces a segmentation proposal, but it can also

correct mis-localizations from the bounding box proposal.

signments in all frames do not change). See Fig. 5.

Due to the large receptive fields of pool2 and pool5 fea-

tures, it is difficult to obtain accurate pixel-level predictions.

Therefore, we refine the foreground mask with a simple

post-processing step: we represent each pixel with an RGB

feature vector to train a GMM with 5 components each for

the predicted foreground/background pixels. We then apply

Eqn. 2 again on the pixels to get the final foreground mask.

Bounding box proposal refinement. Finally, our pixel

segmentation can in turn be used to improve the bound-

ing box localization that it was initialized on. Among all

connected components labeled as foreground that are over-

lapping with the initial bounding box, we simply keep those

whose area is larger than 0.6× the area of the largest com-

ponent. We then take the bounding box that tightly encloses

all the selected components. The refined boxes are taken as

our final spatio-temporal box proposals, together with the

corresponding segmentation proposals.

4. Experiments
We evaluate our bounding box and pixel segmentation

proposals against state-of-the-art tracking and video seg-

mentation methods, and conduct ablation studies to analyze

the contribution of our iterative growing procedure and the

synergy of our bounding box and segmentation tubes.

Implementation details. We set the number of initial

proposal clusters to K = 85 for the Visual Tracker Bench-

mark [55] and K = 150 for the SegTrack-v2 dataset [33].

For very difficult videos (e.g. “Penguin” in SegTrack-v2)

that do not have well-defined foreground objects, we find

that more clusters are needed in order to get an initialization

that corresponds to the human-annotated object. For gen-

erating clusters, we set the number of neighbors of a seed

to k = {1, 3, 5, 7, 9} for SegTrack-v2 and fix it to k = 9
for Visual Tracker Benchmark. Empirically, we find that a

smaller k produces better cluster initializations for videos

that have many confusing appearance patterns.

4.1. Evaluation of box proposals
We first evaluate the quality of our spatio-temporal box

proposals against tracking algorithms on the Visual Tracker

SCM [59] Struck [20] TLD [26] ASLA [25] CXT [12] VTD [30] VTS [31] TGPR [17] RPT [34] [52] [35] Ours

Supervised? Y Y Y Y Y Y Y Y Y Y Y N

Overall 0.499 0.473 0.437 0.434 0.424 0.416 0.416 0.539 0.576 0.599 0.612 0.437

IV 0.472 0.427 0.399 0.429 0.365 0.42 0.428 N/A 0.555 0.598 0.577 0.453
SV 0.518 0.425 0.421 0.452 0.389 0.405 0.4 N/A 0.535 0.558 0.558 0.451

OCC 0.487 0.412 0.402 0.376 0.369 0.404 0.398 N/A N/A 0.571 0.615 0.434
DEF 0.448 0.393 0.378 0.372 0.324 0.377 0.368 N/A N/A 0.644 0.615 0.469
MB 0.298 0.433 0.404 0.258 0.369 0.309 0.304 N/A 0.559 0.580 N/A 0.460
FM 0.296 0.461 0.417 0.248 0.384 0.303 0.299 N/A 0.549 0.565 0.54 0.507
IPR 0.457 0.443 0.416 0.425 0.449 0.43 0.415 N/A 0.569 0.555 N/A 0.423
OPR 0.47 0.431 0.42 0.422 0.416 0.435 0.425 N/A 0.553 0.581 0.605 0.443
OV 0.361 0.459 0.457 0.312 0.427 0.446 0.443 N/A N/A 0.592 0.596 0.543
BC 0.45 0.458 0.345 0.408 0.338 0.425 0.428 N/A 0.606 0.564 0.58 0.352
LR 0.279 0.372 0.309 0.157 0.312 0.177 0.168 N/A N/A 0.514 N/A 0.372

Table 1. We compare our unsupervised video object box proposals to state-of-the-art supervised tracking methods on the Visual Tracker

Benchmark [55]. The supervised methods require human annotation in the first frame to initialize their tracker. Even without this re-

quirement, our unsupervised approach is able to outperform many of the baselines. We measure accuracy in terms of the Area Under

Curve (AUC) of the One Pass Evaluation (OPE) success plot as defined in [55]. Higher is better. IV-Illumination Variation, SV-Scale
Variation, OCC-Occlusion, DEF-Deformation, MB-Motion Blur, FM-Fast Motion, IPR-In-Plane Rotation, OPR-Out-of-Plane Rotation,
OV-Out-of-View, BC-Background Clutter, LR-Low Resolution. (Baseline results are taken from [55, 17, 34, 52, 35].)

Benchmark [55]. This dataset contains 50 test sequences

(with frame lengths that range from 71 to 3872) with vari-

ous challenging properties like illumination/scale variation,

occlusion, deformation, etc., which make it an excellent

testbed for evaluating the robustness of our box proposals.

We use the standard success plot performance metric

defined in [55], which measures the ratio of frames that

have an intersection-over-union overlap (IOU) score above

a threshold, and draw a curve by varying that threshold from

0 to 1 in 0.05 increments. The overall performance of an al-

gorithm is then the area under the success plot curve (AUC).

We evaluate our approach with the box proposal that corre-

sponds to the object with ground-truth annotation, and re-

port the ranking of that proposal based on its cluster score,

as described in Sec. 3.1.

First, we show the performance of our proposals com-

pared with several supervised tracking methods. We com-

pare against the baselines using the One Pass Evaluation

(OPE) [55], which initializes the tracker with a human-

annotated box in the first-frame. Note however, that we
do not use this annotation, as ours is unsupervised. We

measure performance both in terms of the average OPE

success plot AUC across all videos, as well as the AUC

for different sub-categories of videos defined by various

challenging factors, e.g., illumination variation, scale vari-

ation, occlusion, etc. As shown in Table 1, our algorithm

performs competitively with existing state-of-the-art su-

pervised tracking methods—even outperforming several of

them [26, 25, 12, 30, 31]—despite the fact that our method

does not require any human annotation. In contrast, all of

the baselines require human annotation on the first frame to

initialize their tracker.

On average, we need 123.7 proposals to achieve the re-

sults in Table 1, which indicates that our ranking is able to

focus on the foreground objects despite the various chal-

lenging factors present in these video. See the supp. mate-

rial for detailed rankings per-subcategory.

4.2. Evaluation of segmentation proposals

We next evaluate our spatio-temporal segmentation pro-

posals. We use the SegTrack-v2 [33] dataset, which con-

tains 14 video sequences with frame lengths varying from

21 to 279 across the sequences. Every frame is annotated

with a binary (pixel-level) foreground/background mask.

We compare with previous state-of-the-art unsupervised

methods [19, 32, 42, 33] and also to a recent supervised

method [54] that requires human annotation of the object’s

boundary in the first frame.

To evaluate segmentation accuracy, we use the

intersection-over-union ratio (IOU) measure: IOU =
|A∩GT |
|A∪GT | , where A is the binary segmentation produced by

the algorithm and GT is ground-truth binary mask. We

evaluate our approach with the segmentation tube that cor-

responds to the object with ground-truth annotation, and re-

port the ranking of that tube based on its cluster score.

Table 2 shows the results. Our method produces state-of-

the-art results compared with previous unsupervised meth-

ods [33, 32, 19] with a moderate number of proposals (122

on average across the videos). The approach of [19] clusters

pixels using bottom-up motion and appearance cues, and

thus needs to generate many proposals to obtain good per-

formance. The state-of-the-art approaches of [33, 32] per-

form better with fewer proposals, by leveraging top-down

cues from learned static object proposals [9, 14]. How-

ever, [33] tracks multiple static proposals initialized in the

first frame, and so inherits challenges associated with track-

ing (e.g., drifting). This is likely the reason for their low ac-

curacy on videos with fast moving objects like CheetahDeer

and BMXBike. In contrast, our approach discovers the easy

instances throughout the video, and iteratively updates the

model to grow-out from those instances. Thus, we find our

approach to be more robust to drifting. For this same reason,

Sequence/Object [33]+CSI [32] [19] Ours [54]

Supervised? N N N N Y

Mean per object 65.9 45.3 51.8 69.1 71.8
Mean per sequence 71.2 57.3 50.8 73.9 72.2

Girl 89.2 87.7 31.9 86.4 84.6
Birdfall 62.5 49.0 57.4 72.5 78.7

Parachute 93.4 96.3 69.1 95.9 94.4
CheetahDeer 37.3 44.5 18.8 61.2 66.1

CheetahCheetah 40.9 11.7 24.4 39.4 35.3
MonkeydogMonkey 71.3 74.3 68.3 74.0 82.2

MonkeydogDog 18.9 4.9 18.8 39.6 21.1
Penguin#1 51.5 12.6 72.0 53.2 94.2
Penguin#2 76.5 11.3 80.7 72.9 91.8
Penguin#3 75.2 11.3 75.2 74.4 91.9
Penguin#4 57.8 7.7 80.6 57.2 90.3
Penguin#5 66.7 4.2 62.7 63.5 76.3
Penguin#6 50.2 8.5 75.5 65.7 88.7

Drifting Car#1 74.8 63.7 55.2 70.7 67.3
Drifting Car#2 60.6 30.1 27.2 70.7 63.7

Hummingbird#1 54.4 46.3 13.7 53.0 58.3
Hummingbird#2 72.3 74.0 25.2 70.5 50.7

Frog 72.3 0 67.1 80.2 56.3
Worm 82.8 84.4 34.7 82.4 79.3
Soldier 83.8 66.6 66.5 76.3 81.1
Monkey 84.8 79.0 61.9 83.1 86.0

Bird of Paradise 94.0 92.2 86.8 90.0 93.0
BMXPerson 85.4 87.4 39.2 86.1 88.9
BMXBike 24.9 38.6 32.5 40.3 5.70

Avg. # of Proposals 60.0 10.6 336.6 121.9 N/A

Table 2. Segmentation results on SegTrack-v2 in terms of mean

segmentation IOU with ground-truth. Higher is better. For both

the “mean per object” and the “mean per sequence” metric, we out-

perform state-of-the-art unsupervised methods [33, 32, 19] using a

moderate number of proposals. We also perform competitively to

the supervised method of [54], which requires human annotation

on the first frame, whereas we require none. (Baseline results are

taken from [33, 54].)

we outperform the key-segments approach of [32], which

like ours, discovers easy instances and builds a model to

detect the object in new frames, but unlike ours, does not

iteratively refine the model.

Our algorithm even performs competitively to the re-

cent state-of-the-art supervised method of [54] that requires

manual initialization in the first frame. Although our av-

erage under the “mean per object” metric is lower (69.1%

vs. 71.8%), we perform better in terms of the “mean per

sequence” metric (73.9% vs. 72.2%), without any super-
vision. The main reason our average under the “mean per

object” metric is lower is due to the sequences in the Pen-

guin video, which has a group of penguins that are spatially

very close to each other, and are similar in appearance and

motion. This makes it very difficult for an unsupervised

method to keep track of a single penguin. If we remove

the penguin sequences from the evaluation, our average im-

proves to 70.7%, while the average of [54] drops to 66.3%,

under the “mean per object” metric.

The average number of proposals our approach produces

also compares favorably to that of previous methods (see

last row of Table 2, the lower the better). Unfortunately,

the penguin sequences again hurt our average ranking. We

[53] [58] [40] [7] Ours

Average Pixel Error 4766 25289 5859 16074 2464.5
Table 3. Segmentation results on SegTrack-v2 in terms of average

pixel error with ground-truth. Lower is better. We outperform all

previous unsupervised methods by a large margin (∼48% error

reduction compared with [53]) under this metric. (Baseline results

are taken from [53].)

need to generate hundreds of proposals to obtain the one

corresponding to a specific penguin since many proposals

end up with similar rank due to the penguins’ similarity

in appearance and motion. If we remove the penguin se-

quences, the average number of proposals needed to local-

ize the ground-truth object drops to 79.6. See supp. material

for per-sequence rankings.

Finally, we also compare with other unsupervised meth-

ods [53, 58, 40, 7] that report results in terms of average

pixel error, which is the average number of incorrectly la-

beled pixels across frames. Table 3 shows the result. We

outperform previous methods under this metric by a large

margin. For example, compared with the results of [53], we

reduce the error by ∼48%.

4.3. Ablation studies

We next study the different components of our algorithm.

We use the Visual Tracker Benchmark [55] and measure the

performance of our spatio-temporal box proposals using the

AUC of the overall success plot.

We first study the effect of our iterative growing proce-

dure by comparing to a baseline that does not iteratively up-

date a model when growing out. Specifically, the baseline

takes the detector w trained on an initially discovered clus-

ter, and fires it on all frames in the video (instead of firing

only on the temporally-adjacent frames and iteratively up-

dating the model). This baseline produces an AUC of 0.319,

which is significantly lower than the 0.365 produced with

iterative growing. This demonstrates that iterative growing

can help avoid drift, as shown in Fig. 3.

The next aspect we investigate is the synergy of our box

output and segmentation output. Specifically, we measure

how much our pixel segmentation helps in producing better

localized box proposals (recall from Sec. 3.3 that we update

the bounding box proposals given the segmentation masks).

We compare the bounding boxes produced before and af-

ter segmentation refinement. The quality of the bounding

boxes further increases from 0.365 to 0.437 after refine-

ment, which shows that our segmentations indeed lead to

better object localizations.

4.4. Runtime speed analysis

Since object proposals can be building blocks to many

vision applications, it is essential that they be fast to com-

pute, so that they are not the computational bottleneck.

Thus, we finally perform a detailed run-time speed anal-

Figure 6. (rows 1-3) Qualitative results of our spatial-temporal box proposals on the Visual Tracker Benchmark. Our proposals localize the

object well, despite challenging factors in the videos, e.g., scale variation (first row), clutter (second row), in-plane rotation (third row), etc.

(rows 4-6) Qualitative results of our spatial-temporal segmentation proposals on SegTrack-v2. Our approach produces fine details of the

object boundary (fourth row), and handles occlusion well (fifth row). Lastly, for the very difficult case in which objects have thin structures,

e.g., the bicycle in the last row, our algorithm leaks out qualitatively, even though quantitatively we outperform previous methods.

ysis of our approach. For each of the three steps in our

algorithm (initialization, iterative growing, and pixel-level

segmentation), we profile the average computation time

spent to process each frame. We conduct our analysis on

the “Woman” sequence in the Visual Tracker Benchmark,

which has 597 frames and is closest to the average frame

length (584 frames) of that dataset. We measure the tim-

ings on a machine with an Intel i7 3.40GHz CPU and an

NVIDIA Tesla K40 GPU.

It takes a total of 3.0 seconds per frame for the initializa-

tion stage, which includes computing and scoring the static

image proposals (Edge Boxes on RGB image and optical

flow magnitude map), optical flow computation (we use the

fast GPU-based method of [47]), and obtaining the initial

ranked set of clusters S. For iterative growing, extracting

fc7 features for all 2000 proposals for each frame takes 1.25

seconds on a GPU. The remaining spatio-temporal bound-

ing box tube processing—iteratively training an SVM de-

tector and firing it to detect new instances and refine exist-

ing ones—takes 0.24 seconds per frame per spatio-temporal

tube. For the pixel-wise segmentation stage, the time spent

on extracting a hypercolumn feature is 0.85 seconds per

frame on a GPU. Generating pixel-segmentations takes 0.46

seconds per frame per spatio-temporal tube.

Note that the feature computation for generating the

spatio-temporal bounding box is shared and thus only needs

to be done once (i.e., independent of the number of pro-

posals that we generate). Whereas the hypercolumn fea-

ture used to generate the segmentation tubes needs to be

computed separately for each proposal. While the computa-

tional cost in generating our segmentation proposals is com-

parable to that of previous approaches [32, 33], generating

our box proposals is much faster and thus can be applied in

a more practical setting.

5. Conclusion
We presented an unsupervised approach for spatio-

temporal video object proposals. It identifies and groups

easy instances of an object in the video to initialize an ap-

pearance model, and iteratively updates the model while

detecting new instances in temporally-adjacent frames.

We demonstrated our method’s effectiveness on several

datasets, showing state-of-the-art unsupervised video seg-

mentation results, and competitive bounding box tracking

results compared to supervised baselines.

Acknowledgements. This work was supported in part by

an Amazon Web Services Education Research Grant and

GPUs donated by NVIDIA.

References
[1] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the object-

ness of image windows. PAMI, 2012. 1
[2] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In CVPR, 2014. 1
[3] D. Banica, A. Agape, A. Ion, and C. Sminchisescu. Video

object segmentation by salient segment chain composition.

In ICCV Workshops, 2013. 2
[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. In ICML, 2009. 2
[5] Y. Boykov, O. Veksler, and R. Zabih. Efficient approximate

energy minimization via graph cuts. PAMI, 2001. 5
[6] W. Brendel and S. Todorovic. Video object segmentation by

tracking regions. In ICCV, 2009. 1, 2
[7] T. Brox and J. Malik. Object segmentation by long term

analysis of point trajectories. In ECCV, 2010. 1, 2, 7
[8] T. Brox and J. Malik. Large displacement optical flow: de-

scriptor matching in variational motion estimation. PAMI,
2011. 1, 2

[9] J. Carreira and C. Sminchisescu. Constrained Parametric

Min-Cuts for Automatic Object Segmentation. In CVPR,

2010. 6
[10] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding

boxes to supervise convolutional networks for semantic seg-

mentation. arXiv preprint arXiv:1503.01640, 2015. 1
[11] M. V. den Bergh, G. Roig, X. Boix, S. Manen, and L. V.

Gool. Online video seeds for temporal window objectness.

In ICCV, 2013. 1, 2
[12] T. B. Dinh, N. Vo, and G. Medioni. Context tracker: Ex-

ploring supporters and distracters in unconstrained environ-

ments. In CVPR, 2011. 6
[13] P. Dollár and C. L. Zitnick. Structured forests for fast edge

detection. In ICCV, 2013. 3, 5
[14] I. Endres and D. Hoiem. Category Independent Object Pro-

posals. In ECCV, 2010. 6
[15] K. Fragkiadaki, P. Arbeláez, P. Felsen, and J. Malik. Learn-

ing to segment moving objects in videos. In CVPR, 2015. 1,

2
[16] F. Galasso, N. S. Nagaraja, T. Jimenez Cardenas, T. Brox,

and B. Schiele. A unified video segmentation benchmark:

Annotation, metrics and analysis. In ICCV, 2013. 2
[17] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based

visual tracking with gaussian processes regression. In ECCV,

2014. 2, 6
[18] R. Girshick. Fast R-CNN. In ICCV, 2015. 1
[19] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hi-

erarchical graph-based video segmentation. In CVPR, 2010.

1, 2, 6, 7
[20] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output

tracking with kernels. In ICCV, 2011. 2, 6
[21] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In CVPR, 2015. 1, 5
[22] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, 2014. 1
[23] J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What

makes for effective detection proposals? PAMI, 2015. 1
[24] C. Huang, B. Wu, and R. Nevatia. Robust object tracking

by hierarchical association of detection responses. In ECCV,

2008. 2
[25] X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive

structural local sparse appearance model. In CVPR, 2012. 6
[26] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-

detection. PAMI, 2012. 6
[27] P. Krähenbühl and V. Koltun. Learning to propose objects.

In CVPR, 2015. 1, 2
[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 3, 5
[29] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning

for latent variable models. In NIPS, 2010. 2
[30] J. Kwon and K. M. Lee. Visual tracking decomposition. In

CVPR, 2010. 6
[31] J. Kwon and K. M. Lee. Tracking by sampling trackers. In

ICCV, 2011. 6
[32] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In CVPR, 2011. 1, 2, 3, 6, 7, 8
[33] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

segmentation by tracking many figure-ground segments. In

ICCV, 2013. 1, 2, 5, 6, 7, 8
[34] Y. Li, J. Zhu, and S. C. Hoi. Reliable patch trackers: Ro-

bust visual tracking by exploiting reliable patches. In CVPR,

2015. 6
[35] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term

correlation tracking. In CVPR, 2015. 6
[36] P. Ochs and T. Brox. Higher order motion models and spec-

tral clustering. In CVPR, 2012. 2
[37] P. Ochs, J. Malik, and T. Brox. Segmentation of moving

objects by long term video analysis. PAMI, 2014. 2
[38] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-

temporal object detection proposals. In ECCV, 2014. 1, 2
[39] G. Palou and P. Salembier. Hierarchical video representation

with trajectory binary partition tree. In CVPR, 2013. 2
[40] A. Papazoglou and V. Ferrari. Fast object segmentation in

unconstrained video. In ICCV, 2013. 1, 2, 7
[41] P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to seg-

ment object candidates. In NIPS, 2015. 1, 2
[42] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-

optimal greedy algorithms for tracking a variable number of

objects. In CVPR, 2011. 6
[43] A. Ravichandran, C. Wang, M. Raptis, and S. Soatto. Super-

floxels: A mid-level representation for video sequences. In

ECCV Workshops, 2012. 2
[44] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. ACM
Transactions on Graphics, 2004. 4

[45] G. Sharir and T. Tuytelaars. Video object proposals. In CVPR
Workshops, 2012. 1

[46] J. Shi and J. Malik. Motion segmentation and tracking using

normalized cuts. In ICCV, 1998. 1
[47] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajec-

tories by gpu-accelerated large displacement optical flow. In

ECCV, 2010. 8
[48] J. S. Supancic and D. Ramanan. Self-paced learning for

long-term tracking. In CVPR, 2013. 2
[49] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov. Scalable,

high-quality object detection. arXiv:1412.1441, 2014. 1
[50] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. IJCV,

2013. 1

[51] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller.

Multiple Hypothesis Video Segmentation from Superpixel

Flows. In ECCV, 2010. 1
[52] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking

with fully convolutional networks. In ICCV, 2015. 6
[53] W. Wang, J. Shen, and F. Porikli. Saliency-aware geodesic

video object segmentation. In CVPR, 2015. 2, 7
[54] L. Wen, D. Du, Z. Lei, S. Z. Li, and M.-H. Yang. Jots: Joint

online tracking and segmentation. In CVPR, 2015. 6, 7
[55] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In CVPR, 2013. 2, 5, 6, 7
[56] C. Xu and J. J. Corso. Evaluation of super-voxel methods for

early video processing. In CVPR, 2012. 2
[57] C. Xu, C. Xiong, and J. Corso. Streaming hierarchical video

segmentation. In ECCV, 2012. 1
[58] D. Zhang, O. Javed, and M. Shah. Video object segmentation

through spatially accurate and temporally dense extraction of

primary object regions. In CVPR, 2013. 7
[59] W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking

via sparsity-based collaborative model. In CVPR, 2012. 2, 6
[60] C. L. Zitnick and P. Dollár. Edge boxes: Locating object

proposals from edges. In ECCV, 2014. 1, 3

