Choosing a Projection Matrix
 ECS 175 5/21/2011

One projection matrix that works well with z-buffering is:

$$
\left[\begin{array}{cccc}
1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & -2 / n & -3 \\
0.0 & 0.0 & -1 / n & 0.0
\end{array}\right]
$$

This takes the frustum between $z=-n$ and $z=-3 n$ to the Normalized Device Coordinates cube which extends between $(-1,-1,-1)$ and $(1,1,1)$. Notice that the point $(x, y,-n, 1)$ goes to $(x, y,-1,1)$ and the point $(x, y,-3 n, 1)$ goes to $(x / 3, y / 3,1,1)$.

Generalizing this a little, we can consider the frustum between $-n$ and $-k n$ for any k. The matrix should be:

$$
\left[\begin{array}{cccc}
1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & -\frac{k+1}{(k-1) n} & -\frac{2 k}{k-1} \\
0.0 & 0.0 & -1 / n & 0.0
\end{array}\right]
$$

Notice where it takes the points $(x, y,-n, 1)$ and $(x, y,-k n, 1)$.
In the most general case, the screen is not the square between $(-1,-1)$ and $(1,1)$ but an arbitrary rectangle between (l, b) and (r, t), lying in the plane $z=-n$ and with the frustum extending to $z=-f$ (" f " for far). Taken from the documentation for the "old" OpenGL glFrustum() function, here is a formula for a completely general projection matrix:

$$
\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0.0 & \frac{r+l}{r-l} & 0.0 \\
0.0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0.0 \\
0.0 & 0.0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0.0 & 0.0 & -1.0 & 0.0
\end{array}\right]
$$

The simpler matrices above are the special cases, divided through by n (notice we can divide through by whatever we like, since the result will be normalized by the projective divide afterwards).

How to choose n ? A frustum with $n=3$, for example, with exhibit a fair amount of perspective, like a object near your face. A frustum with $n=7$ or so feels much more natural for a virtual world.

