
Choosing a Projection Matrix
ECS 175 5/21/2011

One projection matrix that works well with z-buffering is:
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 −2/n −3
0.0 0.0 −1/n 0.0


This takes the frustum between z = −n and z = −3n to the Normalized Device Coordinates
cube which extends between (−1,−1,−1) and (1, 1, 1). Notice that the point (x, y,−n, 1)
goes to (x, y,−1, 1) and the point (x, y,−3n, 1) goes to (x/3, y/3, 1, 1).

Generalizing this a little, we can consider the frustum between −n and −kn for any k.
The matrix should be: 

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 − k+1

(k−1)n
− 2k

k−1

0.0 0.0 −1/n 0.0


Notice where it takes the points (x, y,−n, 1) and (x, y,−kn, 1).

In the most general case, the screen is not the square between (−1,−1) and (1, 1) but an
arbitrary rectangle between (l, b) and (r, t), lying in the plane z = −n and with the frustum
extending to z = −f (”f” for far). Taken from the documentation for the “old” OpenGL
glFrustum() function, here is a formula for a completely general projection matrix:

2n
r−l

0.0 r+l
r−l

0.0

0.0 2n
t−b

t+b
t−b

0.0

0.0 0.0 −(f+n)
f−n

−2fn
f−n

0.0 0.0 −1.0 0.0


The simpler matrices above are the special cases, divided through by n (notice we can divide
through by whatever we like, since the result will be normalized by the projective divide
afterwards).

How to choose n? A frustum with n = 3, for example, with exhibit a fair amount of
perspective, like a object near your face. A frustum with n = 7 or so feels much more natural
for a virtual world.

1


