
Moving Target Defenses in the Helix
Self-Regenerative Architecture

Claire Le Goues, Anh Nguyen-Tuong, Hao Chen, Jack W. Davidson, Stephanie
Forrest, Jason D. Hiser, John C. Knight and Matthew Van Gundy

Abstract In this chapter we describe the design, development and application of the
Helix Metamorphic Shield (HMS). The HMS: (1) continuously shifts the program’s
attack surface in both the spatial and temporal dimensions, and (2), reduces the
program’s attack surface by applying novel evolutionary algorithms to automatically
repair vulnerabilities. The symbiotic interplay between shifting and reducing the
attack surface results in the automated evolution of new program variants whose
quality improves over time.

1 Introduction

Despite years of research warning of the dangers of the software monoculture,
most systems today are still deployed in a relatively static configuration. An attack
that works on one system is easily and quickly adapted to work on all similarly-
configured systems. Even when software vendors regularly release security-critical
patches, the window of vulnerability remains unacceptably high. Patches are not
released quickly enough to combat zero day-attacks–attacks that take advantage of
latent vulnerabilities known to attackers (but not necessarily known to defenders).
Further, even when such patches are available, they are often not applied in a timely
manner. To remedy this situation, the notion of a moving target defense (MTD) has
been put forward as a “game-changing” capability [20]. A moving target defense

Claire Le Goues, Anh Nguyen-Tuong, Jack W. Davidson, Jason D. Hiser, John C. Knight and
University of Virginia, e-mail: {legoues,nguyen,jwd,hiser,knight}@cs.
virginia.edu

Hao Chen and Matthew Van Gundy
University of California, Davis, e-mail: {mdvangundy,hchen}@ucdavis.edu

Stephanie Forrest
University of New Mexico, e-mail: forrest@cs.unm.edu

1



2 Authors Suppressed Due to Excessive Length

seeks to thwart attacks by invalidating knowledge that an adversary must possess to
mount an effective attack against a vulnerable target.

In this chapter, we describe the design, development and application of the He-
lix metamorphic shield (HMS). The HMS: (1) continuously shifts the program’s
attack surface in both the spatial and temporal dimensions, and (2) reduces the pro-
gram’s attack surface by using novel evolutionary algorithms to automatically repair
vulnerabilities. Continuously shifting the attack surface both increases the effort re-
quired for a successful attack and results in “noisier” attacks, as adversaries must
repeatedly probe targeted programs to reveal critical information, e.g., a random
key. Helix then turns the table on adversaries and uses information contained in
these probing attempts as hints for automatically generating, vetting and deploying
candidate patches. Furthermore, the presence of the HMS sets up an interesting dy-
namic between competing adversaries. A single vulnerability can lead to attacks of
varying severity depending on the attack payload and the value of the target. An
adversary that launches a low-value attack that results in a Helix repair becomes a
spoiler for other adversaries eyeing higher-value targets.

The HMS is under active development. In its current form, however, the HMS
already displays the following characteristics:

• The HMS has demonstrated the ability to continuously shift the attack surface of
programs, thereby presenting adversaries with an ever-changing attack surface.

• The HMS concept applies at various levels of the software stack, ranging from
high-level web applications to executable binaries.

• The HMS generates repairs for both security-critical and non-security critical
vulnerabilities. We have demonstrated the automated generation and vetting
of patches for self-repair to provide protection against a wide-range of attack
classes, including infinite loops, segmentation faults, remote heap buffer over-
flows, non-overflow denials of service, local stack buffer overflows, and format
string vulnerabilities, among others.

• The HMS turns the table on adversaries. Helix uses information revealed by ad-
versaries to automatically repair programs.

• The HMS has been demonstrated in a closed-loop system, repairing programs
automatically in response to Helix attack sensors.

• The HMS leverages inexpensive cloud computing infrastructures for its analysis
engine. We have been able to repair real-world programs using Amazon’s EC2
cloud infrastrucure for less than $8 per bug.

1.1 Helix Architecture

Figure 1 provides a high-level overview of the Helix Metamorphic Shield archi-
tecture. Helix takes as input software in source or binary form and performs the
necessary transformations to augment the input software with the ability to shift
its attack surface on a continuous basis. The first generation of the deployed soft-
ware retains the original vulnerabilities (shown as two circles in the box labelled



Moving Target Defenses in the Helix Self-Regenerative Architecture 3

Helix	  Variant	  Generators	  

Genera/on	  1	  

Spa/al-‐Temporal	  
Diversity	  Engine	  

GenProg	  
Repair	  Engine	  

So=ware	  

So=ware	  augmented	  with	  shi=ing	  aBack	  surface	  

Variant	  selected	  for	  repair	  

Repaired	  variant	  with	  shi=ing	  aBack	  surface	  

Genera/on	  N	  

Variant	  selected	  for	  repair	  

Im
provem

ent	  over	  Tim
e	  

Fig. 1 Helix Metamorphic Shield Architecture. Every software generation is augmented with a
continuously shifting attack surface using spatial-temporal diversity transformations. Over time,
via its GenProg component, Helix automatically reduces the attack surface by automatically gen-
erating and vetting candidate repair patches.

Software on the left-hand side in the figure) but is already able to increase the at-
tackers’ workload for mounting a successful attack through the use of both spatial
and temporal diversity techniques (shifting attack surface shown as vulnerabilities
with various shapes). Section 2 describes how the spatio-temporal diversity engine
imbues software with a dynamically shifting attack surface, and discusses security
and performance results for both binary executables (Section 2.1) and web applica-
tions (Section 2.2).

When attack attempts are thwarted and detected, Helix seeks to automatically
patch the targeted vulnerabilities via the GenProg Repair Engine (Section 3).
GenProg uses evolutionary algorithms to create and vet candidate repair patches.
The repair search and validation process is computationally expensive but is in-
herently parallelizable. In Section 3, we present results for automatically repairing
real-world programs using the Amazon EC2 cloud infrastucture. Once a repaired
variant (or set of variants) is generated and selected for deployment, Helix again
will augment the variant with the ability to continuously shift its attack surface. The
net result of this process is the creation of software variants that improve over time
as each new generation contains fewer vulnerabilities (Generation N in figure 1).

In the scenario just outlined, the repair process was triggered reactively as a result
of detecting potential attacks. Section 4 presents future work opportunities such as
triggering repair proactively based on a variety of possible events.



4 Authors Suppressed Due to Excessive Length

2 Continuously Shifting the Attack Surface

The primary insight underlying our dynamically shifting attack surface is a combi-
nation of static diversity techniques with a fast-moving temporal component. A nat-
ural, but misleading intuition, would be that the effectiveness of such an approach
is proportional to the rate of re-randomization. This intuition only holds true in the
case of information leakage vulnerabilities, in which attackers probe a target system
to expose or infer knowledge used in further attacks [33, 20]. For brute-force attacks
in which attackers exhaustively perform a state-space search, such as the derandom-
ing attack on ASLR, dynamic diversity only increases the attacker’s workload by at
most a factor of two [46].

Examples of information leakage attacks include side-channel attacks [9, 8], for-
mat string vulnerabilities [12], incremental attacks that probe a target system to infer
knowledge of the secret key used in diversity defenses [47], or careless errors that
simply reveal secret keys (such as printing it in an exception handler). To study
the effectiveness of dynamically shifting the attack surface to protect against infor-
mation leakage attacks, we developed an analytic model that studies the effect of
re-randomization as it relates to a given rate of information leakage [33]. The model
validates the notion that the rate of re-randomization should be faster than the rate
at which an attacker can infer and use information about a target system.

For network-facing servers, the implication is that the attack surface must be
shifted at a very high frequency, since attack probes only take a few milliseconds.
In the next subsections, we show how the Helix architecture meets this require-
ment. First, we describe results in designing and prototyping a dynamic version of
instruction-set randomization (ISR) that re-randomizes binaries at a rate of every
100 msec. We then show our results for another dynamic variant of ISR at the web-
application level, potentially operating at the rate of every network request.

2.1 Dynamic Diversity for Protecting Binary Executables

In designing techniques for protecting binaries via dynamic diversity, we put forth
the following set of of requirements:

• The technique should operate on x86 binaries directly.
• The technique should proactively and continuously shift the attack surface.
• The technique should operate efficiently and at a rate that is fast enough to pro-

vide protection.
• The software architecture should be flexible and allow for a wide variety of pos-

sible diversity (and non-diversity) transformations.

These requirements were motivated by the need for more effective protection
against information leakage attacks and the desire for the metamorphic shield to be
practical (i.e., efficient and easily deployable), and effective as a generic platform
for deploying defenses on arbitrary binaries.



Moving Target Defenses in the Helix Self-Regenerative Architecture 5

2.1.1 Dynamic Binary Rewriting: Strata Virtual Machine

To fulfill these requirements, we based our architecture on software dynamic trans-
lation (SDT) techniques. SDT enables software malleability and adaptivity at the
instruction level, by providing facilities for transparent binary run-time monitor-
ing and modification. SDT can affect an executing program by injecting new code,
modifying existing code, or arbitrarily controlling program execution.

Examples of software dynamic translation systems include Strata [42, 43, 44],
Pin [29], HDTrans [48] and DynamoRIO [25]. The flexibility afforded by software
dynamic translations makes them well-suited for implementing a wide rande of se-
curity transformations and policies. SDTs have been used in numerous security ap-
plications, including:

• augmenting binaries with arbitrary sensors and actuators [11],
• restricting control flow transfers [25],
• thwarting return-oriented programming attacks by monitoring suspicious code

sequences [10] or by relocating instructions [16],
• diversity techniques [18, 38, 39, 16, 55, 35, 33],
• fine-grained applications of access-control policies [36],
• regulating resource consumptions [43], and
• protecting against fine-grained memory errors [15].

Many of these techniques have been incorporated and developed within the He-
lix project [16, 38, 33, 11]. Within the context of the moving-target defense, we
apply Strata to dynamically shift the attack surface. We use a dynamic version of
instruction-set randomization (ISR) as an exemplar. Strata was designed to be easily
reconfigured and retargeted for new applications and computing platforms.

Context 
Capture 

Context 
Switch Next PC 

Translate 
Decode 
Fetch 

New 
Fragment 

Finished? 

Strata Dynamic Translator 

Cached? 
New 
PC 

No 

Yes 

No 

Yes 

Fig. 2 Strata Application-Level Virtual Machine. Any step in Strata’s fetch-decode-translate-
execute cycle is easily replaced or augmented with new functionality. Helix leverages Strata’s
flexibility to implement a wide variety of security transformations directly on executable binaries.



6 Authors Suppressed Due to Excessive Length

As shown in Figure 2, Strata is organized as a virtual machine that mediates exe-
cution of an applications instructions. Strata dynamically loads a binary application
and mediates application execution by examining and possibly translating an appli-
cation’s instructions before they execute on the host CPU. Translated application
instructions are held in a Strata-managed code cache called the fragment cache. A
fragment is the basic unit of translation, similar to a basic block. Once a fragment
finishes execution, the Strata VM captures and saves the application context (e.g.,
PC, condition codes, registers, etc.). Following context capture, Strata processes the
next application instruction. If a translation for this instruction has been cached, a
context switch restores the application context and begins executing cached trans-
lated instructions on the host CPU. Otherwise, the instruction is translated (and,
possibly, instrumentated) and the translation is placed into the fragment cache and
is executed on the host CPU.

In the next section, we describe the dynamic instruction set randomization algo-
rithm and its implementation over the Strata framework.

2.1.2 Dynamic Instruction Set Randomization

Harold Thimbleby first proposed using randomization to create a unique instruction
set as a technique for preventing the spread of viruses [51]. Researchers at the Uni-
versity of New Mexico and Columbia University independently proposed ISR as a
method for protecting against code-injection attacks [4, 5, 24]. Both groups orig-
inally implemented ISR prototypes for the x86 using emulation (Valgrind at New
Mexico [32] and Bochs at Columbia [27]. Subsequent work used software dynamic
translation to improve the efficiency of ISR [18, 55, 35].

A simple but effective implementation of ISR is to encode at load time (or ear-
lier) the native binary form of a program using an XOR key [4, 5, 24, 33]. Just
prior to execution, the program is decoded using the same XOR key to recover the
original instruction stream. Injected code that is not encoded will likely result in the
execution of random instructions that will lead to the target program crashing.

We developed a tool to analyze x86 ELF binary programs and to identify the
ranges where executable instructions can exist. When Strata starts up, it encrypts
code sections using a simple XOR scheme with an n-byte key:

P′ = P⊕Key
Strata intercepts the dynamic loading of libraries and performs a similar opera-

tion, typically using the same original key K, though different keys may be used.
To recover the original instructions, a decryption module between the fetch and

decode modules of the Strata virtual machine applies the following transformation:
P = Key⊕P′

An attack that attempts to inject code will most likely result in a program crash, as
the decoding step will transform the injected code into random instructions. Exist-
ing XOR-based implementations exploit the likelihood of a program crash, and only
shift the attack surface at load-time, randomizing the key on program startup. How-



Moving Target Defenses in the Helix Self-Regenerative Architecture 7

ever, forking servers in which children processes are spawned to handle requests are
common, and by default will inherit their parents’ key.

To address this concern, instead of randomizing the key only at load-time, our
dynamic instruction set randomization technique continuously shifts the attack sur-
face during program execution. Figure 3 illustrates our dynamic ISR implementation
using the Strata virtual machine.

Rekeying the application consists of applying the old XOR key, followed by the
application of a new random XOR key:

P′ = Keynew⊕Key⊕P
Key = Keynew
Subsequently, the decryption module uses the new random key to recover the

original program text.

Context 
Capture 

Context 
Switch Next PC 

Translate 
Decode 

Fetch 

New 
Fragment 

Finished? 

Strata Dynamic Translator 

Cached? 
New 
PC 

P	  =	  P’ ⊕ Key	  

Application 
Binary P 

Application 
Binary P’ 

P’	  =	  P ⊕ Key	  

Load	  Time	   Run	  Time	  

P’	  =	  P ⊕ Key	  
To	  Rekey	  Applica2on	  
P’	  =	  	  Keynew	  	  ⊕	  Key	  	  ⊕	  P’	  
Key	  =	  Knew	  	  
	  

Fig. 3 Dynamic ISR Implementation. At load-time, the program text is encrypted using an XOR
key. The Strata VM is augmented with a decryption module that reapplies the key to recover the
original program text. Throughout program execution, the program text is re-encrypted under a
new key resulting in a dynamically shifting attack surface.

2.1.3 Results

We evaluated the performance of our XOR-based ISR implementation of a Meta-
morphic Shield using the SPEC2000 benchmark. We present performance results
for a re-randomization rate of 100 milliseconds. All performance numbers were av-
eraged over three runs for each of the program in SPEC2000. These numbers were
obtained using version 8 of Fedora Core Linux, running in a VMWare image on a
dedicated Mac Pro.

Figure 4 shows the performance of executing the benchmarks with and with-
out the metamorphic shield. For a rekeying rate of 100 msec, the performance of
the metamorphic shield is essentially the same as that of running the Strata virtual
machine. This result is encouraging because it indicates that the metamorphic shield
adds virtually no overhead beyond that of Strata itself. Despite measuring the perfor-



8 Authors Suppressed Due to Excessive Length

mance on an unoptimized configuration of Strata, the overall average performance
overhead is only 14%.

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

1.6	  

16
4.
gz
ip
	  

17
5.
vp
r	  

17
6.
gc
c	  

18
1.
m
cf
	  

18
6.
cr
a5

y	  
19
7.
pa
rs
er
	  

25
2.
eo

n	  
25
3.
pe

rlb
m
k	  

25
4.
ga
p	  

25
5.
vo
rt
ex
	  

25
6.
bz
ip
2	  

30
0.
tw

ol
f	  

16
8.
w
up

w
ise

	  
17
1.
sw

im
	  

17
2.
m
gr
id
	  

17
3.
ap
pl
u	  

17
7.
m
es
a	  

17
8.
ga
lg
el
	  

17
9.
ar
t	  

18
3.
eq

ua
ke
	  

18
7.
fa
ce
re
c	  

18
8.
am

m
p	  

18
9.
lu
ca
s	  

19
1.
fm

a3
d	  

20
0.
six

tr
ac
k	  

30
1.
ap
si	  

ge
om

ea
n	  

N
or
m
al
iz
ed

	  E
xe
cu
0o

n	  
Ti
m
e	  

SPEC	  cpu2000	  benchmarks	  

no	  re-‐randomizaGon	  

100	  ms	  re-‐randomizaGon	  rate	  

Fig. 4 Performance overhead of dynamic ISR over native execution. Average performance over-
head over native execution is 14%. Dynamic ISR at a 100 msec re-randomization rate adds virtually
no overhead to the performance of running the Strata virtual machine.

2.1.4 Discussion

Sovarel et. al demonstrated incremental information-leakage attacks on weak XOR-
based ISR implementations [47]. In their setup, the XOR key was not re-randomized
at load-time, such as in a web server that spawns child processes to service requests.
Their attack consisted of two phases. In the first phase, the XOR key is incrementally
inferred via the judicious use of attack probes. By repeatedly leaking information,
they were able to reconstruct the XOR key in full. Once the key is determined, the
attack payload is first XOR’ed using the key. The target program will then proceed
to reapply the XOR-key, executing the attacker’s payload.

Is a scheme that re-randomizes the key at a 100 msec refresh rate sufficient to
thwart incremental attacks? Answering this question requires making real-time as-
sumptions about the probe rate. For example, the average probe time in the attack
by Sovarel et al. is approximately 20 msec. A 100 msec rate therefore corresponds
to re-randomizing after every fifth probe. However, a motivated adversary could
control a botnet, issuing probes in parallel. Our analytical model showed that re-
randomization should be performed frequently, as effectiveness depends critically



Moving Target Defenses in the Helix Self-Regenerative Architecture 9

on the re-randomization rate. The difference in the probability of attack success
when re-randomizing after every 100th probe or every 4th probe spans six orders of
magnitude [33, 13].

Instead of re-randomizing based on a real-time trigger, we are investigating the
performance of re-randomizing based on event-driven triggers such as system calls.
Since we cannot readily distinguish between normal traffic and attack probing traf-
fic, we need to assume conservatively that every packet read over the network is
potentially a probe. In the limit, we would like to re-randomize after every read
system call. Furthermore, we are investigating the use of anomaly detection tech-
niques to distinguish between normal traffic and attack probes and thereby reduce
the required rate of re-randomization.

The work just described sought to continuously shift the attack surface at the
binary level. We next present Noncespaces, a component of the HMS that continu-
ously shifts the attack surface at the level of web applications.

2.2 Dynamic Diversity for Protecting Web Applications

Cross-site scripting (XSS) attacks pose a serious threat to the security of modern
web applications. In this section, we present Noncespaces, an approach inspired by
instruction set randomization [24, 4] that thwarts such attacks by shifting the attack
surface of web applications. Noncespaces is an end-to-end mechanism that allows
a server to identify untrusted content, reliably convey this information to the client,
and allow the client to enforce a security policy on the untrusted content. Nonces-
paces randomizes (X)HTML tags and attributes to identify and defeat injected ma-
licious web content, extending the concept of randomization up the software stack.
Randomization serves two purposes. First, it identifies untrusted content so that the
client can use a policy to limit the capabilities of untrusted content. Second, it pre-
vents the untrusted content from distorting the document tree. Since the randomized
tags are not guessable, the attacker cannot embed proper delimiters in the untrusted
content to split the containing node without causing parsing errors.

2.2.1 Background

A cross-site scripting (XSS) vulnerability allows an attacker to inject malicious con-
tent into web pages served by a trusted web application. Because the browser re-
ceives the malicious content from a trusted server, the malicious content runs with
the same privileges as trusted content, which allows it to run malicious code within
the browser, impersonate the user to trusted servers, steal a victim user’s private data
and authentication credentials, or present forged content to the victim. Such attacks
may be reflected or stored; in both scenarios, untrusted user input is returned to a
victim user—immediately in the case of a reflected XSS attack or at some later time
in the case of a stored XSS attack.



10 Authors Suppressed Due to Excessive Length

Currently, web browsers protect multiple web applications running within the
same browser instance by isolating them according to the Same Origin Policy, which
prevents web applications from accessing the private data of other web applications.
However, this policy presumes first, that all content from a single web application
is equally trustworthy, and second, that all content can be granted access to all data
associated with the application. To prevent these vulnerabilities, all the untrusted
(user-contributed) content in a web page must be sanitized. However, proper sani-
tization is very challenging. The context in which untrusted data is interpreted de-
termines the forms of sanitization that are appropriate. There are many ways for
an attacker to take advantage of the discrepency between the way sanitization is
performed by the server and the way the browser interprets the content [40]. Alter-
natively, one could let the client sanitize untrusted content. However, without the
server’s help, the client cannot distinguish between trusted and untrusted content in
a web page, since both appear to originate from the trusted server.

We can avoid ambiguity between the client and server by requiring the server
to identify untrusted content and requiring the client to ensure that it is displayed
safely. However, challenges remain. After the server identifies untrusted content, it
needs to tell the client the locations of the untrusted content in the document tree.
However, the untrusted content can evade sanitization by distorting the document
tree (without executing). To achieve this, the untrusted content can contain node
delimiters that split the original node, where untrusted content resides, into multiple
nodes. This is known as a Node-splitting attack [21]. To defend against this attack
without restricting the richness of user provided content, the server must take care
to remove only those node delimiters which would introduce new trusted nodes.
Noncespaces addresses these concerns by randomizing the XHTML namespace,
allowing the client to enforce security policies that limit the capabilities of untrusted
content and prevent untrusted content from distorting the document tree.

2.2.2 Approach

The goal of Noncespaces is to allow the client to safely display documents that con-
tain both trusted content generated by a web application and untrusted user-provided
content. The browser enforces a configurable security policy to eliminate the client-
server semantic gap and to adapt to differing security needs. Such a policy specifies
the browser capabilities that each type of content can exercise, thus restricting the
capabilities of attacker-injected malicious content.

The client must be able to determine the trustworthiness of all content in a docu-
ment to faithfully enforce such a server-specified policy. Therefore, the server must
first classify content into discrete trust classes. The server then must communicate
the content, trust classification, and policy to the client. Finally, the client can en-
force the policy. This process is depicted in Figure 5.

As long as the server’s content classification is conservative, the server faith-
fully communicates its classifications to the client, and the client faithfully enforces



Moving Target Defenses in the Helix Self-Regenerative Architecture 11

Fig. 5 Noncespaces Overview. The server delivers a XHTML document with randomized names-
pace prefixes and a policy to the client. The client accepts the document only if it is a well-formed
XML document and satisfies the policy.

the server-specified policy, untrusted content will be confined to the capabilities ex-
pressly permitted to it by the policy. This ensures that XSS attacks will not succeed.
Communicating Trust Information. The server securely communicates trust in-
formation in (X)HTML to the client using randomization. We associate a different
randomization function with each content trust class. The names of all elements
and attributes in a trust class are remapped according to the associated randomiza-
tion function so that no injected content can correctly name (X)HTML elements or
attributes in other trust classes.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
2 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3 <html xmlns="http://www.w3.org/1999/xhtml" lang="en">
4 <head> <title>nile.com : ++Shopping</title> </head>
5 <body> <h1 id="title">{item_name}</h1>
6 <p class=’review’>{review.text}
7 -- <a href=’{review.contact}’>{review.author}</a> </p>
8 </body>
9 </html>

Fig. 6 Vulnerable web page template used to render dynamic web pages

Consider the vulnerable web template in Figure 6. We can defeat XSS attacks
against this document by annotating it. For example, let the randomly chosen string
r60 denote trusted content. For HTML documents, we can prefix trusted tags and
attributes with our random identifier, shown in Figure 8. For XHTML documents,
we can preserve the original XML semantics of the document while annotating by
using our random identifier as an XML namespace prefix, shown in Figure 7.

Attackers cannot inject malicious content and cause it to be interpreted as trusted
(as in a node-splitting attack) because they do not know the random prefix. They also
cannot escape from the enclosing paragraph element, because they do not know the
random prefix, and therefore cannot embed a closing tag with this prefix (in the
HTML document, the <script> element is the child of an <r60p> element, not



12 Authors Suppressed Due to Excessive Length

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
2 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3 <r60:html xmlns="http://www.w3.org/1999/xhtml" r60:lang="en"
4 xmlns:r60="http://www.w3.org/1999/xhtml">
5 <r60:head><r60:title>nile.com : ++Shopping</r60:title></r60:head>
6 <r60:body><r60:h1 r60:id="title">Useless Do-dad</r60:h1>
7 <r60:p r60:class=’review’></p><script>attack()</script><p>
8 -- <r60:a href=’’></r60:a> </r60:p>
9 </r60:body>

10 </r60:html>

Fig. 7 Random prefix applied to trusted content in an XHTML document containing a node-
splitting attack injected by a malicious user

1 <!DOCTYPE html>
2 <r60html r60lang="en">
3 <r60head> <r60title>nile.com : ++Shopping</r60title> </r60head>
4 <r60body> <r60h1 r60id="title">Useless Do-dad</r60h1>
5 <r60p r60class=’review’></p><script>attack()</script><p>
6 -- <r60a href=’’></r60a> </r60p>
7 </r60body>
8 </r60html>

Fig. 8 Random prefix applied to trusted content in an HTML document containing a node-splitting
attack injected by a malicious user

a <p> element). In the XHTML document, a closing tag that tries to close an open
tag with unmatching prefixes will lead to an XML parse error.

To prevent attackers from guessing these (namespace) prefixes, we choose them
uniformly at random each time a response is rendered, hence the term Noncespaces.
Given a prefix space of appropriate size, knowing the random prefixes in one in-
stance of the document does not help attackers predict prefixes in future instances
of the document.

However, naı̈vely prohibiting all untrusted content will not work because most
modern web applications are designed to accept some amount of rich content from
users. Though we can use randomization to ensure integrity of trust class informa-
tion, in practice, we still need a policy that places appropriate constraints on such
user-provided content. Therefore, we also provide a mechanism for the server to
specify a policy for the client to enforce when rendering the document. This mecha-
nism is provided by new HTTP protocol headers, in which such a policy is specified,
and a policy language used to describe the constraints.
Policy Specification. A Noncespaces policy specifies the browser capabilities that
can be invoked by content in a given trust class. Figure 9 shows an example policy
for XHTML documents. We designed the policy language to be similar to a fire-
wall configuration language. Comments begin with an # character and extend to the
end of the line. A minimal policy consists of a sequence of allow/deny rules.
Each rule applies a policy decision—allow or deny— to a set of document nodes



Moving Target Defenses in the Helix Self-Regenerative Architecture 13

1 # Restrict untrusted content to safe subset of XHTML
2 namespace x http://www.w3.org/1999/xhtml
3 # Declare trust classes
4 trustclass trusted
5 trustclass untrusted
6 order untrusted < trusted
7

8 #Policy for trusted content
9 allow //x:*[ns:trust-class(., "=trusted")] # all trusted elements

10 allow //@x:*[ns:trust-class(., "=trusted")] # all trusted attributes
11

12 # Allow safe untrusted elements
13 allow //x:b | //x:i | //x:u | //x:s | //x:pre | //x:q
14 allow //x:a | //x:img | //x:blockquote
15

16 # Allow HTTP protocol in the <a href> and <img src> attributes
17 allow //x:a/@href[starts-with(., "http:")]
18 allow //x:img/@src[starts-with(., "http:")]
19

20 # Deny all remaining elements and attributes
21 deny //* | //@*

Fig. 9 Noncespaces policy restricting untrusted content to BBCode [7]

matched by an XPath expression; XPath is well-suited for this domain because it
was designed to query content from hierarchical documents.

Noncespaces additionally provides basic XPath functions for string normaliza-
tion and additional boolean functions for matching based on trust class or whether
an attribute value has changed from the language default. The example policy in Fig-
ure 9 specifies two trust classes, trusted and untrusted. There are no restrictions on
which tags and attributes can appear in trusted content. Only tags and attributes that
correspond to BBCode are allowed in untrusted content: stylistic markup, links to
other HTTP resources, and images. Note that lines 17–18 only permits link and
image tags to specify URLs for the (non-script) HTTP protocol.

When checking that a document conforms to a policy, the client considers each
rule in order and matches the XPath expression against the nodes in the document’s
Document Object Model. When an allow rule matches a node, the client permits
the node and will not consider the node when evaluating subsequent rules. When a
deny rule matches a node, the client determines that the document violates the policy
and will not render the document. To provide a fail-safe default, if any nodes remain
unmatched after evaluating all rules, we consider those nodes to be policy violations
(i.e. all policies end with an implicit deny //*|//@*). In the event that a policy
author wishes to override the default behavior in order to specify a blacklist policy,
he can specify allow //*|//@* as the last rule to allow all as of yet unmatched
nodes.
Client Enforcement. Web browsers must ensure that a Noncespaces-encoded re-
sponse conforms to the policy before rendering it. The overhead involved in policy
retrieval should be minimal, given that most web pages are assembled from mul-



14 Authors Suppressed Due to Excessive Length

tiple requests. Client-side enforcement of the policy is necessary because it avoids
possible semantic differences between the policy checker and the browser, which
might lead the browser to interpret a document in a way that violates the policy
even though the policy checker has verified the document.

2.2.3 Results

We evaluated Noncespaces to ensure that it is able to prevent a wide variety of XSS
attacks. We tested Noncespaces against six XSS exploits targeting two vulnerable
applications. The exploits were crafted to exhibit the various forms that an XSS
attack may take [53]. The applications used in this evaluation were a version of
TikiWiki [52] with a number of XSS vulnerabilities and Trustify, a custom web
application that we developed to cover all the major XSS vectors.

We began by developing policies for each application. Because TikiWiki was de-
veloped before Noncespaces existed, it illustrates the applicability of Noncespaces
to existing applications. We implemented a straightforward 37-rule, static-dynamic
policy that allows unconstrained static content but restricts the capabilities of dy-
namic content to that of BBCode (similar to Figure 9). We also had to add excep-
tions for trusted content that TikiWiki generates dynamically by design, such as
names and values of form elements, certain JavaScript links implementing collapsi-
ble menus, and custom style sheets based on user preferences.

For Trustify, our custom web application, we implemented a policy that does not
take advantage of the static-dynamic model. Instead, the policy takes advantage of
Noncespaces’s ability to thwart node splitting attacks to implement an ancestry-
based sandbox policy similar to the noexecute policy described in BEEP [21].
This policy denies common script-invoking tags and attributes from any names-
pace (e.g., <script> and onclick) that are descendants of a <div> tag with
the class="sandbox" attribute. (Note: the policy does not attempt to be ex-
haustive. It does not enumerate non-standard browser-specific tags and attributes.)
To allow the rules to apply to elements and attributes in any namespace we use the
common XPath idiom of matching by each node’s local-name(). An exerpt of
the 28 line policy is given in Figure 10.

We first verified that each exploit succeeded without Noncespaces. We then en-
abled Noncespaces and verified that all exploits were blocked as policy violations.

2.2.4 Performance evaluation

Our performance evaluation seeks to measure the overhead of Noncespaces in terms
of response latency and server throughput. Our test infrastructure consisted of the
TikiWiki application that we used for our security evaluation running in a VMware
virtual machine with 512 MB RAM running Fedora Core 3, Apache 2.0.52, and
mod php 5.2.6. The virtual machine ran on an Intel Pentium 4 3.2 GHz machine
with 1 GB RAM running Ubuntu 7.10. Our client machine was an Intel Pentium 4
2 GHz machine with 256 MB RAM running Ubuntu 8.10 Server. These results rep-



Moving Target Defenses in the Helix Self-Regenerative Architecture 15

1 trustclass unclassified
2

3 # Blacklist (possibly incomplete)
4 deny //*[local-name() = ’div’ and @*[local-name() = ’class’ \
5 and . = ’sandbox’]]\
6 //*[local-name() = ’script’]
7 deny //*[local-name() = ’div’ and @*[local-name() = ’class’ \
8 and . = ’sandbox’]]\
9 //@*[local-name() = ’onload’ \

10 or local-name() = ’onunload’\
11 or local-name() = ’onclick’ \
12 or local-name() = ’onmousedown’ \
13 or local-name() = ’onmouseover’ \
14 or local-name() = ’onfocus’ \
15 or local-name() = ’onsubmit’ \
16 or (local-name() = ’src’ \
17 and starts-with(ns:tolower(normalize-space(.)), \
18 "javascript:"))]
19 # Allow everything else
20 allow //*
21 allow //@*
22 allow //namespace::*

Fig. 10 Excerpt from an ancestry-based sandbox policy that denies all potential script-invoking
tags and attributes that are descendants of a <div> node with the class="sandbox" attribute.

resent an upper bound on performance penalty as we have spent no effort optimizing
our Noncespaces prototype. In each test we used ab [1] to retrieve an application
page 1000 times. We varied the number of concurrent requests between 1, 5, 10, and
15, and the configuration of the client and server between the following:

• Baseline: measures original web application performance before applying Non-
cespaces.

• Randomization Only: measures impact of Noncespaces randomization on server
without policy validation on client-side.

• Full Enforcement: measures the end-to-end impact of Noncespaces.

We ran three trials with each test configuration against the TikiWiki application.
The response latency shows that enabling Noncespaces randomization on the server
increased response time by at most 14%. Enabling the policy checking proxy re-
sulted in response times that were at most 32% higher than the baseline response
time. Though the overhead may appear significant at first glance, during interactive
use latency typically increased by no more than 0.6 seconds.

We also examine the effect of Noncespaces on server throughput. With random-
ization enabled throughput is reduced by about 10%. After enabling policy check-
ing, the throughput decreases by an additional 3% for higher numbers of concurrent
requests. Because policy checking is performed on the client side, multiple simulta-
neous client requests has a minimal effect on server throughput.



16 Authors Suppressed Due to Excessive Length

2.3 Summary: Continuously Shifting the Attack Surface

We have demonstrated the feasibility of quickly shifting a program’s attack surface
using dynamic variations of instruction-set randomization for both binaries and web
applications. Based on this experience, we believe that it is feasible to continuously
shift the attack surface at all levels of the software stack, and using a variety of
possible diversity techniques. Preliminary performance results show that shifting
the attack surface continuously can be performed at reasonable cost.

Regardless of how quickly the attack surface is shifted, diversity techniques do
not fundamentally address the underlying vulnerability that enables the attack. For
example, unsuccessful attempts to inject binary code against an ISR-protected server
will typically result in a program crash. Similarly, attempts to subvert other diversity
techniques such as address-space layout randomization, will also result in a program
crash, allowing adversaries to launch denial-of-service attacks.

Shifting the attack surface dynamically is an arms race. Shifting must be done
quickly, to stave off an adversary’s efforts to both learn critical information and to
launch an attack on a vulnerable program based on this knowledge. The Helix meta-
morphic shield (HMS) seeks to exploit this arms race in order to end it. The primary
reason that attacks succeed is that adversaries have successfully discovered vulner-
abilities that remain unknown to the original developers (otherwise they would, or
should, have fixed them before releasing their programs). Attacks attempted against
a Helix-protected program that result in a detectable event such as a program crash
reveals crucial information about latent vulnerabilities. Helix turns the table on ad-
versaries and uses such information to trigger an automated repair process. The next
section discusses GenProg, a new technique based on evolutionary methods to re-
duce the attack surface via automated program repair.

3 Reducing the Attack Surface: Genetic Programming for
Automatic Program Repair

Mature software projects are forced to ship with both known and unknown bugs [28],
because the number of outstanding software defects typically exceeds the resources
available to address them [3]. Software maintenance, of which bug repair is a major
component [37], is time-consuming and expensive, accounting for as much as 90%
of the cost of a software project [45] at a total cost of up to $70 billion per year in the
US [23, 49]. Even security-critical bugs take an average of 28 days for developers
to address [50], further imbalancing the arena in favor of the attacker.

In this section, we describe GenProg, the repair component of the HMS. GenProg
is an evolutionary computation technique that efficiently and automatically repairs
bugs in off-the-shelf legacy programs. Efficient repair of existing vulnerabilities
allows the HMS to reduce the program attack surface over time. We show that
GenProg can repair a large number and variety of bugs in real-world, off-the-shelf C



Moving Target Defenses in the Helix Self-Regenerative Architecture 17

programs. We then demonstrate its promise in a closed-loop system for automated
program repair

3.1 Approach

GenProg is an evolutionary algorithm that repairs existing programs by selectively
searching through the space of related program variants until it discovers one that
avoids a known defect but retains key functionality. GenProg takes as input a pro-
gram and a test suite. The program currently passes the positive test cases, which
encode required functionality. The negative test cases characterize the fault under
repair; the input program fails these test cases. The goal of the search is to find a
variant of the input program that passes the negative test cases while continuing to
pass all of the positive test cases.

Figure 11 shows a high-level view of GenProg architecture. GenProg conducts
the search using Genetic programming (GP), a computational method inspired
by biological evolution which evolves computer programs tailored to a particular
task [26]. The GP maintains a population of program variants, or individuals, each
of which is a candidate solution to the problem at hand. In our case, each individ-
ual corresponds to a program that varies slightly from the original program. Each
individual’s suitability is evaluated using a task-specific fitness function, and the in-
dividuals with highest fitnesses are selected for continued evolution. Computational
analogs of biological mutation and crossover produce variations of the high-fitness
programs, and the process iterates. The search terminates either when it finds a can-
didate solution that passes all its positive and negative test cases, or when it exceeds
a preset number of iterations.

A significant impediment for an evolutionary algorithm like GP is the potentially
infinite-size search space of potential programs. To address this, we use novel GP
representations, and make assumptions about the probable nature and location of the
necessary repair, improving search efficiency. The rest of this subsection provides
further algorithmic details.

LOW	  FITNESS:	  	  
DISCARD	  

OUTPUT	  

MUTATE	  
INPUT	   EVALUATE	  

HIGH	  FITNESS:	  
MUTATE,	  ITERATE	  

POPULATION	  

MINIMIZE	  

Fig. 11 GP architecture diagram.



18 Authors Suppressed Due to Excessive Length

3.1.1 Representation

We have primarily applied GenProg at the source level of C programs, though it is
also possible to repair programs at the ASM or ELF levels [41]. Programs can be
represented at multiple levels of abstraction or granularity. For example, C programs
contain both statements, such as the conditional statement “if (!p) { x=0; }”
and expressions, such as “0” or “(!p)”. For scalability, we treat the statement as the
basic unit, or gene. Thus, we never modify “(!p)” because doing so would involve
changing an expression. Instead, we might delete the entire “if . . . ” statement, in-
cluding its then- and else-branches. Additionally, individual variants do not need to
store the entire program. Instead, at the source level, each variant is a patch, rep-
resented as sequence of edit operations. This increases scalability by avoiding the
storage of redundant copies of untouched nodes.

3.1.2 Genetic Operators

The mutation and crossover operators produce new program variants by modifying
individuals and recombining them, respectively. Because the basic unit of our repre-
sentation is the statement, mutation is more complicated than the simple bit flip used
in other evolutionary algorithms. A statement selected for mutation is randomly sub-
jected to either deletion (the entire statement and all its sub-statements are deleted),
insertion (another statement is inserted after it), or swap (two statements are re-
placed with one another). Crossover exchanges randomly-chosen subtrees between
two individuals, which allows the GP to combine partial solutions.

3.1.3 Localization

We assume that software defects are local and that fixing one does not require chang-
ing the entire program. We therefore narrow the search space by biasing modifica-
tions towards statement nodes that are more closely associated with the fault [22].
Statements that are only executed by the negative test cases are weighted much
more highly than those executed by both the negative and the positive test cases;
statements that are not visited by the negative test case at all are not considered for
mutation. In this respect, GenProg exploits information provided by an attacker.

We use the term fix localization to refer to the source of inserted or swapped
code. We restrict inserted code to that which includes variables that are in-scope
at the destination (so the result compiles; this presented a non-trivial concern in
previous work [54]) and that are visited by at least one test case.



Moving Target Defenses in the Helix Self-Regenerative Architecture 19

3.1.4 Fitness Function

The fitness function guides the search. The fitness of an individual in a program
repair task should assess how well the program avoids the bug while still doing
“everything else it is supposed to do.” We use test cases, such as those that often
ship with existing software, to measure fitness. Such testing accounts for as much
as 45% of total software lifecycle costs [34], and finding test cases to cover all parts
of the program and all required behavior is a difficult but well-studied problem in
the field of software engineering.

The fitness function applies the edits associated with a variant to the input pro-
gram and compiles the result into an executable. This executable is run against the
set of positive and negative test cases, returning the weighted sum of the test cases
passed. Programs that do not compile have fitness zero.

3.1.5 Minimizing the repair

The first variant that passes all positive and negative test cases is called the primary
repair. However, GP may introduce irrelevant changes on the way to a repaired vari-
ant [14]. The minimization step uses tree-structured differencing [2] to express the
primary repair as a set of changes to the original program. It then uses delta de-
bugging [56] to efficiently compute a subset of these changes such that the changed
program passes all test cases, but dropping any additional elements causes the pro-
gram to fail at least one test case. Delta debugging is conceptually similar to binary
search, but it returns a set instead of a single number. We call this smaller set of
changes the final repair; in our experiments, the final repair is typically at least an
order-of-magnitude smaller than the primary repair.

3.2 Efficacy

In the context of an MTD system, GenProg reduces the attack surface by improving
software in response to detected defects. This section presents results supporting
our claim that GenProg provides a scalable and general approach to automatically
repairing detected bugs in programs.

3.2.1 Scalability

Success metrics. Bug repair has become such a pressing problem that many com-
panies have begun offering bug bounties to outside developers, paying for candidate



20 Authors Suppressed Due to Excessive Length

repairs. Well-known companies such as Mozilla1 and Google2 offer significant re-
wards for security fixes, with bounties raising to thousands of dollars in “bidding
wars.”3 Although security bugs command the highest prices, more wide-ranging
bounties are available for bugs ranging from cosmetic concerns to security vulner-
abilities (e.g., those provided by Tarsnap.com4). These examples suggest that rel-
evant success metrics for automatic bug repair include the fraction of queries that
produce code patches, monetary cost, and wall-clock time cost. This section uses
these metrics to evaluate GenProg’s scalability .
Benchmarks. Benchmarks appear in the left-hand column of Table 1. We sought
to define this set in as unbiased a manner as possible. At a high level, we selected
these benchmarks by searching various program repositories to identify acceptable
candidate programs (e.g., consisting of at least 50,000 lines of C code, 10 viable test
cases, and 300 versions in a revision control system) and reproducible bugs within
those programs. We searched systematically through each program’s source history,
looking for revisions that caused the program to pass test cases that it failed in a
previous revision. Such a scenario corresponds to a human-written repair for the bug
corresponding to the failing test case. This approach ensures that benchmark bugs
are important enough to merit a human fix and to affect the program’s test suite. The
ultimate benchmark set consists of 8 subject C programs covering a variety of uses,
comprising 5.1 MLOC and more than 10,000 test cases.
Cloud Computing framework. Cloud computing, in which virtualized processing
power is purchased cheaply and on-demand, is becoming commonplace and less
expensive over time [31]. To evaluate the cost of repairing a bug with GenProg, we
used Amazon’s EC2 cloud computing infrastructure for the experiments. Each trial
was given a “high-cpu medium (c1.medium) instance” with two cores and 1.7 GB
of memory.5 Simplifying a few details, the virtualization can be purchased as spot
instances at $0.074 per hour but with a one hour start time lag, or as on-demand
instances at $0.184 per hour.6

Experimental Parameters. We ran 10 random GenProg trials per bug. Each trial
was terminated after 10 generations, 12 hours, or when another search found a re-
pair, whichever came first. Population size is 40; each individual was mutated ex-
actly once per generation; and 50% of the population is retained (with mutation) on
each generation (known as elitism).
Repair results The right side of Table 1 reports results. We report costs in terms of
monetary cost and wall clock time from the start of the request to the final result,
recalling that the process terminates as soon as one parallel search finds a repair.

1 http://www.mozilla.org/security/bug-bounty.html $3,000/bug
2 http://blog.chromium.org/2010/01/encouraging-more-chromium-security.
html $500/bug
3 http://www.computerworld.com/s/article/9179538/Google_calls_
raises_Mozilla_s_bug_bounty_for_Chrome_flaws
4 http://www.tarsnap.com/bugbounty.html
5 http://aws.amazon.com/ec2/instance-types/
6 These August–September 2011 prices summarize CPU, storage and I/O charges; http://aws.
amazon.com/ec2/pricing/



Moving Target Defenses in the Helix Self-Regenerative Architecture 21

Cost per Cost per
Defects Patches Non-Repair Repair

Program LOC Description Tests Repaired Per Bug Hours US$ Hours US$

fbc 97,000 legacy programming 773 1 / 3 1.0 8.52 5.56 6.52 4.08
gmp 145,000 multiple precision math 146 1 / 2 2.0 9.93 6.61 1.60 0.44
gzip 491,000 data compression 12 1 / 5 8.0 5.11 3.04 1.41 0.30
libtiff 77,000 image manipulation 78 17 / 24 6.8 7.81 5.04 1.05 0.04
lighttpd 62,000 web server 295 5 / 9 4.6 10.79 7.25 1.34 0.25
php 1,046,000 web programming 8,471 28 / 44 5.6 13.00 8.80 1.84 0.62
python 407,000 general programming 355 1 / 11 5.0 13.00 8.80 1.22 0.16
wireshark 2,814,000 network packet analyzer 63 1 / 7 7.0 13.00 8.80 1.23 0.17

total or avg 5,139,000 10,193 55 / 105 5.8 11.22h 1.60h

Table 1 Subject C programs, test suites and historical defects: defects are defined as test case
failures fixed by developers in previous versions. 55 of the 105 defects (52%) were repaired suc-
cessfully and are reported under the “Cost per Repair” columns. The remaining 50 are reported
under the “Non-Repair”s columns. “Hours” columns report the wall-clock time between the sub-
mission of the repair request and the response, including cloud-computing spot instance delays.
“US$” columns reports the total cost of cloud-computing CPU time and I/O. The total cost of gen-
erating these results was $403. “Patches per bug” shows the number of unique patches per bug.

Results are reported for cloud computing spot instances, and thus include a one-
hour start lag but lower CPU-hour costs.

GenProg repaired 55 of the defects (52%) within the allocated time/generation
limits, including at least one defect for each subject program. The successful repairs
return a result in 1.6 hours each, on average. The 50 unsuccessful repairs required
11.22 hours each, on average. The total cost for all 105 attempted repairs is $403,
or $7.32 per successful run. These costs could be traded off in various ways. For
example, an organization that valued speed over monetary cost could use on-demand
cloud instances, reducing the average time per repair by 60 minutes to 36 minutes,
but increasing the average cost per successful run from $7.32 to $18.30.

Diverse solutions to the same problem may provide several options to devel-
opers, or enable consideration of multiple diverse attack surfaces. To investigate
GenProg’s utility in generating multiple repairs, we additionally allowed all of the
bug trials to run to completion (instead of terminating when any trial found a repair).
The “Patches per Bug” column in Table 1 shows how many different patches were
discovered in this use-case. GenProg produced 318 unique patches for 55 repairs,
or an average of 5.8 distinct patches per repaired bug. The unique patches are typ-
ically similar, often involving different formulations of guards for inserted blocks
or different computations of required values. Such diverse patches can contribute to
multiple semantically-equivalent variants, helping reduce the software monoculture.

3.2.2 Generalizability

The previous section showed that GenProg can scale to real bugs in millions of
lines of real code. In this section, we substantiate our claim that GenProg provides



22 Authors Suppressed Due to Excessive Length

a general means for program repair by evaluating it on a benchmark set designed to
cover a variety of bug types.
Programs and Defects. The benchmarks for these experiments are shown in the
left-hand side of Table 2. zune is a fragment of code that caused all Microsoft Zune
media players to freeze on December 31st, 2008. The Unix utilities were taken from
Miller et al.’s work on fuzz testing, in which programs crash when given random
inputs [30]. The remaining benchmarks are taken from public vulnerability reports.
The defects considered cover eight defect classes: infinite loop, segmentation fault,
remote heap buffer overflow to inject code, remote heap buffer overflow to over-
write variables, non-overflow denial of service, local stack buffer overflow, integer
overflow, and format string vulnerability.
Test Cases. For each program, we used a single negative test case that elicits the
given fault. We selected a small number (e.g., 2–6) of positive test cases per pro-
gram. In some cases, we used non-crashing fuzz inputs; in others, we manually cre-
ated simple cases, focusing on testing relevant program functionality; for openldap,
we used part of its test suite.
Experimental Parameters. We ran 100 random GenProg per each bug. Otherwise,
the parameter set is the same here as in the previous subsection.
Repair Results. Table 2 summarizes repair results for the fifteen C programs. The
“Time” column reports the average wall-clock time per trial that produced a primary
repair. It does not include the minimization time, which is considerably less than the
time taken to repair. Repairs are found in 357 seconds on average. The “Success”
column gives the fraction of trials that were successful. On average, over 77% of
the trials produced a repair, although most of the benchmarks either succeeded very
frequently or very rarely. Low success rates can be mitigated by running multiple in-
dependent trials in parallel. The “Size” column lists the size of the final (minimized)
repair diff in lines. The final minimized patch is quite manageable, averaging 5.1
lines. The “Effect” column shows a summary of the effect of the final repair, as
judged by manual inspection.
Patch effect. Manual inspection suggests that the majority of produced patches are
acceptable, meaningfully changing the program semantics to guard against the error
in question while otherwise maintaining functionality. Of the fifteen patches, six
insert code (zune, look-u, look-s, units, ccrypt, and indent) seven delete code
(uniq, deroff, openldap, lighttpd, flex, atris, and php), and two both insert
and delete code (nullhttpd and wu-ftpd).

Patches that delete code do not necessarily degrade functionality: the deleted
code may have been included erroneously, or the patch may compensate for the dele-
tion with an insertion. The uniq, deroff, and flex patches delete erroneous code
and do not degrade untested functionality. The openldap patch removes unneces-
sary faulty code (handling of multi-byte BER tags, when only 30 tags are used),
and thus does not degrade functionality in practice. The nullhttpd and wu-ftpd

patches delete faulty code and replace them with non-faulty code found elsewhere.
The effect of the lighttpd patch is machine-specific: it may reduce functionality
on certain inputs, though in our experiments, it did not.



Moving Target Defenses in the Helix Self-Regenerative Architecture 23

Program Lines of Description Fault Time Success Size Effect
Code (s) (%)

zune 28 example [6] infinite loop† 42 72 3 I
uniq utx 1146 text processing segmentation fault 34 100 4 D
look utx 1169 dictionary lookup segmentation fault 45 99 11 I
look svr 1363 dictionary lookup infinite loop 55 100 3 I
units svr 1504 metric conversion segmentation fault 109 7 4 I
deroff utx 2236 text processing segmentation fault 131 97 3 D

nullhttpd 5575 webserver remote heap buffer 578 36 5 Boverflow (code)†

openldap 293k directory protocol non-overflow 665 100 16 Ddenial of service†
ccrypt 7515 encryption utility segmentation fault† 330 100 14 I
indent 9906 code processing infinite loop 546 7 2 I

lighttpd 52k webserver remote heap buffer 394 100 3 Doverflow (variables)†

flex 19k lexical analyzer segmentation fault 230 5 3 Dgenerator

atris 22k graphical game local stack 80 82 3 Dbuffer exploit†
php 764k scripting language integer overflow† 56 100 10 D

wu-ftpd 67k FTP server format string 2256 75 5 Bvulnerability†

average 1246781 356.5 77.0% 5.7

Table 2 Experimental results on bugs from programs totaling 1.25M lines of source code. Size
of programs given in lines of code (LOC). A † indicates an openly-available exploit. We report
averages for 100 random trials. “Time” gives the average time taken for each successful trial and
“Success” (how many of the random trials resulted in a repair). “Size” reports the average Unix
diff size between the original source and the final repair, in lines. “Effect” describes the opera-
tions performed by an indicative final patch: a patch may insert code (I), delete code (D), or both
insert and delete code (B).

In many cases, it is possible to insert code without negatively affecting the func-
tionality. The zune benchmark contains an infinite loop when calculating dates in-
volving leap years. The repair inserts code to one of three branches that decrements
the day in the main body of the loop. The insertion is carefully guarded so as to ap-
ply only to relevant inputs, and thus does not negatively impact other functionality.
Similar behavior is seen for look-s, where a buggy binary search over a dictio-
nary never terminates if the input dictionary is not pre-sorted. Our repair inserts a
new exit condition to the loop (i.e., a guarded break). A more complicated example
is units, in which user input is read into a static buffer without bounds checks, a
pointer to the result is passed to a lookup() function, and the result of lookup()
is possibly dereferenced. Our repair inserts code into lookup() so that it calls an
existing initialization function on failure (i.e., before the return), re-initializing
the static buffer and avoiding the segfault. These changes are indicative of repairs
involving inserted code.
Functionality degradation. Only one of the patches, for php, obviously degrades
functionality. Disabling functionality to suppress a security violation is often a le-
gitimate response: many systems can be operated in a “safe mode” or “read-only



24 Authors Suppressed Due to Excessive Length

mode.” Although acceptable in this situation, disabling functionality could have
deleterious consequences in other settings. We explore this patch in more detail
and evaluate its impact on functionality in the next section.

3.3 Closed-loop repair

The automated repair system evaluated above relies on manual initialization and
dispatch of GenProg. However, automated detection techniques in the Helix sys-
tem can signal the repair process to complete the automation loop. This proposed
integration and the corresponding removal of the human from the loop present sev-
eral areas of additional experimental concern, particularly related to the quality of
the repairs. Incomplete test suites may lead to fragile or inadequate repairs, further
compromising the system. Additionally, a closed-loop system may be subject to
false positives, where a detector incorrectly signals the existence of a vulnerability;
repairs made in response to such false positives may negatively impact the system.
GenProg’s success in the Helix infrastructure is partially predicated on the practical
impact of its generated repairs absent human review.

This section therefore evaluates GenProg in a closed-loop repair system, with
several experimental goals: 1) measure the performance impact of repair time and
quality on a real, running system, including the effects of a functionality reducing
repair on system throughput 2) analyze the functional quality of the generated re-
pairs using fuzz testing and variant bug-inducing input and 3) measure the costs
associated with intrusion-detection system false positives.

3.3.1 Closed-Loop System Overview

Our closed-loop prototype is designed with webservers in mind, because they pro-
vide compelling case studies for closed-loop automatic repair in the Helix sys-
tem while allowing for evaluation on real-world programs with realistic workloads.
While the webserver is run normally and exposed to untrusted inputs from the out-
side world, an intrusion-detection system (IDS) checks for anomalous behavior, and
the system stores program state and each input while it is being processed. Our
prototype system adopts an IDS that detects suspicious HTTP requests based on re-
quest features [19]. When the IDS detects an anomaly, the program is suspended,
and GenProg is invoked. The negative test case is constructed from the IDS-flagged
input. The positive tests consist of standard regression tests.

The efficacy of the proposed system depends on the anomaly detector’s misclas-
sification rates (false positives/negatives) and the efficacy of the repair method. The
proposed system creates two new areas of particular concern. The first is the effect
of an imperfect repair (e.g., one that degrades functionality not guaranteed by the
positive tests) to a true vulnerability, which can potentially lead to the loss of legiti-
mate requests or, in the worst case, new vulnerabilities. The second new concern is



Moving Target Defenses in the Helix Self-Regenerative Architecture 25

that a “repair” generated in response to an IDS false alarm could also degrade func-
tionality, again losing legitimate requests. In both cases, the changed attack surface
must improve the program, in that it meaningfully modifies it in the face of an at-
tack, without introducing new vulnerabilities for attackers to exploit. The remainder
of this section evaluates these concerns.

3.3.2 Benchmarks and workload

We focus these experiments on three benchmarks of our benchmarks from Sec-
tion 3.2 that consist of three security vulnerabilities in long-running servers: lighttpd,
nullhttpd, and php; these can be seen in Table 2. Note that we repair the php in-
terpreter used by an unchanging apache webserver deployment, in libphp.so. The
rest of this section outlines the vulnerabilities and repairs in more detail to provide
context and to illustrate our claims regarding GenProg’s efficacy.

The nullhttpd webserver is a lightweight multithreaded webserver that han-
dles static content as well as CGI scripts. Version 0.5.0 contains a heap-based buffer
overflow vulnerability that allows remote attackers to execute arbitrary code using
POST requests. The problem arises because nullhttpd trusts the Content-Length
value provided by the user in the HTTP header of POST requests; negative values
cause nullhttpd to overflow a buffer. However, there is another location in the
code that similarly but correctly processes POST-data. The GenProg-generated re-
pair changes the faulty location such that it calls the other POST-processing code,
and thus correctly bounds-checks the vulnerable value. The final, minimized repair
is 5 lines long. Although the repair is not the one supplied in the next release by hu-
man developers—which inserts local bounds-checking directly—it both eliminates
the vulnerability and retains desired functionality.

lighttpd is a webserver optimized for high-performance environments; it is
used by YouTube and Wikimedia, among others. In version 1.4.17, the fastcgi

module, which improves script performance, is vulnerable to a heap buffer over-
flow that allows remote attackers to overwrite arbitrary CGI variables (and thus
control what is executed) on the server machine. The key problem is with the
fcgi_env_add function, which uses memcpy to add data to a buffer without proper
bounds checks. fcgi_env_add is called many times in a loop. The repair modifies
this code such that the loop exits early on very long data allocations. However, the
repaired server can still report all CGI and server environment variables and serve
both static and dynamic content.

php is an interpreter for a popular web-application scripting language. Version
5.2.1 is vulnerable to an integer overflow attack that allows attackers to execute ar-
bitrary code by exploiting the way the interpreter calculates and maintains bounds
on string objects in single-character string replacements. Single-character string re-
placement replaces every instance of a character in a string with a larger string.
This functionality is implemented by php_char_to_str_ex, which handles both
single-character and multi-character replacements. The repair disables the single-
character case, leaving multi-character replacements untouched (multi-character re-



26 Authors Suppressed Due to Excessive Length

placements are not vulnerable to the attack). We use this patch to evaluate the impact
of a functionality-degrading patch in the context of the closed-loop system.
Workloads. We use indicative workloads taken from the University of Virginia
Computer Science Department webserver to measure program throughput pre-, dur-
ing, and post-repair. To evaluate repairs to the nullhttpd and lighttpd web-
servers, we used a workload of 138,226 HTTP requests spanning 12,743 distinct
client IP addresses over a 14-hour period. To evaluate repairs to php, we ob-
tained the room and resource reservation system used by the University of Virginia
Computer Science Department. It totals 16,417 lines of PHP, including 28 uses of
str_replace (the subject of the php repair). We also obtained 12,375 requests to
this system.

We use two metrics to evaluate repair overhead and quality. The first metric is
the number of successful requests a program processed before, during, and after a
repair. We assume a worst-case scenario in which the same machine is used both for
serving requests and repairing the program, and in which all incoming requests are
dropped (i.e., not buffered) during the repair process. The second metric evaluates a
program on held-out fuzz testing; comparing behavior pre- and post-repair can sug-
gest whether a repair has introduced new errors, and whether the repair generalizes.

Fuzz Test Failures
Repair Requests Lost Requests Lost to Generic Exploit

Program Made? to Repair Time Repair Quality Before After Before After

nullhttpd Yes 2.4%±0.83% 0.0%±0.25% 0 0 10 0
lighttpd Yes 2.0%±0.37% 0.0%±1.53% 1410 1410 9 0
php Yes 0.1%±0.00% 0.0%±0.02% 3 3 5 0
Quasi False Pos. 1 Yes 7.8%±0.49% 0.0%±2.22% 0 0 —
Quasi False Pos. 2 Yes 3.0%±0.29% 0.6%±3.91% 0 0 —
Quasi False Pos. 3 No 6.9%±0.09% — —

Table 3 Closed-loop repair system evaluation. Each row represents a different repair scenario and
is separately normalized so that the pre-repair daily throughput is 100%. The nullhttpd and
lighttpd rows show results for true repairs. The php row shows the results for a repair that
degrades functionality. The False Pos. rows show the effects of repairing three intrusion detection
system false positives on nullhttpd. The number after ± indicates one standard deviation.
“Lost to Repair Time” indicates the fraction of the daily workload lost while the server was offline
generating the repair. “Lost to Repair Quality” indicates the fraction of the daily workload lost after
the repair was deployed. “Generic Fuzz Test Failures” counts the number of held-out fuzz inputs
failed before and after the repair. “Exploit Failures” measures the held-out fuzz exploit tests failed
before and after the repair.

3.3.3 The Cost of Repair Time

The “Requests Lost To Repair Time” column of Table 3 shows the requests dropped
during the repair as a fraction of the total number of successful requests served by
the original program. The numbers have been normalized to the requests processed
by the unmodified programs on a single day, assuming a single attack. Fewer than
8% of daily requests were lost while the system was offline for repairs. Buffering



Moving Target Defenses in the Helix Self-Regenerative Architecture 27

requests, repairing on a separate machine, or using techniques such as signature
generation could reduce this overhead.

3.3.4 Cost of Repair Quality

The “Requests Lost to Repair Quality” column of Table 3 quantifies the effect of
the generated repairs on program throughput. This row shows the difference in
the number of requests that each benchmark could handle before and after the
repair, as a percentage of total daily throughput. The repairs for nullhttpd and
lighttpd do not noticeably affect their performance. Recall, however, that the
php repair degrades functionality by disabling portions of the str_replace func-
tion. The php row of Table 3 shows that this low quality repair does not strongly
affect system performance. Given the low-quality repair’s potential for harm, the
low “Lost” percentage for php is worth examining. Of the reservation application’s
28 uses of str_replace, 11 involve replacements of multi-character substrings,
such as replacing ’--’ with ’- -’; the repair does not affect multi-character sub-
string replacements. Many of the other uses of str_replace occur on rare paths.
For example, many uses replace underscores with spaces in a form label field.
If there are no underscores in the field, the result remains correct, since the re-
pair causes single-character str_replace to return the input. Finally, a few of
the remaining uses were for SQL sanitization; because the application also uses
mysql_real_escape_string, it remains safe from such attacks.

3.3.5 Repair Generality and Fuzzing

Two additional concerns remain. First, repairs must not introduce new flaws or vul-
nerabilities, even when such behavior is not tested by the input test cases. To this
end, Microsoft requires that security-critical changes be subject to 100,000 fuzz in-
puts [17] (i.e., randomly generated structured input strings). Similarly, we used the
SPIKE black-box fuzzer from immunitysec.com to generate 100,000 held-out
fuzz requests using its built-in handling of the HTTP protocol. The “Generic” col-
umn in Table 3 shows the results of supplying these requests to each program. Each
program failed no additional tests post-repair. Second, a repair must do more than
merely memorize and reject the exact attack input: it must address the underlying
vulnerability. To evaluate whether the repairs generalize, we used the fuzzer to gen-
erate 10 held-out variants of each exploit input. The “Exploit” column shows the
results. For example, lighttpd was vulnerable to nine of the variant exploits (plus
the original exploit attack), while the repaired version defeated all of them (includ-
ing the original). In no case did GenProg’s repairs introduce any errors that were
detected by 100,000 fuzz tests, and in every case GenProg’s repairs defeated variant
attacks based on the same exploit, showing that the repairs were not simply fragile
memorizations of the input.



28 Authors Suppressed Due to Excessive Length

3.3.6 Cost of Intrusion Detection False Positives

Finally, we examine the effect of IDS false positives when used as a signal to
GenProg. We randomly selected three of the lowest-scoring normal requests (clos-
est to being incorrectly labeled anomalous) and attempted to “repair” nullhttpd

against them; we call these requests quasi-false positives (QFPs). The “Quasi False
Pos.” rows of Table 3 show the effect of time to repair and requests lost to repair
when repairing these QFPs.

QFP #1 is a malformed HTTP request. The GenProg repair changed the error re-
sponse behavior so that the response header confusingly includes HTTP/1.0 200 OK

while the user-visible body retains the correct 501 Not Implemented message, but
with the color-coding stripped. The header inclusion is ignored by most clients; the
second change affects the user-visible error message. Neither causes the webserver
to drop additional legitimate requests, as Table 3 demonstrates.

QFP #2 is a HEAD request; such requests are rarer than GET requests and only
return header information such as last modification time. They are used by clients to
determine if a cached local copy suffices. The repair changes the processing of HEAD
requests so that the Cache-Control: no-store line is omitted from the response.
The no-store directive instructs the browser to store a response only as long as
it is necessary to display it. The repair thus allows clients to cache pages longer
than might be desired. It is worth noting that the Expires: <date> also included
in the response header remains unchanged and correctly set to the same value as
the Date: <date> header (also indicating that the page should not be cached), so a
conforming browser is unlikely to behave differently. Table 3 indicates request loss.

QFP #3 is a relatively standard request, whichGenProg fails to “repair”. Since no
repair is deployed, there is no subsequent loss to repair quality.

These experiments support the claim that GenProg repairs address given errors
and without compromising functionality. It appears that the time taken to generate
these repairs is reasonable and does not unduly influence real-world program perfor-
mance. Finally, the danger from anomaly detection false positives is lower than that
of low-quality repairs from inadequate test suites, but that both limitations are man-
ageable. We conclude that integration of GenProg in the Helix framework viably
modifies and reduces a program’s attack surface in response to detected vulnerabil-
ities, and can thus improve program performance over time.

4 Conclusions and future work

We have described the Helix metamorphic shield, which (1) continuously shifts
the program’s attack surface both spatially and temporally and (2), reduces the at-
tack surface by automatically repairing existing vulnerabilities as they are detected.
Taken together, these techniques allow software to change quickly enough to thwart
a determined attacker and to improve over time by taking advantage of informa-
tion revealed by such an attacker. Our results show that these approaches are cost-



Moving Target Defenses in the Helix Self-Regenerative Architecture 29

effective, applying to a wide variety of error types and at multiple layers of the soft-
ware stack. We intend to continue exploring the benefits of randomization, such as
by combining automatic exploit and test case generation for existing binaries to con-
struct a closed-loop hardening system for existing binaries, enabling the proactive
reduction and shifting of the program’s attack surface without the need for attackers
to reveal information about vulnerabilities.

5 Acknowledgements

This research is supported by National Science Foundation (NSF) grant CNS-
0716446, the Army Research Office (ARO) grant W911-10-0131, the Air Force Re-
search Laboratory (AFRL) contract FA8650-10-C-7025, and DoD AFOSR MURI
grant FA9550-07-1-0532. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the NSF, AFRL, ARO,
DoD, or the U.S. Government.

References

1. http://httpd.apache.org/docs/2.2/programs/ab.html (2010)
2. Al-Ekram, R., Adma, A., Baysal, O.: diffX: an algorithm to detect changes in multi-version

XML documents. In: Conference of the Centre for Advanced Studies on Collaborative re-
search, pp. 1–11. IBM Press (2005)

3. Anvik, J., Hiew, L., Murphy, G.C.: Coping with an open bug repository. In: OOPSLA Work-
shop on Eclipse Technology eXchange, pp. 35–39 (2005)

4. Barrantes, E.G., Ackley, D.H., Forrest, S., Palmer, T.S., Stefanović, D., Zovi, D.D.: Random-
ized Instruction Set Emulation to Disrupt Binary Code Injection Attacks. In: Conference on
Computer and Communications Security, pp. 281–289. ACM (2003)

5. Barrantes, E.G., Ackley, D.H., Forrest, S., Stefanovic, D.: Randomized instruction set em-
ulation. ACM Transactions on Information System Security. 8(1), 3–40 (2005). DOI
http://doi.acm.org/10.1145/1053283.1053286

6. BBC News: Microsoft zune affected by ‘bug’. In: http://news.bbc.co.uk/2/hi/
technology/7806683.stm (2008)

7. http://www.phpbb.com/community/faq.php?mode=bbcode
8. Bernstein, D.J.: Cache-timing attacks on AES (2005). URL http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf
9. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of the 12th

USENIX Security Symposium, pp. 1–14 (2003)
10. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: Detecting return-oriented

programming malicious code. Information Systems Security pp. 163–177 (2009)
11. Co, M., Coleman, C.L., Davidson, J.W., Ghosh, S., Hiser, J.D., Knight, J.C., Nguyen-Tuong,

A.: A lightweight software control system for cyber awareness and security. Resilient Control
Systems pp. 19–24 (2009)

12. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G.: Formatguard: Automatic protection
from printf format string vulnerabilities. In: USENIX Security Symposium, (2001)



30 Authors Suppressed Due to Excessive Length

13. Evans, D., Nguyen-Tuong, A., Knight, J.C.: Effectiveness of moving target defenses. In: S. Ja-
jodia, A.K. Ghosh, V. Swarup, C. Wang, X.S. Wang (eds.) Moving Target Defense, Advances
in Information Security, vol. 54, pp. 29–48. Springer (2011)

14. Gustafson, S., Ekart, A., Burke, E., Kendall, G.: Problem difficulty and code growth in genetic
programming. Genetic Programming and Evolvable Machines pp. 271–290 (2004)

15. Hiser, J.D., Coleman, C.L., Co, M., Davidson, J.W.: Meds: The memory error detection sys-
tem. In: Symposium on Engineering Secure Software and Systems, pp. 164–179 (2009)

16. Hiser, J.D., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: ILR: Where’d my gadgets
go? In: IEEE Symposium on Security and Privacy. IEEE (2012)

17. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press (2006)
18. Hu, W., Hiser, J., Williams, D., Filipi, A., Davidson, J.W., Evans, D., Knight, J.C., Nguyen-

Tuong, A., Rowanhill, J.: Secure and practical defense against code-injection attacks using
software dynamic translation. In: Virtual Execution Environments, pp. 2–12 (2006)

19. Ingham, K.L., Somayaji, A., Burge, J., Forrest, S.: Learning DFA representations of HTTP for
protecting web applications. Computer Networks 51(5), 1239–1255 (2007)

20. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.): Moving Target Defense
- Creating Asymmetric Uncertainty for Cyber Threats, Advances in Information Security,
vol. 54. Springer (2011)

21. Jim, T., Swamy, N., Hicks, M.: Defeating Scripting Attacks with Browser-Enforced Embedded
Policies. In: International World Wide Web Conference, pp. 601–610 (2007)

22. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-localization
technique. In: Automated Software Engineering, pp. 273–282 (2005)

23. Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation
studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)

24. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection Attacks With
Instruction-Set Randomization. In: Conference on Computer and Communications Security,
pp. 272–280 (2003)

25. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program shepherding.
In: USENIX Security Symposium, pp. 191–206 (2002)

26. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

27. Lawton, K.P.: Bochs: A portable pc emulator for unix/x. Linux J. 1996(29es), 7 (1996)
28. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program sampling.

In: Programming language design and implementation, pp. 141–154 (2003)
29. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,

Hazelwood, K.: Pin: Building customized program analysis tools with dynamic instrumenta-
tion. In: Programming Language Design and Implementation, pp. 190–200 (2005)

30. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX utilities.
Communications of the Association for Computing Machinery 33(12), 32–44 (1990)

31. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs in x86 binary
linux programs. In: USENIX Security Symposium, pp. 67–82 (2009)

32. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instru-
mentation. In: Programming Language Design and Implementation, pp. 89–100 (2007)

33. Nguyen-Tuong, A., Wang, A., Hiser, J., Knight, J., Davidson, J.: On the effectiveness of the
metamorphic shield. In: European Conference on Software Architecture: Companion Volume,
pp. 170–174 (2010)

34. Pigoski, T.M.: Practical Software Maintenance: Best Practices for Managing Your Software
Investment. John Wiley & Sons, Inc. (1996)

35. Portokalidis, G., Keromytis, A.D.: Fast and practical instruction-set randomization for com-
modity systems. In: Annual Computer Security Applications Conference, pp. 41–48 (2010)

36. Rajkumar, R., Wang, A., Hiser, J.D., Nguyen-Tuong, A., Davidson, J.W., Knight, J.C.:
Component-oriented monitoring of binaries for security. In: Hawaii International Conference
on System Sciences, pp. 1–10 (2011)

37. Ramamoothy, C.V., Tsai, W.T.: Advances in software engineering. IEEE Computer 29(10),
47–58 (1996)



Moving Target Defenses in the Helix Self-Regenerative Architecture 31

38. Rodes, B.: Stack layout transformation: Towards diversity for securing binary programs. In:
Doctoral Symposium, International Conference of Software Engineering (2012)

39. Rodes, B., Nguyen-Tuong, A., Knight, J., Shepherd, J., Hiser, J.D., Co, M., Davidson, J.W.:
Diversification of stack layout in binary programs using dynamic binary translation. Tech.
rep. (2012)

40. RSnake: XSS (Cross Site Scripting) Cheat Sheet. http://ha.ckers.org/xss.html
(2008)

41. Schulte, E., Forrest, S., Weimer, W.: Automatic program repair through the evolution of as-
sembly code. In: Automated Software Engineering, pp. 33–36 (2010)

42. Scott, K., Davidson, J.: Strata: A software dynamic translation infrastructure. In: IEEE Work-
shop on Binary Translation (2001)

43. Scott, K., Davidson, J.: Safe virtual execution using software dynamic translation. In: Annual
Computer Security Applications Conference (2002)

44. Scott, K., Kumar, N., Velusamy, S., Childers, B.R., Davidson, J.W., Soffa, M.L.: Retargetable
and reconfigurable software dynamic translation. In: International Symposium on Code Gen-
eration and Optimization, pp. 36–47 (2003)

45. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing Legacy Systems: Software Technolo-
gies, Engineering Process and Business Practices. Addison-Wesley Longman Publishing Co.,
Inc. (2003)

46. Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., Boneh, D.: On the effectiveness
of address-space randomization. In: Computer and Communications Security, pp. 298–307
(2004)

47. Sovarel, N., Evans, D., Paul, N.: Where’s the feeb? the effectiveness of instruction set ran-
domization. In: USENIX Security Conference (2005)

48. Sridhar, S., Shapiro, J.S., Bungale, P.P.: Hdtrans: a low-overhead dynamic translator.
SIGARCH Comput. Archit. News 35(1), 135–140 (2007)

49. Sutherland, J.: Business objects in corporate information systems. ACM Comput. Surv. 27(2),
274–276 (1995)

50. Symantec: Internet security threat report. In: http://eval.symantec.com/
mktginfo/enterprise/white_papers/ent-whitepaper_symantec_
internet_security_threat_report_x_09_2006.en-us.pdf (2006)

51. Thimbleby, H.: Can viruses ever be useful? Computers and Security 10(2), 111–114 (1991)
52. http://info.tikiwiki.org/tiki-index.php (2010)
53. Van Gundy, M., Chen, H.: Noncespaces: Using Randomization to Enforce Information Flow

Tracking and Thwart Cross-Site Scripting Attacks. In: Distributed System Security Sympo-
sium, pp. 55–67 (2009)

54. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using
genetic programming. In: International Conference on Software Engineering, pp. 364–367
(2009)

55. Williams, D., Hu, W., Davidson, J.W., Hiser, J.D., Knight, J.C., Nguyen-Tuong, A.: Security
through diversity: Leveraging virtual machine technology. IEEE Security and Privacy 7(1),
26–33 (2009)

56. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE Transac-
tions on Software Engineering 28(2), 183–200 (2002)


