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Abstract. More than new algorithms, proofs, or technologies, it is the
emergence of definitions that has changed the landscape of cryptography.
We describe how definitions work in modern cryptography, giving a num-
ber of examples, and we provide observations, opinions, and suggestions
about the art and science of crafting them.

1 Introduction

This paper was written to accompany an invited talk at a broad computer science
conference, ASIAN ’04, and so I will make it higher-level, more conversational,
and more pedantic than a conventional paper.

I would like to begin by thanking Ajarn Kanchana Kanchanasut, and the
other organizers of ASIAN ’04, for their kind invitation to give a talk for this
conference. It is a special treat to give a talk here, in my adoptive home of
Thailand, at my adoptive university of Chiang Mai University.

My topic today is odd and ambitious. It’s about something that has been
a theme of my work for some fifteen years, and yet about which I have never
spoken in an abstract or general way. The theme is the importance of definitions.
My plan is to intermix abstract musings about definitions with nice examples
of them. The examples, and indeed my entire perspective, are from modern
cryptography, my area of research. But the talk isn’t meant to be a survey of
cryptographic definitions; it is something more personal and philosophical.

Before we really get going, I should explain that there are many uses of
the word definition. When you say something like let n =10 you are making
a definition, and people use the word definition for an informal description of
an idea, too. Here I’m not interested in definitions of either flavour. For this
talk, definitions are things that specify, in a mathematically rigorous way, some
significant notion in a field. You’ve all seen such definitions in computer science—
things like a Turing-computable function or a language that is NP-complete.

Cryptography is about making schemes (or mechanisms or protocols) that
accomplish some goal despite the attack of an adversary. A definition in this
domain must therefore specify what the adversary is allowed to do as it attacks
the scheme, and when it is successful in its attack. You will also need to define
the syntax for the scheme—the “type” of object that you aim to make.



Definitions in cryptography emerged rather suddenly, in 1982, with the work
of Shafi Goldwasser and Silvio Micali [GM]. Before then, cryptography was all
about schemes and attacks, and there was no way to gain confidence in a scheme
beyond that which was had when smart people failed to find an attack. What
Goldwasser and Micali did was, first of all, to define cryptography’s classical goal,
message privacy (the goal of an encryption scheme). The [GM] definition was
strong1 and satisfying, and they proved it equivalent to very different-looking
alternatives. Next they gave a protocol for encryption, and proved their proto-
col satisfied their definition, given a complexity-theoretic assumption. The proof
took the form of a reduction: if the encryption protocol didn’t meet the secu-
rity definition, some other protocol wouldn’t satisfy its security definition. The
definition–protocol–proof approach has come to be called provable security.2

Provable security would dramatically change the character of my field. No
longer would cryptography be solely an art; in an instant, a science of cryptog-
raphy was born. Literally thousands of papers would come to be written within
this framework. Nowadays, roughly half of the papers in cryptography’s top con-
ferences are in the provable-security tradition. In recent years, provable-security
has come to have a large impact on practice, too, delivering concrete mecha-
nisms like HMAC [BCK] (the message-authentication method used in your web
browser) as well as high-level ideas that were silently absorbed into practice,
such as the need for a public-key encryption scheme to be probabilistic [GM].

Provable security begins with definitions. It embraces what one might call the
definitional viewpoint : the belief that our technical goals can be formally defined,
and that by understanding the properties and realizations of these definitions
we are better able to address our original goals.

Many people assume that a field’s definitions are just to make something for-
mal. They conclude that definitions are an incredible bore. But definitions aren’t
about formalism; they’re about ideas. In making a definition in cryptography we
are trying to capture, in precise language, some human notion or concern dealing
with privacy or authenticity. When you ask a question like What is an encryp-
tion scheme supposed to do?, or What does a digital signature accomplish?, it
is a definition that you should be aiming for in answer—not an algorithm, an
example, a piece of code, or some descriptive English prose.

Definitions enable theorems and proofs, but they do more than that, and
can be useful even in the absence of theorem and proofs. For one thing, defini-
tions facilitate meaningful communication. When someone says Here you need
an encryption scheme that achieves semantic security under an adaptive chosen-
ciphertext attack, this tells you an enormous amount about what kind of object is

1 A definition is strong if the adversary’s job is seemingly easy. If you satisfy a strong
definition you satisfy weaker definitions, too. If you are proving that your protocol
achieves some goal, the proof will mean more if you choose a strong definition.

2 This paragraph greatly simplifies the actual history. Papers setting the context for
[GM] include [Co,DH,BBS,B,Sha,SRA]. Nearly contemporaneous provable-security
work, for a different problem, is [BM,Y]. No one paper is fully responsible for the
idea of doing definitions and proofs in cryptography, but [GM] played a pivotal role.



expected. I believe that a good deal of non-productive discourse in cryptography
is attributable to muddled, definitionless speech.

Definitions help you to think, and shape how you think. I have seen how, often
times, one can hardly get anywhere in thinking about a problem until things have
been named and properly defined. Conversely, once a definition is spelled out,
what was obscure may become obvious. I’ll give an example in Section 5.

Let me now enumerate the first set of points I have made. When the spirit
moves me, I’ll list random claims, viewpoints, or pieces of unsolicited advice.

B 1 The emergence of definitions, and the definitional viewpoint, can usher in
a huge transformation in the character of that field.

B 2 Being formal isn’t the purpose of a definition. While only something precise
deserves to be called a definition, the purpose lies elsewhere.

B 3 Definitions are about ideas. They arise from distilling intuitively held no-
tions. They capture the central concepts of a field. They enable theorems and
proofs, allow you to engage in more productive discourse, and help you to think.

B 4 Definitions can be worthwhile even in the absence of theorems and proofs.

2 Pseudorandom Generators

Let’s cease all this abstraction and give a first example. I’ll describe a lovely
definition due to Blum and Micali [BM] and Yao [Y]. They ask What does it
mean to generate random-looking bits?

Setting a high bar, we aim to produce pseudorandom bits that are so much
like the genuine article that no feasible program D can tell the difference. This
might sound impossible. In fact, if we generate any fixed sequence of pseudoran-
dom bits Y , we have no chance: for any Y there is a simple algorithm D that does
a good job at telling if it is given Y or random bits. Thus our method of making
pseudorandom bits must itself be randomized. We therefore focus on an object, a
pseudorandom generator (PRG), that stretches a random seed, s, into a longer,
pseudorandom string. Formally, a PRG is any function G: {0, 1}n → {0, 1}N

where N > n ≥ 1 are constants associated to G.
The above definition gives the syntax of a PRG. We hope that G(s), for a

random s ∈ {0, 1}n, will look like a random string of length N , but nothing like
that is part of the definition. The definition might seem woefully inadequate for
this reason. It tells us, for example, that the function G: {0, 1}100 → {0, 1}200
defined by G(s) = 0200 is a PRG. If the intent of a PRG is that you can use G(s),
for a random s, in lieu of N random bits, then how is it that outputting a constant
earns you the right to be called a PRG?

Despite the above, you should separately define the syntax of an object and
its measure of worth. You’re in no position to define what an object is supposed
to until you’ve defined what the object is.

B 5 Always separate the syntax of the object you are defining from the measure
of its quality.



The quality of a PRG will be captured by a real number. Actually, the number
is associated not to the PRG but to the pair consisting of a PRG, G, and a
distinguisher, D. A distinguisher is just an algorithm, possibly a probabilistic
one, equipped with a way to interact with its environment. One can think of
it as an adversary—an agent trying to break the PRG. We equip D with an
oracle that has a “button” that D can push. Each time D pushes the button
(“makes an oracle query”), it gets a string. For a PRG G: {0, 1}n → {0, 1}N

and a distinguisher D, consider running (G, D) in either of two different games:
Game 1: every time the distinguisher D makes an oracle query, choose a
random string s ∈ {0, 1}n and give the distinguisher Y = G(s).
Game 0: every time the distinguisher D makes an oracle query, choose a
random string Y ∈ {0, 1}N and give the distinguisher Y .

The distinguisher’s goal is to ascertain if it is playing game 1 or game 0. To
that end, when it is ready, it outputs a bit b ∈ {0, 1} and halts. If it thinks it
is playing game 1, it should output 1, and if it thinks it is playing game 0, it
should output 0. The advantage of D in attacking G is defined as Advprg

G (D) =
Pr[DGame1 ⇒ 1] − Pr[DGame0 ⇒ 1], the probability that D outputs a 1 when it
is plays game 1, minus the probability that D outputs a 1 when it plays game 0.
This difference measures how well D is doing.

A large advantage, like 0.9, means that the distinguisher is doing well. A
small advantage, like 2−40, means that it is doing poorly. A negative advantage
means that the distinguisher ought to flip when it says 0 and 1.

Let’s return to the example generator G(s) = 0200 for each s ∈ {0, 1}100. That
this is a bad PRG is captured by the fact that there is an efficient distinguisher D
that gets high advantage in breaking G. All D has to do is to request from its
oracle a single string Y . If Y = 0200 then D outputs 1; otherwise, it outputs 0.
The advantage of D is 1− 2−200 ≈ 1, so D is doing great. The existence of this
distinguisher shows that G is a poor PRG.

You have now seen a cryptographic definition. Creating it took us from intu-
ition (the bits should look random) to a definition, Advprg

G (D), that refines and
formalizes it. The [GM,Y] notion of PRG security has proven to be deep and
useful, but we will not explore that here; our goal has only been to illustrate
how one turns a vague idea into a proper definition.

3 Asymptotic vs. Concrete Security

When should a PRG G be deemed secure? Note that it will always be possible
to get high advantage in breaking G: consider the distinguisher D that asks for
a single string Y and then returns 1 iff Y = G(s) for some s ∈ {0, 1}n. Then
Advprg

G (D) ≥ 1 − 2n−N ≥ 0.5. But this distinguisher is extremely inefficient,
even for modest n, because it needs 2n steps to enumerate the strings of {0, 1}n.
Unreasonable distinguishers will be able to get significant advantage. We would
be satisfied if every reasonable distinguisher D earns insignificant advantage.
How should we define reasonable and insignificant? There are two approaches,
the asymptotic approach and the concrete-security approach.



The asymptotic approach usually equates reasonable with polynomial time
and insignificant with negligible, where ε(n) is said to be negligible if for all
c > 0 there exists a K > 0 such that ε(n) < n−c for all n ≥ K. To use this
approach there needs to be a security parameter, n, relative to which we speak
of polynomial-time or negligible advantage. For a PRG, the security parameter
can be the length of the seed s. We need to go back and adjust the syntax
of a PRG so that it operates on seeds of infinitely many different lengths—for
example, we could redefine a PRG to be a function G: {0, 1}∗ → {0, 1}∗ where
|G(s)| = `(|s|) for some `(n) > n. Then we could say that a PRG G is secure
if every polynomial-time distinguisher D obtains only negligible advantage in
attacking G. The asymptotic approach is the traditional one, and all of the early
definitions in cryptography were originally formulated in this way.

The concrete-security approach is what we illustrated in Section 2. It punts
on the question of what is reasonable and insignificant, choosing never to define
these terms. As a consequence, it can’t define when an object is secure. The
viewpoint is that a definition of advantage already is a measure of security, and
making the “final step” of defining reasonable and insignificant is often unnec-
essary, and even artificial. It is ultimately the user of a scheme who will decide
what is reasonable and insignificant, and not based on any formal definition.
The concrete-security approach was popularized by Mihir Bellare and me.

You get different definitions for an object if you use asymptotic or concrete-
security. I’d like to ask if the difference is important. I think the answer is both
yes and no. We begin with no.

Not important. The essential idea in our treatment of PRGs transcends the
definitional choice of asymptotic vs. concrete security. That idea was to think
about a distinguisher that is asked to differentiate between two kinds of things:
the result of applying the PRG to a random string; or a bunch of random bits.
We measure, by a real number, how well the distinguisher does this job. At this
level, the asymptotic and concrete notions coincide. In addition, a small amount
of experience lets one easily translate between the two notions, and the former
effectively has the latter built-in. Asymptotic-security proofs embed a concrete-
security one, and, again, a little experience lets you extract it. All of this argues
that asymptotic vs. concrete security is not an important difference.

There were additional choices silently built into our treatment of PRGs that
seem likewise tangential. Choices like allowing multiple oracle queries, and (in
the asymptotic case) making adversaries “uniform” algorithms across different
values of n. In general, important definitions seem to be quite robust, but maybe
not in the sense that is often assumed.

B 6 Good definitions are robust, not in the sense that we can modify definitional
choices and leave the object being defined unchanged, but in the sense that
diverse elaborations leave intact a core definitional idea.

Important. I believe that the culture and character of modern cryptography
has been dramatically influenced by the fact that early definitions were always
asymptotic. The choice not only reflected shared sensibilities, it reinforced them.



Let’s first ask why early definitions were always asymptotic. Provable secu-
rity evolved within the theory community, in the intellectual tradition of other
asymptotic notions like big-O notation and NP-completeness. An asymptotic
treatment made for convenient discourse by defining when an object is secure.
The convenient language helped bring out broad relationships between notions.
Early workers in provable-security cryptography aimed at answering questions
that seemed most fundamental and aesthetic to them, and minimalist notions,
particularly one-way functions, were seen as the best starting point for building
other kinds of objects. This pushed one towards complex and inefficient con-
structions, and the definitional choices that would simplify their analyses.

Cryptography might have developed quite differently if concrete security had
been more prominent from the start. Concrete security encourages a higher de-
gree of precision in stating results and exploring the relationships between no-
tions. It is a better fit for blockciphers, which rarely have any natural security
parameter, and thus a better fit for goals usually achieved using blockciphers,
particularly symmetric encryption and message authentication codes. Concrete
security makes for a more accessible theory, with fewer alternating quantifiers
and complexity-theoretic prerequisites. It encourages a more applied theory.

Practitioners were alienated by the language of asymptotic complexity, the
high-level statements of results that fell under it, and the algorithmic inefficiency
that seemed endemic to early work. There emerged a pronounced culture gap
between cryptographic theory and practice. Theorists and practitioners ignored
one other, attending disjoint conferences. Neither group regarded the other as
having anything much to say.

The asymptotic approach isn’t responsible for the theory/practice gap (which
is, after all, endemic to many fields), but it has exacerbated it, effectively encour-
aging a less relevant style of theory. When Bellare and I wanted to push provable
security in a more practice-cognizant direction, we saw abandoning asymptotics
as a key element of our program.

Making concrete security more visible and viable has had a big impact on the
type of work that now gets done. Papers are published that give tighter analyses
of existing protocols; new protocols are invented so as to admit better security
bounds; notions are compared by looking at the concrete security of reductions
and attacks; and blockcipher-based constructions are designed and analyzed. All
of these activities are fostered by the concrete-security view.

B 7 Definitional choices can dramatically affect the way that a theory will de-
velop and what it is good for. They impact the types of questions that are likely
to be asked, the level of precision expected in an answer, and what background
is needed to understand it.

B 8 Definitions arise within a particular scientific culture. They reflect the sen-
sibilities of that culture, and they also re-enforce it, distancing it from concerns
outside of that culture.

B 9 To change the character of work within a field, change its definitions.



4 Blockciphers

Let’s next look at blockciphers, objects like DES and AES. You’ve all used
blockciphers; they’re in every ATM machine and web browser. Here I want to
ask what is a blockcipher, and how do we measure a blockcipher’s security? Our
treatment is based on that of Bellare, Kilian, and Rogaway [BKR] which, in turn,
builds on Goldreich, Goldwasser, and Micali [GGM] and Luby and Rackoff [LR].

Again beginning with syntax, a blockcipher is a function E: K × {0, 1}n →
{0, 1}n where K is a finite, nonempty set (the key space) and n ≥ 1 is a number
(the blocksize) and E(K, ·) is a permutation (on {0, 1}n) for each K ∈ K. When
Y = E(K, X) we call X the plaintext-block and Y the ciphertext-block.

For measuring security, there are lots of adversarial goals that one might
focus on. Goals like an adversary’s inability to recover plaintext blocks from
ciphertext blocks, or its inability to recover a key K from (Xi, Yi)-pairs, where
Yi = E(K, Xi). But experience leads in a different direction.

To define blockcipher security it is useful to distinguish the model (or attack
model) from the goal. The model says what the adversary can do—how the sys-
tem runs in the adversary’s presence. The goal says what the adversary is trying
to accomplish as it operates within the model. For our attack model, we con-
sider an adaptive, chosen-plaintext attack : the adversary can get the ciphertext
block for any plaintext block that it names, and each plaintext block that the
adversary asks about may depend on the ciphertext blocks that it has received.
For the goal, we’ll say that the adversary is trying to distinguish the ciphertext
blocks that it receives from an equal number of random, distinct strings.

Our notion of security, what is called PRP (pseudorandom permutation)
security, associates a real number to a blockcipher E and a distinguisher D. In
game 1, a random key K ∈ K is chosen and then, whenever the adversary asks
its oracle a question X ∈ {0, 1}n, we return Y = E(K, X). In game 0, a random
permutation π is chosen among all the permutations from {0, 1}n to {0, 1}n

and then, whenever the adversary asks its oracle a question X, we return π(X).
Distinguisher D wants to figure out if it is playing game 1 or game 0. It outputs
a bit b ∈ {0, 1} which is its guess. We define D’s advantage, Advprp

E (D), as
Pr[DGame1 ⇒ 1] − Pr[DGame0 ⇒ 1], the difference in the probabilities that D
outputs 1 when it plays games 1 and 0. Intuitively, a blockcipher E is “good” if
no reasonable distinguisher D gets high prp-advantage.

The reader may notice that what I called the model has sort of vanished in
the actual definition. I never formally defined the model, and it effectively got
merged into the definition of the goal. This situation is common. Thinking in
terms of an attack model is an important precursor to doing a definition, but the
attack model might get abstracted away. For simple definitions, like blockcipher
security, this is not a problem. For complex definitions, the model should be left
intact, for the definition will be easier to understand.

B 10 It is often useful to develop a model prior to giving a definition. Later,
the definition might absorb the model. For complex goals, formalize the model
and have it remain intact in the definition.



Our definition of PRP security may seem unrealistically strong. Why should
the adversary be allowed to make arbitrary queries to an enciphering oracle
when, in typical usages of a blockcipher, its capabilities will be much more con-
strained? The answer is, in large part, that it works. First, good PRP security
seems to be achieved by objects like AES; the assumption doesn’t over-shoot
what we can efficiently create. Second, the PRP definition is strong enough to
give rise to simple and provably-good constructions. Finally, natural, weaker
definitions have not been shown effective for designing new constructions, nor
in justifying popular constructions that predate notions of PRP security. The
above experience effectively becomes the rationale for the definition. It would
be wrong to focus on the fact that the definition gives the adversary unrealistic
power, because the definition was never intended to directly model an adversary’s
real-world capabilities in attacking some particular use of the blockcipher.

B 11 In defining low-level primitives, simple, easily used, pessimistic definitions
are better than more complex and possibly more faithful ones.

The PRP definition of blockcipher security has by now been used in numerous
papers. This fact, all by itself, is the best evidence that a definition is doing its
job. Definitions are best evaluated retrospectively.

If you want to make a definition of value, you need a market. A definition
has to formalize a notion that people would like to have defined, and it has to
do so in a way of use to that community. Of course all scientific work should be
done with the interests of some community in mind. But for a definition, what
will best serve this community has to be the focus of ones concern.

B 12 The primary measure of a definition’s worth is how many people and
papers use it, and the extent to which those people and papers say interesting
things. A definition is crafted for the benefit of some community.

5 Authenticated Encryption

Authenticated encryption (AE) allows a sender to transmit a message to a re-
ceiver in such a way as to assure both its privacy and authenticity. The sender
and the receiver share a secret key K. The AE goal has been known to cryp-
tographic practice for decades, but it was only recently provided with a defini-
tion and provable-security treatment [KY,BR1,BN]. I’ll follow the nonce-based
treatment from [RBB]. To capture privacy, we’ll formalize that ciphertexts are
indistinguishable from random strings. To capture authenticity, we’ll formalize
that an adversary can’t devise authentic messages beyond those that it has seen.

Beginning with syntax, an AE-scheme is a pair of deterministic algorithms
(E ,D) where E : K×N ×{0, 1}∗ → {0, 1}∗, D: K×N ×{0, 1}∗ → {0, 1}∗∪{⊥},
sets K,N ⊆ {0, 1}∗ are nonempty and finite, |E(K, N,M)| = |M | + τ for some
constant τ , and D(K, N,C) = M whenever C = E(K, N,M). Algorithms E
and D are called the encryption algorithm and the decryption algorithm, and
strings K, N , M , and C are called the key, nonce, plaintext, and ciphertext.



The nonce is supposed to be a non-repeating value, such as a counter, and the ⊥
symbol is used to indicate that the ciphertext is inauthentic.

To quantify security we associate a real number to an AE-scheme (E ,D)
and an adversary A. This is done by imagining two different “contests” that A
may enter, a privacy contest and the authenticity contest. The adversary may
enter either contest, getting a score. Our measure of security is the real number
Advae

(E,D)(A) which is the score that A earns from the contest that it enters.
For the privacy contest the adversary A plays one of two games. In game 1, a

key K ∈ K is randomly chosen at the beginning of the game. Then, when the ad-
versary asks an oracle query of (N,M) it gets back the string C = E(K, N,M). In
game 0, when the adversary asks an oracle query of (N,M) it gets back a random
string C of length |M | + τ . Playing either game, the adversary may not repeat
an N -value. When it is ready, the adversary outputs a bit b ∈ {0, 1}. The score
that adversary gets is Pr[AGame1 ⇒ 1]−Pr[AGame0 ⇒ 1], meaning the difference
in the probabilities that A outputs 1 in games 1 and 0. Intuitively, adversary A
is trying to distinguish if it is receiving actual ciphertexts for the plaintexts that
it asks about (game 1) or an equal number of random bits (game 0).

For the authenticity contest, the adversary again has an oracle, but this
time the oracle always behaves according to the above game 1: a key K ∈ K
is randomly chosen and each query (N,M) is answered by C = E(K, N,M).
As before, the adversary may not repeat an N -value as it interacts with its
oracle. When the adversary is ready, it outputs a forgery attempt (N,C). The
adversary A is said to forge if D(K, N,C) 6= ⊥ and A never asked an oracle
query (N,M) that returned C. The adversary’s score is the probability that it
forges. Intuitively, adversary A is trying to produce a valid ciphertext that is
different from any ciphertext that it has seen.

Authenticated encryption is an important goal of shared-key cryptography,
and the prerequisites for defining it and investigating it have been available for
a long time. Why would a definition for AE wait until the year 2000 to first
appear? There are several answers, but I think that the most important one
is that nobody noticed there was anything that needed to be defined. There
was already a notion for the privacy of a shared-key encryption scheme, and
there was already a notion for what it means to create a good tag, or message
authentication code, to ensure a message’s authenticity. People understood that
if you wanted to achieve privacy and authenticity, you just did both things.
It seemed to fall beneath anyone’s radar that one would still need to prove
that the composite mechanism worked; that there are several ways to do the
combining and they don’t all work; and one couldn’t even speak of the composite
scheme working, or not, until there was a definition for what the composite
scheme was supposed to do. If you think too much in terms of mechanisms, not
definitions, then you may fail to notice all of this. In general, the first step in
creating a definition is to notice that there is something that needs to be defined.
Provable-security cryptography began with the realization that privacy needed
to be defined, which was already a crucial and non-obvious observation.

B 13 It is easy to overlook that something needs to be defined.



Shortly after AE was defined, a new AE-scheme was put forward by Jutla [J].
By better blending the parts of the algorithm used for privacy and for authentic-
ity, Jutla was able to construct a scheme that achieves the AE-goal with nearly
the efficiency of traditional, privacy-only mechanisms. Having a definition for
AE was essential for figuring out if the scheme was correct.

In the absence of a definition for AE, one can easily design schemes that
look sound but aren’t. Indeed following the publication of Jutla’s scheme and
others, the U.S. National Security Agency (NSA) released, through NIST, its
own scheme for efficient AE. The mechanism was called dual counter mode. I
myself read the definition of the mode and broke it in less than a day, privately
informing NIST. Donescu, Gligor, and Wagner likewise broke the scheme right
away [DGW]. What is it that we knew that the folks from the super-secret NSA
did not? The answer, I believe, is definitions. If you understood the definition for
AE, it was pretty obvious that the NSA scheme wouldn’t work. In the absence of
understanding a definition, you wouldn’t see it. Definitions, not initially intended
to help people find attacks, nonetheless do just that. By specifying the rules and
goal of the game, the attacker can think more clearly about strategies that
conform to the rules but violate the goal. It seems to be the norm that the first
person to set forth the definition for any complicated, unformalized goal will
also break, without much effort, all the existing protocols for that goal. With no
clear definition in mind, inventors can’t do their job well.

B 14 Having definitions makes it easier to come up with attacks.

I would like to end this section by emphasizing that a definition like that we
have given for AE does not suddenly appear; it is part of an evolving line of
definitions. Here the sequence of definitional ideas flow from [GM] and [GMRi]
to [BKR] and [BDJR] to [BR1,KY,BN] and [RBB]. In general, definitions in
cryptography seem to be constantly evolving. They evolve for several reasons.
New problems get provable-security treatments (oftentimes these problem hav-
ing already been considered by practitioners). Shortcomings are discovered in
prior definitions—oversights, undesirable consequences, or outright bugs. More
elegant ways to do old definitions are discovered. Or the intended use of a defini-
tion changes, motivating a different way of doing things. That definitions evolve
doesn’t contradict point B 6, which might help you to feel better when your
definitional choices get antiquated.

B 15 Definitions emerge, change, and die more than people think.

6 Session-Key Distribution

In a distributed system, communication between parties typically takes place in
sessions, a relatively short period of interaction between two parties, protected
by an associated session key. A party can maintain multiple sessions, even to
a particular partner. A protocol for session-key distribution (SKD) aims to se-
curely distribute a pair of session keys. There are several trust models for SKD,



a trust model saying who has what keys. Session-key distribution is addressed
by the Kerberos and SSL/TLS protocols.

Definitions for SKD and the related problem of entity authentication begin
with Bellare and Rogaway [BR2], continuing with work like [BR3,BPR,CK,Sho].
Models and definitions in this domain are more complex than those we’ve met
so far and so, for concision, we will have to be less thorough. Our description is
loosely based on [BPR], following [BR3,BR2].

Our model for SKD pessimistically assumes that all communication among
parties is under the adversary’s control. It can read messages produced by any
party, provide its own messages to them, modify messages before they reach
their destination, delay or replay them. It can start up entirely new instances
of any party. We’ll also let the adversary learn already-distributed session keys,
and we’ll let it corrupt parties, learning all that they know.

To capture all of these possibilities, we imagine providing an adversary A
with an infinite collection of oracles. See Fig. 1. There’s an oracle Πs

i for each
party i and each natural number s. Oracle Πs

i represents instance s of party i.
Each oracle has its own private coins and its own state, which it remembers
between calls. Oracle initialization depends on the trust model.
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Fig. 1. The model for session key distribution envisages an adversary, A, in a sea of
oracles. Oracle Πs

i models instance s of party i. Each oracle runs the SKD protocol.

The adversary’s capabilities are embodied by the types of oracle queries we
permit, and how we say to answer them. There are three types of queries corre-
sponding to the adversarial capabilities we have mentioned.

(1) Send (i, s, M) — This sends message M to oracle Πs
i . The oracle computes

what the protocol says to, and sends back the response. Should the oracle accept,
regarding itself as having now arrived at a session key, this fact is made visible
to the adversary, along with a value called a session-id (SID), and a partner-id
(PID). The actual session key that the oracle holds, sn, will not be visible to



the adversary. To initiate the protocol between an initiator i and a responder j,
the adversary should send message M = j to an unused instance of i.

(2) Reveal (i, s) — If oracle Πs
i has accepted, holding some session key sn, then

this query returns sn to the adversary. This query will be used to capture the
idea that loss of a session key shouldn’t be damaging to other sessions.

(3) Corrupt (i, K) — This is directed against a party, not an instance of a party.
The adversary obtains any long-lived or secret keys associated to party i, as well
as the private states of all utilized instances of i. The query may also be used to
replace any keys under i’s control; this is the role of the argument K.

With a model now sketched out, let’s describe a measure for adversarial success.
The idea is to test if the adversary can distinguish a session key embedded inside
an oracle from a random session key drawn from the same distribution. Thus
we extend the model above to include a Test query, Test(i, s), directed to some
oracle Πs

i . There are two ways to answer this query. In game 1, a query Test(i, s)
returns the session key sn inside oracle Πs

i . In game 0, it returns a random session
key sn drawn from the distribution that session keys are supposed to be drawn
from. Both cases require that Πs

i has accepted. The advantage of the adversary,
Advskd

Π (A), is, once again, the probability that A outputs 1 in game 1 minus
the probability that it outputs 1 in game 0.

If you’re still with me, you should complain that this definition makes no
sense, because the adversary can trivially figure out the session key sn in an
oracle Πs

i . In fact, there are multiple ways to do this. First, the adversary can
make a Corrupt query to party i. Alternatively, it can make a Reveal query to
instance Πs

i . More problematic still, an SKD protocol is supposed to distribute
a session key to a pair of oracles, so when Πs

i accepts, there may well be an
oracle Πt

j (different from Πs
i ) that should have the same session key sn as Πs

i .
A Corrupt query to j or a Reveal query to Πt

j would reveal the session key of Πs
i

and make it easy to distinguish games 0 and 1.
We handle this issue by saying that an oracle Πs

i starts off fresh, but ceases
to be so if there is a call Corrupt(i,K), Reveal(i, s), Corrupt(j,K), or Reveal(j, t),
where Πt

j is partnered to Πs
i . The oracles are partnered if each has accepted and

they share the same SID. In addition, we demand that only they have that SID,
one oracle is an initiator and the other is a responder, and Πs

i has a PID of j
while Πt

j has a PID of i. Now we simply demand that the adversary perform its
Test query on an oracle that is fresh; choosing an unfresh oracle earns no credit.

One aspect of the definitional approach above is seen often enough to single
out: the idea of lifting something unavoidable into a definition. That is, a common
definitional motif is to formalize that which one can not avoid, and then capture
the idea that there is nothing beyond that of significance.

As before, a key step in arriving at a definition for SKD was to realize that
there was a significant goal to be defined. I learned this from talking to security
architects when I worked at IBM. Back then, the security folks were interested in
something called Kerberos, which I had never heard of. Nobody could adequately



explain to me what problem this Kerberos thing aimed to do. It was frustrating.
Either the security people were nuts, obsessing on some non-existent or trivial
problem, or else they weren’t. I decided to assume the latter.

B 16 Practice that has not yet met theory is an excellent place for which to
craft definitions. Practitioners won’t be focusing on a pointless problem.

Soon after the appearance of [BR3], Rackoff came up with an example show-
ing how our definition was not strong enough to guarantee security for certain
applications that would use the distributed session key. We traced the problem
to a simple issue: we had wrongly made the restriction that the adversary’s Test
query would be its final query. Removal of this restriction (as in the SKD notion
described above) solved the problem.

The definition in [BR3] actually has a more basic problem. Our initial ap-
proach to defining partnering, used in [BR2], depended on the idea of a matching
conversation: oracles Πs

i and Πt
j were said to be partnered if they engaged in

conversations that are consistent with messages being faithfully relayed between
them (except that the last message might not be delivered). This worked fine,
but it focused on something that seemed syntactic and fundamentally irrelevant.
So in [BR3] we tried something different, assuming an existentially guaranteed
partnering function on the global transcript of Send-queries. Almost immediately,
I regretted this choice. It did not carry with it the strong intuition of matching
conversations, and there was no reason to think that it was the “right” way to
identify a party’s partner. The notion was hard to explain and hard to use.

Our exposition of Advskd
Π (A) used SIDs to define partnering. That idea

sprang from discussions in 1995 among Bellare, Petrank, Rackoff, and me. An
explicit SID seems more intuitive and elegant than an existentially-guaranteed
partnering functions, and less syntactic than matching conversations, so we
switched to that approach in [BPR]. A recent paper by Choo, Boyd, Hitchcock,
and Maitland [CBHM] correctly criticizes how partnering was done in [BR3].

Overall, my experience, shared by others, has been that it is hard to get
complex definitions exactly right. I might even venture to say that initial defini-
tional attempts will usually have sub-optimal choices, unexpected consequences,
or outright bugs. If the definition is important, the issues will eventually get
identified and cleaned up.

B 17 Definitions, when they are first proposed, will often encompass poor de-
cisions or errors. For a good definition, these don’t greatly diminish the value of
the contribution.

B 18 Definitional choices that don’t capture strong intuition are usually wrong,
and may come back to haunt you.

Let me make one final point in this section. Our first paper in this space [BR2]
was mostly on entity authentication (EA), not SKD, since EA was the more
popular and well-known problem of the day. An EA protocol lets two parties
have a conversation at the end of which each knows that he has just spoken to



the other. (This is the mutual authentication version of the problem.) The model
is nearly the same for EA and SKD. In working on EA, something that disturbed
me greatly was that the problem seemed, to me, to be nearly pointless. If Alice
learns that, a moment ago, Bob was present, of what value is that information?
Bob may not be present anymore, and even if he is, Alice has learned nothing
that will help her to have a continuing conversation. What kind of egotists are
Alice and Bob that they care about saying I am here and nothing more?

There is some justification for working on EA. One is that I have probably
overstated the pointlessness of the goal.3 Another is that a problem becomes
significant because people have agreed to focus on it. Still, I’m not so convinced.

B 19 The fact that a definitional goal is nearly pointless doesn’t seem to bother
people nearly as much as it should.

7 The Random-Oracle Model

The random-oracle (RO) model goes back to Fiat and Shamir [FS], but was
popularized and made into an explicit design paradigm by Mihir Bellare and
me [BR4]. The idea is to design definitions and protocols in an embellished model
of computation in which all parties, including the adversary, are given access to
a common random-oracle. This is a map H: {0, 1}∗ → {0, 1} that associates a
random bit to each and every string. One proves the protocol correct in this
enriched model of computation. Then, as a heuristic final step, one instantiates
the oracle H by something like a cryptographic hash function.

Experience has shown that many cryptographic problems can be solved
within the RO-model by protocols that are simpler and more efficient than their
best-known standard-model counterparts. For this reason, the RO-model has
become popular for doing practical protocol design.

The RO-model has been the locus of much controversy. The question is what
assurance, if any, should be invested in an RO-result.4 The concern was first
developed in a paper by Canetti, Goldreich, and Halevi [CGH], who give an
RO-secure protocol whose standard-model counterpart is always insecure.

To some people, proofs in the RO-model are effectively not proofs. One well-
known researcher calls them heuristic arguments. That isn’t right. A proof in
the RO-model is still a proof, it’s just a proof in a model of computation that
some people don’t find worthwhile.

There is certainly a difference between defining a measure of worth for an
object and modeling that object. But the modeling-approach isn’t less scientific,
and it is not at all clear that it yields something whose real-world significance is
vastly inferior.

3 In a smartcard setting, for example, EA may be exactly what you want.
4 Our own paper was rather guarded on the question, but it did make it a thesis

that there is value in an RO-result, and that RO-based design is better than design
without definitions and proofs [BR4].



When you are working within the RO-model you are working within a specific
model, and a not-so-realistic one at that. What is often not recognized is that
when you are working within the standard model, you are also working within
a specific model, and a not-so-realistic one. The standard-model also abstracts
away key aspects of the real world—like the fact that real computation takes
time, uses power, and leaks radiation. There is a big gap between the RO-model
and reality (hash functions aren’t like random oracles)—and there is also a big
gap between the standard model and reality. Some recent work by Micali and
Reyzin aims to close the latter gap [MR].

In cryptography, we are in the business of making models. We should always
be skeptical that these models are accurate reflections of the world. Models
always embed unrealistic and ultimately bogus assumptions, and yet, somehow,
they often work. This is the wonder of scientific abstraction.

B 20 The distinction between modeling an object and defining an object is
real, but its impact is often overstated. Definitions always embed a model and
are always subject to model-based limitations. Modeling something is not less
scientific than defining it.

The nothing-but-the-standard-model sentiment that is behind some of the
RO-criticism is the same sentiment that led to the partitioning of cryptography
following Dolev and Yao [DY]. That paper’s sin was to model encryption, not
define it, and the prevailing sentiment within my community has been to say
that such a thing is not real cryptography, and doesn’t belong in our venues. A
separate community emerged that works on cryptographic protocols, but where
the primitives of the protocols are modeled, not defined. The partitioning of
cryptography was unhealthy. The field is better off when a diversity of models
are encouraged, when they vie for space at the same conferences, and when the
relationships among different model becomes a significant point of attention.

8 Closing Comments

No paper on definitions in contemporary cryptography can ignore the emer-
gence of general definitions for secure protocols by Backus, Pfitzmann, and Waid-
ner [BPW1] and Canetti [Ca]. These ambitious works define when one protocol is
at-least-as-secure as another. In doing so, they provide a framework for defining
arbitrary protocol goals: a protocol for a given goal is secure if it is at-least-as-
secure as the ideal protocol for that goal. In this way a description of the ideal
protocol for some task (e.g., secure message transmission, digital signature, or
electronic voting) yields a definition of security for that task. The definitions
of [BPW1,Ca] build on work that includes [Bea,GMRa,GMW].

The [BPW1,Ca] line of work represents a particularly important advance.
It simultaneously defines a fundamental concept in our field and holds out the
promise for more rigorously and manageably treating a variety of ambitious
protocol problems. The latter hope stems, in part, from a focus on composability,
a property built into the notion of security and intended to enable modular design



and proofs. It is my view that cryptography is in a sort of “crisis of complexity”
for many of the tasks that people now consider: as goals get more complex, what
people call a definition and proof ceases, for me, to be rigorous and convincing.
General definitional frameworks could improve the situation, and [BPW1,Ca]
seem to be having considerable success. See [BPW2] as an impressive example.

Still, I am not without doubts. First, the definitions of [BPW1,Ca] are long
and complex. Despite this, there are problems of precision and understandability.
To be useful, definitions need to be clear and succinct. Second, the definitions
that one arrives at by way of the [BPW1,Ca] framework seem less intuitive
and less prescriptive than what one gets by a more direct route. There is an
assumption that they are strictly stronger, but such claims are not always proven,
and I doubt they’re always true. Third, [BPW1,Ca]-derived definitions always
involve a simulator. For some goals, simulatability does not seem to correspond to
any intuitive understanding of the goal. Simulatability captures strong intuition
when it is used to define zero knowledge, but when it is used to define a problem
like secure key-distribution or bit commitment, it seems to play a much more
technical role. Finally, I see no reason to think that all definitional considerations
appropriate to a particular problem domain can be captured by the choices
implicit in defining the ideal protocol. For example, is the presence or absence
of receipt-freeness5 in a voting protocol captured by what one does in the ideal
voting protocol?

B 21 General definitional frameworks [BPW1,Ca] for secure protocols are an
important direction—probably the most important definitional activity currently
going on in cryptography. But it remains unclear how this will play out.

We are nearing the end of our journey, and I find that I have barely mentioned
what is one of the most beautiful definitions from cryptography: the idea of
zero knowledge (ZK), due to Goldwasser, Micali, and Rackoff [GMRa]. Zero
knowledge is a testament to the power of a definition: it has created an area
of its own, giving rise to derivative notions and impacting both cryptography
and complexity theory. The notion of simulatability that came with ZK has
spread across cryptography, becoming a central notion of the field. Briefly and
informally, communications with a party P is zero knowledge if that which is seen
from interacting with P can be created, just as effectively, without involving P .

It may sound flip, but I want to acknowledge that zero knowledge is a beau-
tiful name. In just four syllables, it promises intrigue and paradox. How can
something be knowledge and yet be zero? How can one be speaking of a mathe-
matical notion of knowledge in the first place?

Names are important. They need to be succinct and suggestive. Accuracy is
good, but it’s not as important. (After all, you are going to provide the word or
phrase with a definition; a name all by itself can’t be expected to have a precise
meaning.) The phrase minimum disclosure proof [BCC] is more accurate than
zero knowledge, but it’s nowhere near as good a term.
5 A voting protocol is receipt-free if parties can’t prove to someone whom they voted

for [BT]. The property is desirable to help avoid coercion.



Sometimes it is hard to anticipate what will make a good name. In [BDPR]
we needed a compact name for two flavours of chosen-ciphertext attack (CCA),
a weak form and a stronger form. We tried everything, but nothing seemed to
work. With much reluctance, we published using the terms CCA1 and CCA2.
Amazingly, the terms caught on. I’ve even come to like them. Every time I see
CCA2 in a talk or paper, I smile. Other names I am happy with are plaintext
awareness and an AXU-hash function (almost-xor-universal).

The oddest thing can change a name from being terrible to OK. I used to
regard universal one-way hash function, UOWHF, as one of the worst names
ever invented for a lovely object [NY]. It is cumbersome without accurately
suggesting what the object does. I warmed up to the name after hearing Victor
Shoup give a talk in which he pronounced UOWHF as woof. Once there was a
way to say UOWHF, and a fun way, the name seemed immeasurably better.

Notation should be chosen with great care. Names and notation are the
currency of thought. Our minds can be imprisoned by poor notation and set free
by good notation. Mathematics blossomed only after its notation matured. It is
painful to read papers with ill-chosen notation but, more than that, it is hard
to think deeply about things until the names and notation are right.

Good names and good notation are just one aspect of good writing, and it
is the entirety of technical writing that is important. I reject the viewpoint that
the ideas of a paper and the presentation of a paper are fundamentally distinct
and orthogonal. A paper is, first and foremost, pages full of marks, not some
transcendent concept of what the thing’s about. A paper is its presentation.

While the quality and impact of any scientific paper is intimately connected
to the quality of its writing, I believe that this is especially true for papers that
aim to make a definitional contribution. These are simultaneously harder to
write well and more important to write well. Writing definitions is hard because,
in part, there will be no existing example for how best to communicate your
idea. There is an extra premium on concision and elegance, and a huge penalty
for ambiguity. If a proof is poorly written, people will skip over it or convince
themselves that the result is right and they could re-prove it. It usually won’t
render the paper pointless. If a definition is poorly written and can’t readily be
understood, nothing that follows will make any sense. Nobody will be interested
to do follow-on work. The value of the paper vanishes.

If you write a paper that gives a new definition, you need to carefully explain
it. Your definitional choices should be justified. But the exposition shouldn’t
intermix a definition with descriptive prose; these need to be clearly separated.

In a paper that uses an existing definition, you should fully state that defi-
nition, not just reference it. A failure to do this will typically make your paper
meaningless without tracking down the other work, which the reader shouldn’t
have to do. What’s more, the paper you reference might exist in multiple ver-
sions, and small differences between their definitions can have a huge impact.

B 22 Names and notation matter. Choose them well.

B 23 Good writing, always important for a scientific paper, is even more im-
portant when the paper makes a definitional contribution.



I will wrap up. Of the different kinds of work that I have done, it is the
definition-centric/notion-centric work that I believe to have the most value.
Mechanisms come and go, are improved upon, rarely become popular, and are
never really basic and compelling enough to bring satisfaction. Theorems are ig-
nored or strengthened, forgotten, and hardly anyone reads their proofs or cares.
What lasts, at least for a little while, are the notions of the field and that which
is associated to making those notions precise: definitions.

I believe that definitions have been the most important thing to bring un-
derstanding to my field and make it into a science. Though I have no particular
evidence for it, it is my guess that definitions can play a similar role in other
areas of computer science too, where they have not yet played such a role. And
that is the real reason that I have chosen this topic for today—that I might,
possibly, help infect some other area of computer science with definitions and
the definitional-viewpoint.
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