
Earlier versions of of this work appear in [9] and [1]. This is the full version.

DHIES: An encryption scheme
based on the Diffie-Hellman Problem

Michel Abdalla� Mihir Bellarey Phillip Rogawayz

September 18, 2001

Abstract

This paper describes a Diffie-Hellman based encryption scheme, DHIES (formerly named DHES
and DHAES), which is now in several (draft) standards. The scheme is as efficient as ElGamal en-
cryption, but has stronger security properties. Furthermore, these security properties are proven to hold
under appropriate assumptions on the underlying primitive. DHIES is a Diffie-Hellman based scheme
that combines a symmetric encryption method, a message authentication code, and a hash function, in
addition to number-theoretic operations, in a way which is intended to provide security against chosen-
ciphertext attacks. The proofs of security are based on the assumption that the underlying symmetric
primitives are secure and on appropriate assumptions about the Diffie-Hellman problem. The latter are
interesting variants of the customary assumptions on the Diffie-Hellman problem, and we investigate
relationships among them, and provide security lower bounds. Our proofs are in the standard model; no
random-oracle assumption is required.

Keywords: Cryptographic standards, Diffie-Hellman key exchange, ElGamal encryption, elliptic curve
cryptosystems, generic model, provable security.

�Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093. E-Mail:mabdalla@cs.ucsd.edu . URL: http://www.michelabdalla./net . Supported by CAPES under
Grant BEX3019/95-2.

yDept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093. E-Mail:mihir@cs.ucsd.edu . URL: http://www-cse.ucsd.edu/users/mihir . Supported by NSF CA-
REER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and Engineering.

zDept. of Computer Science, University of California at Davis, Davis, CA 95616. E-mail:rogaway@cs.ucdavis.edu .
URL: http://www.cs.ucdavis.edu/˜rogaway . Supported by NSF CAREER Award CCR-9624560 and funding pro-
vided by Certicom Corporation under MICRO Grant 97-150.

Contents

1 Introduction 1

2 Definitions 3
2.1 Represented groups. 3
2.2 Message Authentication Codes. 3
2.3 Symmetric Encryption 4
2.4 Asymmetric Encryption 5

3 The Scheme DHIES 6

4 Attributes and Advantages of DHIES 7
4.1 Encrypting with Diffie-Hellman: The ElGamal Scheme 8
4.2 Deficiencies of ElGamal Encryption . .. 8
4.3 Overcoming Deficiencies in ElGamal Encryption: DHIES 9
4.4 More on Provable Security .. 10
4.5 Concrete Security .. 11

5 Diffie-Hellman Assumptions 11

6 Security against Chosen-Plaintext Attack 15

7 Security against Chosen-Ciphertext Attack 17

8 ODH and SDH 21

A Attacks on the ElGamal Scheme 27

1 Introduction

This paper describes a method for encrypting strings using the Diffie-Hellman assumption. We are con-
cerned with the “details” of Diffie-Hellman based encryption — how a message should be “packaged” in
order to best exploit the group operations (e.g., modular exponentiation) which are at the core of a Diffie-
Hellman based encryption.

The method we suggest is called DHIES, standing for “Diffie-Hellman Integrated Encryption Scheme”.
It is a simple extension of the ElGamal encryption scheme and is now in the draft standards of ANSI X9.63
and IEEE P1363a [2, 23] and in the corporate standard SECG [31]. The scheme was formerly known as
DHES and as DHAES. It is all the same scheme.

DHIES uses symmetric encryption, message authentication, and hashing. This may seem like a lot of
cryptography beyond the group operation, but it is exactly this additional cryptography which ensures, by
and large, that we get our security guarantees.

The security analysis of DHIES requires some interesting new variants of the Diffie-Hellman assump-
tion. We look at relationships among these notions, and we prove a complexity lower bound, in the generic
model, about one of them.

BACKGROUND. DHIES is designed to be a natural extension of the ElGamal scheme, suitable in a variety
of groups, and which enhanced ElGamal in a couple of ways important to cryptographic practice. First, the
scheme needs to provide the capability of encrypting arbitrary bit strings (ElGamal requires that message
be a group element). And second, the scheme should be secure against chosen-ciphertext attack (ElGamal
is not). The above two goals have to be realized without increasing the number of group operations for
encryption and decryption, and without increasing key sizes relative to ElGamal. Within these constraints,
we want to provide the best possible provable-security analysis. But efficiency and practicality of the scheme
should not be sacrificed in order to reduce assumptions.

The approach above is somewhat in contrast to related schemes in the literature. More typical is to fix an
assumption and then strive to find the lowest cost scheme which can be proven secure under that assumption.
Examples of work in this style are that of Cramer and Shoup [14] and that of Shoup [35], who start from the
decisional Diffie-Hellman assumption, and then try to find the best scheme they can that will resist chosen-
ciphertext attack under this assumption. In fact, the latter can also be proved secure in the random oracle
model based on the weaker computational Diffie-Hellman assumption. These schemes are remarkable, but
their costs are about double that of ElGamal, which is already enough to dampen some practical interest. A
somewhat different approach was taken by Fujisaki and Okamoto [19], starting from weaker asymmetric and
symmetric schemes to construct a stronger hybrid asymmetric scheme. Their scheme can be quite practical,
but the proof of security relies heavily on the use of random oracles.

The DHIES scheme uses a hash function. In [9], a claim is made that DHIES should achieve plaintext
awareness if this hash function is modeled as a public random oracle and one assumes the computational
Diffie-Hellman assumption. In fact, technical problems would seem to thwart any possibility of pushing
through such a result.

OUR APPROACH. DHIES is a very “natural” scheme. (See Section 3 for its definition.) The method follows
standard ideas and practice. Intuitively, it is secure. Yet it seems difficult to prove security under existing
assumptions about the Diffie-Hellman problem.

This situation seems to arise frequently. It seems often to be the case that we think certain methods are
good, but we don’t know how to prove that they are good starting from “standard” assumptions. We suggest
that what we are seeing with DHIES is a manifestation of hardness properties of Diffie-Hellman problems
which just haven’t been made explicit so far.

In this paper we capture some of these hardness properties as formal assumptions. We will then show
how DHIES can then be proven secure under these assumptions. Then we further explore these assumptions

1

by studying their complexity in the generic model [34], and by studying how the assumptions relate to one
other.

RELATED WORK. As we have indicated, the DHIES scheme first appears in [9]. No proof appears in that
work. It was suggested that a proof of plaintext awareness [7, 5] could be achieved under the random-oracle
model. However, no such proof has appeared, and technical difficulties would seem to bar it.

DHIES is now embodied in three (draft) standards [2, 23, 31]. All of these assume an elliptic curve group
of prime order. To harmonize this paper with those standards, and to simplify complexity assumptions, we
shall assume the the underlying group in which we work has prime order. When working with a group
whose order is not prime a minor change can be made to the protocol so that it will still be correct. Namely,
the valuegu should be fed into the hash functionH.

Zheng and Seberry [37] have proposed an ElGamal-based scheme that uses universal one-way hash
functions. Security of their scheme is not supported by proofs in the reductionist sense of modern cryptog-
raphy. Lim and Lee [25] have pointed out that in some of the cryptosystems proposed in [37], the method of
adding authentication capability may fail just under known plaintext attacks. A submission to IEEE P1363a
based on [37] has been made by Zheng [36].

Another contemporaneous suggestion was put forward by Johnson, Matyas and Peyravian [24]. Assume
that the messageM already contains some redundancy (e.g., some number of fixed bits) and unpredictability
(e.g., random bits have been embedded inM). Then to asymmetrically encryptM , [24] suggest to subject
it to 4 rounds of a Feistel network based on a functionH, thereby obtaining a new stringM0. Encrypt, using
an arbitrary encryption primitive, an arbitrary piece ofM0. It is plausible that ifH is modeled as a random
function then the above approach can be proven sound.

Cramer and Shoup describe an encryption scheme based on the decisional Diffie-Hellman problem
which achieves provable security against adaptive chosen-ciphertext attack [14]. They prove their scheme
secure under the decisional Diffie-Hellman assumption (and a collision-intractable hash function), or, in the
random-oracle model, under the ordinary Diffie-Hellman assumption [33]. Their scheme is more costly
than ours in terms of key sizes, encryption time, and decryption time (in particular, encryption takes five
exponentiations), but the scheme is still practical.

The notions of indistinguishability and semantic security, and their equivalence under chosen-plaintext
attack is due to [21]. The notion of chosen-ciphertext security that we use is due to [30]. Equivalences are
further investigated by [5]. Note that the form of chosen-ciphertext security we use is the “strong” form,
called CCA2 in [5].

OUTLINE. To specify our scheme in a compact and precise way, we first specify in Section 2 the “syntax”
of an asymmetric encryption scheme and what it means for it to be secure. We also specify in Section 2
the syntax of the types of primitives which our asymmetric encryption scheme employs along with their
security definitions. The specification of DHIES is then given in Section 3 and its attributes and advantages
are discussed in Section 4.

The security of DHIES relies on variants of the Diffie-Hellman problem, which we introduce in Section 5.
More specifically, we formalize three new Diffie-Hellman assumptions (though one of them, the hash Diffie-
Hellman assumption, is essentially folklore). The assumptions are thehashDiffie-Hellman assumption
(HDH), the oracle Diffie-Hellman assumption (ODH), and thestrongDiffie-Hellman assumption (SDH).
The HDH and ODH assumptions measure the sense in which a hash functionH is “independent” of the
underlying Diffie-Hellman problem. One often hears intuition asserting that two primitives are independent.
Here is one way to define this. The SDH assumption formalizes, in a simple manner, that the “only” way to
compute a valueguv from gv is to choose a valueu and compute(gv)u. The definitions for both ODH and
SDH have oracles which play a central role.

Section 6 shows that DHIES is secure against chosen-plaintext attacks. The HDH assumption is what is
required to show this. In Section 7, we show that DHIES is secure against chosen-ciphertext attacks. The

2

ODH assumption is what is required to show this. Of course this means that DHIES is also secure against
chosen-plaintext attacks [5] based on the ODH assumption, but in fact we can prove the latter using the
HDH assumption (although we do not show it here), a much weaker one.

These two results make additional cryptographic assumptions: in the case of chosen-plaintext attacks,
the security of the symmetric encryption scheme; in the case of chosen-ciphertext attacks, the security of
the symmetric encryption scheme and the security of the message authentication code. But the particular
assumptions made about these primitives are extremely weak.

The ODH assumption is somewhat technical; SDH is rather simpler. In Section 8, we show that, in the
random-oracle model, the SDH assumption implies the ODH assumption. A lower bound for the difficulty
of the SDH assumption in the generic model of Shoup [34] is also given in Section 8. This rules out a large
class of efficient attacks.

Following works such as [7, 8], we take a concrete, quantitative approach for all of the results above.

2 Definitions

2.1 Represented groups

DHIES makes use of a finite cyclic groupG = hgi. (This notation indicates thatG is generated by the group
elementg.) We will use multiplicative notation for the group operation. So, foru 2 N, gu denotes the group
element ofG that results from multiplyingu copies ofg. Naturally,g0 names the identity element ofG.
Note that, ifu 2 N, then, by Lagrange’s theorem,gu = gu mod jGj.

Algorithms which operate onG will be given string representations of elements inG. We thus require
an injective map : G ! f0; 1ggLen associated toG, wheregLen is some number (the length of the
representation of group elements). Similarly, when a numberi 2 N is an input to, or output of, an algorithm,
it must be appropriately encoded, say in binary. We assume all necessary encoding methods are fixed, and
do not normally write the operators.

Any “reasonable” group supports a variety of computationally feasible group operations. Of particular
interest is there being an algorithm" which takes (the representations of) a group elementx and a numberi
and computes (the representation of)xi. For clarity, we write this operator in infix, so that(x) " (i) returns
xi. We will call the tupleG = (G; g; ; ") a represented group.

2.2 Message Authentication Codes

Let Message = f0; 1g� and letmKey = f0; 1gmLen for some numbermLen. Let Tag = f0; 1gtLen for
some numbertLen (a superset of the possible tags). Amessage authentication codeis a pair of algorithms
MAC = (T ;V). Algorithm T (the MAC generation algorithm) takes a keyk 2 mKey and a message
x 2 Message and returns a stringT (k; x). This string is called thetag. AlgorithmV (theMAC verification
algorithm) takes a keyk 2 mKey, a messagex 2 Message, and a purported tag� 2 Tag. It returns a bit
V(k; x; �) 2 f0; 1g, with 0 indicating that the message was rejected (deemed unauthentic) and 1 indicating
that the message was accepted (deemed authentic). We require that for allk 2 mKey andx 2 Message,
V(k; x;T (k; x)) = 1. The first argument of either algorithm may be written as a subscript.

SECURITY. The security of a MAC is defined by an experiment in which we first choose a random key
k 2 mKey and then give an adversaryF aTk(�) oracle, we say thatF ’s output(x�; ��) is unaskedif �� is
not the response of theTk(�) oracle to an earlier query ofx�. Our definition of MAC security follows.

Definition 1 LetMAC = (T ;V) be a message authentication scheme and letF be an adversary. Consider
the experiment

3

experiment Expsuf-cma
MAC;F

k
R
 mKey

(x�; ��) F Tk(�);Vk(�;�)

if Vk (x
�; ��) = 1 and � � was never returned byTk(�) in response to queryx�

then return 1 else return 0

Now define thesuf-cma-advantageof F as follows:

Advsuf-cma
MAC;F = Pr[Expsuf-cma

MAC;F = 1] :

For anyt, qt, �t, qv, and�t, we define thesuf-cma-advantageof MAC as

Advsuf-cma
MAC (t; qt; �t; qv; �v) = max

F
fAdvsuf-cma

MAC;F g

where the maximum is over allF with time-complexityt, making to the tag oracle at mostqt queries the
sum of whose lengths is at most�t bits and making to the verification oracle at mostqv queries the sum of
whose lengths is at most�v bits. }

We say adversaryF has forged when, in the experiment above, it outputs a pair(x�; ��) such that
Vk (x

�; ��) = 1 and(x�; ��) was not previously obtained via a query to the tag oracle.
This definition is stronger than the usual one as given in [6]. There, one asks that the adversary not

be able to produce MACs of new messages. Here we require additionally that the adversary not be able
to generate new MACs of old messages. However, if the MAC generation function is deterministic and
verification is done by simply re-computing the MAC (this is typically true) then there is no difference.

CANDIDATES. Candidate algorithms include HMAC [3] or the CBC MAC (but only a version that is correct
across messages of arbitrary length).

2.3 Symmetric Encryption

Let Message be as before, and leteKey = f0; 1geLen, for some numbereLen. Let Ciphertext = f0; 1g�

(a superset of all possible ciphertexts). LetCoins be a synonym forf0; 1g1 (the set of infinite strings).
A symmetric encryption scheme is a pair of algorithmsSYM = (E ;D). Algorithm E (the encryption
algorithm) takes a keyk 2 eKey, a plaintextx 2 Message, and coinsr 2 Coins, and returns ciphertext
E(k; x; r). Algorithm D (the decryption algorithm) takes a keyk 2 eKey and a purported ciphertext
y 2 Ciphertext, and returns a valueD(k; y) 2 Message[fBADg. We require that for allx 2 Message,
k 2 Key, andr 2 Coins, D(k; E(k; x; r)) = x. Usually we omit mentioning the coins ofE , thinking ofE
as a probabilistic algorithm, or thinking ofE(k; x) as the induced probability space. A return value ofBAD

fromD is intended to indicate that the ciphertext was regarded as “invalid” (it is not the encryption of any
plaintext). The first argument of either algorithm may be written as a subscript.

SECURITY. Security of a symmetric encryption scheme is defined as in [4], in turn an adaptation of the
notion of polynomial security as given in [21, 26]. We imagine an adversaryA that runs in two stages.
During either stage the adversary may query an encryption oracleE(k; �)which, on inputx, returnsE(k; x; r)
for a randomly chosenr. In the adversary’sfind stage it endeavors to come up with a pair of equal-length
messages,x0 andx1, whose encryptions it wants to try to tell apart. It also retains some state informations.
In the adversary’sguess stage it is given a random ciphertexty for one of the plaintextsx0; x1, together
with the saved states. The adversary “wins” if it correctly identifies which plaintext goes withy. The
encryption scheme is “good” if “reasonable” adversaries can’t win significantly more than half the time.

Definition 2 [4] Let SYM = (E ;D) be a symmetric encryption scheme and letA be an adversary. Consider
the experiment

4

experiment Exp
ind-cpa-fg
SYM;A

k
R
 eKey

(x0; x1; s) AE(k;�)(find)
b

R
 f0; 1g

y E(k; xb)eb AE(k;�)(guess; y; s)
if eb = b then return 1 else return 0

Now define theind-cpa-advantageof A in thefind-and-guess notion as follows:

Adv
ind-cpa-fg
SYM;A = 2 � Pr[Exp

ind-cpa-fg
SYM;A = 1]� 1

if A is legitimate, and0 otherwise. For anyt, q, and�, we define theind-cpa-advantageof SYM as

Adv
ind-cpa-fg
SYM (t; q; �) = max

A
fAdv

ind-cpa-fg
SYM;A g

where the maximum is over allA with time-complexityt, making to the encryption oracle at mostq queries
the sum of whose lengths is at most� bits. }

It is understood that, above,A must outputx0 andx1 with jx0j = jx1j. The multiplication by 2 and
subtraction by 1 are just scaling factors, to make a numeric value of0 correspond to no advantage and a
numeric value of 1 correspond to perfect advantage. As a reminder, “time-complexity” is the maximum
execution time of the experimentExpind-cpa-fgSYM;A plus the size of the code forA, all in some fixed RAM
model of computation.

CANDIDATES. One candidate algorithms for the symmetric encryption are CBC encryption and Vernam
cipher encryption.

2.4 Asymmetric Encryption

Let Coins, Message, Ciphertext be as before and letPK � f0; 1g� andSK � f0; 1g� be sets of strings.
An asymmetric encryption schemeis a three-tuple of algorithmsASYM = (E ;D;K). The encryption
algorithm E takes a public keypk 2 PK, a plaintextx 2 Message, and coinsr 2 Coins, and returns
a ciphertexty = E(k; x; r). The decryption algorithmD takes a secret keysk 2 SK and a ciphertext
y 2 Ciphertext, and returns a plaintextD(sk; y) 2 Message [fBADg. The key generation algorithmK
takes coinsr 2 Coins and returns a pair(pk; sk) 2 PK�SK. We require that for all(pk; sk) which can be
output byK, for all x 2 Message andr 2 Coins, we have thatD(sk; E(pk; x; r)) = x. The first argument
to E andD may be written as a subscript.

PRIVACY AGAINST CHOSEN-PLAINTEXT ATTACK . Our treatment mimics the find-then-guess notion of [4]
and follows [21, 26, 20]. The definition is similar to Definition 2, so we state it without further discussion.

Definition 3 Let ASYM = (E ;D;K) be an asymmetric encryption scheme and letA an adversary. Con-
sider the experiment

experiment Exp
ind-cpa-fg
ASYM;A

(sk;pk) K

(x0; x1; s) A(find;pk)
b

R
 f0; 1g

y Epk(xb)eb A(guess;pk; y; s)
if eb = b then return 1 else return 0

5

Now define theind-cpa-advantageof A in thefind-and-guess notion as follows:

Adv
ind-cpa-fg
ASYM;A = 2 � Pr[Exp

ind-cpa-fg
ASYM;A = 1]� 1

if A is legitimate, and0 otherwise. For anyt, we define theind-cpa-advantageof ASYM as

Adv
ind-cpa-fg
ASYM (t; c) = max

A
fAdv

ind-cpa-fg
ASYM;A g

where the maximum is over allA with time-complexityt and whose challenge has length at mostc bits.
}

PRIVACY AGAINST ADAPTIVE CHOSEN-CIPHERTEXT ATTACK. The definition of chosen-ciphertext secu-
rity of an asymmetric encryption scheme is very similar to that given in Definition 3. The difference is
that here the adversary is given access to a decryption oracle in both stages. So we state it without further
discussion.

Definition 4 Let ASYM = (E ;D;K) be an asymmetric encryption scheme and letA an adversary for its
chosen-ciphertext security. Consider the experiment

experiment Exp
ind-cca-fg
ASYM;A

(sk;pk) K

(x0; x1; s) ADsk (find;pk)
b

R
 f0; 1g

y Epk(xb)eb ADsk (guess;pk; y; s)
if eb = b then return 1 else return 0

Now define theind-cca-advantageof A in thefind-and-guess notion as follows:

Adv
ind-cca-fg
ASYM;A = 2 � Pr[Exp

ind-cca-fg
ASYM;A = 1]� 1

if A is legitimate, and0 otherwise. For anyt, we define theind-cpa-advantageof ASYM as

Adv
ind-cpa-fg
ASYM (t; c) = max

A
fAdv

ind-cpa-fg
ASYM;A g

where the maximum is over allA with time-complexityt, making to the decryption oracle at mostq queries
the sum of whose lengths is at most� bits. }

3 The Scheme DHIES

This section recalls the DHIES scheme. Refer to Figure 1 for a pictorial representation of encryption under
DHIES, and Figure 2 for the formal definition of the algorithm. Let us explain the scheme in reference to
those descriptions.

Let G = (G; g; ; ") be a represented group, where group elements are represented by strings ofgLen

bits. LetSYM = (E ;D) be a symmetric encryption scheme with key lengtheLen, and letMAC = (T ;V)

be a message authentication code with key lengthmLen and tag lengthtLen. Let H : f0; 1ggLen !

f0; 1gmLen+eLen be a function. From these primitives we define the asymmetric encryption schemeDHIES =

(E ;D;K). If we want to explicitly indicate the dependency ofDHIES on its associated primitives, then we
will write DHIES [[G;SYM;MAC;H]] . The component algorithms ofDHIES are defined in Figure 2.

6

macKey encKey

secret value
Make

H

encM

M

ephemeral PK
Make

recipient’s
public key

ephemeral PK

secret value

T

E

tag

guv

u

gu

gv

Figure 1: Encrypting with the scheme DHIES. We use the symmetric encryption algorithm,E , of SYM;
the MAC generation algorithm,T , of MAC; and a hash function,H. The shaded rectangles comprise the
ciphertext.

Each user’s public key and secret key is exactly the same as with the ElGamal scheme:gv andv, respec-
tively, for a randomly chosenv. (Here we will not bother to distinguish group elements and their bit-string
representations.) To send a user an encrypted message we choose a randomu and compute an “ephemeral
public key,” gu. Including gu in the ciphertext provides an “implicit” Diffie-Hellman key exchange: the
sender and receiver will both be able to compute the “secret value”guv. We passguv to the hash functionH
and parse the result into two pieces: a MAC key,macKey , and an encryption key,encKey . We symmet-
rically encrypt the message we wish to send with the encryption key, and we MAC the resulting ciphertext
using the MAC key. The ciphertext consists of the ephemeral public key, the symmetrically encrypted
plaintext, and the authentication tag generated by the MAC.

THE GROUPG IS OF PRIME ORDER. We henceforth assume thatjGj is prime. This is extremely important
to ensure the security of DHIES or otherwise the scheme could be malleable. The reason stems from the
fact that in groups wherejGj is not a prime (e.g.,Z�p), g

uv andgv together might not uniquely determinegu.

That is, there may exist two valuesu andu0 such thatu 6= u0 but guv = gu
0v. As a result, bothu andu0

would produce two different valid ciphertexts for the same plaintext. Therefore, if one can computegu
0
,

givengu andgv , such thatguv = gu
0v holds with high probability, then we would break the scheme in the

malleability sense. To prevent such attacks in groups not of prime order (e.g.,Z
�

p), one should feedgu toH.

4 Attributes and Advantages of DHIES

To explain the problem which DHIES solves, and the sense in which it solves this problem, let us back up
and provide a bit of background.

7

algorithm E(pk;M)
begin
u f1; : : : ; jGjg
X pk " u

U g " u

hash H(X)
macKey hash[1 ::mLen]
encKey hash[mLen+ 1 ::

mLen+ eLen]
encM E(encKey;M)
tag T (macKey;M)
EM U k encM k tag

return EM

end

algorithm D(sk;EM)
begin
U k encM k tag EM

X U " sk

hash H(X)
macKey hash[1 ::mLen]
encKey hash[mLen+ 1 ::

mLen+ eLen]
if V(macKey; encM ; tag) = 0

then return BAD
M D(encKey; encM)
return M

end

algorithm K

begin
v f1; : : : ; jGjg
pk g " v

sk v

return (pk; sk)
end

Figure 2:The schemeDHIES = (E ;D;K), where:SYM = (E ;D) is a symmetric encryption scheme using
keys of lengtheLen; MAC = (T ;V) is a message authentication code with keys of lengthmLen and tags
of lengthtLen; G = (G; g; ; ") is a represented group whose group elements encoded by strings of length
gLen; andH : f0; 1ggLen ! f0; 1geLen+mLen.

4.1 Encrypting with Diffie-Hellman: The ElGamal Scheme

Let G be a finite cyclic group, sayG = Z�p , the multiplicative group of integers modulo a (large) prime
p. We’ll denote the group operation ofG multiplicatively, so that repeated multiplication is represented by
exponentiation. Letg be a generator forG; that is, the elements ofG arefg1; g2; : : : ; gjGjg. Fix such a
groupG and its generatorg. All multiplications (or exponentiations, which is just shorthand for repeated
multiplication) will be performed inG.

Diffie and Hellman suggested that two parties communicating over a channel subject to (passive) eaves-
dropping could come to share a secret key as follows [16]. The first party chooses a random numberu 2

f1; : : : ; jGjg and sendsgu to the second party. The second party chooses a random numberv 2 f1; : : : ; jGjg

and sendsgv to the first party. The shared key is declared to beguv , which the first party can calculate as
(gv)u and the second party can calculate at(gu)v.

Roughly said, theDiffie-Hellman assumptionfor G asserts that an adversary who seesgu andgv (for a
randomu; v) cannot computeguv .

ElGamal [18] explained how to adapt the above to give a public key encryption method. The intended
receiver of an encrypted message has a public key which specifiesgv (wherev was chosen randomly from
f1; : : : ; jGjg). The sender wants to send to that receiver a ciphertextC which is the encryption of a mes-
sageM . We assumeM 2 G. The sender computesC by choosing a randomu (again inf1; : : : ; jGjg)
and transmittingC = (gu;M � guv). Knowing v, the receiver can computeguv = (gu)v from C and then
multiply M � guv by the inverse ofguv to recoverM .

4.2 Deficiencies of ElGamal Encryption

We highlight a number of issues arising from the encryption method we have just described.

1. Limited message space.First there was the assumption thatM 2 G. Messages are naturally regarded
as bit strings, not group elements. Often there will be a natural embedding ofsomebit strings into group
elements, but that may fall short of all potential messages.

8

2. May not provide good privacy.As Goldwasser and Micali explain and formalize in [21], a good en-
cryption scheme should do more than make it infeasible for an adversary to decrypt: the scheme should
conceal from an adversary mounting a passive attack “any” information about the plaintext. For example,
it should not be possible to determine even one bit of the plaintext given the ciphertext. This property has
been defined in several ways which have been shown to be equivalent [21], including a definitions known as
“indistinguishability” and one known as “semantic security.”

Even in groups for which one anticipates using ElGamal encryption, the ElGamal encryption does not
achieve semantic security. For example, when the scheme is implemented in the groupG = Z

�

p, there
are attacks showing that some information about the plaintext can be determined from the ciphertext. See
Appendix A for a description of such an attack.

It is possible to guarantee the semantic security of ElGamal encryption if it is done in special groups,
and if we make a stronger assumption about the Diffie-Hellman problem. Specifically, the order of the group
should be prime (note the order ofZ�p is p�1 which is not prime) and we make thedecisional Diffie-Hellman
assumption, which says that it is infeasible to distinguish the following two distributions:(gu; gv ; guv), for
a randomu andv, and(gu; gv ; gz), for a randomu,v, andz. This is a very strong assumption.

It would be preferable to have a scheme which worked in any group where the Diffie-Hellman prob-
lem is hard, and one which was guaranteed to achieve semantic security under a weaker number-theoretic
assumption.

3. We want more than basic privacy.For an encryption scheme to be a maximally useful tool in the
design of higher-level protocols it should actually domore than shield information about the plaintext in
the presence of a passive attack. Stronger goals include non-malleability [15] and chosen-ciphertext se-
curity [28, 30]. Informally, non-malleability means that an adversary cannot mutate one ciphertext into a
related one. Chosen-ciphertext security means that an adversary cannot break an encryption scheme even if
it can cause some ciphertexts to be decrypted. ElGamal encryption achieves neither of these “beyond seman-
tic security” goals: it is easy to see that the scheme is malleable and also insecure under a chosen-ciphertext
attack. (See Appendix A).

We are finding that uses of encryption in cryptographic practice relies more and more on the scheme
meeting these “beyond semantic security” goals. For example, the designers of SET (Secure Electronic
Transactions) mandated the use of an encryption scheme which achieves more than semantic security. This
was necessary, in the sense that the SET protocols would bewrong if instantiated by a primitive which
achievesonly semantic security, and to design SET-like protocols using a primitive which achieves only se-
mantic security would seem to yield more complicated protocols. As a second example, Bleichenbacher [10]
has shown that encryption under RSA PKCS #1 v1.5 [29] is vulnerable to chosen-ciphertext attack, and he
goes on to demonstrate how this leads to an attack on SSL 3.0. Because schemes which achieve “only”
semantic security are so easily misused by protocol designers, we believe it is highly desirable that standard-
ized schemes achieve “beyond semantic security” goals, particularly non-malleability and chosen-ciphertext
security.

4.3 Overcoming Deficiencies in ElGamal Encryption: DHIES

The scheme we have presented, DHIES, does Diffie-Hellman based encryption in a way which overcomes
the limitations enumerated above, but without significant increase in cost compared to ElGamal. Key char-
acteristics and advantages of DHIES include the following.

1. Basic privacy — Proven in the sense of provable security.Roughly said, to achieve semantic security we
assume the existence of a functionH : G! f0; 1g� such thathgu; gv ;H(guv)i looks like a pair of random
group elements together with a random string. For non-trivial functionsH this assumption —thatH is
hard-core for the Diffie-Hellman problem onG— would seem to be weaker than decisional Diffie-Hellman.

9

We prove that under this assumption, our scheme achieves semantic security. For reasonable choices ofH,
this assumption would seem to hold for any group one would imagine using, not just particular groups.

2. Beyond basic privacy: non-malleability and chosen-ciphertext security — proven in the sense of provable
security. We prove that our scheme is secure against adaptive chosen-ciphertext attacks. This is proved
under an assumption called the Oracle Diffie-Hellman assumption, and assuming the underlying MAC and
encryption schemes are secure. It is shown in [5, 17] that security under adaptive chosen-ciphertext attack
implies non-malleability, so that property is achieved automatically.

3. No random oracles.The proofs here do not appeal to the random oracle model. They are all in the
standard model. This addresses concerns that have been raised about this model [13].

4. Efficiency.The efficiency of ElGamal encryption is preserved: the cost of encryption is essentially the
same as with ElGamal encryption: two exponentiations to encrypt, one to decrypt. For encryption, both of
these exponentiations can beoff-line, meaning that they can be done even before the messageM is known.
The length of ciphertexts and the public key is the same as in ElGamal.

5. Versatile instantiation — The group.We allow considerable versatility in instantiating DHIES. First,
the groupG in which we perform our operations can be essentially any group in which our version of the
Diffie-Hellman assumption is reasonable. It could beZ�p , or a subgroup ofZ�n, or an elliptic curve group
(in which case the group operation is usually written additively, so what we have been denotinggu would
be written multiplicatively, asug). Our proofs assume no algebraic structure forG beyond its being a finite
cyclic group.

6. Versatile instantiation — Ancillary primitives.Cryptography beyond the group operations is performed
using generic primitives. We employ primitives for symmetric encryption, message authentication, and
hashing. For achieving semantic security, the underlying symmetric encryption and hashing schemes must
meet weak, formalized assumptions. For achieving non-malleability and chosen-ciphertext security the
encryption scheme and message authentication code must meet weak, formalized assumptions, while the
hash function is modeled by a public random oracle.

7. Arbitrary message space.Finally, messages to be encrypted are arbitrary bit strings; messages are not
restricted in length or content.

4.4 More on Provable Security

It is easy to come up with a Diffie-Hellman-based encryption scheme whichmight work well when its
primitives (cryptographic hash function, universal hash families, etc.) are concretely instantiated, in the
sense that no attacks seem discernible. What we do here is provide a greater assurance of security, by
proving that the scheme meets formally defined objectives under given model and complexity-theoretic
assumptions.

Let us explain. A cryptographic schemeS based on a primitiveP is said to beprovably secureif the
security ofP has been demonstrated to imply the security ofS. More precisely, we use this phrase when
someone has formally defined the goalsGP andGS for some primitiveP and schemeS, respectively; and
then has proven that the existence of an adversaryAS who breaks schemeS, in the sense of violatingGS ,
implies the existence of an adversaryAP who breaks primitiveP , in the sense of violatingGP .

What provable security means is that as long as we are ready to believe thatP is secure, then there are
no attacks onS. This obviates the need to consider any specific cryptanalytic attacks onS.

10

4.5 Concrete Security

Following works such as [7, 8], we take a concrete, quantitative approach to proving security. LetS be an
encryption scheme which makes use of a primitiveP , and letAS be an adversary which attacksS. To show
the security ofS one convertsAS into an adversaryAP which attacksP . Ideally,AP should use the same
computational resources asAS and, with this investment in resources,AP should be just as successful in
attackingP asAS was successful in attackingS. This way “practical” attacks onP imply practical attacks
onS, and so the assumedabsenceof practical attacks onP implies the absence of practical attacks onS.

To quantify how close to this ideal we come we define the success probability ofAP attackingP , we
define the success probability ofAS attackingS, and then we give concrete formulas to show howAP ’s
computational resources and success probability depend onAS ’s computational resources and success prob-
ability. These formulas measure the demonstrated security. By giving explicit formulas we make statements
which are more precise than those that are given in doing asymptotic analyses of reductions.

5 Diffie-Hellman Assumptions

This section specifies five versions of the Diffie-Hellman assumption. The first two are standard (included
here only for completeness); the next one is straightforward/folklore; and the last assumptions are new.

COMPUTATIONAL DIFFIE-HELLMAN ASSUMPTION: CDH. We refer to the “standard” Diffie-Hellman
assumption as thecomputational Diffie-Hellmanassumption, CDH. It states that givengu andgv , where
u; v were drawn at random fromf1; : : : ; jGjg, it is hard to computeguv. Under the computational Diffie-
Hellman assumption it might well be possible for the adversary to compute something interesting aboutguv

givengu andgv ; for example, the adversary might be able to compute the most significant bit, or even half
of the bits. This makes the assumption too weak to directly use in typical applications. For example, the
ElGamal scheme is not semantically secure given only this assumption.

Definition 5 [Computational Diffie-Hellman: CDH] Let G = (G; g; ; ") be a represented group and
letA be an adversary. Consider the experiment

experiment Expcdh
G;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

Z A(U; V)

if Z = guv then b 1 else b 0

return b

Now define theadvantageof A in violating the computational Diffie-Hellman assumption as

Advcdh
G;A = Pr[Expcdh

G;A = 1] : }

DECISIONAL DIFFIE-HELLMAN ASSUMPTION: DDH. A stronger assumption that has been gaining popu-
larity is thedecisional Diffie-Hellmanassumption, DDH. (For a nice discussion, see Boneh’s survey [11].)
It states, roughly, that the distributions(gu; gv ; guv) and(gu; gv ; gw) are computationally indistinguishable
whenu; v; w are drawn at random fromf1; : : : ; jGjg. This assumption can only hold in a groupG whose
order does not contain small prime factors (e.g., subgroup of orderq of Z�p for large primesp andq). In such
groups the assumption suffices to prove the semantic security of the ElGamal scheme.

Definition 6 [Decisional Diffie-Hellman: DDH] Let G = (G; g; ; ") be a represented group and letA be
an adversary. Consider the experiments

11

experiment Expddh-real
G;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

Z guv

b A(U; V; Z)

return b

experiment Expddh-rand
G;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

z
R
 f1; : : : ; jGjg; Z gz

b A(U; V; Z)

return b

Now define theadvantageof A in violating the decisional Diffie-Hellman assumption as

Advddh
G;A = Pr[Expddh-real

G;A = 1]� Pr[Expddh-rand
G;A = 1] : }

The assumption we make to prove security for DHIES under chosen-plaintext attack is weaker than
DDH but stronger than CDH. It is called thehash Diffie-Hellmanassumption, HDH. To prove the security
of DHIES under chosen-ciphertext attacks, we will make stronger versions of the Hash Diffie-Hellman
assumptions which say the assumption is true even when the adversary has additional power in the form
of oracles giving certain kinds of information about other, independent Diffie-Hellman keys. The precise
formulation of all three of our assumptions is below, and they are followed by a discussion on the choice of
hash functions suitable for these assumptions.

HASH DIFFIE-HELLMAN ASSUMPTION: HDH. As indicated above, semantic security of a Diffie-Hellman-
based scheme requires that we be able to get some number of “hard-core” bits from the Diffie-Hellman key,
namely key derived bits that cannot be distinguished from random bits. Our assumption is that applying
a suitable hash functionH to guv will yield such bits. The assumption we make, called theHash Diffie-
Hellmanassumption, HDH, is a “composite” one—it concerns the interaction between a hash functionH

and the group operations inG. Here is the definition.

Definition 7 [Hash Diffie-Hellman: HDH] Let G = (G; g; ; ") be a represented group, lethLen be a
number, letH : f0; 1g� ! f0; 1ghLen, and letA be an adversary. Consider the experiments

experiment Exphdh-real
G;H;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

Z H(guv)

b A(U; V; Z)

return b

experiment Exphdh-rand
G;H;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

Z
R
 f0; 1ghLen

b A(U; V; Z)

return b

Now define theadvantageof A in violating the hash Diffie-Hellman assumption as

Advhdh
G;H;A = Pr[Exphdh-real

G;H;A = 1]� Pr[Exphdh-rand
G;H;A = 1] : }

The decisional Diffie-Hellman assumption says thatguv looks like a random group element, even if
you knowgu andgv . The hash Diffie-Hellman assumption says thatH(guv) looks like a random string,
even if you knowgu andgv. So if you setH to be the identity function you almost recover the decisional
Diffie-Hellman assumption (the difference being that in one case you get a random group element and in
the other you get a random string). WhenH is a cryptographic hash function, like SHA-1 [32], the hash
Diffie-Hellman assumption would seem to be a much weaker assumption than the decisional Diffie-Hellman
assumption.

We now move on to some more novel assumptions.

ORACLE DIFFIE-HELLMAN ASSUMPTION: ODH. Suppose we provide an adversaryA with gv and an
oracleHv, which computes the functionHv(X) = Xv. Think of v 2 f1; : : : ; jGjg as having been chosen at

12

random. Now if we give the adversarygu (whereu 2 f1; : : : ; jGjg is chosen at random) then the oracle will
certainly enable the adversary to computeguv: the adversary need only ask the querygu and she gets back
Hv(g

u) = guv . Even if wef orbid the adversary from askinggu, still she can exploit the self-reducibility of
the discrete log to find the value ofguv . For example, the adversary could computeHv(ggu) = guvgv and
divide this byHv(1) = gv .

But what if instead we give the adversary an oracleHv which computesHv(X) = H(Xv), for H a
cryptographic hash function such as SHA-1? Suppose the adversary’s goal is to computeH(guv), wheregu

andgv are provided to the adversary. Now, as long as the oracleHv can not be queried atgu, the oracle
would seem to be useless. We formalize this as follows.

Definition 8 [Oracle Diffie-Hellman: ODH] Let G = (G; g; ; ") be a represented group, lethLen be a
number, letH : f0; 1g� ! f0; 1ghLen, and letA be an adversary. Consider the experiments

experiment Expodh-real
G;H;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

W H(guv)

Hv(X)
def
= H(Xv)

b AHv(�)(U; V;W)

return b

experiment Expodh-rand
G;H;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

W
R
 f0; 1ghLen

Hv(X)
def
= H(Xv)

b AHv(�)(U; V;W)

return b

Now define theadvantageof A in violating the oracle Diffie-Hellman assumption as

Advodh
G;H;A = Pr[Expodh-real

G;H;A = 1]� Pr[Expodh-rand
G;H;A = 1] :

HereA is not allowed to call its oracle ongu. }

We emphasize that the adversary is allowed to make oracle queries that depend on the targetgu, with
the sole restriction of not being allowed to querygu itself.

STRONG DIFFIE-HELLMAN ASSUMPTION: SDH. SupposeA is an algorithm which, givengv, outputs a
pair of strings(gu; guv), for someu 2 f1; : : : ; jGjg. One way forA to find such a pair is to pick some
valueu and then computegu andguv. Indeed, we expect this to be the “only” wayA can compute such a
pair of values. We capture this idea as follows.

Given a represented groupG = (G; g; ; ") and a numberv, letOv be an oracle, called arestricted DDH
oracle, which behaves as follows:

Ov(U;X) =

(
1 if X = Uv

0 otherwise

That is, the oracle tells whether the second argument equals the first argument raised tov-th power. This
oracle can be seen as a restricted form of a DDH oracle for which we fix one of its arguments as beinggv.
Our next definition speaks to the uselessness of having a restricted DDH oracle.

Definition 9 [Strong Diffie-Hellman: SDH] Let G = (G; g; ; ") be a represented group and letA be an
adversary. Consider the experiment

13

experiment Expsdh
G;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

Ov(U;X)
def
= (X = Uv)

Z AOv(�;�)(U; V)

if Z = guv then b 1 else b 0

return b

Now define theadvantageof A in violating the strong Diffie-Hellman assumption as

Advsdh
G;A = Pr[Expsdh

G;A = 1] : }

The intuition is that the restricted DDH oracle is useless because the adversary already “knows” the
answer to almost any query it will ask.

Similar intuition was captured in [22] by saying that for every non-uniform probabilistic polynomial-
time algorithmA that, on inputgv , outputs(gu; guv), there exists a non-uniform probabilistic polynomial-
time algorithmS (the “extractor”) that not only outputs(gu; guv), but alsou. Our approach avoids the
complexity of a simulator-based formulation. We emphasize that our oracle does not return a valueu (the
discrete log of its first argument) but only a bit indicating whether a given pair has the right form.

RESOURCE MEASURES. We have defined several different senses of adversarial advantage. For each notion
xxx we overload the notation and define

Advxxx� (R) = max
A
fAdvxxx�;A g

whereR is a resource measure and the maximum is taken over all adversaries that use resources at mostR.
The resources of interest in this paper are time-complexity (denoted byt) and, when appropriate, number
of queries (denoted byq). Any other resources of importance will be mentioned when the corresponding
notion is described. Here and throughout this paper “time-complexity” is understood to mean the maximum
of the execution times of the experiments defining the advantage of adversaryA plus the size of the code for
A, all in some fixed RAM model of computation. (Note that the execution time refers to that of the entire
experiment, not just the execution time of the adversary.)

We comment that we are considering the complexity of adversaries who try to attack a specific repre-
sented groupG. Such an adversary may depend onG, so explicitly providing a description ofG to A is
unnecessary.

CHOICE OF HASH FUNCTION. Now that we understand how we want the hash function to interact with the
group, we can consider various choices for the hash functionH.

Our suggested choice is to appropriately deriveH from some cryptographic hash function like SHA-
1 [32]. (The precise manner in whichH is derived from SHA-1 is important and should be discussed.)
A primary reason we prefer a cryptographic function is that one-wayness ofH appears important to the
oracle Diffie-Hellman assumption: it should be hard to recoverguv from H(guv), since otherwise the self-
reducibility-based attack we discussed above can be mounted.

Let us back up a bit and try to see what requirements the different assumptions impose on the choice
of H. Suppose first we are interested only in semantic security, namely we need just the HDH assumption.
There is no known choice ofH for which one can prove the hard-coreness under the CDH assumption.
Under the DDH assumption, however, things get much easier, since this assumption already says that the
Diffie-Hellman key is indistinguishable from a random group element: the only remaining problem is to go
from a random group element to a random string of appropriate length. In some groups this can be done
quite easily by simple truncation of the key. Alternatively, Naor and Reingold [27] show that application of a

14

functionH chosen at random from a family of universal hash functions will suffice. Zheng and Seberry [37]
had earlier suggested the application of a universal hash function to the Diffie-Hellman key as a heuristic
under the computational Diffie-Hellman assumption. The result of [27] says that under the stronger DDH
assumption this heuristic is valid. Note this function can be chosen at random once and for all and included
in the public key. In [37], the function is chosen anew for each encryption and included in the ciphertext,
which increases the size of the ciphertext.

However, the use of truncation or universal hash functions appears more dangerous when we come
to consider the stronger oracle Diffie-Hellman assumption above. In particular, the result of Boneh and
Venkatesan [12] showing that computing the most significant bits of Diffie-Hellman keys is as hard as
computing the key itself can be turned on its head to give an algorithm to attack the ODH assumption.
Namely, their results show that for some simple choices of functionsH, an adversary can use the HDH
oracleHv defined above to solve the Diffie-Hellman problem. These attacks do not appear to work when
a one-way cryptographic hash function is used, which is why we recommend this choice. We do not know
whether these attacks rule out all choices of universal hash families, but they do seem to rule out some
particular ones.

6 Security against Chosen-Plaintext Attack

We show thatDHIES [[G;SYM;MAC;H]] meets the notion of indistinguishability under a chosen-plaintext
attack, as defined in Definition 3.

Theorem 1 Let G be a represented group, letSYM be a symmetric encryption scheme, letMAC be a
message authentication scheme, and letH be a function. LetDHIES be the asymmetric key encryption
scheme associated to these primitives, as defined in Section 3. Then, for any numberst andc,

Adv
ind-cpa-fg
DHIES (t; c) � 2 �Advhdh

G;H(t) +Adv
ind-cpa-fg
SYM (t; 0; 0) :

IDEA OF PROOF. The assumption is that the symmetric encryption schemeSYM is secure andH is hard-
core for the Diffie-Hellman problem in the underlying group. (The assumption thatMAC is secure is not
needed to ensure semantic security.) The proof considers an adversaryA who defeats the semantic security
of the scheme. Letgv be the recipient public key and lety = U k encM k tag be the challenge ciphertext
that this adversary gets in itsguess stage. We consider two cases depending on whether the output ofH

“looks random”.

� Case 1 — The output ofH looks random.In this case, we present an adversaryB that breaks the
encryption schemeSYM.

� Case 2 — The output ofH does not look random.In this case, we present an algorithmC that breaks
the hard-coreness ofH onG.

The formal proof, given below, does not actually consider separate cases, but the underlying intuition is the
same. GivenA, we constructB andC and then relateA’s advantage to that ofB andC.

Proof: Let A be an adversary attackingDHIES in the sense of semantic security. Assume it has time-
complexity at mostt. We construct an adversaryB attackingSYM and an adversaryC attackingH being
hard-core forG, and then upper bound the advantage ofA in terms of the advantages of these adversaries.

ALGORITHM B. Figure 3 describes algorithmB. Recall from Definition 2 thatB has access to an oracle
for encryption, and runs in two stages. Notice thatB never invokes its encryption oracleE . Moreover, the
running time ofExpind-cpa-fgSYM;B is at mostt.

15

algorithm BE(�)(find)
begin

v
R

 f1; : : : ; jGjg
pk gv

(x0; x1; s) A(find; pk)es (x0; x1; s; pk)
return (x0; x1; es)

end

algorithm BE(�)(guess; ey; es)
begin

parse es as (x0; x1; s; pk)

u
R

 f1; : : : ; jGjg; U gu

macKey
R

 f0; 1gmLen

tag TmacKey(ey)
y U k ey k tag
b A(guess; pk; s; y)
return b

end

Figure 3:AlgorithmB for attacking the security ofSYM.

algorithm C(U; V;W)
begin

macKey W [1 : : :mLen]; encKey W [mLen+ 1 : : :mLen+ eLen]
pk V

(x0; x1; s) A(find; pk)eb f0; 1g; encM EencKey (xeb)
tag TmacKey(encM)
y U k encM k tag
b A(guess; pk; s; y)
if b = eb then return 1 else return 0

end

Figure 4:AlgorithmC for attacking the hard-coreness ofH onG.

ALGORITHM C . Figure 4 depicts the behavior of algorithmC. C is given as inputU; V;W , whereU = gu

andV = gv for randomu; v, andW is eitherH(guv) or a random string.C outputs at the end a bit
indicating its guess as to which of these cases occurs. Notice that the time-complexity ofC is at mostt.

ANALYSIS. WhenW = H(guv) we notice thatC is runningA as the latter would be run in its attack on
the semantic security ofDHIES. From the definition ofAdvind-cpa-fgDHIES;A , we have that

Pr[Exphdh-real
G;H;C = 1] =

1

2
+
Adv

ind-cpa-fg
DHIES;A

2
:

On the other hand, whenW is a random string, we notice thatC runsA in the same way asB does, and
hence

Pr[Exphdh-rand
G;H;C = 1] =

1

2
+
Adv

ind-cpa-fg
SYM;B

2
:

Subtracting gives us

Advhdh
G;H;C =

1

2
+
Adv

ind-cpa-fg
DHIES;A

2
�
1

2
�
Adv

ind-cpa-fg
SYM;B

2
=

Adv
ind-cpa-fg
DHIES;A

2
�
Adv

ind-cpa-fg
SYM;B

2
;

16

whence

Adv
ind-cpa-fg
DHIES;A = 2 �Advhdh

G;H;C +Adv
ind-cpa-fg
SYM;B :

Since the time-complexity ofC is at mostt, we conclude thatAdvhdh
G;H;C � Advhdh

G;H(t). Moreover,

sinceB makes0 encryption queries and has time-complexity at mostt, we also haveAdvind-cpa-fgSYM;B �

Adv
ind-cpa-fg
SYM (t; 0; 0). Thus from the above we have

Adv
ind-cpa-fg
DHIES;A � 2 �Advhdh

G;H(t) +Adv
ind-cpa-fg
SYM (t; 0; 0) :

But A was an arbitrary adversary subject to the constraint that it had time-complexity at mostt and the
length of its challenge ciphertext is at mostc. The theorem follows.

7 Security against Chosen-Ciphertext Attack

We show thatDHIES [[G;SYM;MAC;H]] meets the notion of indistinguishability under an adaptive chosen-
ciphertext attack, as in Definition 4.

Theorem 2 Let G = (G; g; ; ") be a represented group, letSYM be a symmetric encryption scheme, and
letMAC be a message authentication scheme. LetDHIES be the asymmetric encryption scheme associated
to these primitives as defined in Section 3. Then for any numberst, q, �, andc,

Adv
ind-cca-fg
DHIES (t; q; �; c) � Adv

ind-cpa-fg
SYM (t; 0; 0) + 2 �Advodh

G;H(t; q) +

2 �Advsuf-cma
MAC (t; 1; c; q; �) :

IDEA OF PROOF. The assumption is that both symmetric encryption schemeSYM and the message authen-
tication schemeMAC are secure andH is a hard-core for the Diffie-Hellman problem onG under adaptive
Diffie-Hellman attack. The proof considers an adversaryA who defeats the adaptive chosen-ciphertext
security of the scheme. Letgv be the recipient public key; lety = U k encM k tag be the challenge
ciphertext that algorithmA gets in itsguess stage. Let us call aType 1 query a ciphertext of the form
U k gencM k gtag . A Type 2 query have the formeU k gencM k gtag with eU 6= U . We consider three cases
depending on whether the output ofH looks random and on whether there was aType 1 queryey to the
decryption oracleDsk such thatDsk(ey) 6= BAD.

� Case 1 — The output ofH does not look random.In this case we present an algorithmC that breaks
the hard-coreness ofH onG under adaptive Diffie-Hellman attack.

� Case 2 — The output ofH looks random and there was aType 1 queryey toDsk such thatDsk(ey) 6=
BAD. In this case we present an adversaryF which breaks the message authentication schemeMAC.

� Case 3 — The output ofH looks random and there was not aType 1 queryey to Dsk such that
Dsk(ey) 6= BAD. In this case we present an adversaryB which breaks the encryption schemeSYM.

Proof: LetA be an adversary attackingDHIES in the sense of adaptive chosen-ciphertext security. Assume
it has running time at mostt, makes at mostq queries to its decryption oracle. We construct an adversary
B attackingSYM, an adversaryC attackingH being a hard-core forG under non-adaptive Diffie-Hellman
attack, and an adversaryF for the message authentication schemeMAC and then upper bound the advantage
of A in terms of the advantages of these adversaries.

17

algorithm BE(�)(find)
begin

v
R

 f1; : : : ; jGjg
pk gv

run A(find; pk)
– For each decryption queryy i

parse yi as Ui k encM i k tagi
hashi H(Uv

i)
macKeyi hashi[1::mLen]
encKey i hashi[mLen+ 1::mLen+ eLen]
if VmacKey

i
(encM i; tagi) = 1 then

return DencKey
i
(encM i)

else return BAD
– Let (x0; x1; s) be the output ofAes (x0; x1; s; v; pk)
return (x0; x1; es)

end

algorithm BE(�)(guess; ey; es)
begin

parse es as (x0; x1; s; v; pk)
ASK false

u
R

 f1; : : : ; jGjg
U gu

macKey
R

 f0; 1gmLen

tag TmacKey(ey)
y U k ey k tag
run A(guess; pk; s; y)
– For each decryption queryy i

parse yi as Ui k encM i k tag i
hashi H(Uv

i)
macKeyi hashi[1::mLen]
encKeyi hashi[mLen+ 1::mLen+ eLen]
if VmacKey

i
(encM i; tag i) = 1 then

if Ui 6= U then
return DencKey

i
(encM i)

else ASK true;
return BAD

– if ASK = true then b
R

 f0; 1g
else let b be the output ofA

return b

end

Figure 5:AlgorithmB for attacking the security ofSYM.

ALGORITHM B. Figure 5 describes algorithmB. Recall from Definition 2 thatB has access to an oracle
for encryption and runs in two stages. Since the time-complexityt of A accounts for the time taken by
decryption queries as well as the time to generatepk and the challenge ciphertexty, the time-complexity of
B is at most that ofA (i.e., t).

ALGORITHM C . Figure 6 defines the behavior of algorithmC. C is given as inputU; V;W , whereU = gu

andV = gv for randomu andv, respectively, andW is eitherH(guv) or a random string. Recall from
Definition 8 thatC is also given access to aHv-oracle. At the end,C outputs a bit indicating its guess as to
which of these cases occurs.

Notice that, since the time-complexity ofA accounts for the time taken by decryption queries as well as the
time to compute the challenge ciphertext, the time-complexity ofC is at mostt.

ALGORITHM F . Figure 7 describes algorithmF . Recall from Definition 1 thatF has access to two oracles:
a tag-generation oracleT and a verification oracleV. It outputs a pair message-tag, a possible forgery.
Notice that, since the time complexity ofA accounts for the time taken by decryption queries and for the
time to generate the secret-public key pairsk;pk) and the challenge ciphertexty, F ’s time-complexity is at
mostt.

ANALYSIS. As in the proof of non-adaptive chosen-ciphertext security, our goal is to upper bound the
success probability of adversaryA in terms of the success probabilities of adversariesB for the symmetric
encryption scheme,C for the hard-coreness ofH for G under non-adaptive Diffie-Hellman attack, andF

18

algorithm CHv(�)(U; V;W)
begin

macKey W [1 : : :mLen]
encKey W [mLen+ 1 : : :mLen+ eLen]
pk V

run A(find; pk)
– For each decryption queryy i

return Decr-Simulator(yi; U; V;W)
– Let (x0; x1; s) be the output ofAeb f0; 1g
encM EencKey (xeb)
tag TmacKey(encM)
y U k encM k tag
run A(guess; pk; s; y)
– For each decryption queryy i

return Decr-Simulator(yi; U; V;W)
– Let b be the output ofA
if b = eb then return 1 else return 0

end

subroutine Decr-Simulator(yi; U; V;W)
begin

parse yi as Ui k encM i k tagi
if Ui = U then

macKeyi W [1 : : :mLen]
encKeyi W [mLen+ 1 : : :mLen+ eLen]

else
hashi Hv(Ui)
macKeyi hashi[1::mLen]
encKeyi hashi[mLen+ 1::mLen+ eLen]

if VmacKey
i
(encM i; tagi) = 1 then

return DencKey
i
(encM i)

else return BAD
end

Figure 6:AlgorithmC for attacking the hard-coreness ofH onG under adaptive Diffie-Hellman attack.

algorithm F T (�);V(�;�)

begin
W (�; �)

v
R

 f1; : : : ; jGjg; pk gv

u
R

 f1; : : : ; jGjg; U gu

encKey
R

 f0; 1geLen

run A(find; pk)
– For each decryption queryey

return Decr-Simulator(ey)
– Let (x0; x1; s) be the output ofAeb R

 f0; 1g
encM EencKey (xeb)
tag T (encM)
y U k encM k tag
run A(guess; pk; s; y)
– For each decryption queryey

return Decr-Simulator(ey)
– Let b be the output ofA
return W

end

subroutine Decr-Simulator(ey)
begin

parse ey as eU k gencM kgtagghash H(eUv)gmacKey ghash[1::mLen]gencKey ghash[mLen+ 1::mLen+ eLen]

if eU = U then

if V(gencM ;gtag) = 1 then

W (gencM ;gtag)
return DencKey (gencM)

else return BAD
else

if V gmacKey(gencM ;gtag) = 1 then

return D gencKey (gencM)

else return BAD
end

Figure 7:Algorithm F for attacking the security ofMAC.

for the message authentication scheme. For this purpose, lety be the challenge ciphertext in experiment

19

Exp
ind-cca-fg
DHIES;A and let SOMEVALID be the event whereA makes aType 1 queryey such thatDsk(ey) 6= BAD

in this experiment. LetSOMEVALID denote the event where there is noType 1 queryey such thatDsk(ey) 6=
BAD in experimentExpind-cca-fgDHIES;A . We make use of the following three claims.

Claim 3 Pr[Expodh-real
G;H;C = 1] = 1

2
+

Adv
ind-cca-fg
DHIES;A

2
:

Proof: When the inputW = H(guv), we notice thatC is runningA as the latter would be run in its attack
on the adaptive chosen-ciphertext security ofDHIES. Therefore, the claim follows from the definition of
Adv

ind-cca-fg
DHIES;A .

Claim 4 Pr[Expodh-rand
G;H;C = 1 ^ SOMEVALID] � 1

2 +
Adv

ind-cpa-fg
SYM

(t;0;0)

2

Proof: WhenA does not make aType 1 query to its decryption oracle nor makes aType 1 queryey such
thatDsk(ey) 6= BAD, C runsA in the same wayB does. Hence, the probability thatC outputs 1 given
SOMEVALID is at most1=2 + 1=2 � Adv

ind-cpa-fg
SYM;B . SinceB makes0 encryption queries and has time-

complexity at mostt, the claim follows directly from the assumed security ofSYM.

Claim 5 Pr[Expodh-rand
G;H;C = 1 ^ SOMEVALID] � Advsuf-cma

MAC (t; 1; c; q; �)

Proof: When there is aType 1 queryey to the decryption oracle such thatDsk(ey) 6= BAD, let i be the
number of one such query and letyi = U k encM i k tag i be its value. By assumption, we know
that VmacKey(encM i; tag i) = 1. Because(encM i; tag i) 6= (encM ; tag) (or otherwiseyi = y andA
would have queried its decryption oracle with the challenge ciphertext), eitherencMi was not queried of
tag-generation oracleT (�) or tagi was not the response returned by tag-generation oracleT (�) on query
encM . In either case,(encM i; tag i) is a valid forgery andF succeeds in breakingMAC. Therefore,
Pr[Expodh-rand

G;H;C = 1 ^ SOMEVALID] � Pr[SOMEVALID] � Advsuf-cma
MAC;F : Hence, sinceF has time-

complexity at mostt, makes exactly one query to its tag-generation oracleT (�) whose length is at mostc
(the upper bound on the length of challenge ciphertext), and makes at mostq queries to its verification oracle
V(�; �) the sum of whose lengths is at most� bits, the claim follows from the assumed security ofMAC.

From Definition 8 and Claims 3, 4, and 5, we have that:

Advodh
G;H;C �

1

2
+
Adv

ind-cca-fg
DHIES;A

2
�
1

2
�
Adv

ind-cpa-fg
SYM (t; 0; 0)

2
�Advsuf-cma

MAC (t; 1; c; q; �)

=
Adv

ind-cca-fg
DHIES;A

2
�
Adv

ind-cpa-fg
SYM (t; 0; 0)

2
�Advsuf-cma

MAC (t; 1; c; q; �) ;

whence

Adv
ind-cca-fg
DHIES;A � Adv

ind-cpa-fg
SYM (t; 0; 0) + 2 �Advodh

G;H;C + 2 �Advsuf-cma
MAC (t; 1; c; q; �) :

We conclude that, sinceC has time-complexity at mostt and makes at mostq queries to its oracleHv,
Advodh

G;H;C � Adv
odh
G;H(t; q). Thus, from the above, we have

Adv
ind-cca-fg
DHIES;A � Adv

ind-cpa-fg
SYM (t; 0; 0) + 2 �Advodh

G;H(t; q) + 2 �Advsuf-cma
MAC (t; 1; c; q; �) :

20

But A was an arbitrary adversary subject to the constraint that it has time-complexity at mostt and makes
at mostq queries to its decryption oracle the sum of whose lengths is at most� bits, and the length of the
challenge ciphertext is at mostc in experimentExpind-cca-fgDHIES;A . The theorem follows.

8 ODH and SDH

In this section, we first exploit the relationship between the strong Diffie-Hellman (SDH) and the oracle
Diffie-Hellman (ODH) assumptions when the hash functionH is modeled as a random oracle. More specif-
ically, we show that, in the random oracle (RO) model, the SDH assumption implies the ODH assumption.
We then go on to prove a lower bound on the complexity of strong Diffie-Hellman assumption with respect
to generic algorithms.

However, before proving the implication between the SDH and ODH assumption in the RO model, we
need to back up a little and modify the experiment defining the security of ODH assumption to account for
the presence of a random oracleH. The following is the definition of ODH assumption in the the RO model.

Definition 10 [Oracle Diffie-Hellman in the random oracle model: ODH-RO] Let G = (G; g; ; ") be
a represented group, lethLen be a number, let
 be the set of all functions fromf0; 1g� to f0; 1ghLen, and
letA be an adversary. Consider the experiments

experiment Expodh-real-ro
G;H;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

W H(guv)

Hv(X)
def
= H(Xv)

H
R

b AHv(�);H(�)(U; V;W)

return b

experiment Expodh-rand-ro
G;H;A

u
R
 f1; : : : ; jGjg; U gu

v
R
 f1; : : : ; jGjg; V gv

W
R
 f0; 1ghLen

Hv(X)
def
= H(Xv)

H
R

b AHv(�);H(�)(U; V;W)

return b

Now define theadvantageof A in violating the oracle Diffie-Hellman assumption in the random oracle
model and theadvantage functionof ODH assumption in the RO model, respectively, as follows:

Advodh-ro
G;H;A = Pr[Expodh-real-ro

G;H;A = 1]� Pr[Expodh-rand-ro
G;H;A = 1]

Advodh-ro
G;H (t; qh; qo) = max

A
fAdvodh-ro

G;H;A g ;

where the maximum is over allA with time-complexityt, making at mostqh queries to itsH-oracle andqo
queries to itsHv-oracle. HereA is not allowed to call its oracleHv on inputgu. }

The following theorem shows that, in the random oracle (RO) model, the strong Diffie-Hellman assump-
tion implies the oracle Diffie-Hellman assumption.

Theorem 6 LetG = (G; g; ; ") be a represented group and let the associated hash functionH be chosen at
random. Letqh andqo be, respectively, the total number of queries toH-oracle and to theHv-oracle. Then,

Advodh-ro
G;H (t; qh; qo) � Advsdh

G
(t+ qh qo O(gLen+ hLen); (qh + qo)

2) :

Proof: LetA be any adversary against the ODH assumption in the RO model. Lett be its time-complexity
andqh andqo be, respectively, the number of queries it makes toH andHv oracles. We can construct an
adversaryB for the Diffie-Hellman problem under SDH onG, usingA as a sub-routine, as follows.

21

algorithm BOv(�)(U; V)
begin

hash0
R

 f0; 1ghLen; hash1
R

 f0; 1ghLen

b
R

 f0; 1g; W hashb
guess g

run AHv(�);H(U; V;W)

– For eachHv-query eU , return response as described in the text
– For eachH-queryX , return response as described in the text

(updatingguess if Ov(U;X) = 1)
– Leteb be the output ofA
return guess

end

Figure 8:AlgorithmB for attacking the hard-coreness of the Diffie-Hellman problem under SDH onG.

ALGORITHM B. AlgorithmB is shown in Figure 8.B is given as input(U; V), whereU = gu andV = gv

for randomu andv and outputs a valueguess, its guess forguv . B is also given access to a restricted DDH
oracleOv. Initially, B picks two values,hash0 andhash1, at random and sethash0 to be the output ofH
on inputUv (although it still does not know the value ofUv). It also fix a default valueg for guess. Then
it runsA as a subroutine, feeding its input with eitherhash0 or hash1. Our hope is that, at some point,A
is going to make a query of the formUv to theH oracle, since otherwiseA would have no advantage in

distinguishing the real outputhash0
def
= H(Uv) from the random stringhash1. To find out whenA queries

its H-oracle on inputUv, we query our restricted DDH oracleOv on input(U;X) wheneverA makes a
queryX to its H-oracle. IfOv(U;X) returns 1, thenX = Uv and we update the value ofguess to X.
Notice thatB does not have access to either theH-oracle or theHv-oracle. However, it can simulate both
oracles.

The oracleH is to be simulated as follows. In response to a queryX, if X has been asked ofH, then return
the same response as given to that previous query. IfX has not been asked ofH, then first check whether
Ov(U;X) = 1. If so, then update the value ofguess to X and returnhash0 as the response to the current
H-query. If not, then check whether there was some queryeU to theHv-oracle such thatOv(eU;X) = 1. If
there was such query, then lethash be the same value used as response to that query. If not, then lethash

be a random string. Returnhash as the response to the currentH query.

TheHv-oracle is to be simulated as follows. When a queryeU 6= U is made, check whethereU has already
been asked ofHv. If so, then return the same response as given to that previous query. If not, then check
whether there was a previousH-queryX whereOv(eU;X) = 1. If so, then lethash be the output given to
thatH-query. If not, then lethash be a random value. Returnhash as the response to the current query.

Notice thatB runs in time at mostt + qoqhO(hLen + gLen) and makes at most(qo + qh)
2 queries to its

Ov-oracle.

ANALYSIS. Consider the experimentsExpodh-real-ro
G;A andExpodh-rand-ro

G;A and let ASKA andASKA denote,
respectively, the event in whichH-oracle queryUv is made byA and its complement.

When queryUv is not made directly byA to its H-oracle, there is no way for it to tell whether its input
W is equal toH(Uv) or a random string of lengthhLen since the former can take any value inf0; 1ghLen.
Hence, the probabilities thatA outputs 1 in experimentsExpodh-rand-ro

G;A andExpodh-real-ro
G;A , given thatA

22

does not query itsH-oracle on inputUv are exactly the same. That is,Pr[Expodh-real-ro
G;A = 1 ^ ASKA] =

Pr[Expodh-rand-ro
G;A = 1 ^ ASKA].

Consider now the case in which adversaryA queries itsH-oracle on inputUv in experimentsExpodh-rand-ro
G;A

andExpodh-real-ro
G;A . In such case, we know that adversaryB, which runsA as a sub-routine, succeeds in

solving the Diffie-Hellman problem under SDH onG. This is because we know there is an indexi 2

f1; : : : ; qhg such thathi = X andX = Uv. SinceOv(U;X) = 1, guess will take the correct valueUv and
B will succeed in solving the strong Diffie-Hellman problem onG. Hence,Pr[Expodh-real-ro

G;A = 1 ^ ASKA]�

Pr[Expodh-rand-ro
G;A = 1 ^ ASKA] � Pr[ASKA] � Advsdh

G;B. Moreover, sinceB makes at most(qo+ qh)
2

queries to its oracleOv and has time complexity at mostt + qoqhO(hLen + gLen), it is also the case that
Advsdh

G;B � Adv
sdh
G

(t; (qo + qh)
2).

Putting it all together, we have that

Advodh
G;H;A = Pr[Expodh-real-ro

G;A = 1]� Pr[Expodh-rand-ro
G;A = 1]

= Pr[Expodh-real-ro
G;A = 1 ^ ASKA] + Pr[Expodh-real-ro

G;A = 1 ^ ASKA]

�Pr[Expodh-rand-ro
G;A = 1 ^ ASKA]� Pr[Expodh-rand-ro

G;A = 1 ^ ASKA]

= Pr[Expodh-real-ro
G;A = 1 ^ ASKA]� Pr[Expodh-rand-ro

G;A = 1 ^ ASKA]

� Pr[ASKA]

� Advsdh
G;B

� Advsdh
G

(t+ qoqhO(hLen+ gLen); (qo + qh)
2):

The bound claimed in the theorem follows easily from the fact thatA was an arbitrary adversary subject to
the constraint that it had time-complexity at mostt and made at mostqh queries to itsH-oracle and at most
qo queries to itsHv-oracle.

LOWER BOUNDS WITH RESPECT TO GENERIC ALGORITHMS. Generic algorithms in groups are algorithms
which do not make use of any special properties of the encoding of group elements other than assuming each
element has a unique representation. This model was introduced by Shoup [34] and is very useful in proving
lower bounds (with respect to such algorithms) for some problems. In fact, Shoup proved that in such a
model both the discrete logarithm and the Diffie-Hellman problems are hard to solve as long as the order of
the group contains at least one large prime factor. Following the same approach, we also use this model here
to prove lower bounds for some new problems we introduce. Let us proceed now with the formalization of
this model.

Let Zn = f1; : : : ;ng be the additive group of integers modulon, the order of the group. LetS be a set
of bit strings of order at leastn. We call an injective map fromZn to S anencoding function. One example
for such a function would be the function takingu 2 Z

jGj to gu mod jGj, whereG is a finite cyclic group of
orderjGj generated by the group elementg.

A generic algorithm is a probabilistic algorithmA which takes as input a list

(�(x1); �(x2); : : : ; �(xk));

where eachxi 2 Zn and� is a randomencoding function, and outputs a bit string. During its execution,A

can make queries to an oracle�. Each query will result in updating the encoding list, to whichA has always
access.� gets as input two indicesi andj and sign bit, and then computes�(xi � xj) and appends it to the
list. It is worth noticing thatA does not depend on�, since it is only accessible by means of oracle queries.

23

We need to extend the original generic model to allow queries to the restricted DDH oracleOv . In this
case,Ov gets as input two indicesi andj and returns 1 ifxj = v � xi and 0, otherwise. In general lines,
our result shows that the restricted DDH oracleOv does not help in solving the Diffie-Hellman problem
whenever the group order contains a large prime factor. One should note, however, that our result has no
implications on non-generic algorithms, such as index-calculus methods for multiplicative groups of integers
modulo a large prime. Let us state this more formally.

Definition 11 [SDH in generic model] Let Zn be the additive group of integers modulon, let S be a set
of strings of cardinality at leastn, and let� be a random encoding function ofZn onS. In addition, let

be the set of all mappingsZn to S. LetA be an generic algorithm. Consider the experiment

experiment Expg-sdhn

�
R

g �(1)

u
R
 f1; : : : ;ng; U �(u)

v
R
 f1; : : : ;ng; V �(v)

�(i; j;�)
def
= xi � xj

Ov(i; j)
def
= (xj = vxi)

Z AOv(�;�);�(�;�;�)(g; U; V)

if Z = �(uv) then b 1 else b 0

return b

Now define theadvantageof A in violating the strong Diffie-Hellman assumption in the generic model and
the advantage function of SDH assumption in this model, respectively, as follows:

Adv
g-sdh
n;A = Pr[Exp

g-sdh
n;A = 1]

Advg-sdhn (q) = max
A
fAdv

g-sdh
n;A g ;

whereq is the total number of queries made byA to its oracles. }

Theorem 7 Let Zn be the additive group of integers modulon, let S be a set of strings of cardinality at
leastn. Then, for any numberq,

Advg-sdhn (q) � O(q2=p)

wherep is the largest prime factor ofn.

A corollary of Theorem 7 is that any generic algorithm solving the Diffie-Hellman problem under SDH with
success probability bounded away from 0 has to perform at least
(p1=2) group operations.

Proof: Here we just present a proof sketch using a technique used by Shoup in [34]. Letn = s pt with
gcd(s; p) = 1. Since additional information only reduces the running time, we can assume that solving the
Diffie-Hellman problem in the subgroup of orders is easy. Hence, letn = pt wlog.

We start by running algorithmA. In doing so, we need to simulate all its oracles. We play the following
game. LetU andV be indeterminants. During the execution of the algorithm, we will maintain a list
F1; : : : ; Fk of polynomials inZpt[U; V], along with a list�1; : : : ; �k of distinct values inS. Initially, we
haveF1 = 1, F2 = U , andF3 = V ; and three distinct values�1, �2, and�3 chosen at random fromS.
When the algorithm makes a query(i; j;�) to its�-oracle, we first computeFk+1 = Fi � Fj 2 Zpt [U; V]

and check whether there is somel � k such thatFk+1 = Fl. If so, then we return�l to A. Else we pick

24

choose a random but distinct�k+1, return it toA, and update both lists. When the algorithm makes a query
(i; j) to itsOv, we return 1 ifFj = V � Fi else 0.

We can assume thatA outputs an element in the encoding list (otherwiseAdvsdhn;A � 1=(p� q)), whereq is
the number of queries made byA. Then, let us chooseu andv at random fromZpt. Notice thatAdvsdhn;A can
be upper bounded by the probability of one of the following happening:Fi(u; v) = Fj(u; v) for someFi
andFj ; or Fi(u; v) = uv for somei; orFj 6= Vi butFj(u; v) = vFi(u; v). Otherwise, the algorithm cannot
learn anything aboutu or v except thatFi(u; v) 6= Fj(u; v) for everyi andj. But, using results from [34],
for fixed i andj, the probability thatFi�Fj vanishes is at most1=p; the probability thatFi�UV vanishes
is at most2=p; and the probability thatFj � V Fi vanishes is at most2=p. It follows that the probability of
one of these happening isO(q2=p). The theorem follows from the fact thatA was an arbitrary adversary
subject to the constraint that it makes at mostq queries to its oracles.

References

[1] M. Abdalla, M. Bellare, and P. Rogaway. The oracle diffie-hellman assumptions and an analysis of
DHIES. In D. Naccache, editor,Topics in Cryptology – CT-RSA 2001, volume 2020 ofLecture Notes
in Computer Science, pages 143–158. Springer-Verlag, Berlin Germany, Apr. 2001.

[2] American National Standards Institute (ANSI) X9.F1 subcommittee. ANSI X9.63 Public key cryptog-
raphy for the Financial Services Industry: Elliptic curve key agreement and key transport schemes,
July 5 1998. Working draft version 2.0.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In
N. Koblitz, editor,Advances in Cryptology – CRYPTO’96, volume 1109 ofLecture Notes in Computer
Science. Springer-Verlag, Berlin Germany, Aug. 1996.

[4] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryp-
tion. In IEEE, editor,38th Annual Symposium on Foundations of Computer Science, pages 394–403.
IEEE Computer Society Press, 1997.

[5] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-
key encryption schemes. In H. Krawczyk, editor,Advances in Cryptology – CRYPTO’98, volume 1462
of Lecture Notes in Computer Science, pages 26–45. Springer-Verlag, Berlin Germany, Aug. 1998.

[6] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication
code. In Y. Desmedt, editor,Advances in Cryptology – CRYPTO’94, volume 839 ofLecture Notes in
Computer Science. Springer-Verlag, Berlin Germany, Aug. 1994.

[7] M. Bellare and P. Rogaway. Optimal asymmetric encryption: How to encrypt with RSA. In A. D.
Santis, editor,Advances in Cryptology – EUROCRYPT’94, volume 950 ofLecture Notes in Computer
Science. Springer-Verlag, Berlin Germany, May 1994.http://www-cse.ucsd.edu/users/
mihir .

[8] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and rabin.
In U. Maurer, editor,Advances in Cryptology – EUROCRYPT’96, volume 1070 ofLecture Notes in
Computer Science. Springer-Verlag, Berlin Germany, May 1996.

[9] M. Bellare and P. Rogaway. Minimizing the use of random oracles in authenticated encryption
schemes. InInformation and Communications Security, volume 1334 ofLecture Notes in Computer
Science, pages 1–16. Springer-Verlag, Berlin Germany, 1997.

25

[10] D. Bleichenbacher. A chosen ciphertext attack against protocols based on the RSA encryption standard
PKCS #1. In H. Krawczyk, editor,Advances in Cryptology – CRYPTO’98, volume 1462 ofLecture
Notes in Computer Science. Springer-Verlag, Berlin Germany, Aug. 1998.

[11] D. Boneh. The decision diffie-hellman problem. InThird Algorithmic Number Theory Symposium
(ANTS), volume 1423 ofLecture Notes in Computer Science. Springer-Verlag, Berlin Germany, 1998.
Invited paper.

[12] D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in diffie-
hellman and related schemes. In N. Koblitz, editor,Advances in Cryptology – CRYPTO’96, volume
1109 ofLecture Notes in Computer Science. Springer-Verlag, Berlin Germany, Aug. 1996.

[13] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In30th Annual
ACM Symposium on Theory of Computing, New York, NY, May 23–26 1998. ACM Press.

[14] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In H. Krawczyk, editor,Advances in Cryptology – CRYPTO’98, volume 1462 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany, Aug. 1998.

[15] C. D. D. Dolev and M. Naor. Non-malleable cryptography. In ACM, editor,23rd Annual ACM Sympo-
sium on Theory of Computing, pages 542–552, New Orleans, Louisiana, May 6–8 1991. ACM Press.

[16] W. Diffie and M. Hellman. New directions in cryptography.IEEE Transactions on Information Theory,
22:644–654, 1978.

[17] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography, 1998. Manuscript.

[18] T. ElGamal. A public key cryptosystem and signature scheme based on discrete logarithms.IEEE
Transactions on Information Theory, 31:469–472, 1985.

[19] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In
M. Wiener, editor,Advances in Cryptology – CRYPTO’99, volume 1666 ofLecture Notes in Computer
Science. Springer-Verlag, Berlin Germany, Aug. 1999.

[20] O. Goldreich. A uniform complexity treatment of encryption and zero-knowledge.IACR Journal of
Cryptology, 6(1):21–53, 1993.

[21] S. Goldwasser and S. Micali. Probabilistic encryption.Journal of Computer and System Science,
28:270–299, 1984.

[22] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In H. Krawczyk,
editor,Advances in Cryptology – CRYPTO’98, volume 1462 ofLecture Notes in Computer Science.
Springer-Verlag, Berlin Germany, Aug. 1998.

[23] IEEE P1363a Committee. IEEE P1363a / D9 — standard specifications for public key cryptography:
Additional techniques.http://grouper.ieee.org/groups/1363/index.html/ , June
2001. Draft Version 9.

[24] D. Johnson and M. P. S. Matyas. Encryption of long blocks using a short-block encryption procedure,
Nov. 1996.http://stdsbbs.ieee.org/groups/1363/index.html .

[25] C. Lim and P. Lee. Another method for attaining security against adaptively chosen ciphertext at-
tacks. In D. Stinson, editor,Advances in Cryptology – CRYPTO’93, volume 773 ofLecture Notes in
Computer Science. Springer-Verlag, Berlin Germany, Aug. 1994.

26

[26] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems.SIAM
Journal on Computing, 17(2):412–426, Apr. 1988. Special issue on cryptography.

[27] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. In
IEEE, editor,38th Annual Symposium on Foundations of Computer Science, Miami Beach, FL, Oct.
19 - 22 1997. IEEE, IEEE Computer Society Press.

[28] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
ACM, editor,22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, May 14–
16 1990. ACM Press.

[29] PKCS #1: RSA cryptography standard. RSA Data Security, Inc., June 1991.

[30] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Cipher-
text Attack. In J. Feigenbaum, editor,Advances in Cryptology – CRYPTO’91, volume 576 ofLecture
Notes in Computer Science. Springer-Verlag, Berlin Germany, Aug. 1991.

[31] Certicom research, standards for efficient cryptography group (SECG) — sec 1: Elliptic curve cryp-
tography.http://www.secg.org/secg_docs.htm , Sept. 20 2000. Version 1.0.

[32] Secure hash standard. National Institute of Standards and Technology, NIST FIPS PUB 180-1, U.S.
Department of Commerce, Apr. 1995.

[33] V. Shoup. Personal Communication.

[34] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,Advances in
Cryptology – EUROCRYPT’97, volume 1233 ofLecture Notes in Computer Science. Springer-Verlag,
Berlin Germany, May 1997.

[35] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In B. Preneel, editor,
Advances in Cryptology – EUROCRYPT 2000, volume 1807 ofLecture Notes in Computer Science.
Springer-Verlag, Berlin Germany, May 2000.

[36] Y. Zheng. Public key authenticated encryption schemes using universal hashing. Contribution to
P1363.ftp://stdsbbs.ieee.org/pub/p1363/contributions/aes-uhf.ps .

[37] Y. Zheng and J. Seberry. Immunizing public key cryptosystems against chosen ciphertext attack.IEEE
Journal on Selected Areas in Communications, 11(5):715–724, 1993.

A Attacks on the ElGamal Scheme

ElGamal encryption fails to achieve strong notions of security, such as non-malleability and chosen-ciphertext
security, in any represented group. In fact, it does not even achieves semantic security in some groups, such
asZ�p. To support these claims, we here provide the reader with examples of attacks on the ElGamal scheme.

The first of these attacks against the ElGamal scheme shows that it is not semantically secure whenZ
�

p is
the underlying group ofG, p is a prime, andg is a generator. The attack is based on the fact that we can check
whether a numberx 2 Z�p is a square or not in polynomial time by computing the valuex(p�1)=2 mod p,
which is 1 ifx is a quadratic residue modp and -1, otherwise. In thefind stage, we choose two messages in
Z
�

p, one which is a square and one which is not. In theguess stage, we first check whethergu andgv are
square. We know thatguv is a non-square if and only if bothgu andgv are non-square. Then, knowing this,
we can tell which message was encrypted by checking whether the encrypted messageM �guv is a square or

27

not. That is, ifguv is a square, thenM � guv is a square if and only ifM is a square. Ifguv is a non-square,
thenM � guv is a square if and only ifM is a non-square.

In order to provide a malleability attack against the ElGamal scheme, we can see that, given a ciphertext
EM = (gu; encM) whereencM =M �guv, we can easily produce a valid ciphertextgEM by just modifying
the second part ofEM . That is, if we multiplyencM by some valuegk (k 6= 0) to obtain gencM , then the
resulting ciphertextgEM = (gu; encM) will be an encryption for a messagefM =M � gk because the value
of guv does not change in this case. Note that this is not dependent on which groupG is being used.

To provide a chosen-ciphertext attack against the ElGamal scheme, we can show that we can obtain
the plaintext for any given ciphertext. LetEM = (gu; encM) be the challenge ciphertext. LetgencM be a
point inG such that gencM 6= encM and letfM be the decryption ofgEM = (gu; gencM). As we know thatfM = gencM=guv , we can computeguv and thenencM=guv , which is the decryption ofEM .

28

