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Abstract

This paper describes a Diffie-Hellman based encryption scheme, DHIES (formerly named DHES
and DHAES), which is now in several (draft) standards. The scheme is as efficient as EIGamal en-
cryption, but has stronger security properties. Furthermore, these security properties are proven to hold
under appropriate assumptions on the underlying primitive. DHIES is a Diffie-Hellman based scheme
that combines a symmetric encryption method, a message authentication code, and a hash function, in
addition to number-theoretic operations, in a way which is intended to provide security against chosen-
ciphertext attacks. The proofs of security are based on the assumption that the underlying symmetric
primitives are secure and on appropriate assumptions about the Diffie-Hellman problem. The latter are
interesting variants of the customary assumptions on the Diffie-Hellman problem, and we investigate
relationships among them, and provide security lower bounds. Our proofs are in the standard model; no
random-oracle assumption is required.
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1 Introduction

This paper describes a method for encrypting strings using the Diffie-Hellman assumption. We are con-
cerned with the “details” of Diffie-Hellman based encryption — how a message should be “packaged” in
order to best exploit the group operations (e.g., modular exponentiation) which are at the core of a Diffie-
Hellman based encryption.

The method we suggest is called DHIES, standing for “Diffie-Hellman Integrated Encryption Scheme”.
It is a simple extension of the EIGamal encryption scheme and is now in the draft standards of ANSI X9.63
and IEEE P1363a [2, 23] and in the corporate standard SECG [31]. The scheme was formerly known as
DHES and as DHAES. It is all the same scheme.

DHIES uses symmetric encryption, message authentication, and hashing. This may seem like a lot of
cryptography beyond the group operation, but it is exactly this additional cryptography which ensures, by
and large, that we get our security guarantees.

The security analysis of DHIES requires some interesting new variants of the Diffie-Hellman assump-
tion. We look at relationships among these notions, and we prove a complexity lower bound, in the generic
model, about one of them.

BACKGROUND. DHIES is designed to be a natural extension of the EIGamal scheme, suitable in a variety

of groups, and which enhanced ElIGamal in a couple of ways important to cryptographic practice. First, the
scheme needs to provide the capability of encrypting arbitrary bit strings (ElIGamal requires that message
be a group element). And second, the scheme should be secure against chosen-ciphertext attack (EIGamal
is not). The above two goals have to be realized without increasing the number of group operations for
encryption and decryption, and without increasing key sizes relative to EIGamal. Within these constraints,
we want to provide the best possible provable-security analysis. But efficiency and practicality of the scheme
should not be sacrificed in order to reduce assumptions.

The approach above is somewhat in contrast to related schemes in the literature. More typical is to fix an
assumption and then strive to find the lowest cost scheme which can be proven secure under that assumption.
Examples of work in this style are that of Cramer and Shoup [14] and that of Shoup [35], who start from the
decisional Diffie-Hellman assumption, and then try to find the best scheme they can that will resist chosen-
ciphertext attack under this assumption. In fact, the latter can also be proved secure in the random oracle
model based on the weaker computational Diffie-Hellman assumption. These schemes are remarkable, but
their costs are about double that of EIGamal, which is already enough to dampen some practical interest. A
somewhat different approach was taken by Fujisaki and Okamoto [19], starting from weaker asymmetric and
symmetric schemes to construct a stronger hybrid asymmetric scheme. Their scheme can be quite practical,
but the proof of security relies heavily on the use of random oracles.

The DHIES scheme uses a hash function. In [9], a claim is made that DHIES should achieve plaintext
awareness if this hash function is modeled as a public random oracle and one assumes the computational
Diffie-Hellman assumption. In fact, technical problems would seem to thwart any possibility of pushing
through such a result.

OuUR APPROACH DHIES is a very “natural” scheme. (See Section 3 for its definition.) The method follows
standard ideas and practice. Intuitively, it is secure. Yet it seems difficult to prove security under existing
assumptions about the Diffie-Hellman problem.

This situation seems to arise frequently. It seems often to be the case that we think certain methods are
good, but we don’t know how to prove that they are good starting from “standard” assumptions. We suggest
that what we are seeing with DHIES is a manifestation of hardness properties of Diffie-Hellman problems
which just haven't been made explicit so far.

In this paper we capture some of these hardness properties as formal assumptions. We will then show
how DHIES can then be proven secure under these assumptions. Then we further explore these assumptions



by studying their complexity in the generic model [34], and by studying how the assumptions relate to one
other.

RELATED WORK. As we have indicated, the DHIES scheme first appears in [9]. No proof appears in that
work. It was suggested that a proof of plaintext awareness [7, 5] could be achieved under the random-oracle
model. However, no such proof has appeared, and technical difficulties would seem to bar it.

DHIES is now embodied in three (draft) standards [2, 23, 31]. All of these assume an elliptic curve group
of prime order. To harmonize this paper with those standards, and to simplify complexity assumptions, we
shall assume the the underlying group in which we work has prime order. When working with a group
whose order is not prime a minor change can be made to the protocol so that it will still be correct. Namely,
the valueg“ should be fed into the hash functidh.

Zheng and Seberry [37] have proposed an ElGamal-based scheme that uses universal one-way hash
functions. Security of their scheme is not supported by proofs in the reductionist sense of modern cryptog-
raphy. Lim and Lee [25] have pointed out that in some of the cryptosystems proposed in [37], the method of
adding authentication capability may fail just under known plaintext attacks. A submission to IEEE P1363a
based on [37] has been made by Zheng [36].

Another contemporaneous suggestion was put forward by Johnson, Matyas and Peyravian [24]. Assume
that the messagld already contains some redundancy (e.g., some number of fixed bits) and unpredictability
(e.g., random bits have been embeddedfin Then to asymmetrically encrypil, [24] suggest to subject
it to 4 rounds of a Feistel network based on a functibrthereby obtaining a new strinf. Encrypt, using
an arbitrary encryption primitive, an arbitrary pieceMt. It is plausible that ifH is modeled as a random
function then the above approach can be proven sound.

Cramer and Shoup describe an encryption scheme based on the decisional Diffie-Hellman problem
which achieves provable security against adaptive chosen-ciphertext attack [14]. They prove their scheme
secure under the decisional Diffie-Hellman assumption (and a collision-intractable hash function), or, in the
random-oracle model, under the ordinary Diffie-Hellman assumption [33]. Their scheme is more costly
than ours in terms of key sizes, encryption time, and decryption time (in particular, encryption takes five
exponentiations), but the scheme is still practical.

The notions of indistinguishability and semantic security, and their equivalence under chosen-plaintext
attack is due to [21]. The notion of chosen-ciphertext security that we use is due to [30]. Equivalences are
further investigated by [5]. Note that the form of chosen-ciphertext security we use is the “strong” form,
called CCA2in [5].

OUTLINE. To specify our scheme in a compact and precise way, we first specify in Section 2 the “syntax”
of an asymmetric encryption scheme and what it means for it to be secure. We also specify in Section 2
the syntax of the types of primitives which our asymmetric encryption scheme employs along with their
security definitions. The specification of DHIES is then given in Section 3 and its attributes and advantages
are discussed in Section 4.

The security of DHIES relies on variants of the Diffie-Hellman problem, which we introduce in Section 5.
More specifically, we formalize three new Diffie-Hellman assumptions (though one of them, the hash Diffie-
Hellman assumption, is essentially folklore). The assumptions arédhk Diffie-Hellman assumption
(HDH), the oracle Diffie-Hellman assumption (ODH), and ttstrong Diffie-Hellman assumption (SDH).

The HDH and ODH assumptions measure the sense in which a hash fuiti®findependent” of the
underlying Diffie-Hellman problem. One often hears intuition asserting that two primitives are independent.
Here is one way to define this. The SDH assumption formalizes, in a simple manner, that the “only” way to
compute a valug"’ from ¢” is to choose a value and computég’)*“. The definitions for both ODH and

SDH have oracles which play a central role.

Section 6 shows that DHIES is secure against chosen-plaintext attacks. The HDH assumption is what is
required to show this. In Section 7, we show that DHIES is secure against chosen-ciphertext attacks. The



ODH assumption is what is required to show this. Of course this means that DHIES is also secure against
chosen-plaintext attacks [5] based on the ODH assumption, but in fact we can prove the latter using the
HDH assumption (although we do not show it here), a much weaker one.

These two results make additional cryptographic assumptions: in the case of chosen-plaintext attacks,
the security of the symmetric encryption scheme; in the case of chosen-ciphertext attacks, the security of
the symmetric encryption scheme and the security of the message authentication code. But the particular
assumptions made about these primitives are extremely weak.

The ODH assumption is somewhat technical; SDH is rather simpler. In Section 8, we show that, in the
random-oracle model, the SDH assumption implies the ODH assumption. A lower bound for the difficulty
of the SDH assumption in the generic model of Shoup [34] is also given in Section 8. This rules out a large
class of efficient attacks.

Following works such as [7, 8], we take a concrete, quantitative approach for all of the results above.

2 Definitions

2.1 Represented groups

DHIES makes use of a finite cyclic gro@p= (g). (This notation indicates th&t is generated by the group
elementy.) We will use multiplicative notation for the group operation. Sofaf N, ¢ denotes the group
element ofG that results from multiplying: copies ofg. Naturally,// names the identity element 6f.
Note that, ifu € N, then, by Lagrange’s theoremt, = g* med |G!,

Algorithms which operate o7 will be given string representations of elementg€inWe thus require
an injective map. : G — {0,1}8°" associated t@7, wheregLen is some number (the length of the
representation of group elements). Similarly, when a numleN is an input to, or output of, an algorithm,
it must be appropriately encoded, say in binary. We assume all necessary encoding methods are fixed, and
do not normally write the operators.

Any “reasonable” group supports a variety of computationally feasible group operations. Of particular
interest is there being an algorithhwhich takes (the representations of) a group elemerid a number
and computes (the representation df)For clarity, we write this operator in infix, so that) 1 (i) returns
z'. We will call the tupleG = (G, g, _, 1) arepresented group.

2.2 Message Authentication Codes

Let Message = {0,1}* and letmKey = {0, 1}™Le for some numbemLen. Let Tag = {0, 1}%" for

some numbetLen (a superset of the possible tags)message authentication codea pair of algorithms

MAC = (7,V). Algorithm T (the MAC generation algorithintakes a keyk € mKey and a message

x € Message and returns a strin@ (k, z). This string is called théag. AlgorithmV (the MAC verification
algorithm) takes a keyt € mKey, a message € Message, and a purported tag € Tag. It returns a bit
V(k,z,7) € {0,1}, with O indicating that the message was rejected (deemed unauthentic) and 1 indicating
that the message was accepted (deemed authentic). We require thatfer alKey andz € Message,

V(k,z, T (k,z)) = 1. The first argument of either algorithm may be written as a subscript.

SECURITY. The security of a MAC is defined by an experiment in which we first choose a random key
k € mKey and then give an adversafya7;(-) oracle, we say thak"s output(z*, 7*) is unaskedf 7* is
not the response of thg (-) oracle to an earlier query af. Our definition of MAC security follows.

Definition 1 Let MAC = (7,V) be a message authentication scheme an# le¢ an adversary. Consider
the experiment



experiment  Exp}ii&
k £ mKey
(z*,7%) « FTeOVil)
if Vi (z*,7") =1and 7* was never returned by (-) in response to query*
then return 1 else return 0

Now define thesuf-cma-advantagef F' as follows:
Advifiey = Pr{Explife =1].
For anyt, ¢, p4, g, andu,, we define thesuf-cma-advantagef MAC as
AV (s it o ) = max{ AdVRIRE

where the maximum is over all' with time-complexityt, making to the tag oracle at magtqueries the
sum of whose lengths is at mqstbits and making to the verification oracle at mgsgueries the sum of
whose lengths is at mogt, bits. &

We say adversary' hasforged when, in the experiment above, it outputs a pair, 7*) such that
Vi (z*,7%) = 1 and(z*, 7*) was not previously obtained via a query to the tag oracle.

This definition is stronger than the usual one as given in [6]. There, one asks that the adversary not
be able to produce MACs of new messages. Here we require additionally that the adversary not be able
to generate new MACs of old messages. However, if the MAC generation function is deterministic and
verification is done by simply re-computing the MAC (this is typically true) then there is no difference.

CANDIDATES. Candidate algorithms include HMAC [3] or the CBC MAC (but only a version that is correct
across messages of arbitrary length).

2.3 Symmetric Encryption

Let Message be as before, and leey = {0, 1}¢"*", for some numbeeLen. Let Ciphertext = {0, 1}*

(a superset of all possible ciphertexts). IGxins be a synonym fof0, 1} (the set of infinite strings).

A symmetric encryption scheme is a pair of algorith8 M = (£,D). Algorithm £ (the encryption
algorithm) takes a ke¥t € eKey, a plaintextz € Message, and coing- € Coins, and returns ciphertext
E(k,z,r). Algorithm D (the decryption algorithm takes a keyk € eKey and a purported ciphertext

y € Ciphertext, and returns a valuB(k,y) € Message U {BAD}. We require that for alt € Message,

k € Key, andr € Coins, D(k,&(k,z,r)) = 2. Usually we omit mentioning the coins éf thinking of £

as a probabilistic algorithm, or thinking éf(k, =) as the induced probability space. A return valu@&afD

from D is intended to indicate that the ciphertext was regarded as “invalid” (it is not the encryption of any
plaintext). The first argument of either algorithm may be written as a subscript.

SECURITY. Security of a symmetric encryption scheme is defined as in [4], in turn an adaptation of the
notion of polynomial security as given in [21, 26]. We imagine an advergiatiat runs in two stages.
During either stage the adversary may query an encryption afékle) which, on inputz, returns€ (k, z, r)

for a randomly chosen. In the adversary’§ind stage it endeavors to come up with a pair of equal-length
messages;, andz;, whose encryptions it wants to try to tell apart. It also retains some state informsation

In the adversary’guess stage it is given a random ciphertaxfor one of the plaintexts, z1, together

with the saved state. The adversary “wins” if it correctly identifies which plaintext goes with The
encryption scheme is “good” if “reasonable” adversaries can’t win significantly more than half the time.

Definition 2 [4] LetSYM = (&, D) be a symmetric encryption scheme and4die an adversary. Consider
the experiment



experiment  Exp,cPafe

k & eKey

(20,21, 5) + AE(E)(find)

b & {0,1}

y < E(k,xp)

b+ Af()(guess, y, s)

if b= bthen return 1 else return 0

Now define theénd-cpa-advantagef A in thefind-and-guess notion as follows:
AdVESPTE = 2P Expli = 1] -1
if Ais legitimate, and otherwise. For any, ¢, andu, we define thénd-cpa-advantagef SYM as
ind-cpa-f ind-cpa-f,
Advgy PR (g, ) = mjx{ AdVISnYN(Eﬁ;L &1

where the maximum is over all with time-complexityt, making to the encryption oracle at mgsjueries
the sum of whose lengths is at m@sbits. &

It is understood that, abovel must outputzy andz; with |zo| = |z;|. The multiplication by 2 and
subtraction by 1 are just scaling factors, to make a numeric val@lecofrespond to no advantage and a
numeric value of 1 correspond to perfect advantage. As a reminder, “time-complexity” is the maximum
execution time of the experimemxp‘sr%;/‘fpj'fg plus the size of the code fof, all in some fixed RAM
model of computation. ’

CANDIDATES. One candidate algorithms for the symmetric encryption are CBC encryption and Vernam
cipher encryption.

2.4 Asymmetric Encryption

Let Coins, Message, Ciphertext be as before and I&K C {0,1}* andSK C {0, 1}* be sets of strings.
An asymmetric encryption schenga three-tuple of algorithmdSYM = (£,D,K). The encryption
algorithm £ takes a public kepk € PK, a plaintextz € Message, and coins- € Coins, and returns
a ciphertexty = £(k,z,r). The decryption algorithnD takes a secret keyk € SK and a ciphertext
y € Ciphertext, and returns a plaintef®(sk,y) € Message U {BAD}. The key generation algorithid
takes coing € Coins and returns a paiipk, sk) € PK x SK. We require that for al{pk, sk) which can be
output by/C, for all z € Message andr € Coins, we have thaD(sk, £ (pk, z,7)) = z. The first argument
to £ andD may be written as a subscript.

PRIVACY AGAINST CHOSEN-PLAINTEXT ATTACK . Our treatment mimics the find-then-guess notion of [4]
and follows [21, 26, 20]. The definition is similar to Definition 2, so we state it without further discussion.

Definition 3 Let ASYM = (€, D, K) be an asymmetric encryption scheme anddetn adversary. Con-
sider the experiment

experiment  Exp 1o fs

(sk, pk) + K

(xo,x1,s) « A(find, pk)

b & {0,1}

y — Epk (J?b)

b «+ A(gquess, pk,y,s)

if b= bthen return 1 else return 0



Now define theénd-cpa-advantagef A in thefind-and-guess notion as follows:

ind-cpa-fg ind-cpa-fg __
Advagyyias = 2-Pr[Exppgyy a0 =1] -1

if Ais legitimate, and) otherwise. For any, we define thénd-cpa-advantagef ASYM as
AAVRSS T (e) = max{ AdvRETT)

where the maximum is over all with time-complexityt and whose challenge has length at mosits.

¢

PRIVACY AGAINST ADAPTIVE CHOSEN-CIPHERTEXT ATTACK. The definition of chosen-ciphertext secu-

rity of an asymmetric encryption scheme is very similar to that given in Definition 3. The difference is
that here the adversary is given access to a decryption oracle in both stages. So we state it without further
discussion.

Definition 4 Let ASYM = (£, D, K) be an asymmetric encryption scheme anddetn adversary for its
chosen-ciphertext security. Consider the experiment

experiment  Exp yoy i B

(sk,pk) + K

(z0,21,5) « APs(find, pk)

b & {0,1}

Y+ Epi(xy)

b < APsk(guess, pk, y, s)

if b= bthen return 1 else return 0

Now define thénd-cca-advantagef A in thefind-and-guess notion as follows:

ind-cca-fg ind-cca-fg __
Advagyyia® = 2-Pr[Expygyy g =1] -1

if Ais legitimate, and) otherwise. For any, we define thénd-cpa-advantagef ASYM as
AAVRSHI®(he) = max{ AdVRSHT)

where the maximum is over all with time-complexityt, making to the decryption oracle at mgsjueries
the sum of whose lengths is at m@sbits. &

3 The Scheme DHIES

This section recalls the DHIES scheme. Refer to Figure 1 for a pictorial representation of encryption under
DHIES, and Figure 2 for the formal definition of the algorithm. Let us explain the scheme in reference to
those descriptions.

LetG = (G,g,-,T) be a represented group, where group elements are represented by stgtigs of
bits. LetSYM = (&, D) be a symmetric encryption scheme with key lengltlen, and l[etMAC = (7,V)
be a message authentication code with key lengflen and tag lengthtLen. Let H : {0,1plen —
{0, 1}mlLentelen ha g function. From these primitives we define the asymmetric encryption sdhEiiS =
(£,D,K). If we want to explicitly indicate the dependencyHIES on its associated primitives, then we
will write DHIES [G, SYM, MAC, H]. The component algorithms &fHIES are defined in Figure 2.
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Figure 1: Encrypting with the scheme DHIES. We use the symmetric encryption algoréhmf SYM;
the MAC generation algorithmi, of MAC; and a hash functiorfi. The shaded rectangles comprise the
ciphertext.

Each user’s public key and secret key is exactly the same as with the EIGamal s¢ghantk!, respec-
tively, for a randomly chosen. (Here we will not bother to distinguish group elements and their bit-string
representations.) To send a user an encrypted message we choose aramtboompute an “ephemeral
public key,” g“. Including ¢g* in the ciphertext provides an “implicit” Diffie-Hellman key exchange: the
sender and receiver will both be able to compute the “secret vgltieWe pasg“’ to the hash functioil
and parse the result into two pieces: a MAC kemcKey, and an encryption kegncKey. We symmet-
rically encrypt the message we wish to send with the encryption key, and we MAC the resulting ciphertext
using the MAC key. The ciphertext consists of the ephemeral public key, the symmetrically encrypted
plaintext, and the authentication tag generated by the MAC.

THE GROUPG IS OF PRIME ORDER We henceforth assume th&t| is prime. This is extremely important

to ensure the security of DHIES or otherwise the scheme could be malleable. The reason stems from the
fact that in groups wherg| is not a prime (e.gZ;), g** andg” together might not uniquely determige.

That is, there may exist two valuesand«/ such that: # «’ but ¢** = ¢*'*. As a result, both, and«/

would produce two different valid ciphertexts for the same plaintext. Therefore, if one can coépute

given g* andg¢?, such thay*’ = ¢*'* holds with high probability, then we would break the scheme in the
malleability sense. To prevent such attacks in groups not of prime orderZg,@ne should feeg" to H.

4 Attributes and Advantages of DHIES

To explain the problem which DHIES solves, and the sense in which it solves this problem, let us back up
and provide a bit of background.



algorithm  £(pk, M) algorithm ~ D(sk, EM) algorithm K€
begin begin begin
u<+ {1,...,]|G|} U || encM || tag < EM v+ {1,...,|G|}
X +—pktu X «U1tsk pk+gtwv
U+—gtu hash < H(X) sk v
hash + H(X) macKey < hash[l .. mLen] return  (pk, sk)
macKey < hash[l .. mLen] encKey < hash[mLen+1 .. end
encKey < hash[mLen +1 .. mLen + eLen)]
mLen + eLen] if V(macKey, encM,tag) =0
encM + E(encKey, M) thenreturn  BAD
tag < T (macKey, M) M + D(encKey, encM)
EM < U || encM || tag return M
return EM end
end

Figure 2: The schem®HIES = (£, D, K), where:SYM = (£, D) is a symmetric encryption scheme using
keys of lengtheLen; MAC = (T,V) is a message authentication code with keys of lemgltlen and tags

of lengthtLen; G = (G, g, _,7) is a represented group whose group elements encoded by strings of length
gLen; andH : {0,1}8len — {0, 1}eLen+mLen,

4.1 Encrypting with Diffie-Hellman: The EIGamal Scheme

Let G be a finite cyclic group, sagr = Z;, the multiplicative group of integers modulo a (large) prime
p. We'll denote the group operation 6f multiplicatively, so that repeated multiplication is represented by
exponentiation. Ley be a generator fo; that is, the elements af are {¢,¢>,... ,g‘G‘}. Fix such a
groupG and its generatog. All multiplications (or exponentiations, which is just shorthand for repeated
multiplication) will be performed irG.

Diffie and Hellman suggested that two parties communicating over a channel subject to (passive) eaves-
dropping could come to share a secret key as follows [16]. The first party chooses a random aumnber
{1,...,|G|} and sendg" to the second party. The second party chooses a random nurabgt, ..., |G|}
and sendg’ to the first party. The shared key is declared taffe which the first party can calculate as
(¢”)* and the second party can calculaté¢#b®.

Roughly said, thd®iffie-Hellman assumptiofor G asserts that an adversary who s¢leandg” (for a
randomu, v) cannot compute“’.

ElGamal [18] explained how to adapt the above to give a public key encryption method. The intended
receiver of an encrypted message has a public key which spegif{@@berev was chosen randomly from
{1,...,|G|}). The sender wants to send to that receiver a ciphefewhich is the encryption of a mes-
sageM. We assumé/ € G. The sender computes by choosing a random (again in{1,...,|G|})
and transmitting” = (¢“, M - ¢*¥). Knowing v, the receiver can computg’ = (¢*)” from C' and then
multiply M - g*¥ by the inverse of“’ to recoverM.

4.2 Deficiencies of EIGamal Encryption

We highlight a number of issues arising from the encryption method we have just described.

1. Limited message spac€irst there was the assumption thdt € G. Messages are naturally regarded
as bit strings, not group elements. Often there will be a natural embeddsmabit strings into group
elements, but that may fall short of all potential messages.



2. May not provide good privacyAs Goldwasser and Micali explain and formalize in [21], a good en-
cryption scheme should do more than make it infeasible for an adversary to decrypt: the scheme should
conceal from an adversary mounting a passive attack “any” information about the plaintext. For example,
it should not be possible to determine even one bit of the plaintext given the ciphertext. This property has
been defined in several ways which have been shown to be equivalent [21], including a definitions known as
“indistinguishability” and one known as “semantic security.”

Even in groups for which one anticipates using ElIGamal encryption, the EIGamal encryption does not
achieve semantic security. For example, when the scheme is implemented in the(greug,, there
are attacks showing that some information about the plaintext can be determined from the ciphertext. See
Appendix A for a description of such an attack.

It is possible to guarantee the semantic security of EIGamal encryption if it is done in special groups,
and if we make a stronger assumption about the Diffie-Hellman problem. Specifically, the order of the group
should be prime (note the orderdfis p— 1 which is not prime) and we make tidecisional Diffie-Hellman
assumption, which says that it is infeasible to distinguish the following two distributighs:”, g"*), for
a randomu andv, and(g“, ¥, g%), for a randomu,v, andz. This is a very strong assumption.

It would be preferable to have a scheme which worked in any group where the Diffie-Hellman prob-
lem is hard, and one which was guaranteed to achieve semantic security under a weaker number-theoretic
assumption.

3. We want more than basic privacyror an encryption scheme to be a maximally useful tool in the
design of higher-level protocols it should actually shore than shield information about the plaintext in

the presence of a passive attack. Stronger goals include non-malleability [15] and chosen-ciphertext se-
curity [28, 30]. Informally, non-malleability means that an adversary cannot mutate one ciphertext into a
related one. Chosen-ciphertext security means that an adversary cannot break an encryption scheme even if
it can cause some ciphertexts to be decrypted. ElIGamal encryption achieves neither of these “beyond seman-
tic security” goals: it is easy to see that the scheme is malleable and also insecure under a chosen-ciphertext
attack. (See Appendix A).

We are finding that uses of encryption in cryptographic practice relies more and more on the scheme
meeting these “beyond semantic security” goals. For example, the designers of SET (Secure Electronic
Transactions) mandated the use of an encryption scheme which achieves more than semantic security. This
was necessary, in the sense that the SET protocols wouwdrdrgy if instantiated by a primitive which
achieveonly semantic security, and to design SET-like protocols using a primitive which achieves only se-
mantic security would seem to yield more complicated protocols. As a second example, Bleichenbacher [10]
has shown that encryption under RSA PKCS #1 v1.5 [29] is vulnerable to chosen-ciphertext attack, and he
goes on to demonstrate how this leads to an attack on SSL 3.0. Because schemes which achieve “only”
semantic security are so easily misused by protocol designers, we believe itis highly desirable that standard-
ized schemes achieve “beyond semantic security” goals, particularly non-malleability and chosen-ciphertext
security.

4.3 Overcoming Deficiencies in EIGamal Encryption: DHIES

The scheme we have presented, DHIES, does Diffie-Hellman based encryption in a way which overcomes
the limitations enumerated above, but without significant increase in cost compared to ElGamal. Key char-
acteristics and advantages of DHIES include the following.

1. Basic privacy — Proven in the sense of provable securibughly said, to achieve semantic security we
assume the existence of a functiin: G — {0, 1}* such that{¢“, ¢*, H(g"")) looks like a pair of random
group elements together with a random string. For non-trivial functié@nhis assumption —thalf is
hard-core for the Diffie-Hellman problem @n— would seem to be weaker than decisional Diffie-Hellman.



We prove that under this assumption, our scheme achieves semantic security. For reasonable cHgices of
this assumption would seem to hold for any group one would imagine using, not just particular groups.

2. Beyond basic privacy: non-malleability and chosen-ciphertext security — proven in the sense of provable
security. We prove that our scheme is secure against adaptive chosen-ciphertext attacks. This is proved
under an assumption called the Oracle Diffie-Hellman assumption, and assuming the underlying MAC and
encryption schemes are secure. It is shown in [5, 17] that security under adaptive chosen-ciphertext attack
implies non-malleability, so that property is achieved automatically.

3. No random oracles.The proofs here do not appeal to the random oracle model. They are all in the
standard model. This addresses concerns that have been raised about this model [13].

4. Efficiency. The efficiency of EIGamal encryption is preserved: the cost of encryption is essentially the
same as with EIGamal encryption: two exponentiations to encrypt, one to decrypt. For encryption, both of
these exponentiations can bié-line, meaning that they can be done even before the meggaigeknown.

The length of ciphertexts and the public key is the same as in EIGamal.

5. Versatile instantiation — The groupiVe allow considerable versatility in instantiating DHIES. First,
the groupG in which we perform our operations can be essentially any group in which our version of the
Diffie-Hellman assumption is reasonable. It couldZje or a subgroup of;, or an elliptic curve group

(in which case the group operation is usually written additively, so what we have been dejatiogid

be written multiplicatively, asg). Our proofs assume no algebraic structuredseyond its being a finite
cyclic group.

6. Versatile instantiation — Ancillary primitivesCryptography beyond the group operations is performed
using generic primitives. We employ primitives for symmetric encryption, message authentication, and
hashing. For achieving semantic security, the underlying symmetric encryption and hashing schemes must
meet weak, formalized assumptions. For achieving non-malleability and chosen-ciphertext security the
encryption scheme and message authentication code must meet weak, formalized assumptions, while the
hash function is modeled by a public random oracle.

7. Arbitrary message spacé-inally, messages to be encrypted are arbitrary bit strings; messages are not
restricted in length or content.

4.4 More on Provable Security

It is easy to come up with a Diffie-Hellman-based encryption scheme whight work well when its
primitives (cryptographic hash function, universal hash families, etc.) are concretely instantiated, in the
sense that no attacks seem discernible. What we do here is provide a greater assurance of security, by
proving that the scheme meets formally defined objectives under given model and complexity-theoretic
assumptions.

Let us explain. A cryptographic schensebased on a primitivé® is said to beprovably securef the
security of P has been demonstrated to imply the securityyofMore precisely, we use this phrase when
someone has formally defined the go@ls andGs for some primitiveP and schemé, respectively; and
then has proven that the existence of an adverdanywho breaks schemsg, in the sense of violatingrs,
implies the existence of an adversaty who breaks primitiveP, in the sense of violating/p.

What provable security means is that as long as we are ready to believe ithaecure, then there are
no attacks orf. This obviates the need to consider any specific cryptanalytic attacks on

10



4.5 Concrete Security

Following works such as [7, 8], we take a concrete, quantitative approach to proving securitybéetn
encryption scheme which makes use of a primifjeand let4s be an adversary which attacks To show
the security ofS one convertsdg into an adversarylp which attacksP. Ideally, Ap should use the same
computational resources ag and, with this investment in resource$, should be just as successful in
attackingP as Ag was successful in attacking This way “practical” attacks o imply practical attacks
on S, and so the assumetbsencef practical attacks o® implies the absence of practical attacks$n

To quantify how close to this ideal we come we define the success probability aftackingP, we
define the success probability df attackingS, and then we give concrete formulas to show hdwis
computational resources and success probability deperdd'ecomputational resources and success prob-
ability. These formulas measure the demonstrated security. By giving explicit formulas we make statements
which are more precise than those that are given in doing asymptotic analyses of reductions.

5 Diffie-Hellman Assumptions

This section specifies five versions of the Diffie-Hellman assumption. The first two are standard (included
here only for completeness); the next one is straightforward/folklore; and the last assumptions are new.

COMPUTATIONAL DIFFIE-HELLMAN ASSUMPTION: CDH. We refer to the “standard” Diffie-Hellman
assumption as theomputational Diffie-Hellmamssumption, CDH. It states that givghand ¢¥, where

u,v were drawn at random frofi, ..., |G|}, it is hard to compute/”. Under the computational Diffie-
Hellman assumption it might well be possible for the adversary to compute something interestingabout
giveng" andg’; for example, the adversary might be able to compute the most significant bit, or even half
of the bits. This makes the assumption too weak to directly use in typical applications. For example, the
ElGamal scheme is not semantically secure given only this assumption.

Definition 5 [Computational Diffie-Hellman: CDH] LetG = (G,g,-,1) be a represented group and
let A be an adversary. Consider the experiment

experiment  Expg'}

ud& {1,...,|G}; U+ g"

v &{1,...,|G)}; V «—gv

Z <+ AU,V)

if Z=g"then b« lelse b<+ 0
return b

Now define theadvantageof A in violating the computational Diffie-Hellman assumption as

Advgi}}] = Pr[Expcg(fE‘: ]. O

DECISIONAL DIFFIE-HELLMAN ASSUMPTION: DDH. A stronger assumption that has been gaining popu-
larity is thedecisional Diffie-Hellmarassumption, DDH. (For a nice discussion, see Boneh’s survey [11].)
It states, roughly, that the distributiofg’, ¢, g*?) and(g“, g*, g*) are computationally indistinguishable
whenu, v, w are drawn at random frodi, ..., |G|}. This assumption can only hold in a groGbwhose
order does not contain small prime factors (e.g., subgroup of qrd€Z; for large primeg andg). In such
groups the assumption suffices to prove the semantic security of the EIGamal scheme.

Definition 6 [Decisional Diffie-Hellman: DDH] LetG = (G, g,-,7) be a represented group and Jebe
an adversary. Consider the experiments
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experiment  Expgl} ™! experiment  Expg’iTend
u(i{l,...,|G|},U<—gu u(i{l,...,|G|},U<_gu
v &1, LG VoY v &{1,...,|G|}; Vg°
7 + g & {1, |G} Z «¢*
b(—A(U,V,Z) b<—A(U,V,Z)
return b return b

Now define theadvantageof A in violating the decisional Diffie-Hellman assumption as
Advddh — Pr [Expddh real _ ] _ Pr[Expgc’ig-rand — 1] . <>

The assumption we make to prove security for DHIES under chosen-plaintext attack is weaker than
DDH but stronger than CDH. It is called theash Diffie-Hellmarassumption, HDH. To prove the security
of DHIES under chosen-ciphertext attacks, we will make stronger versions of the Hash Diffie-Hellman
assumptions which say the assumption is true even when the adversary has additional power in the form
of oracles giving certain kinds of information about other, independent Diffie-Hellman keys. The precise
formulation of all three of our assumptions is below, and they are followed by a discussion on the choice of
hash functions suitable for these assumptions.

HASH DIFFIE-HELLMAN ASSUMPTION: HDH. Asindicated above, semantic security of a Diffie-Hellman-
based scheme requires that we be able to get some number of “hard-core” bits from the Diffie-Hellman key,
namely key derived bits that cannot be distinguished from random bits. Our assumption is that applying
a suitable hash functiol to ¢“” will yield such bits. The assumption we make, called tesh Diffie-
Hellmanassumption, HDH, is a “composite” one—it concerns the interaction between a hash fuliction
and the group operations (. Here is the definition.

Definition 7 [Hash Diffie-Hellman: HDH] LetG = (G,g,-,7T) be a represented group, |leLen be a
number, letd : {0,1}* — {0, 1}%" and letA be an adversary. Consider the experiments

experiment  Expgd experiment  Exp§ii "
U&{la'--a|G|},U(—gu U(i{l,,|G|},U(—g“
v &1, |G} Vo g? v & {1,...,|G|}; V «g"
Z < H(g"") 7 & {0, 1}hLen
b+ AUV, Z) b+ AUV, Z)
return b return b

Now define theadvantageof A in violating the hash Diffie-Hellman assumption as
Adv}g“’iﬁyA = Pr [Exphdh ral — 17— Pr[Exp}gK’iﬁj‘amd =1]. &

The decisional Diffie-Hellman assumption says thét looks like a random group element, even if
you knowg" andg”. The hash Diffie-Hellman assumption says tf&{s"”) looks like a random string,
even if you knowg" andg”. So if you setH to be the identity function you almost recover the decisional
Diffie-Hellman assumption (the difference being that in one case you get a random group element and in
the other you get a random string). Whehis a cryptographic hash function, like SHA-1 [32], the hash
Diffie-Hellman assumption would seem to be a much weaker assumption than the decisional Diffie-Hellman
assumption.

We now move on to some more novel assumptions.

ORACLE DIFFIE-HELLMAN ASSUMPTION: ODH. Suppose we provide an adversatywith ¢’ and an
oracle?,, which computes the functioH, (X) = X". Think ofv € {1,...,|G|} as having been chosen at
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random. Now if we give the adversagy (whereu € {1, ..., |G|} is chosen at random) then the oracle will
certainly enable the adversary to compyite the adversary need only ask the quétyand she gets back
H,(g") = g"*. Even if weforbid the adversary from asking, still she can exploit the self-reducibility of
the discrete log to find the value gf*. For example, the adversary could comptiggg”) = ¢“’¢" and
divide this by, (1) = ¢*.

But what if instead we give the adversary an oraglewhich computest,(X) = H(X"V), for H a
cryptographic hash function such as SHA-1? Suppose the adversary’s goal is to céhgtijewhereg"
andgv are provided to the adversary. Now, as long as the orHglean not be queried at*, the oracle
would seem to be useless. We formalize this as follows.

Definition 8 [Oracle Diffie-Hellman: ODH] LetG = (G,g,-,1) be a represented group, leLen be a
number, letd : {0,1}* — {0, 1}%" and letA be an adversary. Consider the experiments

experiment  Expglf ¢ experiment  Expgfi /"
ud{1,...,|G]}; U« g" ué{1,...,|G]}; U<+ g
v&{1,.. |G|} V +g¥ v L LGl Vg
W« H(g") W & {0, 1}hlen
Hy(X) < H(X") Hy(X) E H(X?)
b AUV, W) b AMO(U VvV, W)
return b return b

Now define theadvantageof A in violating the oracle Diffie-Hellman assumption as

Advglh o = Pr[Expdfi i = 1] - Pr[Expgy ™4 =1].
Here A is not allowed to call its oracle ogt. &

We emphasize that the adversary is allowed to make oracle queries that depend on thg, taithet
the sole restriction of not being allowed to quetyitself.

STRONG DIFFIE-HELLMAN ASSUMPTION: SDH. SupposeA is an algorithm which, given’, outputs a
pair of strings(g“, ¢"*), for someu € {1,...,|G|}. One way forA to find such a pair is to pick some
valueu and then computg” andg¢“’. Indeed, we expect this to be the “only” walycan compute such a
pair of values. We capture this idea as follows.

Given arepresented grogp= (G, g,-, 1) and a numbeuo, let O, be an oracle, calledrastricted DDH
oracle which behaves as follows:

1 ifX=0"

O, X) = {0 otherwise

That is, the oracle tells whether the second argument equals the first argument raisiegpoover. This
oracle can be seen as a restricted form of a DDH oracle for which we fix one of its arguments ag.being
Our next definition speaks to the uselessness of having a restricted DDH oracle.

Definition 9 [Strong Diffie-Hellman: SDH] LetG = (G, g,-,7) be a represented group and lebe an
adversary. Consider the experiment
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experiment  Expg

ud& {1,...,|G}; U g"

v &{1,...,|G)}; V «—gv
0,(U, X) € (X =U")

Z «— A% (U, V)

if Z=g"then b« lelse b<+ 0
return b

Now define theadvantageof A in violating the strong Diffie-Hellman assumption as
Advs&f}] = Pr[Expsg(f}j‘ =1]. &

The intuition is that the restricted DDH oracle is useless because the adversary already “knows” the
answer to almost any query it will ask.

Similar intuition was captured in [22] by saying that for every non-uniform probabilistic polynomial-
time algorithmA that, on inputg”, outputs(g“, g“¥), there exists a non-uniform probabilistic polynomial-
time algorithmS (the “extractor”) that not only output§f, ¢*¥), but alsou. Our approach avoids the
complexity of a simulator-based formulation. We emphasize that our oracle does not return a (thkeie
discrete log of its first argument) but only a bit indicating whether a given pair has the right form.

RESOURCE MEASURES We have defined several different senses of adversarial advantage. For each notion
xxx We overload the notation and define

Advii*(R) = mjx{ Advi

whereR is a resource measure and the maximum is taken over all adversaries that use resourceB.at most
The resources of interest in this paper are time-complexity (denoteyldnyd, when appropriate, number
of queries (denoted by). Any other resources of importance will be mentioned when the corresponding
notion is described. Here and throughout this paper “time-complexity” is understood to mean the maximum
of the execution times of the experiments defining the advantage of advelrpdug the size of the code for
A, all in some fixed RAM model of computation. (Note that the execution time refers to that of the entire
experiment, not just the execution time of the adversary.)

We comment that we are considering the complexity of adversaries who try to attack a specific repre-
sented grouy. Such an adversary may depend ®nso explicitly providing a description @ to A is
unnecessary.

CHOICE OF HASH FUNCTION Now that we understand how we want the hash function to interact with the
group, we can consider various choices for the hash fundfion

Our suggested choice is to appropriately deriydrom some cryptographic hash function like SHA-

1 [32]. (The precise manner in whicH is derived from SHA-1 is important and should be discussed.)
A primary reason we prefer a cryptographic function is that one-wayness appears important to the
oracle Diffie-Hellman assumption: it should be hard to recgt&ifrom H(g""), since otherwise the self-
reducibility-based attack we discussed above can be mounted.

Let us back up a bit and try to see what requirements the different assumptions impose on the choice
of H. Suppose first we are interested only in semantic security, namely we need just the HDH assumption.
There is no known choice aoff for which one can prove the hard-coreness under the CDH assumption.
Under the DDH assumption, however, things get much easier, since this assumption already says that the
Diffie-Hellman key is indistinguishable from a random group element: the only remaining problem is to go
from a random group element to a random string of appropriate length. In some groups this can be done
quite easily by simple truncation of the key. Alternatively, Naor and Reingold [27] show that application of a
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function H chosen at random from a family of universal hash functions will suffice. Zheng and Seberry [37]
had earlier suggested the application of a universal hash function to the Diffie-Hellman key as a heuristic
under the computational Diffie-Hellman assumption. The result of [27] says that under the stronger DDH
assumption this heuristic is valid. Note this function can be chosen at random once and for all and included
in the public key. In [37], the function is chosen anew for each encryption and included in the ciphertext,
which increases the size of the ciphertext.

However, the use of truncation or universal hash functions appears more dangerous when we come
to consider the stronger oracle Diffie-Hellman assumption above. In particular, the result of Boneh and
Venkatesan [12] showing that computing the most significant bits of Diffie-Hellman keys is as hard as
computing the key itself can be turned on its head to give an algorithm to attack the ODH assumption.
Namely, their results show that for some simple choices of functinan adversary can use the HDH
oracle?#, defined above to solve the Diffie-Hellman problem. These attacks do not appear to work when
a one-way cryptographic hash function is used, which is why we recommend this choice. We do not know
whether these attacks rule out all choices of universal hash families, but they do seem to rule out some
particular ones.

6 Security against Chosen-Plaintext Attack

We show thaDHIES [G, SYM, MAC, H] meets the notion of indistinguishability under a chosen-plaintext
attack, as defined in Definition 3.

Theorem 1 Let G be a represented group, 8¥M be a symmetric encryption scheme, MAC be a
message authentication scheme, andHdbe a function. LeDHIES be the asymmetric key encryption
scheme associated to these primitives, as defined in Section 3. Then, for any nuamkrs

AdviREEEE( ) < 2 Advil (1) + AdviYRP E(2,0,0) .

IDEA OF PROOF The assumption is that the symmetric encryption schek is secure and{ is hard-
core for the Diffie-Hellman problem in the underlying group. (The assumptionMheE is secure is not
needed to ensure semantic security.) The proof considers an advdradry defeats the semantic security
of the scheme. Lej" be the recipient public key and lgt= U || encM || tag be the challenge ciphertext
that this adversary gets in itgpiess stage. We consider two cases depending on whether the outplt of
“looks random”.

e Case 1 — The output df looks random.In this case, we present an adversarythat breaks the
encryption schem8YM.

e Case 2 — The output & does not look randomin this case, we present an algoritt@fithat breaks
the hard-coreness éf ong.

The formal proof, given below, does not actually consider separate cases, but the underlying intuition is the
same. Giverd, we constructB andC' and then relatel’s advantage to that aB andC.

Proof: Let A be an adversary attackingHIES in the sense of semantic security. Assume it has time-
complexity at most. We construct an adversafy attackingSYM and an adversarg' attackingH being
hard-core foiG, and then upper bound the advantageloh terms of the advantages of these adversaries.

ALGORITHM B. Figure 3 describes algorithid. Recall from Definition 2 thal3 has access to an oracle
for encryption, and runs in two stages. Notice thahever invokes its encryption oracte Moreover, the
running time ofExpia:*2"® is at most:.
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algorithm ~ B¢()(find) algorithm ~ B¢()(guess, 7, 3)
begin begin
v & {1,...,|G|} parse sas (zo,z1,s,pk)
pk + ¢¥ u(i{l,...,|G|};U<—g“
(z0,71,s) «+ A(find, pk) macKey & {0,1}mLen
5 ¢ (w0, 1, s, pk) tag < Tmackey (¥)
return (o, 1, 9) y Ul 7] tag
end b «— A(guess, pk, s,7)
return b
end

Figure 3:Algorithm B for attacking the security &Y M.

algorithm  C(U,V, W)
begin
macKey <~ W[l...mLen|; encKey < W[mLen+ 1...mLen + eLen]
pk <V
(zo,z1,s) «+ A(find, pk)
b {0,1}; encM «+ EencKey(mg)
tag < Tmackey(encM)
y < U || encM || tag
b <+ A(guess, pk, s,y)
if b= bthen return 1 else return 0
end

Figure 4:Algorithm C' for attacking the hard-corenessigfong.

ALGORITHM C'. Figure 4 depicts the behavior of algorithth C is given as input/, V, W, whereU = ¢
andV = ¢" for randomu,v, and W is either H(¢*¥) or a random string.C' outputs at the end a bit
indicating its guess as to which of these cases occurs. Notice that the time-compleXity af most.

ANALYSIS. WhenW = H(g"") we notice thatC is runningA as the latter would be run in its attack on
the semantic security @HIES. From the definition ofAdv4 228 we have that

VDHIES,A
ind-cpa-fg
- 1 Advpggs
PrExpiii s = 1] = 5+ ——— >

On the other hand, whel is a random string, we notice thatruns A in the same way a® does, and
hence

Advind-cpa-fg

- 1
PrExpfiie™ =1] = 5+ ——5""—
Subtracting gives us
Ad ind-cpa-fg Ad ind-cpa-fg Ad ind-cpa-fg Ad ind-cpa-fg
hdh 1 VpuiEs,A 1 Vsym,B VDHIES, A VSYM,B .
Advgiic = gt =5 37T 3 = T
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whence
ind-cpa-fg hdh ind-cpa-fg
AdvipiRe = 2. Advid o+ Advinha e

Since the time-complexity of' is at mostt, we conclude thardvi o < Advifi(t). Moreover,

. . . . . ind- -
since B makes0 encryption queries and has time-complexity at migstre also haveAdvyy s © <

Adv2EP (¢ 0,0). Thus from the above we have

AdviifTF < 2- Advi() + Adviyy™ T (6,0,0) .
But A was an arbitrary adversary subject to the constraint that it had time-complexity at modtthe
length of its challenge ciphertext is at mestThe theorem follows] 1

7 Security against Chosen-Ciphertext Attack

We show thaDHIES [G, SYM, MAC, H] meets the notion of indistinguishability under an adaptive chosen-
ciphertext attack, as in Definition 4.

Theorem 2 LetG = (G, g, -,1) be a represented group, BYM be a symmetric encryption scheme, and
let MAC be a message authentication schemeIIIEIES be the asymmetric encryption scheme associated
to these primitives as defined in Section 3. Then for any numbers:, andc,

AdvRTE B (g ) < Advsn T8 (2,0,0) + 2 Advih(t,q) +

2. Advi}f&éma(t, Loe,q,p) .

IDEA OF PROOF The assumption is that both symmetric encryption sch&iid and the message authen-
tication schem@1AC are secure and is a hard-core for the Diffie-Hellman problem grunder adaptive
Diffie-Hellman attack. The proof considers an adversdarywho defeats the adaptive chosen-ciphertext
security of the scheme. Let be the recipient public key; lef = U || encM || tag be the challenge
ciphertext that algorithmi gets in itsguess stage. Let us call dype 1 query a ciphertext of the form

U || encM || tag. A Type 2 query have the for/ || encM || tag with U # U. We consider three cases
depending on whether the output Bf looks random and on whether there wasyae 1 queryy to the
decryption oracléDy, such thatDg () # BAD.

e Case 1 — The output ¢f does not look randorin this case we present an algoritifnthat breaks
the hard-coreness @f onG under adaptive Diffie-Hellman attack.

e Case 2 — The output @f looks random and there wasTgpe 1 queryy to Dy, such thatDy, () #
BAD. In this case we present an adversArwhich breaks the message authentication scHdh€.

e Case 3 — The output dff looks random and there was notTgpe 1 queryy to Dy, such that
D (7) # BAD. In this case we present an advers&which breaks the encryption sche$%gM.

Proof: Let A be an adversary attackifigHIES in the sense of adaptive chosen-ciphertext security. Assume
it has running time at mogt makes at mosg queries to its decryption oracle. We construct an adversary
B attackingSYM, an adversary’ attackingH being a hard-core fof under non-adaptive Diffie-Hellman
attack, and an adversaFyfor the message authentication schéviieC and then upper bound the advantage
of A in terms of the advantages of these adversaries.
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algorithm B0 (find) algorithm ~ B¢()(guess, 7, 3)
begin begin
v & {1,...,|G|} parse 5as (zo,z1,s,v, pk)
pk « ¢¥ ASK « false
run A(find, pk) ud{1,...,|G|}
— For each decryption quegy: U<+ g*
parse y; as U; || encM; || tag; macKey & {0,1}mLen
hash; < H(UY) tag < Tmackey (¥)
macKey, < hash;[1..mLen] y < Ul 7] tag
encKey; < hash; [mLen + 1..mLen + eLen] run A(guess, pk, s, y)
it Vmackey, (encM;, tag;) = 1 then —  For each decryption quegy
return DencKeyi(enCMi) parse y; as U; || encM; || tag;
else return BAD hash; < H(UY)
— Let(xg,z1,s) be the output ofd macKey, < hash;[1..mLen]
§ < (w0, 71, 5,v, pk) encKey, < hash;[mLen + 1..mLen + eLen]
return  (zo,x1,9) if Vmackey, (encM;, tag;) = 1 then
end if U; # U then
return  Degckey, (encM;)
else ASK <« true;
return BAD
— if ASK =truethen b <& {0,1}
else letb be the output ofd
return b
end

Figure 5:Algorithm B for attacking the security ¢§Y M.

ALGORITHM B. Figure 5 describes algorithf. Recall from Definition 2 thaf3 has access to an oracle
for encryption and runs in two stages. Since the time-complexidfy A accounts for the time taken by
decryption queries as well as the time to genepatand the challenge ciphertextthe time-complexity of
B is at most that ofd (i.e., ).

ALGORITHM C'. Figure 6 defines the behavior of algoritiitn C is given as input/, V, W, whereU = ¢
andV = g¢" for randomu andv, respectively, andV is either H(¢"") or a random string. Recall from
Definition 8 thatC' is also given access to7d,-oracle. At the end(’ outputs a bit indicating its guess as to
which of these cases occurs.

Notice that, since the time-complexity dfaccounts for the time taken by decryption queries as well as the
time to compute the challenge ciphertext, the time-complexity of at mostt.

ALGORITHM F'. Figure 7 describes algorithi. Recall from Definition 1 that’ has access to two oracles:

a tag-generation oraclg and a verification oracl®’. It outputs a pair message-tag, a possible forgery.
Notice that, since the time complexity d@f accounts for the time taken by decryption queries and for the
time to generate the secret-public key pdir pk) and the challenge ciphertext F’s time-complexity is at
mostt.

ANALYSIS. As in the proof of non-adaptive chosen-ciphertext security, our goal is to upper bound the
success probability of adversadyin terms of the success probabilities of adversaBeer the symmetric
encryption schemg;' for the hard-coreness @& for G under non-adaptive Diffie-Hellman attack, afd
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algorithm — C*C)(U, vV, W)
begin
macKey < W(l...mLen]
encKey <~ WmLen + 1...mLen + eLen]
pk+«V
run A(find, pk)
— For each decryption quegy:
return  Decr-Simulator(y;, U, V, W)
— Let(zg,z1, s) be the output ofd
b+ {0,1}
encM <+ gencKey (:v;)
tag < Tmackey (encM)
y < U || encM || tag
run A(guess, pk,s,y)
— For each decryption quegy
return  Decr-Simulator(y;, U, V, W)
— Letb be the output ofd
if b= bthen return 1 else return 0
end

subroutine

begin

end

Decr-Simulator(y;, U, V, W)

parse y; as U || encM; || tag;
if U; =U then

macKey; < WIL...mLen]

encKey, <+ WmLen + 1...mLen + eLen]
else

hash; + H,(U;)

macKey, < hash;[1..mLen]

encKey, < hash;[mLen + 1..mLen + eLen]
if  Vmackey, (encM;, tag;) = 1 then

return  Denckey, (encM;)
elsereturn  BAD

Figure 6:Algorithm C for attacking the hard-corenessidfonG under adaptive Diffie-Hellman attack.

algorithm ~ F7():V()
begin
W < (€, ¢)

v & {1,...,|G|}; pk <+ gv

ud {1,...,|G|}; U« g*

encKey & {0, 1}¢ken

run A(find, pk)

— For each decryption quefy
return  Decr-Simulator(y)

— Let(xo, 1, s) be the output ofd

b&{0,1}

encM <« gencKey(l"g)

tag < T (encM)

y < U || encM || tag

run A(guess, pk,s,y)

— For each decryption quefy

return  Decr-Simulator(y)
— Letb be the output oA
return W
end

subroutine
begin
parse jas U || encM || tag
hash « H(U"?)
macKey « h/e;.;h[l..mLen]
en?:\Igey — I;';t\gh[mLen + 1..mLen + eLen]

if

else

end

Decr-Simulator(y)

U = U then
if V(encM, tag) = 1then
W « (encM, tag)

return  Depckey (encM)
else return

BAD

if Vmgc\fey(encM, tagl\:/ 1 then
return D, {J{ey(eHCM )
elsereturn  BAD

Figure 7:Algorithm F for attacking the security gflAC.

for the message authentication scheme. For this purposg,betthe challenge ciphertext in experiment
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ind-cca-fg

Exppigs, 4 and let MEVALID be the event wherd makes alype 1 queryy such thaDg () # BAD
in this experiment. LeSOMEVALID denote the event where there isType 1 queryy such thatDg () #

ind-cca-fg

BAD in experimenExpp s 4 - We make use of the following three claims.

dh-real | Advpipd
i odh-rea ,
Claim 3 Pr[Expgh ot =1] = 5+ ——5—>>.

2
Proof: When the input¥V = H(g""), we notice thatr is runningA as the latter would be run in its attack
on the adaptive chosen-ciphertext securityp®IES. Therefore, the claim follows from the definition of

ind-cca-fg
AdvDHIES,A -

. dh- d _ N 1 AdVind_Cpa-fg(t,O,O)
Claim 4 Pr[Expgy ¢"“ =1 A SOMEVALID | < 5 + SYM

Proof: When A does not make d@ype 1 query to its decryption oracle nor makeSype 1 queryy such
that Dy () # BAD, C runs A in the same wayB does. Hence, the probability that outputs 1 given
SOMEVALID is at mostl/2 + 1/2 - Advis: 2”8 Since B makes0 encryption queries and has time-
complexity at most, the claim follows directI)’/ from the assumed securitysafM. |

Claim 5 Pr[Exp(g"jlﬂ:gmd = 1 A SOMEVALID | < Advi}f&éma(t, 1,¢,q, 1)

Proof: When there is &ype 1 queryy to the decryption oracle such th&, (7) # BAD, leti be the
number of one such query and lgt = U || encM; | tag; be its value. By assumption, we know
that Vmackey (encM;, tag;) = 1. BecausgencM;, tag;) # (encM,tag) (or otherwisey; = y and A
would have queried its decryption oracle with the challenge ciphertext), eitldd; was not queried of
tag-generation oracl& (-) or tag; was not the response returned by tag-generation ofagleon query
encM. In either case(encM;, tag;) is a valid forgery andF’ succeeds in breakin§IAC. Therefore,
Pr[Expgli " = 1 A SOMEVALID | < Pr[SOMEVALID | < Adv}jhé} . Hence, sinceF has time-
complexity at most, makes exactly one query to its tag-generation orddle whose length is at most
(the upper bound on the length of challenge ciphertext), and makes ay masties to its verification oracle
V(-,-) the sum of whose lengths is at mgsbits, the claim follows from the assumed securitddAC. |

From Definition 8 and Claims 3, 4, and 5, we have that:

1 AdVETEE ) AdviE( 0,0 _
Adviho > L 2T L Advin (600 pgugiem e

Adviid | AdvEP (10,0 -
— 5 B — AdVIE™ (¢t Lcy g, p) 5

whence
AdvEeE < AdviviP 8 (E,0,0) + 2 Advi ¢ + 2+ AdvINE™(t 1, c.q, 1) -

We conclude that, sinc€ has time-complexity at mostand makes at most queries to its oraclé,,
Advyl o < AdvEli(t,q). Thus, from the above, we have

AdviEe® < AdvE P T(4,0,0) + 2 AdviTi(tq) + 2 - AdvIE™A (¢, 1, ¢, q, 1) -
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But A was an arbitrary adversary subject to the constraint that it has time-complexity at amabimakes
at mostg queries to its decryption oracle the sum of whose lengths is at mbis, and the length of the

ind-cca-f

challenge ciphertext is at mostn experimenExpyyps 4°- The theorem follows.1 1

8 ODH and SDH

In this section, we first exploit the relationship between the strong Diffie-Hellman (SDH) and the oracle
Diffie-Hellman (ODH) assumptions when the hash functibis modeled as a random oracle. More specif-
ically, we show that, in the random oracle (RO) model, the SDH assumption implies the ODH assumption.
We then go on to prove a lower bound on the complexity of strong Diffie-Hellman assumption with respect
to generic algorithms.

However, before proving the implication between the SDH and ODH assumption in the RO model, we
need to back up a little and modify the experiment defining the security of ODH assumption to account for
the presence of a random oraéle The following is the definition of ODH assumption in the the RO model.

Definition 10 [Oracle Diffie-Hellman in the random oracle model: ODH-RO] LetG = (G, g,-,1) be
a represented group, leLen be a number, lef2 be the set of all functions frorf0, 1} to {0, 1}"", and
let A be an adversary. Consider the experiments

experiment  Exp@lieal | experiment Exp@l i
w1, |G|} U« g¥ w&{1,...,|G|}; U+ g*
v &1L |G} VoY v &1, |G} Vo gY
W« H(g"") W & {0, 1}hben
Ho(X) < H(X) Ho(X) < H(XY)
HE&Q HZ&Q
b AMOHO(U, vV, W) b A (U, V, W)
return b return b

Now define theadvantageof A in violating the oracle Diffie-Hellman assumption in the random oracle
model and thedvantage functionf ODH assumption in the RO model, respectively, as follows:

Advylie = Pr[Expgliid™ = 1] — Pr[Expgl e = 1
AdvgO(tan,g0) = max{ AdvgTY}

where the maximum is over all with time-complexityt, making at most, queries to itsH-oracle andy,
queries to itsH,-oracle. HereA is not allowed to call its oracléf, on inputg®. &

The following theorem shows that, in the random oracle (RO) model, the strong Diffie-Hellman assump-
tion implies the oracle Diffie-Hellman assumption.

Theorem 6 LetG = (G, g, -, 1) be a represented group and let the associated hash futti@chosen at
random. Lety, andg, be, respectively, the total number of queriedfeoracle and to thé{,-oracle. Then,

AdvE(t gns g0) < AdVE"(t+ qn go O(gLen + hLen), (gn + q0)*) -

Proof: Let A be any adversary against the ODH assumption in the RO modet.Heeits time-complexity
andq, andgq, be, respectively, the number of queries it make&ftandH, oracles. We can construct an
adversaryB for the Diffie-Hellman problem under SDH @h usingA as a sub-routine, as follows.
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algorithm  B@()(U,V)

begin
hashg & {0, 1}2Fen;  hash; & {0,1}bLen
b & {0,1}; W « hash,
guess < g
run AMCLH(U vV, W)
— For eacW—[,,-queryﬁ, return response as described in the text
— For eachH-query X, return response as described in the text

(updatingguess if O, (U, X) = 1)

— Letb be the output ofd
return  guess

end

Figure 8:Algorithm B for attacking the hard-coreness of the Diffie-Hellman problem under SD# on

ALGORITHM B. Algorithm B is shown in Figure 8B is given as inputU, V'), whereU = ¢* andV = g
for randomu andv and outputs a valuguess, its guess fog*?. B is also given access to a restricted DDH
oracleQ,. Initially, B picks two valueshashy and hash;, at random and seétashy to be the output off
on inputU" (although it still does not know the value &F). It also fix a default valug for guess. Then
it runs A as a subroutine, feeding its input with eithetshy or hash;. Our hope is that, at some poim,

is going to make a query of the forb#’ to the H oracle, since otherwisd would have no advantage in

distinguishing the real outpuiash def H(U") from the random stringiash; . To find out whenA queries

its H-oracle on inpu/?, we query our restricted DDH oract, on input(U, X) wheneverA makes a
query X to its H-oracle. IfO,(U, X) returns 1, thenX = U" and we update the value giiess to X.
Notice thatB does not have access to either flieoracle or the, -oracle. However, it can simulate both
oracles.

The oracleH is to be simulated as follows. In response to a queryf X has been asked éf, then return
the same response as given to that previous quety. hhs not been asked &f, then first check whether
0,(U, X) = 1. If so, then update the value gfiess to X and returnhash, as the response to the current
H-query. If not, then check whether there was some qliety the 4, -oracle such thaﬂ,(ﬁ, X)=1.1If
there was such query, then leish be the same value used as response to that query. If not, thkaslet
be a random string. Retuimsh as the response to the currditquery.

The ,-oracle is to be simulated as follows. When a quérs U is made, check whethéF has already
been asked of{,. If so, then return the same response as given to that previous query. If not, then check
whether there was a previotis-query X whereO,(U, X) = 1. If so, then lethash be the output given to
that H-query. If not, then lehash be a random value. Retuirash as the response to the current query.

Notice thatB runs in time at most + ¢,q,O(hLen + gLen) and makes at most;, + ¢;,)? queries to its
O,-oracle.

ANALYSIS. Consider the experimenBxpgl} ™! andExpg’ "4 and let AskA andAsKA denote,
respectively, the event in whicH-oracle quernyJ’ is made by4 and its complement.

When queryU? is not made directly byA to its H-oracle, there is no way for it to tell whether its input
W is equal toH (U”) or a random string of lengthLen since the former can take any value{it 1}Len,
Hence, the probabilities that outputs 1 in experimenBxp’} "4 and Expg™i "™, given thatA
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does not query itg7-oracle on inpul’” are exactly the same. That By Expg'i "™ = 1 AASKA] =
Pr{ Expgdimando — | A ASKA |,

Consider now the case in which adversargueries itsH -oracle on input” in experiment&xpg!; "4

andExpg®i "™, In such case, we know that adversdywhich runsA as a sub-routine, succeeds in
solving the Diffie-Hellman problem under SDH @h This is because we know there is an index
{1,...,qp} such thath; = X andX = U". SinceO, (U, X) = 1, guess will take the correct valu¢’* and

B will succeed in solving the strong Diffie-Hellman problem@nHence Pr[ Exp 7™ = 1 A ASKA ]—

Pr[Expg’i ™7™ = 1 A AskA] < Pr[AskA] < Advg'ly. Moreover, since3 makes at mosty, + g,
queries to its oracl®, and has time complexity at most+ ¢,q,O(hLen + gLen), it is also the case that
Advih < AdvE™(t, (g0 + an)?).

Putting it all together, we have that
Adv‘g"j‘}}, 4 = Pr[Expg‘}ﬁ‘reaI'm =1]- Pr[Exp‘g"j‘ﬁl{‘”and'rO =1]
= Pr[Expg‘}ﬁ‘reaI'm =1AASKA]+ Pr[Expg‘}ﬁ‘reaI'm =1AASKA]
—Pr[Expg’} "7 = 1 A AskA ] — Pr Expgli 77 = 1 A ASKA]

= Pr[Expdi™" = 1 AAsKA] — Pr[Expg'f 97 = 1 A AsKA |

IA

Pr[AskA]

IN

Advfl

IN

AdvE™" (t + gognO(hLen + gLen), (g + a1)?).

The bound claimed in the theorem follows easily from the fact thatas an arbitrary adversary subject to
the constraint that it had time-complexity at mésind made at mosgt queries to its{-oracle and at most
qo queries to itsH,-oracle. 1 1

LOWER BOUNDS WITH RESPECT TO GENERIC ALGORITHMSGeneric algorithms in groups are algorithms
which do not make use of any special properties of the encoding of group elements other than assuming each
element has a unique representation. This model was introduced by Shoup [34] and is very useful in proving
lower bounds (with respect to such algorithms) for some problems. In fact, Shoup proved that in such a
model both the discrete logarithm and the Diffie-Hellman problems are hard to solve as long as the order of
the group contains at least one large prime factor. Following the same approach, we also use this model here
to prove lower bounds for some new problems we introduce. Let us proceed now with the formalization of
this model.

Let Z, = {1,..., n} be the additive group of integers moduipthe order of the group. Lef be a set
of bit strings of order at least. We call an injective map fronz, to S anencoding functionOne example
for such a function would be the function takinge 7, to g* mod |G| 'whereG is a finite cyclic group of
order|G| generated by the group element

A generic algorithm is a probabilistic algorithhwhich takes as input a list

(o(z1),0(z2),...,0(xk)),

where each; € Z,, ando is a randonmencoding functionand outputs a bit string. During its executiof,
can make queries to an oracle Each query will result in updating the encoding list, to whithas always
accessy gets as input two indicesandj and sign bit, and then compute&s; + ;) and appends it to the
list. It is worth noticing thatd does not depend an, since it is only accessible by means of oracle queries.
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We need to extend the original generic model to allow queries to the restricted DDH 6yadtethis
case,0, gets as input two indicesandj and returns 1 if;; = v - z; and 0, otherwise. In general lines,
our result shows that the restricted DDH ora€lg does not help in solving the Diffie-Hellman problem
whenever the group order contains a large prime factor. One should note, however, that our result has no
implications on non-generic algorithms, such as index-calculus methods for multiplicative groups of integers
modulo a large prime. Let us state this more formally.

Definition 11 [SDH in generic model] Let Z,, be the additive group of integers modulplet S be a set
of strings of cardinality at least, and letoc be a random encoding function 4f on S. In addition, let(2
be the set of all mappings, to S. Let A be an generic algorithm. Consider the experiment

experiment Exp8™ih
o & Q
g < o(l)
w& {1,...,n}; U+ o(u)
v & {1,...,n}; V « o(v)
S(6, 4, +) 2y +
Oy (1, 7) < (zj = vm;)
Z  AO ()20 (g, U, V)
if Z=o(uv)then b« lelse b+ 0
return b

Now define theadvantageof A in violating the strong Diffie-Hellman assumption in the generic model and
the advantage function of SDH assumption in this model, respectively, as follows:

Advi:i;ih = Pr[Expf’;Z‘ihzl]
Advi™ ™M (q) = max{Advii"},

whereq is the total number of queries made Ayto its oracles. &

Theorem 7 Let Z,, be the additive group of integers modulg let S be a set of strings of cardinality at
leastn. Then, for any numbey,

AdvE™ ™M (q) < O(¢*/p)

wherep is the largest prime factor of.

A corollary of Theorem 7 is that any generic algorithm solving the Diffie-Hellman problem under SDH with
success probability bounded away from 0 has to perform at{¥a&t?) group operations.

Proof: Here we just present a proof sketch using a technique used by Shoup in [34]. =tet  with
ged(s,p) = 1. Since additional information only reduces the running time, we can assume that solving the
Diffie-Hellman problem in the subgroup of ordeis easy. Hence, let = ¢ wlog.

We start by running algorithml. In doing so, we need to simulate all its oracles. We play the following
game. LetU andV be indeterminants. During the execution of the algorithm, we will maintain a list
Fy, ..., Fy of polynomials inZ, [U, V], along with a listoy, ..., 0} of distinct values inS. Initially, we
haveF|, = 1, F», = U, andF3 = V; and three distinct values, o2, ando3 chosen at random frorfi.
When the algorithm makes a queliy j, +) to its ¥-oracle, we first computé&, , = F; + F; € Z,:[U, V]

and check whether there is so& £ such thatF,.; = F;. If so, then we returm; to A. Else we pick
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choose a random but distingt 1, return it toA, and update both lists. When the algorithm makes a query
(i,7) toits O,, we return 1 ifF; =V - F; else 0.

We can assume that outputs an element in the encoding list (otherv\ttkimirv;‘fﬂl1 <1/(p — q)), whereg is
the number of queries made ly Then, let us chooseandv at random from7,:.. Notice thatAdvff}E, can
be upper bounded by the probability of one of the following happenk(@:, v) = Fj(u,v) for someF;
andFj; or F;(u,v) = uv for somei; or Fj # V; but Fj(u,v) = vF;(u,v). Otherwise, the algorithm cannot
learn anything about or v except thatt;(u, v) # F;(u,v) for everyi and;j. But, using results from [34],
for fixed: andj, the probability tha#; — F; vanishes is at most/p; the probability thatF; — UV vanishes
is at most2/p; and the probability thaf; — V F; vanishes is at mo/p. It follows that the probability of
one of these happening @(¢*/p). The theorem follows from the fact that was an arbitrary adversary
subject to the constraint that it makes at mpgqueries to its oracled |
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A Attacks on the ElIGamal Scheme

ElGamal encryption fails to achieve strong notions of security, such as non-malleability and chosen-ciphertext

security, in any represented group. In fact, it does not even achieves semantic security in some groups, such

asZy. To support these claims, we here provide the reader with examples of attacks on the EIGamal scheme.
The first of these attacks against the EIGamal scheme shows that it is not semantically secufgsvhen

the underlying group of, p is a prime, ang is a generator. The attack is based on the fact that we can check

whether a numbet € Z; is a square or not in polynomial time by computing the vaitie /2 mod p,

which is 1 ifz is a quadratic residue mgdand -1, otherwise. In thénd stage, we choose two messages in

Z;, one which is a square and one which is not. Inghess stage, we first check whethgr andg” are

square. We know thaf*’ is a non-square if and only if bo¥ andg” are non-square. Then, knowing this,

we can tell which message was encrypted by checking whether the encrypted missggis a square or
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not. That is, ifg“? is a square, the® - ¢“V is a square if and only il is a square. If*" is a non-square,
thenM - g“¥ is a square if and only i/ is a non-square.

In order to provide a malleability attack against the EIGamal scheme, we can see that, given a ciphertext
EM = (¢, encM) whereencM = M -¢"?, we can easily produce a valid cipherﬁﬂ by just modifying
the second part oEM. That is, if we multiplyencM by some valuef* (k # 0) to obtainencM, then the
resulting ciphertexEAM = (¢g*, encM) will be an encryption for a messa@Aé = M - g* because the value
of ¢g"” does not change in this case. Note that this is not dependent on which@risupeing used.

To provide a chosen-ciphertext attack against the ElIGamal scheme, we can show that we can obtain
the plaintext for any given ciphertext. LEM = (¢*, encM) be the challenge ciphertext. LetcM be a
point in G such thaencM # encM and letM be the decryption aEM = (g%, encM). As we know that
M = encM /g"*, we can comput@“’ and thenencM /¢“*, which is the decryption oM.
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