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Abstract

We describe an RSA-based signing scheme called PSS which combines essentially optimal effi-
ciency with attractive security properties. Signing takes one RSA decryption plus some hashing,
verification takes one RSA encryption plus some hashing, and the size of the signature is the
size of the modulus. Assuming the underlying hash functions are ideal, our schemes are not only
provably secure, but are so in a tight way— an ability to forge signatures with a certain amount
of computational resources implies the ability to invert RSA (on the same size modulus) with
about the same computational effort. Furthermore, we provide a second scheme which main-
tains all of the above features and in addition provides message recovery. These ideas extend
to provide schemes for Rabin signatures with analogous properties; in particular their security
can be tightly related to the hardness of factoring.
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1 Introduction

A widely employed paradigm for signing with RSA is to first “hash” the message into a domain point
of RSA and then decrypt (ie. exponentiate with the RSA decryption exponent). In particular, this
is the basis of several existing standards. Unfortunately, the security of the standardized schemes
cannot be justified under standard assumptions about RSA, even assuming the underlying hash
functions are ideal.

We propose new schemes, both for signing and for signing with message recovery. They are
as simple and efficient as the standardized ones. (In particular, signing takes one RSA decryption
plus some hashing, verification takes one RSA encryption plus some hashing, and the size of the
signature is the size of the modulus.) But, assuming the underlying hash function is ideal, our
methods are not only provably secure, but provably secure in a strong sense: the security of our
schemes can be tightly related to the security of the RSA function.

Besides providing concrete new schemes for signing with RSA, this work highlights the impor-
tance, for practical applications of provable security, of consideration of the tightness of the security
reduction, and also provides a rare example of modifying one provably-good scheme in order to
obtain another which has a better security bound.

Let us now expand on all of the above. We begin by looking at current practice. Then we
consider the full domain hash scheme of [3] which is provable, and discuss its exact security. Finally
we come to our new schemes, PSS and PSS-R, and their exact security.

1.1 Signing with RSA– Current practice

The RSA system. In the RSA public key system [15] a party has public key (N, e) and secret key
(N, d), where N is a k-bit modulus, the product of two (k/2)-bit primes, and e, d ∈ Z∗

φ(N) satisfy
ed ≡ 1 mod ϕ(N). (Think of k = 1024, a recommended modulus size these days.) Recall that
the RSA function f : Z∗

N → Z∗
N is defined by f(x) = xe mod N and its inverse f−1: Z∗

N → Z∗
N is

defined by f−1(y) = yd mod N (x, y ∈ Z∗
N ). The generally-made assumption is that f is trapdoor

one-way— roughly, if you don’t know d (or the prime factors of N) then it is hard to compute
x = f−1(y) for a y drawn randomly from Z∗

N .

Hash-then-decrypt schemes. A widely employed paradigm to sign a document M is to first
compute some “hash” y = Hash (M) and then set the signature to x = f−1(y) = yd mod N . (To
verify that x is a signature of M , compute f(x) = xe mod N and check this equals Hash (M).) In
particular, this is the basis for several existing standards. A necessary requirement on Hash in such
a scheme is that it be collision-intractable and produce a k-bit output in Z∗

N . Accordingly, Hash is
most often implemented via a cryptographic hash function like H = MD5 (which yields a 128 bit
output and is assumed to be collision-intractable) and some padding. A concrete example of such
a scheme is [16, 17], where the hash is

Hash PKCS(M) = 0x 00 01 FF FF · · · FF FF 00 ‖ H(M) .

Here ‖ denotes concatenation, and enough 0xFF-bytes are used so as to make the length of
Hash PKCS(M) equal to k bits.

Security. We draw attention to the fact that the security of a hash-then-decrypt signature
depends very much on how exactly one implements Hash. In particular, it is important to recognize
that the security of a signature scheme like SignPKCS(M) = f−1(Hash PKCS(M)) can’t be justified
given (only) that RSA is trapdoor one-way, even under the assumption that hash function H is
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ideal. (The reason is that the set of points { Hash PKCS(M) : M ∈ {0, 1}∗ } has size at most
2128 and hence is a very sparse, and a very structured, subset of Z∗

N .) We consider this to be a
disadvantage. We stress that we don’t know of any attack on this scheme. But we prefer, for such
important primitives, to have some proof of security rather than just an absence of known attacks.

The same situation holds for other standards, including ISO 9796 [10]. (There the function
Hash involves no cryptographic hashing, and the message M is easily recovered from Hash (M).
This doesn’t effect the points we’ve just made.)

The above discussion highlights that collision-intractability is not enough. The function Hash PKCS

is guaranteed to be collision-intractable if we use a collision-intractable H. But this won’t suffice
to get a proof of security.

1.2 FDH and its exact security

The FDH scheme. In earlier work [3] we suggested to hash M onto the full domain Z∗
N of the

RSA function before decrypting. That is, Hash FDH: {0, 1}∗ → Z∗
N is understood to hash strings

“uniformly” into Z∗
N , and the signature of M is SignFDH(M) = f−1(Hash FDH(M)). (Candidates

for suitable functions Hash FDH can easily be constructed out of MD5 or similar hash functions, as
described in [3].) We call this the Full-Domain-Hash scheme (FDH).

Provable security of FDH. Assuming Hash FDH is ideal (ie. it behaves like a random function
of the specified domain and range) the security of FDH can be proven assuming only that RSA is
a trapdoor permutation. (This is a special case of [3, Section 4], which considers this construction
with an arbitrary trapdoor permutation.) This makes the security guarantee of the FDH scheme
superior to those of the schemes we discussed in Section 1.1.

Now we want to go further. We will explain how, within the class of provable schemes, quality
depends on the quantifiable notion of exact security. In this paper we compute the exact security
of the FDH scheme, and then we offer a new scheme which has better exact security.

Exact security. We quantify the security of RSA as a trapdoor permutation. We say it is
(t′, ε′)-secure if an attacker, given y drawn randomly from Z∗

N and limited to running in time t′(k),
succeeds in finding f−1(y) with probability at most ε′(k). Values of t′, ε′ for which it is safe to
assume RSA is (t′, ε′)-secure can be provided based on the perceived cryptanalytic strength of
RSA.

Next we quantify the security of a signature scheme. A signature scheme is said to be
(t, qsig, qhash, ε)-secure if an attacker, provided the public key, allowed to run for time t(k), allowed
a chosen-message attack in which she can see up to qsig(k) legitimate message-signature pairs, and
allowed qhash invocations of the (ideal) hash function, is successful in forging the signature of a new
message with probability at most ε(k).

Exact security of FDH. The “exact security” of the reduction of [3] used to prove the se-
curity of the FDH signature scheme is analyzed in Theorem 3.1. It says that if RSA is (t′, ε′)-
secure and qsig, qhash are given then the FDH signature scheme is (t, qsig, qhash, ε)-secure for t =
t′ − poly(qsig, qhash, k) and ε = (qsig + qhash) · ε′. Here poly is some small polynomial explicitly
specified in Theorem 3.1.

We note that ε could thus be considerably larger than ε′. This means that even if RSA is quite
strong, the guarantee on the signature scheme could be quite weak. To see this, say we would
like to allow the forger to see at least qsig(k) = 230 example signatures and compute hashes on,
say, qhash = 260 strings. Then even if the RSA inversion probability was originally as low as 2−61,
all we can say is that the forging probability is now at most 1/2, which is not good enough. To
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compensate, we will have to be able to assume that ε′(k) is very, very low, like 2−100. This means
that we must have a fairly large value of k, ie. a larger modulus. But this affects the efficiency
of the scheme, because the time to do the underlying modular exponentiation grows (and rather
quickly) as the modulus size increases. We prefer to avoid this.

We reiterate the crucial point: if the reduction proving security is “loose,” like the one above,
the efficiency of the scheme is impacted, because we must move to a larger security parameter.
Thus, it would be nice to have “tighter” reductions, meaning ones in which ε is almost the same as
ε′, with the relations amongst the other parameters staying about the same as they are now.

One might suggest that it is possible to prove a better security bound for FDH than that outlined
above. Perhaps, but we don’t know how. Instead, we will strengthen the scheme so that a better
security bound can be proven.

Clarification. Before going on, let us clarify our assessments of scheme quality. We are not
saying the FDH scheme is bad. Indeed, since it is provable, it is ahead of schemes discussed in
Section 1.1, and a viable alternative to them. What we are saying is that it is possible to do even
better than FDH. That is, it is possible to get a scheme which is not only proven secure, but has
strong exact security. This successor to FDH is the scheme we discuss next.

1.3 New schemes: PSS and PSS-R

PSS. We introduce a new scheme which we call the probabilistic signature scheme (PSS). It is fully
specified in Section 4.

The idea is to strengthen the FDH scheme by making the hashing probabilistic. In order to sign
message M , the signer first picks a random seed r of length k0, where k0 < k is a parameter of the
scheme. Then using some hashing, in a specific way we specify, the signer produces from M and
r an image point y = Hash PSS(M, r) ∈ Z∗

N . As usual, the signature is x = f−1(y) = yd mod N .
(Verification is a bit more tricky than usual, since one cannot simple “re-compute” this probabilistic
hash, but still takes only one RSA encryption and some hashing. See Section 4.) In particular, our
scheme is as efficient as the schemes discussed above. But Theorem 4.1 shows that the security can
be tightly related to that of RSA. Roughly, it says that if RSA is (t′, ε′)-secure then, given qsig, qhash,
scheme PSS is (t, qsig, qhash, ε)-secure for t = t′ − poly(qsig, qhash, k) and ε = ε′ − o(1). Here o(1)
denotes a function exponentially small in k0 and k1 (another parameter of the scheme) and poly
denotes a specific polynomial, both of these explicitly specified in the theorem.

Continuing the above example, if the RSA inversion probability was originally as low as 2−61,
the probability of forgery for the signature scheme is almost equally low, regardless of the number
of sign and hash queries the adversary makes!

PSS with recovery. We also have a variant of PSS, called PSS-R, which provides message
recovery. The goal is to save on bandwidth. Rather than transmit the message M and its signature
x, a single “enhanced signature”τ , of length less than |M | + |x|, is transmitted. The verifier will
be able to recover M from τ and simultaneously check the authenticity. With security parameter
k = 1024, our scheme enables one to authenticate a message of up to n = 767 bits by transmitting
only a total of k bits. PSS-R accomplishes this by appropriately “folding” the message into the
signature in such a way that the verifier can recover it. The efficiency and security are the same as
for PSS. See Section 5.

Rabin signatures. The same ideas apply for the Rabin function, and, in particular, we have
both a basic Rabin scheme and a variant which provides for message recovery, with security tightly
related to the hardness of factoring. See Section 6.
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1.4 Discussion

The above illustrates that to fairly compare the efficiency of two provably-secure schemes one needs
to look at more than just computation time for a k-bit key. Schemes FDH and PSS have essentially
the same computation time when k is fixed. But since PSS has tighter provable security one can
safely use a smaller modulus size and thus, ultimately, get greater efficiency.

A numerical example may help to make this clear. Let us again assume that the forger F
can compute the hash of at most 260 strings and that she can obtain the signatures of at most
230 messages. Assume that it takes time Ce1.923(log N)1/3(log log N)2/3

to invert RSA [12]. Then, our
theorems imply that if you use FDH then you must select a modulus of 3447 bits in order to get
the same degree of guaranteed-security as you would have gotten had you selected a modulus of
1024 bits and used PSS.

1.5 Related work

We have already discussed the PKCS standards [16, 17] and the ISO standard [10] and seen that
their security cannot be justified based on the assumption that RSA is trapdoor one-way. Other
standards, such as [1], are similar to [16], and the same statement applies.

The schemes we discuss in the remainder of this section do not use the hash-then-decrypt
paradigm.

Signature schemes whose security can be provably based on the RSA assumption include [9, 2,
11, 20, 6]. The major plus of these works is that they do not use an ideal hash function (random
oracle) model— the provable security is in the standard sense. On the other hand, the security
reductions are quite loose for each of those schemes. On the efficiency front, the efficiency of the
schemes of [9, 2, 11, 20] is too poor to seriously consider them for practice. The Dwork-Naor scheme
[6], on the other hand, is computationally quite efficient, taking two to six RSA computations,
although there is some storage overhead and the signatures are longer than a single RSA modulus.
This scheme is the best current choice if one is willing to allow some extra computation and storage,
and one wants well-justified security without assuming an ideal hash function.

Back among signature schemes which assume an ideal hash, a great many have been proposed,
based on the hardness of factoring or other assumptions. Most of these schemes are derived from
identification schemes, as was first done by [8]. Some of these methods are provable (in the ideal hash
model), some not. In some of the proven schemes exact security is analyzed; usually it is not. In no
case that we know of is the security tight. The efficiency varies. The computational requirements
are often lower than a hash-then-decrypt RSA signature, although key sizes are typically larger.

The paradigm of protocol design with ideal hash functions (aka random oracles) is developed
in [3] and continued in [4]. The current paper is in some ways the analogue, for digital signatures,
of our earlier work on encryption [4]. Further work on signing in the random oracle model includes
Pointcheval and Stern [13]. (They do not consider exact security, and it may be helpful to do so in
their context.)

2 Definitions

We provide definitions for an exact security treatment of RSA, basic signature schemes, and signing
with recovery.
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2.1 An exact treatment of RSA

The RSA family. RSA is a family of trapdoor permutations. It is specified by the RSA generator,
RSA, which, on input 1k, picks a pair of random distinct (k/2)-bit primes and multiplies them to
produce a modulus N . It also picks, at random, an encryption exponent e ∈ Z∗

ϕ(N) and computes
the corresponding decryption exponent d so that ed ≡ 1 mod ϕ(N). The generator returns N, e, d,
these specifying f : Z∗

N → Z∗
N and f−1: Z∗

N → Z∗
N , which are defined by f(x) = xe mod N and

f−1(y) = yd mod N . Recall that both functions are permutations, and, as the notation indicates,
inverses of each other.

The trapdoor permutation generator RSA–3 is identical to RSA except that the encryption
exponent e is fixed to be 3. More generally, RSA–e provides an encryption exponent of the specified
constant. Other variants of RSA use a somewhat different distribution on the modulus N . Our
results, though stated for RSA, also hold for these other variants.

Exact security of the RSA family. An inverting algorithm for RSA, I, gets input N, e, y
and tries to find f−1(y). Its success probability is the probability it outputs f−1(y) when N, e, d
are obtained by running RSA(1k) and y is set to f(x) for an x chosen at random from Z∗

N . The
standard asymptotic definition of security asks that the success probability of any PPT (proba-
bilistic, polynomial time) algorithm be a negligible function of k. We want to go further. We are
interested in exactly how much time an inverting algorithm uses and what success probability it
achieves in this time. Formally an inverting algorithms is said to be a t-inverter, where t: N → N,
if its running time plus the size of its description is bounded by t(k), in some fixed standard model
of computation. We say that I (t, ε)-breaks RSA, where ε: N → [0, 1], if I is a t-inverter and for
each k the success probability of I is at least ε(k). Finally, we say that RSA is (t, ε)-secure if there
is no inverter which (t, ε)-breaks RSA.

Example. The asymptotically best factoring algorithm known (NFS) takes time which seems to
be about e1.9k1/3(log k)2/3

to factor a k-bit modulus. So one might be willing to assume that the
trapdoor permutation family RSA is (t, ε)-secure for any (t, ε) satisfying t(k)/ε(k) ≤ Cek1/4

, for
some particular constant C.

2.2 Signature schemes and their exact security

Signature schemes. A digital signature scheme Π = (Gen,Sign,Verify) is specified by a key
generation algorithm, Gen, a signing algorithm, Sign, and a verifying algorithm, Verify . The first
two are probabilistic, and all three should run in expected polynomial time. Given 1k, the key
generation algorithm outputs a pair of matching public and secret keys, (pk, sk). The signing
algorithm takes the message M to be signed and the secret key sk, and it returns a signature
x = Signsk(M). The verifying algorithm takes a message M , a candidate signature x′, and the
public key pk, and it returns a bit Verifypk(M, x′), with 1 signifying “accept” and 0 signifying
“reject.” We demand that if x was produced via x ← Signsk(M) then Verifypk(M, x) = 1.

One or more strong hash functions will usually be available to the algorithms Sign and Verify ,
their domain and range depending on the scheme. We model them as ideal, meaning that if hash
function h is invoked on some input, the output is a uniformly distributed point of the range. (But
if invoked twice on the same input, the same thing is returned both times.) Formally, h is a random
oracle. It is called a hash oracle and it is accessed via oracle queries: an algorithm can write a
string z and get back h(z) in time |z|.
Security of signature schemes. Definitions for the security of signatures in the asymptotic

7



setting were provided by Goldwasser, Micali and Rivest [9], and enhanced to take into account the
presence of an ideal hash function in [3]. Here we provide an exact version of these definitions.

A forger takes as input a public key pk, where (pk, sk) R← Gen(1k), and tries to forge signatures
with respect to pk. The forger is allowed a chosen message attack in which it can request, and
obtain, signatures of messages of its choice. This is modeled by allowing the forger oracle access
to the signing algorithm. The forger is deemed successful if it outputs a valid forgery—namely, a
message/signature pair (M, x) such that Verifypk(M, x) = 1 but M was not a message of which
a signature was requested earlier of the signer. The forger is said to be a (t, qsig, qhash)-forger if
its running time plus description size is bounded by t(k); it makes at most qsig(k) queries of its
signing oracle; and it makes a total of at most qhash(k) queries of its various hash oracles. As
a convention, the time t(k) includes the time to answer the signing queries. Such a forger F is
said to (t, qsig, qhash, ε)-break the signature scheme if, for every k, the probability that F outputs
a valid forgery is at least ε(k). Finally we say that the signature scheme (Gen,Sign,Verify) is
(t, qsig, qhash, ε)-secure if there is no forger who (t, qsig, qhash, ε)-breaks the scheme.

For simplicity we will assume that a forger does any necessary book-keeping so that it never
repeats a hash query. (It might repeat a signing query. If the scheme is probabilistic, this might
help it.)

2.3 Quantifying the quality of reductions

Our theorems will have the form: If RSA is (t′, ε′)-secure, then some signature scheme Π =
(Gen,Sign,Verify) is (t, qsig, qhash, ε)-secure. The proof will take a forger F who (t, qsig, qhash, ε)-
breaks Π and produce from F an inverter I who (t′, ε′)-breaks RSA. The quality of the reduction
is in how the primed variables depend on the unprimed ones. We will typically view qsig, qhash as
given, these being query bounds we are willing to allow. (For example, qsig = 230 and qhash = 260

are reasonable possibilities.) Obviously we want t′ to be as large as possible and we want ε′ to be
as small as possible. We are usually satisfied when t′ = t − poly(qhash, qsig, k) and ε′ ≈ ε.

3 The Full-Domain-Hash Scheme – FDH

The scheme. Signature scheme FDH = (GenFDH ,SignFDH ,VerifyFDH ) is defined as follows [3].
The key generation algorithm, on input 1k, runs RSA(1k) to obtain (N, e, d). It outputs (pk, sk),
where pk = (N, e) and sk = (N, d). The signing and verifying algorithms have oracle access to a
hash function HFDH: {0, 1}∗ → Z∗

N . (In the security analysis it is assumed to be ideal. In practice it
can be implemented on top of a cryptographic hash function such as SHA-1.) Signature generation
and verification are as follows:

SignFDH N,d (M)
y ← HFDH(M)
return yd mod N

VerifyFDH N,e (M, x)
y ← xe mod N ; y′ ← HFDH(M)
if y = y′ then return 1 else return 0

Security. The following theorem summarizes the exact security of the FDH scheme as provided
by the reduction of [3]. The proof is straightforward, but it is instructive all the same, so we include
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it. The disadvantage of the result, from our point of view, is that ε′ could be much smaller than ε.

Theorem 3.1 Suppose RSA is a (t′, ε′)-secure. Then, for any qsig, qhash, signature scheme FDH is
(t, qsig, qhash, ε)-secure, where

t(k) = t′(k) − [qhash(k) + qsig(k) + 1] · Θ(k3) and

ε(k) = [qsig(k) + qhash(k) + 1] · ε′(k) .

Proof: Let F be a forger which (t, qsig, qhash, ε)-breaks FDH. We present an inverter I which
(t′, ε′)-breaks RSA.

Inverting algorithm I is given as input (N, e, y) where N, e, d were obtained by running the generator
RSA(1k), and y was chosen at random from Z∗

N . It is trying to find x = f−1(y), where f is the
RSA function described by N, e. It forms the public key N, e of the Full-Domain-Hash signature
scheme, and starts running F on input of this key. Forger F will make two kinds of oracle queries:
hash oracle queries and signing queries. Inverter I must answer these queries itself. For simplicity
we assume that if F makes sign query M then it has already made hash oracle query M . (We will
argue later that this is wlog.) Let q = qsig + qhash. Inverter I picks at random an integer j from
{1, . . . , q}. Now we describe how I answers oracle queries. Here i is a counter, initially 0.

Suppose F makes hash oracle query M . Inverter I increments i and sets Mi = M . If i = j then it
sets yi = y and returns yi. Else it picks ri at random in Z∗

N , sets yi = f(ri), and returns yi.

Alternatively, suppose F makes signing query M . By assumption, there was already a hash query
of M , so M = Mi for some i. Let I return the corresponding ri as the signature.

Eventually, F halts, outputting some (attempted forgery) (M, x). Let inverting algorithm I output
x. Without loss of generality (see below) we may assume that M = Mi for some i. In that case, if
(M, x) is a valid forgery, then, with probability at least 1/q, we have i = j and x = f−1(yi) = f−1(y)
was the correct inverse for f .

The running time of I is that of F plus the time to choose the yi-values. The main thing here is
one RSA computation for each yi, which is cubic time (or better). This explains the formula for t.

It remains to justify the assumptions. Recall that I is running F . So if the latter makes a sign
query without having made the corresponding hash query, I at once goes ahead and makes the
hash query itself. Similarly for the output forgery. All this means that the effective number of hash
queries is at most qhash + qsig + 1, which is the number we used in the time bound above.

Is there a different proof which would achieve a translation in which t is like the above but ε is
Ω(ε′)? We don’t believe so. Instead we will modify the scheme to get the security we want. We do
this by making the hashing probabilistic.

4 The Probabilistic Signature Scheme – PSS

Here we propose a new scheme—a probabilistic generalization of FDH. It preserves the efficiency
and provable security of FDH but achieves the latter with a much better security bound.
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Figure 1: PSS: Components of image y = 0 ‖ w ‖ r∗ ‖ g2(w) are darkened. The signature of M is
yd mod N .

4.1 Description of the PSS

Signature scheme PSS[k0, k1] = (GenPSS ,SignPSS ,VerifyPSS ) is parameterized by k0 and k1,
which are numbers between 1 and k satisfying k0 + k1 ≤ k− 1. To be concrete, the reader may like
to imagine k = 1024, k0 = k1 = 128.

The key generation algorithm GenPSS is identical to GenFDH : on input 1k, run RSA(1k) to
obtain (N, e, d), and output (pk, sk), where pk = (N, e) and sk = (N, d).

The signing and verifying algorithms make use of two hash functions. The first, h, called
the compressor, maps as h: {0, 1}∗ → {0, 1}k1 and the second, g, called the generator, maps
as g: {0, 1}k1 → {0, 1}k−k1−1. (The analysis assumes these to be ideal. In practice they can
be implemented in simple ways out of cryptographic hash functions like MD5, as discussed in
Appendix A.) Let g1 be the function which on input w ∈ {0, 1}k1 returns the first k0 bits of g(w),
and let g2 be the function which on input w ∈ {0, 1}k1 returns the remaining k − k0 − k1 − 1 bits
of g(w). We now describe how to sign and verify. Refer to Figure 1 for a picture.

SignPSS (M)
r

R← {0, 1}k0 ; w ← h(M ‖ r) ; r∗ ← g1(w)⊕r
y ← 0 ‖ w ‖ r∗ ‖ g2(w)
return yd mod N

VerifyPSS (M, x)
y ← xe mod N
Break up y as b ‖ w ‖ r∗ ‖ γ. (That is, let b be the first bit of y, w

the next k1 bits, r∗ the next k0 bits, and γ the remaining bits.)
r ← r∗⊕g1(w)
if ( h(M ‖ r) = w and g2(w) = γ and b = 0 ) then return 1
else return 0

The step r
R← {0, 1}k0 indicates that the signer picks at random a seed r of k0 bits. He then

concatenates this seed to the message M , effectively “randomizing” the message, and hashes this
down, via the “compressing” function, to a k1 bit string w. Then the generator g is applied to
w to yield a k0 bit string r∗ = g1(w) and a k − k0 − k1 − 1 bit string g2(w). The first is used to
“mask” the k0-bit seed r, resulting in the masked seed r∗. Now w ‖ r∗ is pre-pended with a 0 bit
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and appended with g2(w) to create the image point y which is decrypted under the RSA function
to define the signature. (The 0-bit is to guarantee that y is in Z∗

N .)
Notice that a new seed is chosen for each message. In particular, a given message has many

possible signatures, depending on the value of r chosen by the signer.
Given (M, x), the verifier first computes y = xe mod N and recovers r∗, w, r. These are used to

check that y was correctly constructed, and the verifier only accepts if all the checks succeed.
Note the efficiency of the scheme is as claimed. Signing takes one application of h, one appli-

cation of g, and one RSA decryption, while verification takes one application of h, one application
of g, and one RSA encryption.

4.2 Security of the PSS

The following theorem proves the security of the PSS based on the security of RSA, but with a
relation between the two securities that is much tighter than the one we saw for the FDH scheme.
The key difference is that ε(k) is within an additive, rather than multiplicative, factor of ε′(k), and
this additive factor decreases exponentially with k0, k1. The relation between t and t′ is about the
same as in Theorem 3.1.

Theorem 4.1 Suppose that RSA is (t′, ε′)-secure. Then for any qsig, qhash the signature scheme
PSS[k0, k1] is (t, qsig, qhash, ε)-secure, where

t(k) = t′(k) − [qsig(k) + qhash(k) + 1] · k0 · Θ(k3), and

ε(k) = ε′(k) + [3(qsig(k) + qhash(k))2] · (2−k0 + 2−k1) .

The rest of this section is devoted to a sketch of the proof of this theorem.

Proof Sketch: Let F be a forger which (t, qsig, qhash, ε)-breaks the PSS. We present an inverter I
which (t′, ε′)-breaks the trapdoor permutation family RSA.

The input to I is N, e and η where η was chosen at random from Z∗
N , and N, e, d were chosen

by running the generator RSA(1k). (But d is not provided to I!) We let f : Z∗
N → Z∗

N be
f(x) = xe mod N . I wants to compute f−1(η) = ηd mod N . It forms the public key N, e, and
starts running F on input this key. F will make oracle queries (signing queries, h-oracle queries,
and g-oracle queries), which I must answer itself. We assume no hash query (h or g) is repeated
(but a signing query might be repeated). We let Q1, . . . , Qqsig+qhash

denote the sequence of oracle
queries that F makes. (This is a sequence of random variables.) This list includes all queries, and
we implicitly assume that along with each Qi is an indication of whether it is a signing oracle query,
an h-oracle query or a g-oracle query. In the process of answering these queries, I will “build” or
“define” the functions h, g.

I maintains a counter i, initially 0, which is incremented for each query. We now indicate how
the queries are answered. It depends on the type of query.

Answering signing queries. First, suppose Qi = M is a signing query. Let us first try to give
some intuition, and then the precise instructions for I to answer the query.

The problem is that I cannot answer a signing query as the signer would since it doesn’t know
f−1. So, it first picks a point x ∈ Z∗

N , and then arranges that y = f(x) be the image point of a
signature of M . (It does this by viewing y as 0 ‖ w ‖ r∗ ‖ γ, and then defining h(M ‖ r) = w and
g(w) = r∗⊕r ‖ γ, for some random r.) At this point, x can be returned as a legitimate signature
of M . Some technicalities include making sure there are no conflicts (re-defining h or g on points
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where their values were already assigned) and making sure y has first bit 0. These are attended to
in the following full description of the instructions for I to answer signing query Qi:
(1) Increment i and let Mi = Qi.
(2) Pick ri

R← {0, 1}k0 . (Recall this notation means ri is chosen at random from {0, 1}k0 .)
(3) If ∃ j : j < i : rj = ri then abort.
(4) Repeat xi

R← Z∗
N ; yi ← f(xi) until the first bit of yi is 0.

(5) Break up yi to write it as 0 ‖ wi ‖ r∗i ‖ γi. (That is, let wi be the k1 bits following the 0, let r∗i
be the next k0 bits, and let γi be the last k − k0 − k1 − 1 bits.)

(6) Set h(Mi ‖ ri) = wi.
(7) If ∃ j : j < i : wj = wi then abort.
(8) Set g1(wi) = r∗i ⊕ri ; Set g2(wi) = γi ; Set g(wi) = g1(wi) ‖ g2(wi).
(9) Return xi to F as the answer to signing query Qi = Mi.

Answering h-oracle queries. Next, suppose Qi is an h-oracle query. We may assume it has
length at least k0 since otherwise it doesn’t help the adversary to make this query. Again, before
the precise instructions, here is the intuition. The query looks like M ‖ r. We want to arrange
that, if F later forges a signature of M using seed r then1 we invert f at η. To arrange this, we
will associate to query M ‖ r an image of the form ηxe

i , where xi is random. (Thus if F later
comes up with f−1(ηxe

i ) = xiη
d, then I can divide out xi and recover ηd = f−1(η).) This is done

by choosing a random xi, viewing ηxe
i as 0 ‖ w ‖ r∗ ‖ γ, and, as before, defining h(M ‖ r) = w and

g(w) = r∗⊕r ‖ γ. The detailed instructions for I to answer h-oracle query Qi (taking into account
technicalities similar to the above) are:
(1) Increment i and break up Qi as Mi ‖ ri. (That is, let ri be the last k0 bits of Qi and let Mi be

the rest).
(2) Say Qi is old if ∃ j : j < i : Mj ‖ rj = Mi ‖ ri, and new otherwise. (Since h-queries are

not repeated, Qi is old iff Mi was signing query Mj and in the process of answering it above
we picked rj = ri.) Now if Qi is old then set (wi, r

∗
i , γi) = (wj , r

∗
j , γj) and return wj (which is

h(Mj ‖ rj)); Else go on to next step.
(3) Repeat xi

R← Z∗
N ; zi ← f(xi) ; yi ← ηzi mod N until the first bit of yi is 0.

(4) Break up yi to write it as 0 ‖ wi ‖ r∗i ‖ γi.
(5) Set h(Mi ‖ ri) = wi.
(6) If ∃ j : j < i : wj = wi then abort.
(7) Set g1(wi) = r∗i ⊕ri ; Set g2(wi) = γi ; Set g(wi) = g1(wi) ‖ g2(wi).
(8) Return wi to F as the answer to h-oracle query Qi = Mi ‖ ri.

Answering g-oracle queries. Last, suppose Qi is a g-oracle query. We may assume it has length
k1 since otherwise it doesn’t help the adversary to make this query. This time, there is not much
to do:
(1) Increment i and let wi = Qi.
(2) If ∃ j : j < i : wj = wi then return g(wj). Else pick a string α

R← {0, 1}k−k1−1, set g(wi) = α,
and return α.

Analysis. Let Distinct be the event that we never abort in Steps (3) or (7) in answering signing
queries or Step (6) in answering h-oracle queries. The reader can verify that Pr[¬Distinct] ≤ p where
p = 2(qsig +qhash)2 · (2−k0 +2−k1). So with probability ε−p, Distinct holds and F halts and outputs

1 F might forge a signature of M with a seed r′ such that h-query M ‖ r′ was never made. But the probability
of this is very low.

12



a valid forgery (M, x). Assume we are in this situation, and let y = f(x) = xe mod N . If the first
bit of y is not 0 then the forgery is invalid, so assume this bit is 0. So we can break y up to view
it as 0 ‖ w ‖ r∗ ‖ γ. Let r = r∗⊕g1(w). We now claim that with probability at least ε − p − 2−k1 ,
there is an i such that: (M, r, w, r∗, γ) = (Mi, ri, wi, r

∗
i , γi); h-oracle query Qi = Mi ‖ ri was made;

and this query was new when it was made. Assuming this claim we have y = yi = ηzi mod N . Now
I outputs x/xi mod N . Note (x/xi)e = xe/xe

i = y/zi = η so x/xi is indeed f−1(η) as desired.
Now let us justify the claim. If M ‖ r 
= Mi ‖ ri for all i then the probability that h(M ‖ r) = w

is at most 2−k1 . So now assume there is such an i. Since (M, x) is a valid forgery we know that
M was never a signing query, so it must be that M ‖ r was a h-oracle query. Furthermore, for the
same reason, it must have been new.

Finally, note that the time for Step (4) in answering signing queries and Step (3) in answering
h-oracle queries can’t be bounded. But the expected time is two executions of the loop. So we
just stop the loop after 1 + k0 steps. This adds at most 2−k0 to the error, completing our proof
sketch.

We stress how this proof differs from that of Theorem 3.1. There, we had to “guess” the value
of i ∈ {1, . . . , qsig + qhash} for which F would forge a message, and we were only successful if we
guessed right. Here we are successful (except with very small probability) no matter what is the
value of i for which the forgery occurs.

5 Signing with Message Recovery – PSS-R

Message recovery. In a standard signature scheme the signer transmits the message M in
the clear, attaching to it the signature x. In a scheme which provides message recovery, only an
“enhanced signature” τ is transmitted. The goal is to save on the bandwidth for a signed message:
we want the length of this enhanced signature to be smaller than |M | + |x|. (In particular, when
M is short, we would like the length of τ to be k, the signature length.) The verifier recovers the
message M from the enhanced signature and checks authenticity at the same time.

We accomplish this by “folding” part of the message into the signature in such a way that it
is “recoverable” by the verifier. When the length n of M is small, we can in fact fold the entire
message into the signature, so that only a k bit quantity is transmitted. In the scheme below, if
the security parameter is k = 1024, we can fold up to 767 message bits into the signature.

Definition. Formally, the key generation and signing algorithms are as before, but Verify is
replaced by Recover , which takes pk and x and returns Recoverpk(x) ∈ {0, 1}∗ ∪ {REJECT}. The
distinguished point REJECT is used to indicate that the recipient rejected the signature; a return
value of M ∈ {0, 1}∗ indicates that the verifier accepts the message M as authentic. The formulation
of security is the same except for what it means for the forger to be successful : it should provide an
x such that Recoverpk(x) = M ∈ {0, 1}∗, where M was not a previous signing query. We demand
that if x is produced via x ← Signsk(M) then Recoverpk(x) = M .

A simple variant of PSS achieves message recovery. We now describe that scheme and its
security.

The scheme. The scheme PSS-R[k0, k1] = (GenPSSR,SignPSSR,RecPSSR) is parameterized by
k0 and k1, as before. The key generation algorithm is GenPSS , the same as before. As with
PSS, the signing and verifying algorithms depend on hash functions h: {0, 1}∗ → {0, 1}k1 and
g: {0, 1}k1 → {0, 1}k−k1−1, and we use the same g1 and g2 notation. For simplicity of explication,
we assume that the messages to be signed have length n = k − k0 − k1 − 1. (Suggested choices
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Figure 2: PSS-R: Components of image y = 0 ‖ w ‖ r∗ ‖ M∗ are darkened.

of parameters are k = 1024, k0 = k1 = 128 and n = 767.) In this case, we produce “enhanced
signatures” of only k bits from which the verifier can recover the n-bit message and simultaneously
check authenticity. Signature generation and verification proceed as follows. Refer to Figure 2 for
a picture.

SignPSSR (M)
r

R← {0, 1}k0 ; w ← h(M ‖ r) ; r∗ ← g1(w)⊕r
M∗ ← g2(w)⊕M
y ← 0 ‖ w ‖ r∗ ‖ M∗

return yd mod N

RecPSSR (x)
y ← xe mod N
Break up y as b ‖ w ‖ r∗ ‖ M∗. (That is, let b be the first bit of y, w

the next k1 bits, r∗ the next k0 bits, and M∗ the remaining bits.)
r ← r∗⊕g1(w)
M ← M∗⊕g2(w)
if ( h(M ‖ r) = w and b = 0 ) then return M else return REJECT

The difference in SignPSSR with respect to SignPSS is that the last part of y is not g2(w). Instead,
g2(w) is used to “mask” the message, and the masked message M∗ is the last part of the image
point y.

The above is easily adapted to handle messages of arbitrary length. A fully-specified scheme
would use about min{k, n + k0 + k1 + 16} bits.

Security. The security of PSS-R is the same as for PSS.

Theorem 5.1 Suppose that RSA is (t′, ε′)-secure. Then for any qsig, qhash the signing-with-
recovery scheme PSS-R[k0, k1] is (t, qsig, qhash, ε)-secure, where

t(k) = t′(k) − [qsig(k) + qhash(k) + 1] · k0 · Θ(k3), and

ε(k) = ε′(k) + [3(qsig(k) + qhash(k))2] · (2−k0 + 2−k1) .

The proof of this theorem is very similar to that of Theorem 4.1 and hence is omitted.
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6 Rabin signatures – PRab and PRab-R

The ideas of this paper extend to Rabin signatures [18, 19], yielding a signature scheme and a
signing with recovery scheme whose security can be tightly related to the hardness of factoring.

The scheme. Scheme PRab[k0, k1] = (GenPRab,SignPRab,VerifyPRab), the probabilistic Rabin
scheme, depends on parameters k0, k1, where k0 + k1 ≤ k. Algorithm GenPRab, on input 1k, picks
a pair of random distinct (k/2)-bit primes p, q and multiplies them to produce the k-bit modulus
N . It outputs (pk, sk), where pk = N and sk = (N, p, q).

The signing and verifying algorithms of PRab use hash functions h, g, where h: {0, 1}∗ →
{0, 1}k1 and g: {0, 1}k1 → {0, 1}k−k1 . We let g1 be the function which on input w ∈ {0, 1}k1

returns the first k0 bits of g(w), and let g2 be the function which on input w ∈ {0, 1}k1 returns the
remaining k − k0 − k1 bits of g(w).

The signing procedure, SignPRab, is similar to the corresponding SignPSS , but it returns a
random square root of the image y, as opposed to yd mod N . We stress that a random root is
chosen; a fixed one won’t do. The verification procedure checks if the square of the signature
has the correct image. Thus verification is particularly fast. Here, in full, are SignPRab and
VerifyPRab:

SignPRab (M)
repeat

r
R← {0, 1}k0 ; w ← h(M ‖ r) ; r∗ ← g1(w)⊕r

y ← w ‖ r∗ ‖ g2(w)
until y is a quadratic residue modN .
Let {x1, x2, x3, x4} be the four distinct square roots of y in Z∗

N .
Let x

R← {x1, x2, x3, x4}.
return x

VerifyPRab (M, x)
y ← x2 mod N
Break up y as w ‖ r∗ ‖ γ. (That is, let w be the first k1 bits of y,

r∗ the next k0 bits, and γ the remaining bits.)
r ← r∗⊕g1(w)
if ( h(M ‖ r) = w and g2(w) = γ ) then return 1 else return 0

Exact security of factoring. This scheme is based on the hardness of factoring, so we need
an exact security formulation of the hardness of factoring assumption.

A factoring algorithm takes a k-bit number and tries to factor it. It is a t-factoring algorithm
if the size of its description plus its running time is at most t(k) for every k. We say that A
(t, ε)-factors if, given a number which is the product of two random distinct (k/2)-bit primes, A
produces the correct factorization with probability at least ε(k). We say that factoring is (t, ε)-hard
if there is no algorithm which (t, ε)-factors. A reasonable assumption would be that factoring is
(t, ε)-hard for any t, ε satisfying t(k)/ε(k) = ek1/4(log k)3/4

.

Security of the PRab. The following theorem says that the security of PRab is similar to that
of PSS.
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Theorem 6.1 Suppose that factoring is (t′, ε′)-hard. Then for any qsig, qhash the signature scheme
PRab[k0, k1] is (t, qsig, qhash, ε)-secure, where

t(k) = t′(k) − [qsig(k) + qhash(k) + 1] · k0 · Θ(k2), and

ε(k) = 2ε′(k) + [6(qsig(k) + qhash(k))2] · (2−k0 + 2−k1) .

The proof of this theorem is analogous to that of Theorem 4.1. Given a forger F who (t, qsig, qhash, ε)-
breaks PRab we construct an algorithm which (t′, ε′)-factors. We begin by picking an element
α ∈ Z∗

N at random and setting η = α2 mod N . Then we proceed as in the proof of Theorem 4.1,
with e set to 2 rather than to the RSA encryption exponent. We thereby recover a square root
of η with probability ε(k) − δ(k) where δ(k) = [3(qsig(k) + qhash(k))2] · (2−k0 + 2−k1). But with
probability ε(k)/2− δ(k) this square root is different from α and hence we factor N . Thus we have
a factor of two deterioration in the success probability. On the other hand, there is an improvement
in the time complexity, since our algorithm has to raise numbers to the power two rather than to
an arbitrary RSA exponent e, thereby bringing the Θ(k3) time to Θ(k2). Also, it is a potentially
weaker assumption to say that factoring is (t′, e′) hard.

Recovery. As with PSS, we can add message recovery to the PRab scheme in the same way,
resulting in the PRab-R signing-with-recovery scheme. Its security is the same as that of PRab.

Acknowledgments

Thanks to Tal Rabin for many helpful comments and corrections.

References

[1] D. Balenson, “Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms,
Modes, and Identifiers,” IETF RFC 1423, February 1993.

[2] M. Bellare and S. Micali, “How to sign given any trapdoor permutation,” JACM Vol.
39, No. 1, 214-233, January 1992.

[3] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for designing
efficient protocols,” Proceedings of the First Annual Conference on Computer and Communi-
cations Security , ACM, 1993.

[4] M. Bellare and P. Rogaway, “Optimal Asymmetric Encryption,” Advances in Cryptology
– Eurocrypt 94 Proceedings, Lecture Notes in Computer Science Vol. 950, A. De Santis ed.,
Springer-Verlag, 1994.

[5] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Info.
Theory IT-22, 644-654, November 1976.

[6] C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and its
applications. Advances in Cryptology – Crypto 94 Proceedings, Lecture Notes in Computer
Science Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994.

[7] T. El Gamal, “A public key cryptosystem and a signature scheme based on discrete loga-
rithms,” IEEE Transactions on Information Theory, Vol. 31, No. 4, July 1985.

16



[8] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification and
signature problems,” Advances in Cryptology – Crypto 86 Proceedings, Lecture Notes in Com-
puter Science Vol. 263, A. Odlyzko ed., Springer-Verlag, 1986.

[9] S. Goldwasser, S. Micali and R. Rivest, “A digital signature scheme secure against
adaptive chosen-message attacks,” SIAM Journal of Computing, 17(2):281–308, April 1988.

[10] ISO/IEC 9796, “Information Technology Security Techniques – Digital Signature Scheme Giv-
ing Message Recovery,” International Organization for Standards, 1991.

[11] M. Naor and M. Yung, “Universal one-way hash functions and their cryptographic appli-
cations,” Proceedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989.

[12] A. Lenstra and H. Lenstra (eds.), “The development of the number field sieve,” Lecture
Notes in Mathematics, vol 1554, Springer-Verlag, 1993.

[13] D. Pointcheval and J. Stern, “Security proofs for signatures,” Advances in Cryptology
– Eurocrypt 96 Proceedings, Lecture Notes in Computer Science Vol. 1070, U. Maurer ed.,
Springer-Verlag, 1996.

[14] R. Rivest, “The MD5 Message-Digest Algorithm,” IETF RFC 1321, April 1992.

[15] R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and
public key cryptosystems,” CACM 21 (1978).

[16] RSA Data Security, Inc., “PKCS #1: RSA Encryption Standard (Version 1.4).” June 1991.

[17] RSA Data Security, Inc., “PKCS #7: Cryptographic Message Syntax Standard (version 1.4).”
June 1991.

[18] M. Rabin, “Digital signatures,” in Foundations of secure computation, R. A. Millo et. al. eds,
Academic Press, 1978.

[19] M. Rabin., “Digital signatures and public key functions as intractable as factorization,” MIT
Laboratory for Computer Science Report TR-212, January 1979.

[20] J. Rompel, “One-Way Functions are Necessary and Sufficient for Secure Signatures,” Pro-
ceedings of the 22nd Annual Symposium on Theory of Computing, ACM, 1990.

[21] H. Williams, “A modification of the RSA public key encryption procedure,” IEEE Transac-
tions on Information Theory , Vol. IT-26, No. 6, November 1980.

A How to implement the hash functions h, g

In the PSS we need a concrete hash function h with output length some given number k1. Typically
we will construct h from some cryptographic hash function H such as H = MD5 or H = SHA-1.
Ways to do this have been discussed before in [3, 4]. For completeness we quickly summarize some
of these possibilities. The simplest is to define h(x) as the appropriate-length prefix of

H(const.〈0〉.x) ‖ H(const.〈1〉.x) ‖ H(const.〈2〉.x) ‖ · · · .

The constant const should be unique to h; to make another hash function, g, simply select a
different constant.
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