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Abstract

Encryption that is only semantically secure should not be used on messages that depend on the
underlying secret key; all bets are off when, for example, one encrypts using a shared key K the
value K. Here we introduce a new notion of security, KDM security, appropriate for key-dependent
messages. The notion makes sense in both the public-key and shared-key settings. For the latter we
show that KDM security is easily achievable within the random-oracle model. By developing and
achieving stronger notions of encryption-scheme security it is hoped that protocols which are proven
secure under “formal” models of security can, in time, be safely realized by generically instantiating
their primitives.
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1 Introduction

Background. This paper defines and begins to investigate a new notion for encryption-scheme security:
KDM security. KDM stands for key-dependent messages. This is a new attack model, one that al-
lows requested plaintexts to depend on the underlying decryption key. Our definitions are strictly
stronger than indistinguishability under chosen-plaintext attacks (IND-CPA) [3, 11], and the idea is
orthogonal to strengthenings in the direction of non-malleability [8], chosen-ciphertext security [18],
and anonymity [10]. We show that, in the symmetric-key setting, KDM security is achievable, and by
simple means, within the random-oracle model [5].

Why, at this time, do we put forth a new definition for encryption-scheme security? Our goal has
been to nudge the computational treatment of encryption in a direction that makes it closer to simplistic
intuition about what an idealized encryption scheme does. We have done this to facilitate smoothly
linking up “real” encryption with “formal” encryption. Let us elaborate.

The formal views vs. the computational view. In designing high-level protocols many users of
cryptography prefer to take an “abstract” or “formal” view of what they’re given. They don’t view
encryption as a transformation on strings at all. Instead, typically, they see encryption as a formal
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symbol, the properties of which are modeled (not defined) by the manner in which this formal symbol
may be manipulated. There are many such formal views towards cryptography; see, for example,
[1, 6, 9, 15].

Quite recently, some work has emerged which starts to bridge the computational view and the formal
one. Lincoln, Mitchell, Mitchell and Scedrov [13] develop a formal model that blends in computational
aspects. Pfitzmann, Schunter and Waidner [16], and then Pfitzmann and Waidner [17], consider secu-
rity, in the computational sense, of general reactive systems, which are modeled formally. Abadi and
Rogaway [2] give a formal treatment of encryption and then prove that formally-equivalent expressions
give rise to computationally indistinguishable ensembles, as long as the expressions contain no “encryp-
tion cycles” (a generalization of encrypting ones own key) and as long as the encryption scheme has the
right (computational) properties.

Consider the last of these works. To the computational cryptographer the technical restriction just
mentioned might be understood as a warning: formal cryptography easily permits its users to ignore
an essential restriction (the necessity of avoiding encryption cycles). But there is another viewpoint—
and the one that motivates us. Maybe the formal view of cryptography is already doing a nice job
to capture strong intuition and it is incumbent on computational cryptography to find definitions and
schemes which support formal cryptography. From this viewpoint, there is nothing obviously and
intuitively “wrong” with encrypting ones decryption key, and so one had better find definitions and
realizations that make this allowable. In this view, a mandate to avoid encryption cycles might seem to
be an artifact of inessential definitional choices.

Contributions. At a technical level, the current paper does several things:
We present a new, and very strong, definition of security—a definition that allows the adversary
indirect access to hidden keys. One can think of this as a new attack model, KDM, and we leave
the goal, IND, alone. We define KDM security for both the symmetric and asymmetric settings.
We separate KDM security from other notions of security. We show that KDM security implies but
is not implied by CPA security. We show that some conventional means to achieve CPA security, in
particular those that employ stateful encryption (e.g., counter-mode with a fixed initial counter),
do not achieve KDM security.
At the same time, we show that KDM security is easy to achieve within the random-oracle model [5]:
we give a simple scheme that is KDM secure.

Most of this paper focuses on the symmetric model for KDM security, but there would seem to be no
essential differences between the symmetric and asymmetric settings. We define KDM security in the
public-key trust model and discuss achieving it.

Concurrent work. A recent paper by Camenisch and Lysyanskaya defines a notion of circular se-
curity for the asymmetric setting [7, p. 17]. Their notion would seem to be strictly weaker than our
(asymmetric-model) notion of KDM security. Camenisch and Lysyanskaya were interested in anony-
mous credential systems and saw encryption schemes satisfying circular security as a tool. Their work
highlights the possibility that KDM-secure encryption schemes may be a useful primitive in designing
higher-level protocols. Our own work and that of [7] were independent and cross-reference each other.

An interesting open problem. This paper proposes a new privacy notion and then answers some
simple questions about it. We leave unanswered the question as to whether KDM security, either for
the symmetric or the asymmetric trust model, can be provably achieved in the standard model of
computation (no random oracle) under a standard complexity assumption.

2



2 The Peril of Encrypting Ones Key

Goldwasser and Micali were the first to recognize the potential problems surrounding encryption cy-
cles [11, 14]. Let us assume the symmetric setting. Given an encryption scheme that is secure in any of
a number of standard senses (say IND-CPA), one can trivially modify it to construct a similarly secure
encryption scheme (still IND-CPA secure, say) that is rendered completely insecure were the adversary
somehow handed an encryption of the underlying key. (For example, modify EK(M,R) to 0 ‖ EK(M,R)
if M �= K, and 1 ‖ K otherwise.) We call an encryption of the decryption key an encryption cycle of
length one.

More generally, an encryption cycle involves the encryption of some function of the key. For example,
the encryption the bitwise complement of K and the encryption of M ‖ K (for some plaintext M) are
both cycles. Some cycles pose no threat to security; other cycles do. There is no known characterization
of the cases that cause problems for the standard definitions.

Informally, an encryption scheme will be called “KDM secure” if it is secure (in the sense of indistin-
guishability) despite an adversary’s ability to obtain the encryption under key Ki of some function g(K)
of the vector K of underlying secret keys. (We have to think of a vector of keys because the assumption
that there is just a single key would seem to entail a loss of generality.) Through the function g the
adversary has indirect access to the keys, but this information is only surfaced after encryption. As
examples, function g might request a particular key Ki, or it might xor various keys.

We note that one can also give a notion for key-dependent chosen-ciphertext attack, KDC, where
a function of the keys can be surfaced through decryption as well as through encryption. We do not
pursue this at this time.

Well-designed protocols rarely employ encryption cycles (a fact that certainly does limit the applica-
bility of this paper!). Some encrypting backup systems may encrypt their own key (blithely encrypting
the entire system image, which may include the encryption key). Some key-distribution protocols allow
the adversary to effectively create an encryption cycle: having recorded a message M which includes
the encryption of a session key K, the adversary may now be able to replay this message M (perhaps
pretending it is a nonce) in a context in which the principal will now encrypt it under K. This gives
a cycle, though not a troublesome one. The recently proposed credential system of [7] uses encryption
cycles in the asymmetric setting.

We comment that there are multiple properties (beyond the ability to safely encrypt ones key)
implicit in formal models and not guaranteed by IND-CPA security. These properties include protecting
the integrity of messages, concealing the length of a plaintext, and concealing which pairs of ciphertexts
were encrypted under the same key. But the most bothersome and most ignored problem seems to be
key-dependent plaintexts.

3 Background Notions

Notation. Let {0, 1}∗ be the space of (finite) binary strings, let {0, 1}∞ be the space of infinite
binary strings, and let S∞ be the set of tuples (K1,K2, . . .) where each Ki ∈ S. If Pad ∈ {0, 1}∞
and M ∈ {0, 1}∗ then Pad ⊕M and M ⊕ Pad are the xor of M and the first |M | bits of Pad. Let
x1, x2, . . .

$← Ω mean that x1, x2, . . . are assigned values independently from the distribution Ω. (Use
the uniform distribution when Ω is a finite set.) If A is a probabilistic algorithm then a

$←A(x1, x2, . . .)
denotes running A on the given inputs and letting a be the outcome. An adversary is a probabilistic
algorithm that may access one or more oracles. The running time of A is the actual running time of A
plus its description size. If A makes oracle queries that specify functions g1, g2, . . . then the running
time of A also includes the (worst case) time to compute each queried function gi.
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Symmetric encryption. We recall the syntax for a symmetric-encryption scheme as given (in a
slightly modified form) by [3]. Let Plaintext and Ciphertext be nonempty sets of strings. We assume that
Plaintext has the property that if M ∈ Plaintext then M ′ ∈ Plaintext for every M ′ of the same length as
M . Let Key = {0, 1}k for some k ≥ 1 and let Coins = {0, 1}r for some r ≥ 1. Let String = {0, 1}∗ be the
set of all (finite) strings. Then a symmetric encryption scheme is a triple of algorithms Π = (K, E ,D)
where: K: Coins→ Key and E : Key×String×Coins→ Ciphertext∪{∗} and D: Key×String→ Plaintext∪
{∗}. Algorithm K is called the key-generation algorithm, E is called the encryption algorithm, and D is
the decryption algorithm. We call k (the length of any string K output by K) the key length of Π and we
call r (the number of random bits used by E) the coin length of Π. We usually write the first argument
to E and D as a subscript. We call EK(M,R) the encryption of the plaintext M under key K and
coins R. Usually we omit specific reference to the final argument to E , the random string R, thinking
of EK as a probabilistic algorithm. Likewise, we usually omit mention of the argument to K, thinking
of K as a probabilistic algorithm, or else the induced probability space. We require that for all K ∈ Key
and R ∈ Coins, if M /∈ Plaintext then EK(M,R) = ∗ and if M ∈ Plaintext then EK(M,R) ∈ Ciphertext
and, what’s more, DK(EK(M,R)) = M .

The syntax above is for encryption schemes in the standard model. To define encryption schemes in
the random-oracle model we allow that K, E and D are given an oracle H ∈ Ω where Ω is the set of all
functions from {0, 1}∗ to {0, 1}∞.

IND-CPA security. We review the notion of indistinguishability under a chosen-plaintext attack [3,
11]. Let Π = (K, E ,D) be a symmetric encryption scheme and let A be an adversary. For K ∈ Key let

RealK be the oracle that on input M returns C
$←EK(M) and let

FakeK be the oracle that on input M returns C
$←EK(0|M |)

The IND-CPA advantage of A is defined as

Advcpa
Π (A) def=

∣∣∣Pr
[
K

$←K : ARealK = 1
]
− Pr

[
K

$←K : AFakeK = 1
]∣∣∣

4 The Notion of Symmetric KDM Security

The notion of IND-KDM security strengthens the IND-CPA notion just given. We again imagine two
experiments. Both experiments begin by selecting a vector of keys K = (K1,K2, . . .) where each key
Ki is determined by running the key-generation algorithm K. Independent coins are used in each run.
We denote this step by K $←K and it is the same as: for i ∈ {1, 2, . . .} do Ki

$←K. Then:
Real: the adversary is given an oracle RealK that takes two inputs: a number j ∈ {1, 2, . . .} and
a function g. The function g is described by a (deterministic) RAM program, encoded according
to some fixed conventions. Function g maps K ∈ ({0, 1}∗)∞ to g(K) ∈ {0, 1}∗. When oracle RealK
is asked (j, g) it probabilistically encrypts M = g(K) under key Kj .
Fake: the adversary is given an oracle FakeK that, when similarly asked (j, g), probabilistically
encrypts |g(K)| zero-bits under key Kj .

The adversary should output a 1 if it believes it has participated in experiment Real and 0 if it believes
it has participated in experiment Fake. We insist that for any (j, g) queried by an adversary, |g(K)|
does not depend on K. To describe this condition we say that g is fixed-length. We call g the plaintext-
construction function.

Definition 4.1 [IND-KDM — standard model — symmetric setting] Let Π = (K, E ,D) be a symmetric
encryption scheme and let A be an adversary. For K ∈ ({0, 1}∗)∞, let
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RealK be the oracle that on input (j, g) returns C
$←EKj(g(K)) and let

FakeK be the oracle that on input (j, g) returns C
$←EKj(0

|g(K)|)
The IND-KDM advantage of an adversary A is defined as

Advkdm
Π (A) def=

∣∣∣Pr
[
K $←K : ARealK = 1

]
− Pr

[
K $←K : AFakeK = 1

]∣∣∣ ♦

We often omit the quantifier IND in IND-KDM.
Informally, an encryption scheme Π is KDM secure if for any “reasonable” adversary A we have that

Advkdm
Π (A) is “small.” We shall make precise statements along these lines. However, there is also an

asymptotic way of defining this notion. For it one parameterizes the encryption scheme by a security
parameter k and provides k to the adversary, in unary. Then one demands that for any polynomial
time adversary A we have that Advkdm

Π (A) is negligible (i.e., it vanishes faster than the inverse of
any polynomial). One includes in A’s running time the running time of the plaintext-construction
functions g.

IND-KDM in the RO model. KDM security is an extremely strong notion. It is easily seen to imply
“standard” notions, like IND-CPA, and it is easily seen not to be implied by IND-CPA (that is, if there
exists an IND-CPA secure encryption scheme then there exists an IND-CPA secure encryption scheme
that is not IND-KDM secure). The IND-KDM notion is so strong, in fact, that we are unaware of any
scheme, regardless of complexity, that demonstrably meets the definition we have given (for the standard
model of computation). Here we will instead be giving an efficient scheme in the random-oracle model.
Before giving our scheme, we must define KDM security in the random-oracle model.

Recall that Ω is the set of all functions H from {0, 1}∗ to {0, 1}∞. This set is provided with
a probability measure by saying that a random H from Ω assigns to each X ∈ {0, 1}∗ an infinite
sequence of bits each of which is selected uniformly at random. Though H(X) is defined to be an
infinite string, algorithms that use H necessarily make use of only a finite-length prefix. We provide
algorithms K, E , D, A, and g with oracle access to H ∈ Ω. We write a question-mark superscript, as
in g?, if we wish to emphasize that an algorithm calls out to an (unspecified) oracle.

For the RO model we must update the notion of g being fixed-length: for any (j, g) asked by an
adversary, |gH(K)| must be independent of both H and K. This means that |gH(K)| = |gH′

(K′)| for
any H,H ′ ∈ Ω and K,K′ ∈ ({0, 1}∗)∞.

Definition 4.2 [IND-KDM — RO-model — symmetric setting] Let Π = (K, E ,D) be a symmetric
encryption scheme for the RO model, and let A be an adversary. For K ∈ ({0, 1}∗)∞, let

RealHK be the oracle that on input (j, g?) returns C
$←EH

Kj
(gH(K)) and let

FakeH
K be the oracle that on input (j, g?) returns C

$←EH
Kj

(0|gH(K)|)
The KDM-advantage of A in the random-oracle model is defined as

Advkdm
Π (A) def=

∣∣∣Pr
[
K $←K; H

$← Ω : AH, RealHK = 1
]
− Pr

[
K $←K; H

$← Ω : AH, FakeH
K = 1

]∣∣∣ ♦

Comments. We emphasize that for KDM security in the RO model, the adversary A can effectively
access the random oracle H in two different ways: in a direct query the adversary asks X and receives
H(X); while in an indirect query the adversary asks for the encryption under key Ki of M = gH(K)
and the computation of gH(K) does itself involve some number of calls to H.

The assumption that the plaintext-construction function g is fixed-length is a necessary one; without
making this assumption, KDM-secure schemes would not exist. Consider, for example, the function gi,j
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where gi,j(K) = 1 if the i-th bit of Kj is 1 and gi,j(K) = 00 if the i-th bit of Kj is 0. If encryption
function E reveals the length of the plaintext (which our definition allows) then an adversary can ask
for gi,j(K)-values as a way to learn any key, bit by bit. Once a key Kj is determined by the adversary it
can use this knowledge to distinguish experiments Real and Fake. Basically, having allowed encryption
to be the length-revealing, one must not permit the length of M = gH(K) to act as “covert channel”
for the adversary to learn information about K.

The role of the plaintext-construction function g can be thought of like this: it’s as though A and g
are in cahoots (after all, A chooses g) and g knows all of the keys. If only g could get some information
back to its buddy A, then A would win. But g’s output is forced to go through an encryption operation
before it is sent back to A. In a KDM-secure scheme, the plaintext-construction function g, poor thing,
has no way to get anything useful back to A.

5 Achieving KDM Security in the Symmetric Setting

We now provide a simple and efficient technique to achieve an IND-KDM secure symmetric encryption
scheme in the RO model. Several natural methods would seem to accomplish this goal (see the discussion
at the end of this section); we give a particularly simple one.

The ver construction. For k ≥ 1 an integer, the symmetric encryption scheme that we denote
ver[k] = (K, E ,D) works as follows. Key-generation algorithm K outputs a random k-bit string K.
Encryption algorithm E is defined by EK(M,R) = R ‖ (H(K ‖ R)⊕M) where R ∈ {0, 1}k is the
r = k = |K| random coins used for encryption. Decryption algorithm D is defined by DK(�) = ∗ if
|�| < |K| = k and, otherwise, DK(�) = H(K ‖ R)⊕ C where R = �[1..k] is the first k = |K| bits of �
and C = �[k + 1..] is the rest of �.

We now show that scheme ver is KDM secure (in the RO model).

Theorem 5.1 [KDM security of the ver construction] Let k ≥ 1 be a number and let A be an adversary
that attacks ver[k]. Suppose that A asks at most q oracle queries (encryption queries + direct RO
queries + indirect RO queries). Then Advkdm

ver[k](A) ≤ q2/2k−2. ♦

Proof: The proof is an application of the game-playing paradigm as used, for example, in [12].

We begin by making some without-loss-of-generality assumptions about the behavior of A. Let N < q
be the number of different keys referenced by adversary A (that is, referenced as j-values in (j, g?)-
queries). First, we assume that the keys referenced by A are keys j = 1, 2, . . . , N . This entails no loss
of generality: an adversary that uses a key with a name other than j ∈ [1..N ] can easily be modified
not to do this by renaming to j the j-th new key accessed by A. Such a renaming does not impact A’s
advantage. Second, we assume that A makes no H-queries, either direct or indirect, having length other
than 2k. Such queries are clearly irrelevant to A’s mission and any adversary A making such queries is
easily modified to an adversary A which does not. Finally, we assume that A never repeats a direct RO
query K ‖ R. The adversary has no need to repeat RO queries since it already knows the answer.

To prove that Advkdm
ver[k](A) is small we are going to present A not with a Real or Fake oracle to distinguish,

but an R or F oracle, instead, where these oracles are defined in Figure 1. We refer to these oracles
as specifying different games that the adversary plays. The games (oracle behavior) depends on the
parameter k but we omit this from the notation.

We first claim that the R-labeled code in Figure 1 provides A an identical view as a Real ver[k]-oracle,
while the F-labeled code provides A an identical view as a Fake ver[k]-oracle. This is apparent by
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Initialization:

10 for j← 1 to N do Kj
$←{0, 1}k

11 bad← false; X ← ∅
12 for all X ∈ {0, 1}2k do H(X)← undefined

On RO Query K ‖ R:
20 if K ‖ R ∈ X then bad← true

21 if K ‖ R �∈ Domain(H) then H(K ‖ R) $←{0, 1}∞
22 return H(K ‖ R)

On Encryption Query (j, g?):
30 Compute M ← g?(K). To do this, run g.
31 When g makes a RO query of K ‖ R:
32 if K ‖ R �∈ Domain(H) then H(K ‖ R) $←{0, 1}∞
33 Answer g’s RO query with H(K ‖ R)
34 R

$←{0, 1}k
35 C

$←{0, 1}|M |

36 if Kj ‖ R ∈ Domain(H) then
37 bad← true
38 C←H(Kj ‖ R)⊕ M ←− use this line in game R

38 C←H(Kj ‖ R)⊕ 0|M | ←− use this line in game F

39 else
40 H(Kj ‖ R)← C ⊕ M ←− use this line in game R

40 H(Kj ‖ R)← C ⊕ 0|M | ←− use this line in game F

41 X ←X ∪ {Kj ‖ R}
42 return R ‖ C

Figure 1: Definition for game R and F. We define Domain(H) to be the set of points X where H(X)
is not equal to undefined.

inspecting the code. Ignore all statements involving variable bad since these statements do not result in
any change visible to adversary A (they are used only for accounting purposes). The code simulates a
random oracle H by assigning a uniform and independent range point H(X) to each domain point X
for which a value is needed. The code chooses C at random and then defines H(Kj ||R) from it, rather
than choosing H(Kj ||R) at random and then defining C from it. These are clearly equivalent as far
as the view provided to adversary A. With the natural abbreviations in notation we then have the
following:

Claim 1. Advkdm
ver[k](A) =

∣∣Pr[AR = 1]− Pr[AF = 1]
∣∣

To proceed with our analysis we introduce in Figure 2 a third game, game C. Let “AR sets bad” be the
event that flag bad gets set to true (at some point in the execution) when A runs with an R oracle, and
similarly define events “AF sets bad” and “AC sets bad”. We have the following:

Claim 2.
∣∣Pr[AR = 1]− Pr[AC = 1]

∣∣ = Pr[AC sets bad ] and∣∣Pr[AF = 1]− Pr[AC = 1]
∣∣ = Pr[AC sets bad ] and so

7



Initialization:

10 for j← 1 to N do Kj
$←{0, 1}k

11 bad← false; X ← ∅
12 for all X ∈ {0, 1}2k do H(X)← undefined

On RO Query K ‖ R:
20 if K ‖ R ∈ X then bad← true

21 if K ‖ R �∈ Domain(H) then H(K ‖ R) $←{0, 1}∞
22 return H(K ‖ R)

On Encryption Query (j, g?):
30 Compute M ← g?(K). To do this, run g.
31 When g makes a RO query of K ‖ R:
32 if K ‖ R �∈ Domain(H) then H(K ‖ R) $←{0, 1}∞
33 Answer g’s RO query with H(K ‖ R)
34 R

$←{0, 1}k
35 C

$←{0, 1}|M |

36 if Kj ‖ R ∈ Domain(H) then bad← true
41 X ←X ∪ {Kj ‖ R}
42 return R ‖ C

Figure 2: Game C. This game has similar behavior, as far as the adversary can tell, to games R and F.
∣∣Pr[AR = 1]− Pr[AF = 1]

∣∣ ≤ 2 · Pr[AC sets bad ]

Let us show the the first equality. First imagine eliminating line 38 from the code for game R. Call
the new game R′. The change does not impact the probability that flag bad is set to true (that is,
Pr[AR sets bad ] = Pr[AR′

sets bad ]) because bad has already been set to true when line 38 executes.
Now that line 38 is gone, in game R′, also eliminate line 40. This too does not change the probability
that bad gets set to true. The reason is that the value stored at H(Kj ‖ R) by line 40 can only influence
what the adversary sees by a subsequent execution of line 22, and when the assignment statement at
line 40 does so influence line 22, the bookkeeping done at line 41 will have caused bad to be set to
true at line 20 anyway. (Why can’t the assigning of a value to H(Kj ‖ R) at line 40 influence values
returned at a subsequent execution of line 42 in game R′? Because the use made of the H(· · ·)-values
in lines 30–42 of game R′ is only in defining M = gH(K), but then all that we use of M (in lines 34–42
of game R′) is |M | (at line 35), and we have assumed that |gH(K)| is independent of both H and K,
our “fixed-length” assumption on g.) We conclude that Pr[AR sets bad ] = Pr[AC sets bad ]. The exact
same reasoning tells us that Pr[AF sets bad ] = Pr[AC sets bad ]. The final inequality of Claim 2 then
follows by the triangle inequality.

Next we show the following:

Claim 3. Pr[AC sets bad] ≤ q2/2k−1

To prove this claim we separately consider the two places in game C where bad can be set to true. The
probability that bad gets set to true at line 36 is at most q2/2k since during each of the at most q times
that line 36 is executed the value R is randomly chosen just before (line 34) from a set of size 2k and
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then we test if something ‖ R is in a set of size at most q. Similarly, we claim that the probability
that bad gets set to true at line 20 is at most qN/2k ≤ q2/2k. This statement would be clear if only
the adversary were given no information about the values (K1, . . . ,KN ) selected at line 10; in such a
case, we are testing at most q times if K ‖ something (where K is supplied by the adversary) is in a
random, secret set of size at most N/2k. But, in fact, the view provided to the adversary A in game C is
independent of (K1, . . . ,KN ). Note that every encryption query returns a random string whose length
is independent of (K1, . . . ,KN ) (by the fixed-length assumption on g) while every RO query returns a
random infinite string, independent of (K1, . . . ,KN ) (whether that random string is selected in line 21
or in line 32 is irrelevant).

Putting together the three claims completes the proof.

Alternative constructions. There are a number of natural constructions for a KDM-secure sym-
metric encryption scheme in the RO model. For example, one might start with an arbitrary symmetric
encryption scheme Π = (K, E ,D) for which the coins R used to encrypt can be recovered from the
ciphertext. (Standard modes like CBC with a random IV have this property.) Then modify Π to a
symmetric encryption scheme Π̄ = (K, Ē , D̄) by setting ĒK(M,R) = EH(K ‖ R)(M,R) and correspond-
ingly modifying D. It seems reasonable to expect that Π̄ will be IND-KDM secure (in the RO model)
when Π is IND-CPA secure (in the standard model).

6 KDM Insecurity for Stateful Symmetric Encryption

A stateful encryption scheme is like the (probabilistic, symmetric) encryption schemes we have defined
except that the encryption function E is deterministic and takes as input a hidden variable, the state.
Every time a message M is encrypted under EK the current state S of the encryption algorithm is
modified to a new state S′ = f(S,M). (It is fine to allow this update to depend on K as well.) The
initial state, S0, is specified as part of the scheme. We write ES

K(M) for the encryption of message M
using key K and state S.

An example of a stateful encryption scheme is the form of CBC mode where the IV is EK(S) and S,
initially the zero-block, is incremented with every message that is encrypted. This scheme is IND-CPA
secure.

It is straightforward to adapt the definitions we have given for KDM security to deal with stateful
schemes. However, one will soon notice that there can not exist a stateful KDM-secure encryption
scheme. Let us explain the problem.

Since the function E is deterministic and and the plaintext-construction function g depends on K,
the plaintext-construction function g “knows” everything that E knows and so, in particular, g can
determine what ciphertext E will produce next for any given message. The function g can generate a
plaintext such that its encryption conveys to A some information about K. For example, one could
define a plaintext-construction function gi,j,k,S,V that returns the first k-bit message M (or 0k if no such
message exists) such that the inner product of V and ciphertext C = ES

K(M) is the ith bit of Kj . Using
such functions the adversary can easily extract an underlying key, bit-by-bit, and use this key to break
the scheme’s KDM security.

7 KDM Security in the Public-Key Setting

Preliminaries. We recall the syntax of an asymmetric encryption scheme, as given (in a slightly
modified form) in [4]. Let String, Plaintext, and Ciphertext all be as before. Also, let Parameter = 1∗

and let Coins = {0, 1}∞, PublicKey ⊆ String, and SecretKey ⊆ String. Then an asymmetric encryption
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scheme is a triple of algorithms Π = (K, E ,D) where K: Parameter × Coins → PublicKey × SecretKey
and E : PublicKey × String × Coins → Ciphertext ∪ {∗} and D: SecretKey × String → Plaintext ∪ {∗}. As
for symmetric encryption, we usually omit the last argument to both K and E , thinking of both as
probabilistic algorithms, and we write the second argument to E and D as a subscript. Upon input 1k

the key-generation algorithm returns a pair (pk, sk) of matching public and secret keys. We require
that for all (pk, sk) which can be output by K(1k), for all M ∈ Plaintext, and for all strings C that can
be output by Epk(M), we have that Dsk(C) = M .

Definition of KDM security in the public-key setting. The intuition behind the definition of
KDM security in the asymmetric setting is just like that for the symmetric setting. The adversary A
is given access to an oracle that will encrypt under a specific public key pk a specified function g that
may depend on a vector of secret keys sk. Notice that A can compute encryptions of standard plaintext
messages on its own, but still requires the oracle for computation of g when it accesses sk. After
interacting with its oracle, adversary A outputs a “1” if it believes its oracle returns real encryptions,
and it outputs a “0” otherwise. If a reasonable adversary can not do a good job at this game, then the
scheme is KDM secure. We let (pk, sk) $← 1k denote: for i ∈ {1, 2, . . .} do (pki, ski)

$←K(1k).

Definition 7.1 [IND-KDM — standard model — asymmetric setting] Let Π = (K, E ,D) be an asym-
metric encryption scheme, and let A be an adversary. For (pk, sk) ∈ (PublicKey× SecretKey)∞ let

Realsk be the oracle that on input (i, g) returns C
$←Epki

(g(sk))
Fakesk be the oracle that on input (i, g) returns C

$←Epki
(0|g(sk)|).

The IND-KDM advantage of an adversary A for security parameter k is

Advkdm
Π,k (A) def=

∣∣∣Pr
[
(pk, sk) $←K(1k) : ARealsk(1k,pk) = 1

]

− Pr
[
(pk, sk) $←K(1k) : AFakesk(1k,pk) = 1

]∣∣∣ . ♦

The plaintext-construction function g must, as usual, be fixed-length: |g(sk)| may not depend on sk.
The definition for KDM security within the RO model is exactly analogous to what we have done

already. Here one insists that |gH(sk)| be independent of both H and sk.

The VER construction. We recall a simple encryption scheme specified in [5]. Let F be a trapdoor
permutation generator: on input 1k the probabilistic algorithm F returns (the encodings of) functions
(f, f−1) where f : {0, 1}k → {0, 1}k and f−1: {0, 1}k → {0, 1}k is its inverse. (We do not bother to
distinguish between functions and their encodings.) Mirroring our construction for the symmetric-
key setting, define the (random-oracle model) asymmetric encryption scheme VER[F ] = (K, E ,D)
as follows. The key-generation algorithm K is identical to F . Encryption algorithm Ef (M,R) =
f(R) ‖ (H(R)⊕M) where k = |R| is the domain length of f (assumed to be apparent f and f−1)
and R is the random coins used by the encryption algorithm and H is the random oracle. Decryption
algorithm Df−1(�) = ∗ if |�| < k and Df−1(�) = H(f−1(Y ))⊕ C otherwise, where Y is the first k bits
of � and C is the remaining bits.

One expects that VER[F ] is a KDM-secure encryption scheme if F is a secure trapdoor permutation.
At the time of this writing, we have not written up a proof of this.

The above is only one natural construction; others would seem to work. In [7] Camenisch and
Lysyanskaya give a different scheme which they claim is “circular secure” (in the RO model), a notion
that they define. One would expect their scheme to be KDM secure as well, though we have not written
up a proof of this.
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