
Variationally Universal Hashing

Ted Krovetz a and Phillip Rogaway b,c

aDepartment of Computer Science, California State University

Sacramento CA 95819 USA

bDepartment of Computer Science, University of California

Davis CA 95616 USA

cDepartment of Computer Science, Faculty of Science, Chiang Mai University

Chiang Mai 50200 Thailand

Abstract

The strongest well-known measure for the quality of a universal hash-function fam-
ily H is its being ε-strongly universal, which measures, for randomly chosen h ∈ H,
one’s inability to guess h(m′) even if h(m) is known for some m 6= m′. We give ex-
ample applications in which this measure is too weak, and we introduce a stronger
measure for the quality of a hash-function family, ε-variationally universal, which
measures one’s inability to distinguish h(m′) from a random value even if h(m)
is known for some m 6= m′. We explain the utility of this notion and provide an
approach for constructing efficiently computable ε-VU hash-function families.

Key words: Randomized algorithms, cryptography, hashing, universal hashing.

1 Background

A hash-function family H = {h: A → B} is a collection of hash functions,
each h ∈ H having the same domain A and codomain B, with B finite. One
assumes a hash-function family to be samplable: one can choose a random h
from H. Carter and Wegman introduced hash-function families, and they and
Stinson give various measures of their quality [3,6,7], as we now describe.

Hash-function family H is strongly universal (SU) if for all distinct values m,m′

from the domain, the pair (h(m), h(m′)) is uniformly distributed when h
is randomly sampled from H. Two relaxations of SU are ε-almost universal

(ε-AU) and ε-strongly universal (ε-SU), where 0 ≤ ε ≤ 1 is a real number.
Hash-function family H = {h: A → B} is ε-AU if the probability that any
two distinct values m,m′ collide (ie, hash to the same output) when hashed

Preprint submitted to Elsevier Science 27 September 2005

by a randomly selected member of H is at most ε. When ε is deemed small
we say, informally, that H is almost-AU. A hash-function family H is ε-SU if
for all distinct m,m′ from domain A and all c, c′ from codomain B,

(1) Prh∈H [h(m) = c] = 1

|B|
, and

(2) Prh∈H [h(m′) = c′ | h(m) = c] ≤ ε .

The first condition says that h(m) is uniformly distributed over B and the
second condition says that you cannot guess h(m′) with probability better
than ε even if you know h(m). When ε is deemed small we say, informally,
that H is almost-SU.

Almost-AU and almost-SU hash functions have proven to be useful tools.
Constructions and software implementations have been given for ε-AU and
ε-SU hash-function families with small ε, say ε ≤ 2−30, and peak processing
rates of less than one CPU cycle per byte of data being hashed [1,2,4]. Known
constructions for SU families are much slower to compute.

While the notion of an almost-SU hash-function family might seem strong,
we suggest that it is weaker than one may need to be generally useful. As an
example, fix a nonempty set A and consider the hash-function family H∗ =
{hf,c: A → {0, 1}128} where f : A → {0, 1}64 is a function and c is a 64-bit
string. Let hf,c(x) = f(x) || c. Choosing a random member of H∗ is achieved
by uniformly selecting a value c from {0, 1}64 and, for each x ∈ A, assigning
to f(x) a uniformly selected value from {0, 1}64. Then H∗ is 2−64-SU, which
sounds good, but there are natural applications where it is less appropriate
than one might expect. For example, consider a hash table of 210 entries where
each element x ∈ A is mapped to a position in the table by using as an index
the last 10 bits of h(x). Here we randomly choose h ∈ H∗ before we begin
to hash. Since H∗ is 2−64-SU and our table has only 210 entries, one might
think that H∗ should work fine for this application. But clearly it will not,
hashing all values to the same table entry. Truncated Wegman-Carter message
authentication makes for another natural example. If one uses H∗ to make a
Wegman-Carter message authentication code [7], xoring hash outputs with
a random string, and then, for concision, truncating the result to the final
64-bits, then all security is lost, since all messages produce the same result.

Although H∗ is contrived, the examples are not, and they suggest that the
definition of ε-SU, which focuses on one’s inability to know the entire value
of h(m′) once h(m) is known, may not be a technically desirable way to relax
the definition of SU when hash outputs undergo further processing. One should
instead capture the idea that everything about h(m′) looks random, even if
one knows h(m). (In particular, the last 10 or 64 bits will look random.) This
paper formalizes this notion and gives an efficient construction meeting it,
thus creating a more generally useful class of hash functions for applications.

2

2 Almost-VU Hash Functions

First we recall a standard notion for the distance between two probability
distributions. If X is a random variable over set S with distribution D and
probability mass function p(x) = Pr[X = x], and X ′, also over S, has distri-
bution D′ and mass function p′(x) = Pr[X ′ = x], then the variational distance

between D and D′ is

dist(D,D′) =
∑

y∈S

p(y)>p′(y)

(p(y) − p′(y)) =
1

2

∑

y∈S

∣

∣

∣p(y) − p′(y)
∣

∣

∣ .

For finite S, let Uniform(S) be the uniform distribution over S. When D′ is
Uniform(S) then p(y) − p′(y) in this distance measure is p(y) − 1/|S|.

Definition of ε-VU. We suggest strengthening the definition of ε-SU by
measuring the variational distance, given knowledge of h(m), between the
distribution of h(m′) and the uniform distribution. We say that hash-function
family H = {h: A → B} is ε-variationally universal (ε-VU) if for all distinct
m,m′ ∈ A, and all c ∈ B,

(1) Prh∈H [h(m) = c] = 1

|B|
, and

(2) 1

2

∑

y∈B

∣

∣

∣Prh∈H [h(m′) = y |h(m) = c] − 1

|B|

∣

∣

∣ ≤ ε .

The first condition again says that h(m) is uniformly distributed over B while
the second condition says the variational distance between Uniform(B) and
the distribution induced on h(m′) when h(m) = c is no more than ε. In other
words, we demand that for any distinct m and m′, the value h(m′) should
look uniform even if we know h(m). The quantity ε measures how far from
uniform h(m′) might be. If ε is deemed small we may say, informally, that H
is almost-VU.

With regard to the motivating examples, the ε-VU definition ensures good
properties when outputs are truncated. It is not hard to show that if H is
an ε-VU hash-function family with each function returning n-bit strings, then
returning the strings truncated to m bits (any 1 ≤ m ≤ n bits may be selected)
yields a hash-function family that is still ε-VU. This means it is always safe
to truncate bits produced by an almost-VU hash-function family whereas this
is not always the case with an almost-SU one.

An equivalent formulation. Another natural way to claim that a hash
function appears random over two points is to say that no algorithm can do
well at distinguishing between the hash-values of two distinct inputs and a
random pair of codomain points. A hash-function family H = {h: A → B}

3

would be deemed ε-good under this notion if h(m) is uniform for any m ∈ A, as
before, and for all functions f : B2 → {0, 1}, for all distinct inputs m,m′ ∈ A,
we have Prh∈H [f(h(m), h(m′)) = 1] − Prx,y∈B[f(x, y) = 1] ≤ ε. This notion
is weaker than our ε-VU definition because the function f has no control of
the value h(m) when analyzing the output of h(m′). In contrast, the following
definition allows the value for h(m) to be arbitrarily chosen and is equivalent
to our definition of ε-VU. Hash-function family H = {h: A → B} is ε-VU if
for all functions f : B → {0, 1}, for all distinct m,m′ ∈ A, for all c ∈ B,

(1) Prh∈H [h(m) = c] = 1

|B|
, and

(2) Prh∈H [f(h(m′)) = 1 | h(m) = c] − Prb∈B[f(b) = 1 | h(m) = c] ≤ ε.

The difference of inequality (2) is maximized when f is the function that
returns 1 only on values y ∈ B for which Prh∈H [h(m′) = y | h(m) = c] >
1/|B|. When this is the case, computing the difference is identical to computing
the variational distance between Uniform(B) and the distribution induced on
h(m′) when h(m) = c. This indicates that this definition is equivalent to our
original formulation of ε-VU.

Almost-SU is weaker than almost-VU. Any almost-VU family of hash
functions is almost-SU as well; specifically, if H is an ε-VU hash-function
family with codomain B then it is also (ε+1/|B|)-SU. The converse is not true.
Think back to hash-function family H∗ described in Section 1. It is almost-
SU, but it is not almost-VU. This hash-function family satisfies part (1) of
the ε-VU definition but it only satisfies part (2) for high ε. For each randomly
chosen h ∈ H∗ there are only 264 strings that can be produced because h
always produces the same trailing 64 bits, and for each input all 264 possible
outputs are equiprobable. So the distance between the distribution for h(m)
and Uniform({0, 1}128) is 264(2−64 − 2−128) = 1 − 2−64.

Are typical almost-SU constructions almost-VU? The degener-
ate example above notwithstanding, one might wonder if well-known con-
structions for almost-SU hash functions are already almost-VU. Certainly SU
hash-function families are 0-VU, but typical constructions for almost-SU hash
functions will not be almost-VU. As an example, consider hashing using poly-
nomial evaluation [1,3,5]. In one form of this paradigm, inputs are broken up
into words and the words are interpreted as coefficients in a polynomial over
some finite field, say the field with p points. Given a prime p, the following
hash-function family H = {ha,b: Z

n
p → Zp} hashes n-vectors and is (n/p)-SU.

Given m = (mn,mn−1, . . . ,m2,m1) with all mi ∈ Zp and keys a, b ∈ Zp, the
hash of m is

ha,b(m) =

(

b +
n
∑

i=1

mia
i

)

mod p .

4

Choosing a random element of H is done by choosing a random a, b ∈ Zp .

Although this family is (n/p)-SU, which is good when p is large and n is
not, the hash-function family is not even (1/3)-VU. Let n = 2 and p > 3 be
a prime. Let m = (0, 0), m′ = (1, 0) and c = 0. Because n = 2 the hash
function is evaluated ha,b(m) = (m2a

2 + m1a + b) mod p. Condition (1) of
the ε-VU definition requires ha,b(m) be uniformly distributed over Zp when a
and b are randomly chosen from Zp , which is satisfied because of the random
translation b. Condition (2) requires computation of the variational distance
between the distribution of ha,b(m

′) and Uniform(Zp) when ha,b(m) = c. How-
ever, because of the values we have selected for m, m′ and c, this computation
simplifies to 1

2

∑

y∈Zp

∣

∣

∣Pra∈Zp
[a2 = y mod p] − 1

p

∣

∣

∣, which is exactly (p − 1)/2p,

a number greater than 1/3 for any p > 3.

3 An Almost-VU Construction

While SU hash-families are 0-VU, we have already remarked that no SU con-
structions are known with efficiency comparable to that of best almost-AU
constructions. Composing a high-speed almost-AU hash-function family with
an SU hash-function family, however, is a good alternative to using an SU fam-
ily directly. When hashing large inputs, the composite hash-function family
will do the bulk of the work in the fast almost-AU part but will be almost-VU
because of the subsequent SU component. We now show that this construction
works.

Let A, B and C be sets with B and C finite. Let H = {h: A → B} and
G = {g: B → C} be hash-function families. We define the composed family
of functions G ◦ H = {f : A → C} as {g ◦ h | h ∈ H, g ∈ G}. To choose a
random element from G ◦ H we choose random elements h ∈ H and g ∈ G
and consider f = g ◦ h to be the random element.

Theorem 1 Let A, B and C be sets with B and C finite. If Hau = {h: A → B}
is ε-AU and Hsu = {g: B → C} is SU then Hsu ◦ Hau is ε(1 − 1/|C|)-VU.

We note that the theorem’s claim is stronger than saying Hsu ◦ Hau is ε-VU.
This is because ε = 0 is perfect for ε-VU whereas ε = 1/|C| is perfect for ε-SU
(and ε-AU), and so scaling between the two is inevitable.

PROOF. Let c ∈ C and let m,m′ ∈ A be distinct. For convenience, let f
be shorthand for g ◦ h and let all probability measures be over the choice of
h ∈ Hau and g ∈ Hsu. Because Hsu is strongly universal, g(h(m)) is uniformly
distributed over C for randomly chosen g ∈ Hsu and any value of h(m).

5

Let D be the distribution induced on f(m′) when f is chosen randomly and
f(m) = c. Then, we must show dist(D, Uniform(C)) ≤ (ε − ε

|C|
). We begin

by using the definition of dist to rewrite the left-hand side of the desired
inequality as

1

2

∑

y∈C

∣

∣

∣

∣

∣

Pr[f(m′) = y | f(m) = c] −
1

|C|

∣

∣

∣

∣

∣

.

Rewrite this expression with the y = c term extracted from the summation,

1

2

(

∣

∣

∣

∣

Pr[f(m′) = c | f(m) = c]−
1

|C|

∣

∣

∣

∣

+
∑

y∈C
y 6=c

∣

∣

∣

∣

Pr[f(m′) = y | f(m) = c] −
1

|C|

∣

∣

∣

∣

)

, (1)

and simplify each of the two halves. First, Pr[f(m′) = c | f(m) = c] − 1/|C|
can be rewritten as

Pr[f(m′) = c | f(m) = c ∧ h(m′) = h(m)] · Pr[h(m′) = h(m)] (2)

+ Pr[f(m′) = c | f(m) = c ∧ h(m′) 6= h(m)] · Pr[h(m′) 6= h(m)] −
1

|C|
.

Notice that if h(m′) = h(m), then f(m′) must be equal to f(m), and that if
h(m′) and h(m) are distinct, then Pr[f(m′) = f(m)] = 1/|C| because Hsu is
strongly universal. Letting p = Pr[h(m′) = h(m)], we can simplify Equation 2
to

p +
1

|C|
(1 − p) −

1

|C|
= p −

p

|C|
. (3)

Next, we look at the term within the summation in Equation 1, Pr[f(m′) =
y | f(m) = c] − 1

|C|
, with y 6= c, which can be rewritten as

Pr[f(m′) = y | f(m) = c ∧ h(m′) = h(m)] · Pr[h(m′) = h(m)] (4)

+ Pr[f(m′) = y | f(m) = c ∧ h(m′) 6= h(m)] · Pr[h(m′) 6= h(m)] −
1

|C|
.

This time, because y 6= c and Hsu is SU, Pr[f(m′) = y | f(m) = c ∧ h(m′) =
h(m)] = 0 and Pr[f(m′) = y | f(m) = c ∧ h(m′) 6= h(m)] = 1/|C|. Again
letting p = Pr[h(m′) = h(m)], we can simplify Equation 4 to

0 +
1

|C|
(1 − p) −

1

|C|
= −

p

|C|
. (5)

6

Substituting Equations 3 and 5 into Equation 1 results in

1

2

∣

∣

∣

∣

∣

p −
p

|C|

∣

∣

∣

∣

∣

+
∑

y∈C
y 6=c

∣

∣

∣

∣

∣

−
p

|C|

∣

∣

∣

∣

∣

 =
1

2

(

p −
p

|C|
+ (|C|−1)

p

|C|

)

= p

(

1−
1

|C|

)

.

Finally, p ≤ ε because p = Pr[h(m) = h(m′)] and Hau is assumed ε-AU. Thus
dist(D, Uniform(C)) ≤ ε(1 − 1/|C|), as desired. 2

This construction is a simple way to build a hash-function family that har-
nesses the speed of fast almost-AU hash families while at the same time pro-
viding a stronger guarantee. This same strategy can be applied to accelerate
almost-SU hash families too: compose a fast ε-AU hash-function family with
an almost-SU hash-function family and you will get a faster almost-SU hash-
function family in return. But for the small price of using an SU family rather
than an almost-SU family, the guarantee is more generally useful.

References

[1] D. Bernstein, The Poly1305-AES message-authentication code, in: Proceedings
of Fast Software Encryption, FSE 2005, LNCS vol. 3557, Springer-Verlag, 2005,
pp. 32–49.

[2] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, UMAC: Fast and
secure message authentication, in: Advances in Cryptology – CRYPTO ’99,
LNCS vol. 1666, Springer-Verlag, 1999, pp. 216–233.

[3] L. Carter, M. Wegman, Universal classes of hash functions, J. of Computer and
System Sciences 18 (1979), pp. 143–154.

[4] S. Halevi, H. Krawczyk, MMH: Software message authentication in the
Gbit/second rates, in: Proceedings of Fast Software Encryption, FSE 1997, LNCS
vol. 1267, Springer-Verlag, 1997, pp. 172–189

[5] V. Shoup, On fast and provably secure message authentication based on universal
hashing, in: Advances in Cryptology – CRYPTO ’96, LNCS vol. 1109, Springer-
Verlag, 1996, pp. 313–328.

[6] D. Stinson, Universal hashing and authentication codes, Designs, Codes and
Cryptography 4 (1994), pp. 369–380.

[7] M. Wegman, L. Carter, New hash functions and their use in authentication and
set equality, J. of Computer and System Sciences 22 (1981), pp. 265–279.

7

