Lecture: 3 hours
Prerequisite: Courses ECS 140A, ECS 170
Grading: Letter; exercise sets (50%), final project (50%).
Catalog Description:
Concepts and techniques underlying the design and implementation of models
of human performance on intelligent tasks. Representation of high-level
knowledge structures. Models of memory and inference. Natural language and
story understanding. Common sense planning and problem solving.
Goals:
Provide the conceptual models and algorithmic tools to build programs to
accomplish intelligent tasks, particularly natural language understanding
and common sense problem solving. Prepare students to understand and conduct
research in artificial intelligence.
Expanded Course Description:
Textbooks:
S.J. Alvarado, Understanding Editorial Text: A Computer Model of Argument
Comprehension, Kluwer Academic Publishers, 1990.
M.G. Dyer, In-Depth Understanding: A Computer Model of Integrated Processing
for Narrative Comprehension, MIT Press, 1983.
R.C. Schank, Dynamic Memory: A Theory of Reminding and Learning in Computers
and People, Cambridge University Press, 1982.
S. Slade, The T Programming Language: A Dialect of LISP, Prentice-Hall,
1987.
Instructor: The Instructional Staff
Prepared by: A. Prieditis (Dec. 1992)
THIS COURSE DOES NOT DUPLICATE ANY EXISTING COURSE
Revised: 4/97