
User Guide 3.6

November 2007

1

Copyright c©2002-2006 by the Institute for Data Analysis and Visualization (IDAV) group at the University of Cali-
fornia, Davis. All rights reserved.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License applies to the following program called Landmark. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifica-
tions and/or translated into another language. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program in executable form as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 2 above, provided that
you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date
of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this
License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.) These requirements apply to the
modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you distribute the same sections
as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

2

4. You may copy and distribute the Program (or a work based on it, under Section 3) in object code or executable
form under the terms of Sections 2 and 3 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 2 and 3 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 2 and 3 above on a medium customarily
used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b above.) The source code for a work
means the preferred form of the work for making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives
a license from the original licensor to copy, distribute or modify the Program subject to these terms and condi-
tions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application

3

of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geo-
graphical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(November 2007)

4

Landmark 3.6

Contents

1 Overview 7

2 System Requirements 9

3 Getting Started 10
3.1 Creating and using a Landmark database “.land” file . 10

3.1.1 Importing files . 11
3.1.2 Exporting files . 11

3.2 Loading surface files . 12
3.3 Moving surfaces around . 12

4 Using the Landmark Editor 15
4.1 Axes and bounding box . 15
4.2 Placing landmark primitives . 15
4.3 Manipulating landmarks . 16
4.4 Semi-automatic landmark application . 20
4.5 3D morphing . 22
4.6 Grouping landmark primitives . 23
4.7 Exporting landmark points . 24
4.8 Viewing exported landmark points . 25
4.9 Editing Landmark Primitives . 25
4.10 Alignment of curves and patches . 26
4.11 Semi-landmark density . 27
4.12 Finding Maximal Landmark Locations . 27

5 Working With Fossils 29
5.1 Retrodeformation . 29

6 How to Create a Species Average 32

7 Working with Individual PLY Surfaces 33
7.1 Loading a single PLY file . 33

8 2D Image Morphing 34

5

9 The .pts File Format 36
9.1 Version 0 . 36
9.2 Version 1.0 . 37

10 The .dta NTSys File Format 38

11 Landmark Plugins 39
11.1 Creating a Landmark Plugin Project . 39
11.2 Using the Landmark Plugin SDK with Visual Studio . 39

11.2.1 Setup your plugin for debugging with Landmark . 39
11.2.2 Compiling, running, and testing your plugin . 40

11.3 If you don’t have Visual Studio . 40
11.3.1 Building a Landmark Plugin in a non-Microsoft Development Environment 40

11.4 The Landmark Plugin Interface and How to Use it . 41
11.4.1 Interface Objects . 41
11.4.2 ILandmarkApp . 42

11.5 Deployment of Landmark Plugins . 42

12 Acknowledgements 46

Contact information: Dr. David F. Wiley, wiley@cs.ucdavis.edu, produced by the Institute of Data Analysis and Visualization
(IDAV) group at the University of California, Davis.

6

1 Overview

The goal of Landmark is to put landmark points on surfaces and to match landmark points on different surfaces to
each other. There are four types of landmark primitives available

1. Single point. This landmark consists of a single point—the conventional type of landmark placed on surfaces.

2. Curve. Place three points on a surface to form a curve. Several semi-landmark points are automatically gener-
ated along that curve to quickly and accurately lay down points.

3. Patch. Place a patch of points. Defined by a 3×3 grid of control points you can manipulate to change the shape
and coverage of the patch. Several semi-landmarks are generated automatically across the patch. This primitive
is useful for quickly laying down several points across featureless regions.

4. Flexible Patch. Similar to a Patch in that it has nine primary controls points, however, a flexible patch can
additionally be manipulated by selecting any one of the intermediate points generated across the patch allowing
greater flexibility.

5. Dimension. Specify two points to find the linear distance between those points. This primitive is also used to
specify retrodeformation pairs across the sagittal plane.

Assuming you have many surfaces you want to place landmarks on, follow these steps to most quickly and easily place
landmarks on all surfaces:

1. Choose one surface to be the atlas, to which all others will be corresponded (homologous).

2. Carefully place all landmark primitives on this surface and annotate where desired.

3. Iteratively load other surfaces and semi-automatically apply all landmark information from the atlas surface
onto this new surface.

4. Adjust semi-automatic application of landmarks to fix any errors.

5. Repeat process for additional surfaces.

When finished, all of your surfaces are mapped to the atlas surface. Since the knowledge of this atlas mapping is
stored, the implied mapping between all of the surfaces is readily available and is used within Landmark. Thus, if you
have four surfaces S1, S2, S3, and SAtlas and you designate SAtlas as the atlas by mapping S1, S2, and S3 to it, then you
get the mapping between S1 and S2 for free since Landmark can extrapolate the relationship between S1 and S2 from
their relationships with SAtlas, see Figure 1.

Figure 1: Corresponding surfaces to an atlas (left) implies many relationships defined by the surfaces’ common rela-
tionship to the atlas (right).

The reason for the atlas surface is to coordinate the landmark primitives and to significantly reduce human error.
Consider the problem of placing landmarks on several hundred surfaces. Several hundred points are required to

7

accurately represent the features, thus, several hundred points need to be placed manually. The naive method is to not
have an atlas and to just assume the user will place all the points on all the surfaces in the same order. This is unlikely
in such a large system and by defining the mapping to the atlas, this ordering is always preserved.

Note: There is no tangible designation for the selection of an atlas other than simply choosing to map all surfaces
to one in particular.

8

2 System Requirements

The minimum recommended system is:

• Windows� XP / Windows 2000 Professional (service pack 2 or higher)

• Intel� Pentium� III or higher or AMD AthlonTM processor

• 512 Megabytes of RAM

• Hardware-accelerated OpenGL� graphics hardware. OpenGL� implementation version 1.5 and higher yield
a significant improvement in rendering speed.

• 20 Megabytes of hard disk space. (More for your data.)

Some features require more RAM:

• Species average. Depends on the chosen resolution. You should have more than 1GB of main memory if you
plan to compute species averages with a resolution higher than “medium.”

• Evolutionary tree processing. Similar issues to computing a species average.

Some features require higher quality video hardware:

• Rapid evolutionary tree previewing.

• High-performance rendering of large (over 1M triangles) models.

Some features benefit from higher-performance CPUs:

• Overall performance improvement.

• Multi-core processors. Landmark takes advantage of multi-core processors when available by using multi-
threading techniques. Thus, an investment in this area will be utilized by Landmark.

• Species average. RAM plays a more important role than does CPU speed in this case. Make sure the main
memory requirements are met prior to considering a CPU upgrade.

• Evolutionary tree processing.

• Automatic landmark transferring.

High-performance storage (hard disks) can improve performance as well. If you are working with large numbers
of specimen (over 50) or large model meshes (over 1 million triangles), then performance could be improved by
upgrading your hard disk that your data (and .land) files reside on. You will be able to diagnose this if you notice
significant slowdowns during importing-into and loading-from .land files.

Laptop hard disks typically have a rotational speed of 4200 RPM while standard desktop drives are 7200 RPM
(which could account for why your desktop runs Landmark better when importing and loading). There are high-
performance 2.5in 7200 RPM drives available for laptop computers that improve overall system performance. Ad-
ditionally, one can purchase an external 3.5in 7200 RPM (EIDE or SATA, a standard desktop hard disk) USB 2.0 or
firewire drive and connect it to the laptop to gain in performance.

Desktop computers can also use higher-performance 10000 RPM EIDE or SATA drives to gain in performance.
The best choice is a high-performance 10000 RPM SCSI hard disk. These, however, tend to cost two to three times
more than a comparable EIDE or SATA drive, but have two to three times the performance improvement.

Finally, one can consider building a RAID 0 system using high-performance EIDE, SATA, or SCSI drives that
would respectively improve performance.

9

3 Getting Started

3.1 Creating and using a Landmark database “.land” file

In order to organize and keep track of surfaces, their landmark points and correspondences, and other information and
files, Landmark groups everything into a single database that you can easily access within the program.

Select File | New from the menu to create a new Landmark database file. Once created, a window having three
panes labelled A, B, and C and a fourth pane on the left side is shown, see Figure 2.

Figure 2: The main screen components of the Landmark editor.

Screen components:

• Database Contents: shows the surface models, points, correspondences, and other files contained within the
Landmark database

• A and B: load surfaces (or points) into the A and B panes for the purpose of placing and manipulating landmark
primitives (points, curves, and patches). Typically, the atlas is loaded into A and surfaces being mapped to the
atlas are loaded into B.

• C: this pane is used as the “result” window. The C pane displays the morph when morphing between surfaces
loaded in the A and B panes and it shows the retrodeformed mesh when retrodeforming a surface.

• Morphing Slider: If two meshes are loaded into the A and B panes and they are corresponded to one another,
selecting a position on this slider computes the morph between those two surfaces.

• Progress Indicator: whenever Landmark performs a task that requires an extended period of time, the progress
of the task is displayed here.

• Cancel Button: cancel task processing by pressing this button.

Above each pane is a button labelled with the pane identifier (A, B, or C) and the name of the PLY loaded into it. Press
this button to move the pane to the larger window on the right.

10

3.1.1 Importing files

Import files into the Landmark database by selecting Project | Import..., see Figure 3. Any file can be imported
into the database. All files are compressed to save space. Special treatment is given to files of these types:

• .ply (and .stl) define a surface model that can be loaded into the A and B panes allowing placement of landmark
primitives.

• .dta defines a previously collected set of landmark points that can be loaded on their own or can accompany a
.ply (or .stl) surface model.

• .pts defines a single set of points that can be loaded on their own or can accompany a .ply (or .stl) surface
model.

I II

Figure 3: Image I shows two ply models being imported into the database. If the ply model already has a correspon-
dence file (from an older version of Landmark) than it is automatically imported, shown in Image II, if not, a new one
is created.

When importing, Landmark attempts to match imported files to objects already contained in the database based
upon their file names. For example, suppose you have files named cat.ply, dog.ply, and fish.ply and have
imported them into the database. In the database, their names will be cat, dog, and fish, respectively. Landmark will
automatically match files to these if they are named cat.nnn, dog.nnn, and fish.nnn where nnn can be any file
extension.

As another examples, suppose you have already imported several surface models named ap1.ply, ap2.ply,
..., ap99.ply into the database and also have an NTSys .dta file containing several groups of landmark points
you’ve previously collected. If you import the .dta file and the groups of landmark points are named ap1, ap2,
..., ap99, within the .dta file, then Landmark will be able to figure out the relationship to the .ply models and
will either replace or merge these points with the landmark primitives associated with the previously loaded .ply files
of the same name.

It may be advantages to import intermediate files (having extensions other than .ply, .dta, .corr, or .pts) that you
generate in your research process into the Landmark database. They are then associated with each model and cate-
gorized appropriately, see Figure 4. This provides a mechanism for data management. You can view imported files
by selecting Project | Open Item..., see Figure 5. If you need to get the files out of the database then you can
simply export them. Additionally, a plugin can be written to open these files, see Section 11 for how to do this.

3.1.2 Exporting files

Data and files are exported from the Landmark database by selecting Project | Export.... The items that are
currently selected in the database view and their child items is what will be exported.

11

I II

Figure 4: Image I shows two .txt files being imported into the database. The names of the .txt files are matched
with existing models in the database and added as a child item of that model, shown in Image II.

The dialog that appears gives you several options for exporting the available data, see Figure 6. Each are described
below:

• (*.land) Landmark database: Export selected items as a subset into a new Landmark database

• (*.ply) PLY models: Export selected items as PLY models

• (*.stl) STL models: Export selected items as STL models. Note that color information is not captured well in
STL files (6 bits per RGB channel, as opposed to 8), thus, expect a degradation in color quality if you use STL
files.

• (*.corr) Correspondences: Export landmark data for models into .corr files (accompanies .ply files)

• (*.dta) NTSys landmark points: Exports landmark points into NTSys format

• (*.pts) Raw landmark points: Exports points into a text file

• (*.???) ??? File: Other file extensions appear at the end of this list if they are present in the database and can
be exported by selecting these items

The .land and .dta options require a filename that is specified to the right of the list. Any item that exports points
requires an atlas to be specified in order to enforce landmark point sequence numbering.

3.2 Loading surface files

To load surface files from the database, select the model you want to load and then select Project | Load into
A... or Project | Load into B... to load that model into the A and B panes, respectively, see Figure 7.

3.3 Moving surfaces around

Once a surface is loaded you will need to move it around to be able to place landmarks on it. Use the following to
move the surfaces around

• Left mouse button. Rotates the surface.

• Middle mouse button. Rotates on the plane of the screen.

12

I II

Figure 5: Image I shows a .txt file being viewed directly from the database. Notepad is associated with the .txt
extension on this particular machine, thus Notepad is used to view the file, shown in Image II. Changes to files opened
in this manner are not saved in the database.

• Right mouse button. Pans across the plane of the screen.

• Mousewheel. Zoom in and out. If a mousewheel is not present, use CTRL-left-mouse-button and move the
mouse up-down or left-right.

13

I II

Figure 6: Image I shows the file exporting options. If database items have files having different extensions than those
shown above, they will be added to the end of the list so that you can export them, shown in Image II.

I II

Figure 7: Image I shows which ply model is being loaded. Image II shows the loaded model in pane A. The model
loaded in pane A is indicated by a red A in the database view.

14

4 Using the Landmark Editor

The following sections describe the various tools that are available for manipulating landmarks while in the three-pane
landmark editor.

4.1 Axes and bounding box

There are many rendering options that you can access through the View menu to aid in placing landmarks. Transpar-
ent surface rendering often helps when placing landmark primitives but may render too slowly on low-end graphics
hardware. In this case, you would want to turn this option off. The axes and bounding box, for example, can be turned
off by View | Data bounds | Show, see Figure 8.

Figure 8: Hide the axes and bounding box.

4.2 Placing landmark primitives

Select the primitive type from the Edit | Add... menu to choose Single point, curve, patch, flexible patch, or
dimension primitives.

• Single points are placed by holding down the shift key while clicking the left mouse button on the surface
at the location you want to place the landmark. Figure 9 shows an example of placing a single landmark point.

• Curves are placed by holding down the shift key while clicking the left mouse button at three different
locations on the surface to designate the three control points of the curve. Figure 10 shows an example of
placing a curve.

• Patches are placed by holding down the shift key while clicking the left mouse button (dragging moves
the patch around before fixing its position). The program tries to find a reasonable patch to start with by
automatically placing the nine control points in the region near where you clicked. You should then move the
automatically placed points around. Figure 11 shows an example of placing a patch.

• Flexible patches provide more control over the shape of a patch. Flexible patches are placed by holding
down the shift key while clicking the left mouse button (dragging moves the patch around before fixing its
position). The program tries to find a reasonable patch to start with by automatically placing the control points
in the region near where you clicked. You should then move the automatically placed points around. Figure 12
shows an example of placing a flexible patch.

15

• Dimensions are specified by holding down the shift key while clicking the left mouse button at two loca-
tions. This primitive is used to measure linear distance between the two points and also to specify point pairs
during retrodeformation. Additionally, dimension primitives can be used to calibrate the model by opening View
| Edit primitives... and entering the actual measured distance for the selected dimension primitive. This
value is then used to properly scale the model.

Figure 9: Placing a single landmark point.

I II III

Figure 10: Placing a curve. Images I through III show the addition of the three points that construct a curve primitive.

4.3 Manipulating landmarks

Choose Edit | Select points and select points by holding down the shift key while clicking the left mouse
button. Selected points are highlighted yellow when selected. There are a number of operations you can perform on
selected points:

1. Drag them around while still pressing the left mouse button and holding down the shift key. (Points can only be
placed on surfaces, thus points cannot be dragged off of a surface.)

2. Pressing the space bar removes selection from all points.

3. Pressing the delete or backspace key when any points are selected deletes those points and any landmark primi-
tives connected to them.

16

I II III

Figure 11: Placing a patch. Image I shows the surface before placing the patch. Image II shows the surface after the
patch has been added by left-clicking while holding down shift. Image III shows the patch after moving the points
around to their appropriate locations.

4. Join points together by selecting more than one point and choosing Edit | Join points from the menu.
Points are joined to the first point selected.

5. Split points by choosing Edit | Split points from the menu. Two points will then be created on top of
each selected point. Select and move one point aside to access them both.

6. Add annotations by selecting View | Edit primitives..., select the primitive in question, and type the
annotation in the available edit box. Remove the annotation by setting the text to nothing. Figure 13 shows an
example of adding an annotation.

17

I II

III IV

Figure 12: Placing a flexible patch. Image I shows the surface before placing the patch. Image II shows the surface
after the patch has been added by left-clicking while holding down shift. Image III shows the patch after moving the
major control points around to their appropriate locations. Image IV shows the patch after moving a minor control
point to fit one region of the mesh better. Left-clicking while holding down shift selects minor points. Dragging fixes
their position. Double-clicking while holding down shift “un-fixes” its position and allows the point to roam freely.

18

I II

Figure 13: Example of adding an annotation to a single landmark point. Double clicking on the single landmark
point on the nose opens the annotation edit dialog shown in Image I. Image II shows how the annotation is rendered.
Remove an annotation by setting the annotation text to be empty.

19

4.4 Semi-automatic landmark application

Landmark semi-automatically applies all of the landmark primitive information from one surface to another. As an
example, I’ve gone ahead and added some more landmarks, curves, and patches to the “red” surface in the previous
examples. Specifically, I’ve added single landmark points on the tips of the fangs, a point at the back of the skull and
moved a point to the brow. Figure 14 shows the red surface and its landmarks.

Figure 14: Landmark primitives on the “red” surface.

To use the auto application feature, we must identify at least four landmark primitive that the two surfaces have in
common. Thus, I will add the four single landmark points I described above to the “blue” surface. Figure 15 shows
the blue surface after adding the four points.

Figure 15: Landmark primitives on the “blue” surface.

Next, to establish a relationship between the points on the two surfaces, open the Correspondence dialog by
choosing View | Correspondence Dialog... from the menu. Establish a correspondence between each pair of
points by selecting each point primitive in the A and B columns, verify that the point selected is the one intended
by moving the surfaces around to locate the highlighted points, and select the >> button to confirm the relationship.
Figure 16 shows the correspondence dialog for this example.

20

I II

Figure 16: Correspondence dialog. In both images, single landmark points are denoted by an s, curves by a c, and
patches by a p. The number next to the letter denotes the index for the primitive. In image II, note that the point indices
are matched to different numbers in the right-most column, this is because I added the points in a different order for
each model.

Since four primitives have been corresponded to each other, the Auto Apply button (underneath the B column) is
enabled. Press this button to transfer the rest of the primitives from A to B. Figure 17 shows the what happens after
pressing the Auto Apply button.

Figure 17: Result after pressing Auto Apply button. Note that new primitives have been added to column B in the
correspondence dialog. Also note that these primitives have been added to the blue surface and their control points
have been highlighted with rotating red disks.

This landmark transference is semi-automatic since you must specify at least four points to begin the transfer and
also that, as you probably noticed, the transfer isn’t perfect. Thus, you must manually move the points around to
their appropriate locations. Rotating red disks indicate the landmark control points that need to be adjusted by the
user. Once moved, the red disk disappears. Moving these points improves the overall placement of the control points
making it easier to quickly adjust the automatically transferred points.

Adjustments to the landmark primitives on the source surface invalidates the correctness of the landmarks and their
placement, thus one should re-transfer the landmarks after adding to or removing landmark primitives from the source
surface.

21

4.5 3D morphing

Once the relationships between landmark primitives have been established, you can create morphs between the sur-
faces. Select the horizontal slider at the bottom of the landmark editor window (below the big pane) to create a morph
of the two surfaces. Figure 18 shows an example of morphing the two surfaces.

I II

Figure 18: Example of a morph between the two surfaces. Image I shows that the correspondences have been estab-
lished. Image II shows the two surfaces morphed into the same space as specified by the slider at the bottom of the
window.

You can save the morphed surfaces back into the landmark database by selecting Project | Import from
C.... You can save the red and blue surfaces individually or both of them together as one mesh. A new item
representing the chosen surface is added to the selected group in the database view.

If there are several landmark primitives (more than a few hundred), the morphing computation can take a very long
time (several minutes, depending upon the machine). To pre-compute the morph for all positions across the slider,
select Processing | Precompute TPS data... from the menu. You can follow the progress of the operation by
the progress bar at the bottom-left side of the window. Figure 19 shows the data item that’s created for this example in
the project database.

Figure 19: A folder under “Morphing Data” called “male cercopithecus aethiopicus low.male macaca low.blob” is
created for the pre-computed morph data.

If this data is present when the slider is selected with these two input files loaded into their respective panes, the
data will be loaded and accessed instead of recomputing the data. If you add new landmark primitives, you will want
to delete this data and re-compute it. Several of these data items can be created and stored in the project database for
different combinations of surfaces.

22

4.6 Grouping landmark primitives

Landmark primitives can be grouped together to allow processing based upon these groups. For example, exporting
landmark points only in certain regions as opposed to landmark points across the whole surface. Grouping specification
is only required on the atlas. Select the atlas in the database view then select Project | Primitive grouping...
from the menu to open the grouping specification dialog, see Figure 20.

I II

Figure 20: Grouping of landmark primitives. Image I shows how to open the grouping specification dialog for a
selected atlas. Image II shows the ungrouped primitives in the left-most column and the surface on the right-hand side.

Group landmark primitives by selecting a subset of primitives in the left-most column then move them to the group
selected beside it by pressing >>, see Figure 21.

I II

Figure 21: Image I shows primitives selected for grouping as indicated in the preview window to the right. Image II
shows the grouped primitives after pressing >>. The group name can be changed in the edit box above the group list.

Repeat the grouping process to define subsets of the landmark primitives by creating new groups by pressing New
and moving primitives into them, see Figure 22. Remove primitives from a group by selecting them in the group list
and pressing << to move them back into the left-most column. Delete groups by pressing Delete; Primitives in a
deleted group get moved back to the left-most column.

23

I II

Figure 22: Image I shows primitives selected for grouping as indicated in the preview window to the right. Image II
shows the grouped primitives after pressing >>.

4.7 Exporting landmark points

The automatically generated landmark points (single points and those across curves and patches) can be exported to a
text file for use in other programs. This is done by first selecting the meshes you want to export the points from and
then choosing Project | Export... from the menu, see Figure 23. Details of the .pts and .dta file formats are
described in Appendices 9 and 10, respectively.

I II III

Figure 23: Exporting landmark points. Image I shows the item from which the landmark points will be exported from
(more than one item can be selected). In the export dialog, an atlas must be selected so that the exported landmark
points are generated in a sequence consistent with that atlas, see Images II and III. For the .pts format, files beginning
with the name of the exported items and ending in .pts are created in the specified folder, see Image II. For the .dta
format, a file name must be provided, see Image III.

Subsets of landmark points, as specified in Section 4.6, can be selected by choosing the Groups button on the
export dialog. A group selection dialog is shown allowing you to choose which groups of landmarks to export, see
Figure 24.

Advanced options allow further refinement of the exported data. Allow duplicates exports the same x,y, and z
coordinate landmark and semi-landmark points in the case when primitives have been joined together. For example,
single-point landmarks that have been joined to the curve primitive control points. In this case, landmark points
would be generated for the three single points and the semi-landmarks generated for the curve would duplicate those
generated for the single point primitive.

An odd density value for curves or patches produce semi-landmark points at the control point locations. Thus, if

24

Figure 24: Subsets of landmark points that have been grouped can be selected in order to export certain regions of
points. The column on the left shows the available groups. The window on the right shows which primitives are
represented by the selected groups. Note that the shown surface is that of the atlas.

another primitive is joined at that control point, the x,y, and z coordinates will be duplicated for those points if the
Allow duplicates option is selected.

Using calibrated coordinates scales the model and landmarks based on calibration measurements set for dimension
primitives. To establish correct scaling and coordinates for your specimen, first place a dimension primitive on your
specimen using two single landmarks. Then, select View | Edit primitives..., choose to view dimension prim-
itives, and then enter in the actual measured linear distance (using calipers, for example) between the two landmark
points specifying the dimension primitive. This value is then used to scale the model to match the value entered. If
you specify multiple measurements, the average scaling factor computed for each dimension primitive is used.

Selecting Single points, Curves, Patches, and Flexible patches determine if those particular primitive
types are exported.

4.8 Viewing exported landmark points

Select the PLY surface in the database view then select Project | Open item... to view the surface. Then,
choose File | Import | Landmark points... to load the .pts landmark points file. This is an important step
for verifying that your landmark points are ordered appropriately if you seem to be having problems. Figure 25 shows
the exported landmark points exported in Section 4.7.

4.9 Editing Landmark Primitives

Landmark primitives can be edited using the Edit Landmark Primitives dialog. General operations such as re-ordering,
deleting, annotating, flipping, and rotation are supported for appropriate primitives. Invoke this dialog by selecting
View | Edit Primitives..., see Figure 26.

• Single point primitives can only be re-ordered, deleted, or annotated.

• Curves can be flipped in addition to re-ordering, deleting, and annotating.

• Patches can be flipped and rotated in addition to re-ordering, deleting, and annotating.

• Dimensions can be specified for a dimension primitive in order to calibrate model units to real-world measure-
ments.

25

I II

Figure 25: Viewing the exported landmark points.

• The transverse plane can be flipped or rotated.

Figure 26: Edit Landmark Primitives dialog. Invoked by selecting View | Edit primitives.... Primitives can be
re-ordered, deleted, annotated, rotated, and flipped.

Note that re-ordering and deleting a primitive will destroy any correspondences to affected primitives.

4.10 Alignment of curves and patches

If the Auto Apply feature for transferring landmark primitives is not used, it is likely that curves and patches will
be placed such that extra care must be taken to ensure correct correspondence of the primitives. Figure 27 shows
an example of the problem as it relates to curves. Alternatively, you can use the Edit Landmark Primitives dialog to
change the orientation of curves and patches rather than having the correspondence itself manage the inconsistency,
see Section 4.9.

Patches have more variation and require a bit more attention. Figure 28 shows an example of the problem as it
relates to patches. Here, the goal is to match up the swoosh (the arrow) over the patches.

26

I II

Figure 27: Example of orientation problem caused by placing curve points in a different order across bridge of nose.
Image I shows the orientation of the selected curves is different since the red and green nodes are flipped. Image II
shows the corrected correspondence achieved by selecting the Flip check box in the correspondence dialog.

I II

Figure 28: Example of orientation problem caused by placing patch points in a different order across cheek. Image
I shows the orientation of the selected patches is different since the swooshes do not match up. Image II shows the
corrected correspondence achieved by selecting the Flip check box and by rotating the swoosh in the correspondence
dialog.

4.11 Semi-landmark density

The density of the automatically generated semi-landmark is controlled from within the correspondence dialog. When
a matching pair of curves or patches is selected from the A and B columns, the Density edit boxes become enabled
and you should be able to see orange dots on the surfaces across the curve or patch. These orange dots are the
automatically generated semi-landmark points.

There is a minimum and maximum number of automatically generated points. Curves can have between 3 and 41
automatically generated points. Patches can have a minimum grid size of 3 × 3 (9 points) and a maximum grid size of
33 × 33 (1089 points). Select on odd number for the density in order to have them fall on the manually placed control
points.

4.12 Finding Maximal Landmark Locations

Placing landmark points at extremal surface locations is difficult without some sort of guidance. Landmark provides
a way to denote the transverse or coronal plane of an object which implies set of axes defined by this plane. The user

27

can then sweep transparent planes aligned to the axes in order to better show extremal locations of points.
Define the transverse plane by first placing four single-point landmarks on the model that lie on this plane. In the

case of the monkey crania in our examples, these four points lie at the bottom of the eye sockets and just above the ear
holes, defining the Frankfurt orientation for primate crania, see Figure 29.

I

II III

Figure 29: Image I shows placement of single-point landmarks at the bottom of both eye sockets and also just above
the ear holes. Image II shows the how to define the transverse plane by dragging the red-circled dots onto the four
previously placed landmarks. Large blue arrows indicate “up” and “front” directions. Image III shows the final
placement of the four points defining the transverse plane.

Once the transverse plane is defined, transparent planes rendered along the implied axes can be used to find max-

imal landmark locations. Select View | Reference Planes | Show ???, where ??? is axial (or transverse),

sagittal, or coronal, to display a corresponding transparent plane, see Figure 30. You can move a plane along
the perpendicular axes by left-clicking and dragging while holding down shift on the sphere at the intersection of the
dark grey circle and cross-hatched lines.

28

I II III

Figure 30: Transparent planes rendered along the axes implied by the transverse plane. Image I shows the transverse
plane. Image II shows the sagittal plane. Image III shows the coronal plane. You can move a plane along the
perpendicular axes by left-clicking and dragging while holding down shift on the sphere at the intersection of the dark
grey circle and cross-hatched lines.

5 Working With Fossils

There are a number of problems that fossils present when it comes to placing landmarks on their surfaces. The
following tools are provided in order to adjust deformed and fractured meshes so that they can be used.

5.1 Retrodeformation

Retrodeformation is used to un-deform a mesh based upon pairs of points on opposite sides of the (sagittal) plane
of symmetry for the fossil. This retrodeformation process operates under the assumption that these pairs should be
symmetric across this plane and this operations attempts to optimize the symmetry of selected pairs of points. Pairs of

points are specified using the dimension primitive , see Figure 31.

I II

Figure 31: Image I shows original fossil surface. Image II shows placement of dimension primitives having paired
points across the plane of symmetry.

Begin the retrodeformation process by selecting Project | Retrodeform... from the menu. Select which
surface to retrodeform (A or B if more than one surface is loaded). Choose which dimension primitives to use for

29

the retrodeformation process. A minimum of three dimension primitives (three pairs of points) is required in order to
define a proper retrodeformation. More than three can be used to further constrain the process, see Figure 32.

I II

Figure 32: Image I shows the retrodeformation dialog; Selected dimension primitives are are those that contribute to
the retrodeformation process. Image II shows which dimension primitives have been selected as highlighted in yellow.
A deformed plane of symmetry is shown in gray and can be used to estimate the amount of deformation that took
place. This plane comes from fitting a smooth surface through the midpoints of the point pairs (small red boxes) used
to establish the retrodeformation procedure.

Once three or more dimension primitives have been selected, select OK to retrodeform the surface. The result is
placed in pane C of the editor, see Figure 33. You can save the retrodeformed surface in the landmark database by
selecting Project | Import from C | Blue surface. A new item representing the chosen surface is added to
the selected group in the database view.

30

I II

Figure 33: Comparison between original fossil, shown in Image I, and retrodeformed surface shown in Image II. Save
the retrodeformed surface in the landmark database by selecting Project | Import from C | Blue surface.

31

6 How to Create a Species Average

Select the models in a database that will contribute to the species average. You must select more than one model and
they must all have landmarks placed and corresponded on them for this process to work. Select Project | Compute
species average... to compute an average of all selected surfaces, see Figure 34. You must choose the desired
output resolution of the species average. The resolution level and the number of triangles in the surface meshes is
directly proportional to the amount of time and memory this process uses. Scaling is removed when computing this
average in order to capture only shape changes rather than scale differences. The resulting average model is displayed
in pane C and can be saved into the database by selecting Project | Import from C | Blue surface. After the
blending process has finished, the resulting species average is shown in pane C, see Figure 35.

I II

Figure 34: Image I shows how to begin the species average process. Image II shows the selected output resolution of
the average. The higher the resolution the longer the process takes.

Figure 35: Species average. Save the surface into the landmark database by selecting Project | Import from C
| Blue surface.

32

7 Working with Individual PLY Surfaces

7.1 Loading a single PLY file

In terms of surface data, Landmark can only load PLY files. You can open PLY files for the purpose of viewing the
surface or for working with landmarks. To view a PLY file, select File | Open... and choose the PLY file you
want to open. You can also drag the file into the workspace to open it automatically. Figure 36 shows an example PLY
surface loaded in Landmark.

Figure 36: A PLY surface within Landmark. The PLY viewer (does not have three panes) is only for viewing PLY
surface. Landmarks can only be placed on surfaces loaded from a .land database.

33

8 2D Image Morphing

A very basic two-dimensional image warping process is also supported in Landmark. This is accomplished using the
following steps.

1. Load two images that you want to morph from one to another, see Figure 37.

2. Place single point landmarks on them by left-clicking the mouse while holding down the shift key, see Figure 38.
The order in which you places points on each image is crucial.

3. Select the image you want to warp from then select Tools | Warp... from the menu to select the image you
want to warp to, see Figure 39.

Figure 37: Load two images to warp one to another. Landmark only supports a few image file formats.

I II

Figure 38: Image I shows six landmark points (black dots) placed on each image. Image II shows a close up of the red
surface.

34

Figure 39: Warped image from BlueOrig.pbm to RedOrig.pbm using six landmark points. More points will produce
better warps.

35

9 The .pts File Format

Landmark reads two types of text-based .pts files. Their file formats are described below. Missing data is identified
by the value set in Tools | Options... If any of the point coordinates are this value, then the point is considered
“missing.”

9.1 Version 0

Version zero simply has a the number of points N on the first line followed by N x,y,z floating-point triples, see
Figure 40.

N
x1 y1 z1
x2 y2 z2
x3 y3 z3

. . .
xN yN zN

Figure 40: Version 0 text-based file format for a .pts file. First line indicates the number of points N followed N x,y,z
floating-point triples.

Figure 41 shows an example .pts file having 329 landmark points in it.

...

Figure 41: Example of version zero .pts file format.

36

9.2 Version 1.0

Version one has the added features of version control and annotations, see Figure 42.

Version 1.0
N
a1 x1 y1 z1
a2 x2 y2 z2
a3 x3 y3 z3

. . .
aN xN yN zN

Figure 42: Version 1 text-based file format for a .pts file. First line indicates file version. Second line indicates the
number of points N followed N a,x,y,z where a is a single word annotation and x,y,z are the floating-point triple of the
point.

Figure 43 shows an example .pts file having 262 landmark points in it.

...

Figure 43: Example of version one .pts file format.

37

10 The .dta NTSys File Format

For exporting, the value used to denote missing data set in Tools | Options... For importing, the value for missing
data is described within .dta files and that value is used instead of that set in Tools | Options...

Do not consider the following description to be the definitive definition of the NTSys file format. I obtained a
brief description of it from Steve Frost, which is summarized below. Figure 44 shows an example .dta file having
four landmark points defined on two surfaces contained within it. The first two lines are comments; there can be an

Figure 44: Example of a .dta file format.

unlimited number of these. The header “1 2L 12 1 9999 Dim=3” describes the following items

• The first “1” indicates that a data matrix follows.

• The “2L” means there are two objects with labels.

• The “12” states that there are 12 coordinates (x, y, and/or z) per object (i.e., 4 landmarks per object).

• The second “1” indicates that there may be missing data (a “0” here would mean no missing data).

• The “9999” denotes the value used to indicate missing data.

• The “Dim=3” specifies the dimension of the data.

The names of the objects are on the two lines after the header. Then the coordinates of the landmark points are listed.

Landmark is guaranteed to be able to read and write NTSys files in the above described format and has not been
tested on variations of this format. Landmark may not correctly import NTSys files having missing data. If you
have a variation of this format and would like it added to Landmark please send an email to David F. Wiley at
wiley@cs.ucdavis.edu.

38

11 Landmark Plugins

A plugin SDK is provided with Landmark for allowing users to perform custom operations on landmark points and
surfaces. Landmark passes corresponded landmarks (and semi-landmarks) on selected meshes to the chosen plugin.
Within the plugin, you can perform operations on the landmarks and surface meshes if needed. Results can then
be passed back to Landmark in the form of displaying a message or adding files into the Landmark database, see
Section 11.4 for a complete description of the Landmark Plugin Interface. The plugin SDK is located in the PluginSDK
sub-folder in the Landmark installation folder.

11.1 Creating a Landmark Plugin Project

Select Tools | Plugin Manager.... Type the name of the new plugin in Plugin Name, select a project folder,
select a project type, and then press Create to create the project files.

11.2 Using the Landmark Plugin SDK with Visual Studio

11.2.1 Setup your plugin for debugging with Landmark

In order to setup your project for debugging and testing with Landmark, follow these steps.

1. To make debugging and testing the plugin easier, select Project | Properties... for the new plugin
project.

2. Select the Debug build

3. Select Debugging under Configuration Properties

4. Set the Command to execute as LandmarkDebug.exe modifying the path to reflect your plugin project folder.
This executable is a debug version of Landmark and is required to test debug builds of Landmark plugins.

5. Set the Command Arguments as:

-debugplugin "$(TargetPath)"

or

/debugplugin "$(TargetPath)"

if the first one doesn’t work. Note that

"$(TargetPath)"

needs to be in quotes, see Figure 45.

6. Repeat steps 10 and 11 for the Release build, changing the Command to LandmarkRelease.exe instead.

You should be able to compile, run, and test your plugin at this point.

39

Figure 45: Setting up the plugin project properties for debugging.

11.2.2 Compiling, running, and testing your plugin

To compile, run, and test your plugin, follow these steps.

1. Build your plugin, Release and/or Debug builds (assuming you followed the steps above)

2. Run your plugin with the debugger, this should start LandmarkDebug.exe or LandmarkRelease.exe within
the SDK folder.

3. Open a .land file that you want to test your plugin with.

4. Select items in the Database view and then choose Project | Custom Plugins. The name of your plugin
should appear, something similar to MyPlugin (debug). The (debug) indicates that the plugin was started by
Landmark with the /debugplugin command argument, see Figure 46.

Proceed to Section 11.4 for instructions on how to customize your newly created plugin.

11.3 If you don’t have Visual Studio

When creating the the plugin project, select Non-visual Studio for the project type. You will need to create a new
project in whatever development environment you are using and add the plugin files to the new project.

At this point, you should be able to compile the project. Next, follow the instructions in Sections 11.2.1 and 11.2.2
to setup the plugin for debugging and testing within Landmark. Then, proceed to Section 11.4 for instructions on how
to customize your newly created plugin.

11.3.1 Building a Landmark Plugin in a non-Microsoft Development Environment

You should be able to create a valid Landmark plugin using a non-Microsoft development tool. The resulting Landmark
plugin is a standard Windows DLL. If you can create a DLL that adheres to the Landmark plugin interface defined in
Plugin.h, then everything should work fine. Follow these steps to create a non-Microsoft Landmark plugin.

1. Create a DLL project using your development environment.

2. Define BUILD PLUGIN DLL in your project settings to indicate that you are building the plugin DLL.

40

Figure 46: Accessing your plugin from within Landmark.

3. Change LMPLUGINAPI in Plugin.h to reflect the correct exporting of DLL methods.

At this point, you should be able to compile the plugin project in your development environment.

11.4 The Landmark Plugin Interface and How to Use it

This section contains a detailed description of the Landmark Landmark Plugin Interface and how Landmark commu-
nicates to the plugin.

11.4.1 Interface Objects

A brief overview of the interface is shown in Tables 1 and 2.
Landmark loads the plugin DLL and then queries the interface to see what type of plugin it has loaded. Landmark

calls GetPluginVersion() just after loading each plugin to determine what version of the interface the plugin was
built with. Landmark is guaranteed to work correctly with plugins that are built using a older versions of the Landmark
Plugin Interface. If a newer version of Landmark accesses an older plugin, it will prepare the data fed into the plugin
as it was in the older version and also process data returned from the plugin as it should.

Landmark next calls GetPluginName() to obtain the plugin name. This is used to identify the plugin in Land-
mark’s menus. GetPluginInformation() should be used to identify who wrote the plugin.

Each plugin can support several different landmark operations, the number of which Landmark queries using
GetNumberOfOperations(). Landmark obtains a detailed description of each operation calling the plugin method
GetOperationInformation(...). The information obtained describes the operation type and various requirements
on the number of models that the operation can handle instructing Landmark on how to invoke each operation.

Depending upon the type of operation, Landmark calls one of the four InvokeOperationTypeX(...) methods.
Methods 1 through 3 are similar in that either (semi-)landmark points and/or model meshes are passed. The landmark
points that are passed represent those points that are automatically generated from the Landmark primitives within
Landmark. The reason these are separated into four different methods is that it takes time to compute the (semi-
)landmarks, thus, if a plugin only requires meshes, there’s no need to compute (semi-)landmark points (or to prepare
model meshes for transfer).

InvokeOperationType4(...) is intended for automatically transferring landmark primitives from an atlas
model to other models. Thus, the “landmarks” that are passed into this method are the control points for the Landmark

41

primitives, rather than the (semi-)landmark points themselves. The complexity of curves, patches, and such is hidden
from the plugin. You can determine corresponding landmark control points by comparing their labels with the atlas,
always the 0th item in vLand and vMesh (only for type 4 is it always the 0th item). Duplicates are never passed for
this operation.

Plugins send information back to Landmark using the ILandmarkApp interface. Calls to methods in this object go
directly to Landmark, please refer to the following section for details on this object’s methods.

11.4.2 ILandmarkApp

The ILandmarkApp interface object allows the plugin to communicate with Landmark. A brief description of each
method is described in Table 3.

The file Plugin.cpp is intended as an instructional tools as well as a starting location for building your own
plugin. The original code in this file covers all aspects of the interface and how to properly communicate back and
forth from the plugin and Landmark.

11.5 Deployment of Landmark Plugins

Once you have finished debugging and testing of your plugin, you can “deploy” your plugin by copying it into the
Plugins sub-folder in the Landmark installation folder. It will now be automatically loaded by Landmark every time
Landmark is started. You should also copy any DLL dependencies your plugin may have into this folder or insure
that the required DLLs are available in the system path. Landmark will not be able to load and use your plugin if
dependencies are missing.

42

Interface Item Description

BUILD PLUGIN DLL This macro definition is used to tell the plugin interface whether it
is being used to build the plugin DLL or not. All plugin projects
should have this symbol defined in the project settings.

LMPLUGINAPI This defines the appropriate importing or exporting of plugin
methods to or from the DLL. Plugin projects should be exporting
method interfaces.

namespace LandmarkPlugin Plugin data structures are wrapped in this namespace.
HMODEL This is a handle to uniquely identify models passed into a plugin.

MODEL This structure groups a model handle and the model name together.

template< > Vector Used to group together a number of objects. This is instead of
std::vector< > since the C runtime library linkage can cause
problems when different builds (debug or release) of
Landmark are used to run the plugin.

String Represents a character string. See Vector for why std::string
is not used.

POINT Landmark points passed into plugins have x, y, and z coordinates as well
as the normal vector associated with the landmark (nx, ny, and nz).
The label can be used to uniquely identify an individual point.
Corresponding points on different models will share the same label.

LANDMARKPOINTS This structure groups together a set of landmark points for
the given model.

MESHPOINT This is a point used in a triangle mesh of a model. It has x, y,
and z coordinates, associated normal vector (nx, ny, and nz), and
red, green, and blue (r, g, and b, respectively) color components.

TRIANGLE Holds the indices to MESHPOINTS to define model triangles.
MESH Holds a vector of MESHPOINTS and a vector of TRIANGLES that define

the model’s triangle mesh.

ILandmarkApp This is Landmark’s representative interface object that the plugin
can use to send data back to Landmark, for example, see Section 11.4.2.

OPTYPE Defines the four basic operation types that plugins can perform.
OPERATION Detailed information about a particular plugin operation.
VERSION Versioning for the plugin interface.

Table 1: A brief description of the Landmark Plugin Interface objects defined in Plugin.h.

43

Interface Method Description

LandmarkPlugin::VERSION GetPluginVersion() Landmark calls this method to determine the version
of the plugin interface used. You should not
change the value returned by this method.

const char* GetPluginName() Returns the name of your plugin. Default is
“MyPlugin”, you should change this value.

const char* GetPluginInformation() Returns a string describing the authors
of the plugin.

bool CanOpenItem(Returns whether or not the plugin can open a file
const LandmarkPlugin::String with the passed extension. The dot ’.’ is
&strFileExtension) included, for example, “.txt”.

bool OpenItem(The plugin should open the file passed. The file is a
const LandmarkPlugin::String temporary file and writes to this file will not be
&strFilename, recorded unless the plugin call AppendResult() to
HWND hParentWnd, re-import the file into the Landark database.
LandmarkPlugin::String hParentWnd is the window in which the plugin
&strTitle, should create a “viewer” if appropriate. strTitle can be
LandmarkPlugin::ILandmarkApp *pApp) used to set the title for the opened item.

int GetNumberOfOperations() Returns the number of operations this
plugin supports.

bool GetOperationInformation(int nOp, Retrieves information for a given operation.
LandmarkPlugin::OPERATION *pInfo)

bool InvokeOperationType1(int nOp, Passed only (semi-)landmark points.
const LandmarkPlugin::Vector<
LandmarkPlugin::LANDMARKPOINTS
> &vLand,
LandmarkPlugin::ILandmarkApp *pApp)

bool InvokeOperationType2(int nOp, Passed only model meshes.
const LandmarkPlugin::Vector <
LandmarkPlugin::MESH
> &vMesh,
LandmarkPlugin::ILandmarkApp *pApp)

bool InvokeOperationType3(int nOp, Passed both (semi-)landmark points and model meshes.
const LandmarkPlugin::Vector<
LandmarkPlugin::MESH
> &vMesh,
const LandmarkPlugin::Vector<
LandmarkPlugin::LANDMARKPOINTS
> &vLand,
LandmarkPlugin::ILandmarkApp *pApp)

bool InvokeOperationType4(int nOp, Passed control points for Landmark primitives
const LandmarkPlugin::Vector< (NOT landmarks or semi-landmarks) along
LandmarkPlugin::MESH with model meshes for the purpose of
> &vMesh, automatically transferring Landmark primitives
const LandmarkPlugin::Vector< from the atlas (0th item in vLand and vMesh)
LandmarkPlugin::LANDMARKPOINTS to the remaining models.
> &vLand,
LandmarkPlugin::ILandmarkApp *pApp)

Table 2: A brief description of the Landmark Plugin Interface methods defined in Plugin.h.44

Interface Method Description

HWND GetMainLandmarkWindow()const Call this method to get the window handle
of Landmark’s main window. This can be used
as the parent window of dialogs you may want
to originate from the plugin.

bool Progress(long lPos, long lMax) Use this method to notify Landmark of
operation progress. If your operation
consists of three steps, then you would
first call Progress(0,3) to get things
started, then (1,3), (2,3), and finally
(3,3) to finish. This method controls
the progress bar at the bottom of Landmark.
A return value of false means the user pressed
the cancel button during the operation.

bool Status(const String &strStatus) To be used in conjunction with
Progress(...). Currently not used anywhere
within Landmark. A return value of false means
the user pressed the cancel button during
the operation.

void DisplayMessage(const String &strMsg) Pops-up a message box within Landmark
to display some text.

bool LoadIntoC(const MESH &mesh, Instructs landmark to load the passed mesh and/or
const LANDMARKPOINTS &land, landmark points into the C window pane. The
bool bResetView) parameter bResetView controls whether or not the

viewing parameters are reset each time this method is
called. You can call this method repeatedly.

bool AppendResult(const MESH &mesh, Similar to LoadIntoC, but this method appends
const LANDMARKPOINTS &land, the passed information into the Landmark database.
const std::string &strName)

bool ImportFile(const String &strFilename) This imports any file into the database, for
example, any file you may make in the course
of running your plugin. The file is compressed internally
to conserve space.

bool SetModelLandmarks(HMODEL hModel, Intended to be used with automatic landmark transferring
const LANDMARKPOINTS &land) operations of type 4, calling this method destroys

any existing landmarks for the specified model
and replaces them with those passed.

Table 3: A brief description of the ILandmarkApp interface object defined in Plugin.h.

45

12 Acknowledgements

Send comments, suggests, or otherwise regarding Landmark to David F. Wiley at wiley@cs.ucdavis.edu. A com-
plete list of the team members involved in building Landmark are

• David F. Wiley1,2 • Deboshmita Ghosh1,2

• Nina Amenta1,2 • Shengyin Gu1,2

• Eric Delson4,5,6,7,8 • Will Harcourt-Smith6,8

• F. James Rohlf3,4,5,6 • Steven Frost6,10

• Bernd Hamann1,2 • Alfred L. Rosenberger4,5,6,11

• Katherine St. John5,6,9 • Lissa Tallman4,5,6,7

• Dan Anthony Alcantara1,2 • Todd Disotell5,12

• Yong J. Kil1,2 • Ryosuke Motani13

1. Institute for Data Analysis and Visualization, University of California, Davis

2. Department of Computer Science, University of California, Davis

3. Department of Evolution and Ecology, Stony Brook University

4. Ph.D. Program in Anthropology, City University of New York

5. NYCEP (New York Consortium in Evolutionary Primatology)

6. NYCEP Morphometrics Group

7. Department of Anthropology, Lehman College/CUNY

8. Division of Paleontology, American Museum of Natural History

9. Department of Mathematics and Computer Science, Lehman College/CUNY

10. Department of Anthropology, University of Oregon

11. Department of Anthropology, Brooklyn College, CUNY

12. Department of Anthropology, New York University

13. Department of Geology, University of California, Davis

This material is based upon work supported by the National Science Foundation under Grant No. SEI(SBE)-0513894. Preliminary
work of this material was supported by the National Science Foundation under Grant Nos. DEB-0121681/0121682, ACI-9982351,
DEB-0212023, ACI-962034, and NIH/NSF P20 MH60975-06A2. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

46

